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Abstract

As currently defined, it is not clear whether Nonverbal Learning Disabilities (NLD) should be considered a matter
of kind or magnitude (Meehl, 1995). The taxonicity of NLD, or the degree to which it is best construed as discrete
versus continuous, has not been investigated using methods devised for this purpose. Latent Class Analysis (LCA)
is a method for finding subtypes of latent classes from multivariate categorical data. This study represents an
application of LCA on a sample of children and adolescents with spina bifida myelomeningocele (SBM) (N = 44),
those presenting with features of NLD (N = 28) but no medical condition, and control volunteers (N = 44). The
two-class solution provided evidence for the presence of a taxon with an estimated base-rate in the SBM group of
.57. Indicator validities (the conditional probabilities of indicator endorsement in each latent class) suggest a
somewhat different priority for defining NLD than is typically used by researchers investigating this disorder. A
high degree of correspondence between LCA classifications and those based on a more conventional algorithm
provided evidence for the validity of this approach. (JINS, 2007, 13, 50-58.)
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INTRODUCTION

Nonverbal learning disabilities (NLD) have been described
from psychoeducational (Myklebust, 1975), neurological
(Denckla, 1978 ; Voeller, 1986) and neuropsychological
(Pennington, 1991; Rourke, 1987) perspectives. Though not
identical, most of these descriptions emphasize the promi-
nence of deficits in visual-spatial, motor, and math abilities
purported to be related to the abnormal functioning of the
right cerebral hemisphere and are also often associated with
poor interpersonal adjustment (Ris & Nortz, in press). Inde-
pendent evidence confirming structural or functional brain
impairment is often lacking, but it is inferred based on a
characteristic pattern of neurobehavioral deficits. In other
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cases, the critical pattern of strengths and weaknesses may
be found in children with documented neurologic disorders
or injuries, such as cranial radiation for brain tumors (Buono
et al., 1998), traumatic brain injury (Ewing-Cobbs et al.,
1993), and hydrocephalus (Donders et al., 1991).

Byron Rourke’s (1987) conceptualization of NLD is
clearly the most developed, both theoretically and empiri-
cally. Central to Rourke’s model is the equipoise of assets
and deficits in understanding the development and features
of NLD. Classification criteria and rules have been offered
that are meant to aid the researcher and clinician in opera-
tionalizing the disorder (Pelletier et al., 2001). As origi-
nally presented (Rourke, 1987), with later elaboration
(Rourke, 1995), the pathophysiology of NLD is to be under-
stood in terms of the integrated functioning of the brain,
particularly as it pertains to systems of, or access to, the
right cerebral hemisphere. Thus, the NLD constellation may
result from dysfunction/dysgenesis of white matter outside


https://doi.org/10.1017/S1355617707070087

Taxonicity of NLC

of the right hemisphere if commissural fibers are involved.
A number of recent studies on NLD have investigated
“neurobehavioral phenotypes” of patients with various dis-
orders affecting the white matter. Rourke (1995) has grouped
these into Levels depending on the extent of conformity to
the NLD profile. Level 1 disorders (e.g., hydrocephalus)
meet virtually all of the NLD criteria; Level 2 (e.g., con-
genital hypothyroidism), a majority of them; Level 3 (e.g.,
traumatic brain injury), many of them; and Level 4 (e.g.,
neurofibromatosis) are suggestive of NLD. Because actual
diagnoses of NLD are often not reported, these studies of
high-risk conditions provide evidence of the degree to which
such children, as a group, are at risk for particular features,
of NLD, but they cannot determine the individual risk or
base rate of NLD.

Early shunted hydrocephalus is considered a Level 1
disorder and so, as a group, should show all or most of the
signs/symptoms of NLD. Fletcher et al. (1995) present
evidence that generally supports this postulate, and the
work of the Houston and Toronto groups (Dennis et al.,
2005) is exemplary in mapping deficits in motor timing,
covert attention, voluntary attention, and perceptual pro-
cessing to abnormalities in the cerebellum, midbrain, and
parietal regions in children with spina bifida myelomen-
ingocele (SBM). However, because NLD has not been an
organizing construct for this line of research, it is not clear
what proportion of children with SBM could be so charac-
terized and what the anatomic correlates of NLD might be.

In a recent paper by Yeates et al. (2003), the incidence of
NLD was compared for groups of children with SBM and
healthy siblings. Classification as NLD was based on per-
formances across 11 measures of assets and 17 measures of
deficits. Whereas features of NLD were more prevalent in
the SBM group, there was also a high degree of phenotypic
variability, and only 45% of the children with SBM were
classified as NLD.

Another means by which base-rates of a disorder can be
estimated is through classification procedures such as Latent
Class Analysis. Using binary indicators, LCA defines classes
by the criterion of “conditional independence,” [i.e., each
indicator within a class is statistically independent of every
other variable (Clogg, 1995)]. Such procedures can explore
the continuous versus discontinuous nature of disorders, a
fundamental but elusive distinction often determined by fiat
rather than empirically (Meehl, 1995). Yet, the taxonic nature
of a disorder can have important implications for models of
pathogenesis/pathophysiology, genetic contribution, sub-
type analysis, and distinctions from similar conditions.

The “taxonic question,” then, is whether the latent prop-
erty is a single distribution or is composed of two or more
groups (Meehl, 2004). It is a common misconception that
taxonicity is reflected in bimodality of the indicator distri-
butions. It has been established that this is true only in
extreme cases in which taxon and complement distributions
are separated by at least two standard deviations (Murphy,
1964), and so apparently unimodal distributions may obscure
taxa. Other statistical classification methods, such as
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cluster analysis and inverse factor analysis have also been
shown to be problematic for distinguishing disorders of
“kind” from “magnitude” (Cleland et al., 2000; Golden &
Mayer, 1995).

The taxonic/class nature of disorders such as autism (Szat-
mari et al., 1995), dissociative disorder (Waller et al., 1996),
schizophrenia (Erlenmeyer-Kimling et al., 1989), anti-
social personality disorder (Bucholz et al., 2000), and bulimia
nervosa (Duncan et al., 2005) have been investigated as
well as infant attachment patterns (Fraley & Spieker, 2003).
However, appropriate statistical methods for determining
the discrete versus continuous nature of neurobehavioral
syndromes/disorders have rarely been applied.

In this study, we used LCA to investigate the taxonic
versus spectral nature of NLD in a mixed sample of: (1)
children with features of NLD but no medical condition;
(2) volunteers without an identified developmental or psy-
chological condition; and (3) children with SBM. We then
compare the classifications via LCA with classifications
achieved by a more traditional approach ( Yeates et al., 2003).
Finally, for participants with SBM, we compared NLD with
Non-NLD groups for neurologic risk factors. Children with
SBM are known to have a number of brain abnormalities
involving gray and white matter (Fletcher et al., 2000) includ-
ing deformation of the cerebellar tonsils, elongation of the
pons and medulla, agenesis of the corpus callosum, aque-
duct abnormalities, and tectal “beaking.” Eighty to ninety
percent of individuals with SBM have hydrocephalus requir-
ing shunt placement (Reigel & Rotenstein, 1994). Accord-
ing to Rourke (1995), this then represents a Level 1 disorder,
and so such children are considered to be at high risk for the
NLD constellation of symptoms.

METHOD

Participants

The sample was comprised of participants in a longitudinal
study of the neuropsychological and psychosocial function-
ing of pre-adolescents and adolescents (ages 10—18 years)
with SBM. The SBM participants were recruited from long-
standing specialized clinics at two major pediatric care
centers (Cincinnati Children’s Hospital Medical Center
(CCHMC) and Columbus Children’s Hospital). Inclusion
criteria for this study stipulated that participants have 1Qs
at or above 70 on either the Verbal or Performance scales of
the age-appropriate Wechsler Scale. For the purposes of the
LCA reported here, participants with SBM (N = 44) were
pooled with those (N = 28) having features of NLD
(VIQ>PIQ by at least 10 points, Reading>Math by at least
10 points, and evidence of fine motor deficits on visual-
motor testing) but no specific medical disorder. There were
two recruitment pathways for the NLD features group. First,
children who had the Verbal-Performance split were iden-
tified through clinician referrals and review of charts at
three CCHMC clinics: the Cincinnati Center for Develop-
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mental Disorders, the Division of Psychology, and the Divi-
sion of Psychiatry. In this way, we were able to capture
patients referred because of learning concerns as well as
those referred for behavioral /emotional concerns. Some par-
ticipants so identified had testing available for review that
allowed us to determine whether they met the other two
criteria (Reading>Math, fine motor deficits) whereas for
other participants, this testing had to be completed prior to
inclusion in the study.

The identification of the NLD features group was based
on the design of the larger study, but serves the purposes of
this latent class analysis by increasing the range of indica-
tor values to include those that would fall in the clinical
range. It is important to note that the screening methods
described before do not constitute a diagnosis of NLD. Many
more symptoms/indicators of NLD are required for such a
diagnosis, as described by Pelletier et al. (2001) and Yeates
et al. (2003). Our screening method, though, served the
purpose of identifying participants among a heterogeneous
clinically referred population with a greater than chance
probability of having NLD, thus ensuring a minimally suf-
ficient base rate of the disorder for application of latent
class procedures.

Forty-four controls were also recruited from area pediat-
ric practices. The parents of these volunteers were admin-
istered a brief screening questionnaire over the phone in an
attempt to exclude youths with diagnosed psychological or
developmental problems. Therefore, the overall sample size
was 116 and the sample was quite heterogeneous in regards
to neurobehavioral functioning. All three groups met age
(10-18 years) and IQ (at or above 70 on either the Verbal or
Performance Scales) inclusion criteria. As can be seen in
Table 1, groups differed in age, gender make-up, and SES.

Data included in this study was obtained in compliance
with guidelines of the Helsinki Declaration and was approved
by the Cincinnati Children’s Hospital Medical Center Insti-
tutional Review Board (CHMC #99-11-21).

Table 1. Sample characteristics

NLD Healthy
SBM Features Controls
(N=44) (N=28) (N=44)

Mean Age (SD)* 13.4 (2.57) 12.7 (2.11) 12.2 (2.29)
Mean Family SES® (SD)* 48.2 (10.7) 41.9 (11.1) 50.2 (9.5)

Gender (% males)* 43.2 71.4 47.7

Number shunted (%) 40 (91%)

Ethnicity:
White 41 25 42
African-American 2 3 2
Asian 1 0 0

Note. *Socioeconomic status according to Hollingshead’s Four Factor Index
of Social Status. There were three cases (one in each group) for which
incomplete data precluded derivation of SES.

*p < .05.
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Latent Class Analysis

LCA is a method for finding subtypes of latent classes from
multivariate categorical data. Mathematically, it is closely
related to a form of cluster analysis called multivariate mix-
ture estimation (Titterington et al., 1985). Its goal is to find
the minimum number of latent classes accounting for vari-
ation in observed indicators (Dayton, 1999; McCutcheon,
1987; Rindskopf & Rindskopf, 1986; Young, 1983).

This goal is accomplished by partitioning a set of response
vectors into k latent classes by maximizing the likelihood
of the data given the conjectured model. A model will include
2 sets of parameters: (1) the latent class prevalence rates
and (2) the conditional indicator probabilities for each class.
The overall likelihood for the model is the product of the N
individual likelihoods (or the sum of the log likelihoods).
The method of maximum likelihood (ML) searches for
parameter estimates that maximize the overall likelihood
(see Everitt, 1984, for details). These so-called ML param-
eter estimates can then be used to assign individuals to a
latent class.

In the current study class indicators were identified a
priori in the following manner. Guided by Rourke’s (1995)
published research, we preselected from a larger neuropsy-
chological battery indicators from each of the domains of
NLD. These measures were part of a larger battery admin-
istered to the participants and their parents during a five to
six hour visit to the medical center. Testing was conducted
under controlled conditions by experienced psychometrists
and neuropsychology postdoctoral fellows. More informa-
tion about the test battery and assessment procedures are
available on request from the first author (MDR).

1. Wechsler Intelligence Scale for Children, Third Edition
(WISC-III: Wechsler, 1991) Verbal IQ>Performance I1Q
by at least 10 points (designated “IQ” indicator). The
Wechsler Adult Intelligence Scale, Third Edition (WAIS-
III: Wechsler, 1997) was used instead of the WISC-III
for five subjects who were over 16 years of age.

2. Wechsler Individual Achievement Test (WIAT: Wech-
sler, 1992) Basic Reading Subtest > Numerical Opera-
tions by at least 8 points (designated “ACH” indicator).

3. Judgment of Line Orientation (Benton et al.,1983) at
least 1 SD below age-mean (designated “JLO” indicator).

4. Children’s Category Test (Boll, 1993) atleast 1 SD below
the mean (designated “CCT” indicator). There were five
subjects age 17 years for which the 16-year-old norms
(the oldest available for this test) were applied.

5. Grooved Pegboard Test (Klove, 1963) at least 1 SD below
the mean for the two hands combined (designated
“Gpegs” indicator).

6. Fingertip Number Writing Test (Reitan & Wolfson, 1985)
at least 2 SD below the mean bilaterally (designated
“FTNW” indicator).
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7. Paralanguage score on the Developmental Assessment
of Nonverbal Accuracy-2 (Nowicki & Duke, 1994) at
least 1 SD below the mean (designated “DANVA”
indicator).

8. Behavioral Assessment System for Children (Reynolds
& Kamphaus, 1992) Internalizing T score of at least 60
(designated “BASC” indicator).

Wherever possible (i.e., WISC-III, WIAT), cutoffs could
be easily drawn or extrapolated from Rourke’s published
works (1995). In other cases, judgments were made based
on the obtained distributions when they were non-normal
(i.e., FTNW), and also based on what would be considered
of clinical significance (i.e., GPegs).

The resulting set of indicators is quite consistent with
contemporary conceptualizations of NLD, and represent the
diverse domains and patterns of scores believe to be central
to the disorder (Rourke, 1995). While acknowledging the
pitfalls of dichotomous indicators (MacCallum et al., 2002),
in this case, these were preferred over continuous ones
because we were attempting to approximate the clinical
diagnostic situation in which discrete decisions are made,
and this approach provided the best comparison to already
published reports on the classification of NLD (Pelletier
et al., 2001; Yeates et al., 2003).

Concurrent Validity

The classifications achieved using LCA were compared to
those using a more conventional method described in a recent
publication on NLD in SBM (Yeates et al., 2003). These
authors grouped neuropsychological tests into assets and
deficits, and NLD classification was based on the propor-
tion of one to the other. Somewhat different tests were used
by us, but we attempted to follow the Yeates et al. approach
as closely as possible. Listed in Table 2 are the tests repre-
senting NLD assets and deficits for our study.

Consistent with the Yeates et al. (2003) approach, an “NLD
Total Score” was obtained by adding the percent assets with
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the percent deficits. An “NLD Difference Score” was gen-
erated by subtracting the percent deficits from the percent
assets. A subject was classified NLD if both the NLD Total
Score was >.9 and their NLD Difference Score was <.5.

Neurologic Risk

Finally, for the SBM group, those classified as NLD were
compared to those not classified as NLD on a neurologic
risk index composed of the following: (1) lesion level (tho-
racic, lumbar, sacral corresponding to assigned values of 3,
2, 1, respectively); (2) seizures (1 or 0); (3) shunt infection
(1 or 0); (4) number of shunt revisions (0 to 9); and (5)
number of oculomotor/visual deficits (e.g., strabismus, nys-
tagmus, papilledema, optic atrophy) (0 to 4). See Table 3
for more information about the composition of this index.
Our approach to scaling overall neurologic risk borrows
from Hommeyer et al. (1999), as well as Yeates et al. (2003),
and has been used by us in a study of executive functioning
in SBM (Brown et al., 2007). Information for the neuro-
logic risk index was obtained from the parent and the
medical chart, and was therefore acquired indirectly and
retrospectively.

RESULTS

Latent Class Analysis

All analyses reported in this section were conducted with
the LCA 1.1 package for latent class analysis (Waller, 2004).
This library is a collection of R (R Development Core Team,
2005) functions for exploring typological models with binary
items. The LCA library was chosen for this study because it
includes a number of unique features that are useful for
analyzing neurological symptom data. Foremost among these
are parametric and nonparametric bootstrapping options
(Efron, 1984; Langeheine et al., 1996) that allow for the
accurate estimation of test statistics (Cressie & Read, 1984)
in moderately sized samples, and the ability to execute mul-

Table 2. Tests Used to Measure NLD Assets and Deficits

Assets

Deficits

Verbal Fluency

WISC-I11%/ WAIS-III® Vocabulary
WISC-IIT/ WAIS-IIT Similarities
WISC-I11/ WAIS-III Information
WISC-III Digit Span

CMS Storiesd/ WMS Logical Memory®

CMS Word Pairs/WMS Verbal Paired Associates

WIAT Basic Reading®
WIAT Spelling

Judgment of Line Orientation

WISC-III/ WAIS-III Block Design
WISC-III/WAIS-III Object Assembly
WISC-IIT Coding/WAIS-III Digit Symbol
CPT Commissions®

CMS Faces/WMS Family Pictures
Children’s Category Test

WIAT Numerical Operations

Fingertip Number Writing

Grooved Pegboard

Note. *Wechsler Intelligence Scale for Children—III, "Wechsler Adult Intelligence Scale—TIII, *Conners Con-
tinuous Performance Test, Children’s Memory Scale, *Wechsler Memory Scale, fWechsler Individual Achieve-

ment Test.
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Table 3. Composition of the Neurologic Risk Index

Number  Mean (SD) Range

Lesion level®

Thoracic 9 (23%)

Lumbar 25 (64%)

Sacral 5 (13%)
Seizures?® 7 (18%)
Shunt infection® 3 (8%)
Number of shunt revisionsP 1.53 (1.9) 0-9
Oculomotor/visual deficits® 9 (1.0) 0-4

Note. *data available on 39 of the 44 SBM participants
bdata available on 36 of the 44 SBM participants.

tiple runs from random starting points. This latter feature
represents a useful approach to avoid local maxima in the
maximum likelihood solution (for a discussion of local max-
ima in latent class analyses see Aitkin et al., 1981 and Good-
man, 1974). In the following analyses we used a parametric
bootstrap because, of the two options, research (De Men-
ezes, 1999) suggests that the parametric method is prefera-
ble in moderately sized samples.

Three models were tested and compared for their ability
to account for the observed data: a 1-class, 2-class and 3-class
model. All criteria indicated that the 2-class model pro-
vided a superior fit to the data. To gauge this fit we con-
sulted three statistics: (1) the likelihood ratio chi-square,
(2) the Pearson chi square, and (3) the Cressie-Read index
(Cressie & Read, 1984). Importantly, we did not rely on
their putative chi-square distributions to assess significance
levels as research indicates that in realistically sized sam-
ples these indices are not distributed as chi-square variates
(Collins et al., 1993; Cressie & Read, 1984). Rather, we
used the results from 200 parametric bootstrap samples to
construct empirically justifiable null distributions. More-
over, each of the 200 bootstrap samples was analyzed 10
times from a random starting configuration to avoid local
maxima. Thus, for each model (1-, 2-, or 3-class model) we
performed 2000 latent class analyses.

For the 1-class model all fit indices were highly signifi-
cant (Pearson y? = 302.76, df = 247, parametric bootstrap
p <.01; Likelihood Ratio 2 = 239.57, df = 247; parametric
bootstrap p <.001; Cressie-Read: 280.92, A = .67, df = 247,
parametric bootstrap p < .001) suggesting that this model
could not account for the observed data. Similarly, the 3-class
model provided a poor fit to the data. Importantly, we did not
rely on the aforementioned chi-square statistics to make this
judgment. Rather we noticed that in the 3-class model four
parameter estimates were located at aboundary value (i.e., at
either O or 1). In latent class models, solutions with so-called
boundary estimates are prima facie evidence that the data have
been over-fit by extracting too many latent classes. Conse-
quently, although the fit indices suggested that the 3-class
model provided an acceptable level of fit (Pearson y? =
159.21, df = 229, parametric bootstrap p = .27; Likelihood
Ratio y? = 150.92, df = 229, parametric bootstrap p = 0.1;
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Cressie-Read = 161.41, A: .67, df = 229, parametric boot-
strap p = .19), the boundary values indicated that the chi-
square values should not be trusted.

Overall, as judged by the chi-square measures of fit with
the robust (bootstrap) significance levels, the 2-class model
provided an excellent fit to the data (Pearson y? = 199.27,
df = 238, parametric bootstrap p = .3, Likelihood Ratio
x2 = 178.64, df = 238, LR Parametric bootstrap p = .08;
Cressie-Read = 195.87, A: .67, df = 238, parametric boot-
strap p = .16). Further analyses of the results bolstered this
conclusion. For example, in the 2-class model none of the
Freeman-Tukey residuals (Freeman & Tukey, 1950) was
larger than 1.96 in contrast to 8% of the residuals for the
1-class model and 3% of the residuals for the 3-class model.
Figure 1 provides a graphical summary of the 2-class solu-
tion. Notice in this figure that, for each indicator, we have
plotted the class membership endorsement probabilities with
the accompanying 95% confidence interval. Therefore, JLO,
CCT, Gpegs, and FTNW were significantly different for
the taxon and complement groups, whereas 1Q, ACH,
DANVA, and BASC were not. These indicator probabilities
denote the likelihood of each indicator being present for
participants in the two classes (NLD, non-NLD).

The estimated taxon base-rate was .38 for the entire sam-
ple. In the SBM group, 25 (57%) subjects were assigned to
the taxon. Of the four participants with SBM who were not
shunted, two were assigned to the taxon and two were
assigned to the complement group. In the NLD features
group, 16 (57%) were assigned to the taxon, and for the
control group, 3 (7%) were assigned to the taxon. This
latter finding is quite interesting, given that these partici-
pants were recruited to be without known developmental/
psychological abnormalities. This likely reflects the under-
identification of NLD, which is not represented in any
educational or psychiatric nosologies (Ris & Nortz, in press).
To determine if LCA classifications differed by age, gen-
der, and SES, simple contrasts (one-way ANOVA for age
and SES, Chi Square for gender) were carried-out for each
of the 3 groups (SBM, NLD features, and controls). For all
such analyses, differences were not significant (p > .05).

Concurrent Validity

As can be seen in Table 4, there is good correspondence
between the classifications resulting from application of
the LCA and Yeates et al. (2003) systems.

Table 4. LCA and Yeates et al. Classifications

Yeates et al.

Not NLD NLD Total
LCA
Not NLD 63 (88%/82%)* 9 (13%/23%) 72 (62%)
NLD 14 (32%/18%) 30 (68%/77%) 44 (38%)
Total 77 (66%) 39 (34%) 116

Note. *percentages correspond to row (LCA)/column (Yeates et al.)


https://doi.org/10.1017/S1355617707070087

Taxonicity of NLC

1.0

]

|
| q—

\

AR

P(Symptom | Class Membership)

02 03 04 05 06 0.7 08 09

55

T —®= Taxon

—4— Complement

]

4
1
4

B

i H / : i A
: AN
S o "
o - L.
o T T T T T T T 1
Q ACH JLO ccT Gpegs FTNW DANVA

BASC

Fig. 1. Within class indicator probabilities for entire sample. IQ = VIQ > PIQ, ACH = Reading > Math, JLO =
Judgment of Line Orientation, CCT = Children’s Category Test, Gpegs = Grooved Pegboard Test, FTNW = Fingertip
Number Writing Test, DANVA = Development Test of Nonverbal Accuracy, BASC = Behavioral Assessment System

for Children.

The overall classification agreement was 80% with a sig-
nificant Kappa statistic (.57, p <.001). Out of 23 disagree-
ments, in 14 cases LCA classified as NLD whereas the
Yeates et al. method classified as Not-NLD. In 9 cases, the
reverse was true. In addition to suggesting that the Yeates
et al. method is somewhat more conservative, further exam-
ination of the individual indicators in these disagreements
suggests the following:

1. Inthe Yeates et al. scheme, 1Qs and subtest scores deter-
mined the classification to a greater extent than in the
LCA method, whereas in the LCA classification, visual
perceptual and motor scores played a more prominent
role. In other words, disagreements were characterized
by systematic differences between the two classification
systems as to which tests defined NLD.

2. Because the Yeates et al. scheme did not include an indi-
cator reflecting internalizing symptoms, this was rele-
vant only for the LCA classification, being present in 10
of the 14 disagreements in which LCA classified as NLD.

3. Interestingly, the two schemes classified three different
controls as NLD. On further analysis, this seemed to be
related to the aforementioned greater weighting of the
Yeates et al. system for IQ and subtest indicators, and a
greater weighting of the LCA method for somatosensory
and motor indicators of NLD.

Neurologic Risk

In the SBM group, a neurologic risk index could not be
calculated for eight subjects because of missing data on one
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or more of the five variables that comprise this index. For
the remaining 36 SBM participants, one-way ANOVA con-
trasting the LCA taxon and complement groups on the neuro-
logic risk index was non-significant (F(1,34) = .486, p =
491) indicating no difference in the NLD and non-NLD
groups in terms of presence of neurologic abnormalities/
risk factors. The same result was arrived at using a non-
parametric test (Mann-Whitney U = 152, p = .948).

DISCUSSION

This mixed sample comprised of participants with a high
risk condition (SBM) for NLD, participants with some fea-
tures of NLD, and volunteers without any identified psy-
chological or developmental conditions provided an ideal
opportunity for application of latent class procedures. The
results of these analyses support the taxonicity of NLD. A
distinct class distribution is evidence for a natural boundary
between those with and without the disorder. Its distinctive-
ness from similar disorders such as Aspergers, however,
awaits further study.

These results neither support nor refute Rourke’s White
Matter Hypothesis. Half of the SBM group, a condition at
high risk for white matter abnormalities, was classified as
having NLD. But as has already been pointed out, this con-
dition is characterized by multiple brain abnormalities and
significant phenotypic heterogeneity. Without radiographic
evidence, it cannot be determined which such abnormali-
ties are related to the NLD phenotype in particular. The
nature of the neurobehavioral phenotype conveys little about
the nature (discrete vs. continuous) of its substrate. It would
not necessarily follow, for example, that a taxonic pheno-
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type would imply a discrete neural substrate as opposed to
one that is dimensional (i.e., a gradient of white matter
abnormalities). One could postulate, for example, a thresh-
old effect consistent with Satz’s theory (Satz, 1993) whereby
a threshold of white matter disturbance must be reached
before clear impairment is manifested on neurobehavioral
measures, resulting in a taxonic phenotype. Alternatively,
the distinctiveness of the taxon may be related to specific
brain abnormalities or even factors other than underlying
neuropathology, such as genetic risk or contextual factors.
Given the small number of participants with SBM who were
not shunted, their even distribution across taxon and
complement groups demonstrates little other than the likely
complex relationship between phenotype and neural sub-
strate. Further research into the correspondence between
empirically-valid classifications and such factors would
advance our understanding of root and contributing causes
of this neurobehavioral disorder.

Although a few of the indicator probabilities are not sig-
nificantly different from one another for the taxon and com-
plement groups (see confidence bounds in Fig. 1), the power
to detect significant differences is modest in our sample
size. The relative validity estimates of the indicators are
consistent with Rourke’s proposed “Primary Deficits” in
his developmental model with sensory-motor and visual-
perceptual deficits being precursors of the downstream def-
icits reflected in IQ and achievement patterns (Rourke, 1995).
In this respect, our results using LCA seem to converge
with those reported by Harnadek and Rourke (1994) who
used discriminant function analysis on a sample comprised
of NLD, reading/spelling disabled, and non-disabled chil-
dren. Motor and visual-spatial deficits may therefore con-
stitute cardinal features of NLD that are present early in
development and have only stochastic relationships with
other putative features of NLD (e.g., academic patterns, [Q
patterns, and socioemotional deficits). This would imply
that many of the indicators of NLD frequently used in the
literature are not the most reliable and so would contribute
to diagnostic imprecision. For example, the diagnostic pri-
ority assigned by Pelletier et al. (2001) to performance on
the Grooved Pegboard Test is lower than found in our analy-
sis. One benefit of further latent class research of this type
would be to establish which indicators are most valid and
therefore can be used to improve diagnostic accuracy.

The good correspondence reported here between the LCA
and a more traditional approach (Yeates et al., 2003) pro-
vides further support for the validity of the LCA results. It
is also noteworthy that the base-rate of NLD in the SBM
group was very similar to that reported by Yeates et al. in a
non-overlapping sample of children with SBM. The some-
what higher base-rate reported here (.57) compared with
that reported by Yeates et al. (.45) likely reflects sampling
differences; we excluded subjects with 1Qs below 70 whereas
Yeates et al. did not. Furthermore, as reported by Yeates
et al., there was no significant relationship found between
NLD and an index of neurologic risk for the SBM group. At
first, this might seem to conflict with reports of more intra-
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cranial imaging abnormalities, broader neuropsychological
impairment, and greater metacognitive impairment associ-
ated with higher lesion levels (Brown, et al., 2006; Fletcher
et al., 2005). But, this relationship pertains to degree of
neuropsychological impairment, whereas NLD is defined
by a distinct configuration of neuropsychological strengths
and weaknesses. As such, NLD should not bear a direct
(linear) relationship to neurologic abnormality. Indeed,
severe central nervous system compromise would likely
“wash out” the pattern that characterizes NLD. Whereas the
precision of a composite neurologic index could also be
called into questioned, the fact that it relates in a meaning-
ful way to metacognitive functioning (Brown, et al., 2006)
provides some evidence of its validity in scaling neurologic
risk.

Of the NLD features group, 57% were assigned to the
taxon. This is not surprising because the three tests used to
select this group were similar to three of the eight class
indicators. Because only one of these three (a measure of
fine motor speed and dexterity) was among the more dis-
criminating indicators for the NLD class, improved “screen-
ing” could be achieved by a better set of indicators, such as
GPegs, JLO, and FTNW.

The limitations of this study should be acknowledged.
First, whereas the sample size was sufficient, it remains
desirable to have larger samples to yield the most robust
results. Second, the indicators selected, though true to the
NLD concept, were not exhaustive. Other indicators, or other
ways of measuring the latent variables of interest, may result
in different outcomes. Third, the participants studied do not
represent the full age-range to which NLD diagnoses are
applied. Therefore, the taxonicity of NLD and correspond-
ing indicator validities cannot be assumed to generalize to
younger and older populations. Fourth, validation of the
LCA results against an external criterion (i.e., a variable not
included here along which NLD and non-NLD groups dif-
fer) would lend further credence to these results. Finally,
93% of our participants with SBM were White, and so gen-
eralization to other ethnic groups should be made with cau-
tion in light of the Fletcher et al. (2005) report of different
phenotypes in Whites and Hispanics.

Whereas the best evidence of taxonicity is to be found in
further consistency testing (i.e., replication with classifica-
tion procedures other than those used here), there is reason
to believe that the NLD taxon described in this paper is
valid. This assertion is based on the close correspondence
achieved between two different procedures as well as the
use of indicators that, though dichotomized, were drawn
from tests that are not known to be “peaked,” [i.e., are able
to discriminate across a wide range of ability levels (Golden
& Mayer, 1995)].

It should also be noted that the inclusion of an NLD
features group provided a conservative test of this latent
class approach by demonstrating that a distinct class could
be discerned, not only among a non-referred sample but
also clinical cases that resembled NLD. This methodology,
therefore, simulates the diagnostic situation in which the
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clinician must identify a specific disorder and not just dis-
tinguish normality from abnormality.

This study represents a first attempt at applying LCA to a
disorder that is still in the scientifically “formative” stage.
These results provide support for some of the major tenets
of Rourke’s NLD model, but also point to some areas need-
ing refinement. Moreover, they suggest that NLD should be
considered a disorder with discernable boundaries and not
just a gradient of severity with no “natural” demarcation
from normality. Further research distinguishing essential
from non-essential features of NLD in various risk groups
would contribute much to future modeling efforts by direct-
ing attention to specific neural mechanisms, refining clas-
sification methods, and suggesting critical functions for early
intervention.
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