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A theory on the spreading of impacting droplets
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Here we provide a self-consistent analytical solution describing the unsteady flow
in the slender thin film which is expelled radially outwards when a drop hits a
dry solid wall. Thanks to the fact that the fluxes of mass and momentum entering
into the toroidal rim bordering the expanding liquid sheet are calculated analytically,
we show here that our theoretical results closely follow the measured time-varying
position of the rim with independence of the wetting properties of the substrate.
The particularization of the equations describing the rim dynamics at the instant the
drop reaches its maximal extension which, in analogy with the case of Savart sheets,
is characterized by a value of the local Weber number equal to one, provides an
algebraic equation for the maximum spreading radius also in excellent agreement
with experiments. The self-consistent theory presented here, which does not make
use of energetic arguments to predict the maximum spreading diameter of impacting
drops, provides us with the time evolution of the thickness and of the velocity of the
rim bordering the expanding sheet. This information is crucial in the calculation of
the diameters and of the velocities of the droplets ejected radially outwards for drop
impact velocities above the splashing threshold.

Key words: aerosols/atomization, drops

1. Introduction
The precise description of the rich events following the impact of a drop against a

dry solid has been the subject of a number of recent contributions, see e.g. Roisman
(2009), Eggers et al. (2010), Laan et al. (2014, 2015), Visser et al. (2015), Lee et al.
(2016), Wildeman et al. (2016), Wang & Bourouiba (2017), Wang et al. (2018) for its
profound implications in countless applications like printing, the modelling of spray
coating or the prediction of the spreading of contaminants by rain drops between
neighbouring leaves (Josserand & Thoroddsen 2016; Lejeune, Gilet & Bourouiba
2018). With only a few exceptions (Roisman, Rioboo & Tropea 2002; Eggers et al.
2010; Villermaux & Bossa 2011), most of the published results are limited to
reporting the maximum spreading radii of the impacting drops. In these works, the
results of the maximum radial extension reached by the falling droplets are expressed
in terms of the different dimensionless parameters governing this common physical
situation and also as a function of the type of substrate, which can be a hydrophilic
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solid (Roisman 2009; Antonini, Amirfazli & Marengo 2012; Visser et al. 2015), a
superhydrophobic solid (Clanet et al. 2004; Antonini et al. 2012; Lv et al. 2016;
Quintero, Riboux & Gordillo 2019) or a vapour layer, which is the practical way of
imposing a stress free boundary condition at the bottom of the expanding drop (Tsai
et al. 2011; Tran et al. 2012).

The present contribution goes beyond the number of studies that focus on the
prediction of the maximum spreading radii of impacting droplets: indeed, our
theoretical results can also be used to calculate the time evolution of the position of
the rim limiting the expanding liquid sheet as well as its thickness. This information
is essential to predicting the diameters and velocities of the droplets ejected for drop
impact velocities beyond the splashing threshold (Riboux & Gordillo 2015).

The main idea in the present contribution is that we report an analytical solution
for the unsteady flow in the thin liquid film region coupling the flow in the impacting
drop with that in the toroidal rim bordering the expanding liquid sheet. In this way,
we are able to precisely quantify the unsteady fluxes of mass and momentum that are
being injected into the rim and, following the ideas in Eggers et al. (2010), Villermaux
& Bossa (2011), Riboux & Gordillo (2015), we apply mass and momentum balances
at the rim to deduce the ordinary differential equations governing the time evolution
of the rim radial position and thickness. We validate our theory by comparing our
predictions with the experimental data available in the literature and also with our
own experimental observations.

In § 2 we describe the experimental set-up and also present the simplified equations
describing the flow. Section § 3 is devoted to providing an analytical solution to the
equations governing the slender flow region located upstream of the rim, in § 4 the
theoretical predictions are compared with experimental measurements and conclusions
are presented in § 5.

2. Description of experiments and of the equations governing the flow

Two high speed cameras have been placed perpendicularly to each other to record
simultaneously the impact of water drops of radii R falling from rest over a dry solid
at a velocity V . With the purpose of analysing the influence of the wetting properties
of the solid on the drop spreading dynamics, the substrate can be either a smooth solid
surface or a substrate covered by a commercial superhydrophobic coating (Lv et al.
2016; Quintero et al. 2019). Drops are formed quasi-statically at normal atmospheric
conditions and the origin of time, T = 0, is set at the instant the drop first touches the
solid, see figure 1. The Ohnesorge, Reynolds, Weber and capillary numbers are defined
here as Oh = µ/

√
ρRσ , Re = ρVR/µ, We = Oh2 Re2, Ca = µV/σ with ρ, µ and σ

indicating the liquid density, viscosity and interfacial tension coefficient respectively.
Figure 1 illustrates that, while the bottom of the falling droplet always touches the
substrate, the edge of the expanding lamella may be or not in contact with the solid.
Indeed, for the case of superhydrophobic coatings, the rim never touches the substrate
whereas for the case of smooth hydrophilic or hydrophobic substrates the rim will
take-off from the solid only when the aerodynamic lift is strong enough (Riboux &
Gordillo 2014).

Before presenting the equations governing the rim dynamics and the flow in the
so-called lamella region, which is located upstream the rim, see figure 1, let us point
out first that we will follow the notation in Riboux & Gordillo (2014) and, in the text,
dimensionless variables will be written using lower case letters to differentiate them
from their dimensional counterparts (in capital letters). In addition, distances, times
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Superhydrophobic s(t)

√(t)

b(t)
�3t œ

Hydrophilic
(i) (i) (ii)(ii) (iii)(iii)

FIGURE 1. (Colour online) Sketch showing a drop spreading along a substrate which can
be covered or not with a superhydrophobic material, represented here with a rough texture.
The experiments to be presented next will be conducted by impacting drops against
either smooth hydrophilic substrates or against superhydrophobic substrates. The region
(i) indicates the drop region, 0 6 r 6

√
3t, (ii) indicates the lamella region,

√
3t 6 r 6 s(t)

and (iii) the rim region. The variables s(t), b(t) and v(t) indicate, respectively, the rim
radial position, the rim thickness and the rim velocity; θ is the dynamical contact angle.

and pressures will be made non-dimensional using, as characteristic values, R, R/V
and ρV2.

The radial position and the thickness of the rim, indicated here using the time-
dependent variables s(t) and b(t) (see figures 1 and 2), can be calculated from the
following balances of mass and momentum (see appendix A)

α
π

4
db2

dt
= [u(s, t)− v]h(s, t),

ds
dt
= v,

α
πb2

4
dv
dt
= [u(s, t)− v]2h(s, t)− (1+ β)We−1,

 (2.1)

with u(r, t) and h(r, t) in (2.1) the averaged radial velocity and the thickness of the
thin film – the lamella – which extends along the spatio-temporal region located
in between the impacting drop and the rim, namely,

√
3t 6 r 6 s(t) (see figures 1

and 2). In (2.1), we distinguish two cases depending on the wetting properties of the
solid. Indeed, the sketch in figure 1 shows that the main difference existing between
droplets spreading over hydrophilic or superhydrophobic substrates is that, in the
latter case, the edge of the rim is never in contact with the solid. Therefore, for the
case of superhydrophobic coatings, α = 1 because the rim cross-sectional area can
be approximated by that of a circle and β = 1 because the liquid in the rim is not
in contact with the substrate – see figure 1 – whereas in the case of hydrophilic
ones, α = 1/2 because the rim cross-sectional area can be approximated by that
of a semicircle – see figure 1 – and, since the rim contacts the solid in this case,
β =− cos θ , with θ the advancing contact angle (Eggers et al. 2010).

The system of ordinary differential equations (2.1) is integrated once the averaged
velocity u(r, t) and the height of the liquid film h(r, t) in the lamella are determined
and are particularized at the radial position where the rim is located, r = s(t). The
differential equations for u(r, t) and h(r, t) are deduced in appendix A applying
balances of mass and momentum to a differential portion of the lamella and taking
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r

te x - dx

dr

x
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dr/dt = �3/xmaxRay

6

5

4

3

2

1

0 1 2

smax

xmax tmax3 4 5 6
t
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FIGURE 2. (Colour online) (a) Sketch showing, in a spatio-temporal diagram, the different
regions defined to analyse the flow. The lamella region (ii) lies in between the end of the
drop region, r =

√
3t and the rim, located at r = s(t). The integration of the differential

equations describing the flow in the lamella is carried our along rays dr/dt = u(r =
√

3x, x)=
√

3/x departing from the boundary r=
√

3x, with x a parameter denoting time.
(b) The rays reaching the maximum radius smax at the instant tmax depart from the boundary
r=
√

3x at an instant xmax < tmax. The curves in (b) have been calculated for the following
values of the parameters: Oh= 2.9× 10−3 and We= 300, which are representative values
for the spreading of millimetric water droplets over a hydrophilic substrate.

into account that the lamella is a slender thin liquid film namely, ∂h/∂r � 1,
a condition which also yields that the pressure gradients in the liquid can be neglected
within the spatio-temporal region

√
3t 6 r 6 s(t) (see figure 2). Using these ideas, we

show in appendix A that the system of partial differential equations describing the
fields u(r, t) and h(r, t) is

∂(rh)
∂t
+ u

∂(rh)
∂r
=−rh

∂u
∂r

and
∂u
∂t
+ u

∂u
∂r
=−λ

u

h
√

t Re
, (2.2a,b)

with λ a free constant whose value, λ= 1, is adjusted in what follows to reproduce
the experimental observations. The system (2.2) is solved specifying the values of u
and h at the spatio-temporal boundary separating the drop and the lamella regions,
namely, r=

√
3t, (see figures 1 and 2).

Notice first that, in the frictionless case λ= 0, both the height of the lamella and
the liquid velocity at r =

√
3t were already given using potential flow numerical

simulations in Riboux & Gordillo (2016, figure 4): u(r =
√

3t, t)= ua(t)=
√

3/t and
h(r =

√
3t, t) = ha(t) the function approximated by (A 20) in appendix A. For the

case λ 6= 0 the presence of the boundary layer does not change, to leading order, the
velocity field at surface of the drop. Therefore, the application of a mass balance in
the drop region 0 6 r 6

√
3t expresses that the flow rate entering into the lamella

is the same as in the potential flow case, a fact implying that, for a boundary-layer
velocity profile of the type given in (A 6) in appendix A,√

3/tha(t) =
√

3/t(h(r=
√

3t, t)− δ(t))+
√

3/tδ(t)/2

= u(r=
√

3t, t)h(r=
√

3t, t), (2.3)
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with δ(t) the thickness of the boundary layer and, hence, for λ 6= 0,

h(r=
√

3t, t)= ha(t)
(

1+
δ(t)

2ha(t)

)
u(r=

√
3t, t)= ua(t)

(
1+

δ(t)
2ha(t)

)−1

with ua(t)=
√

3/t and δ(t)=
√

t/Re.


(2.4)

3. Solution of the equations describing flow in the lamella
The solution to the system of equations (2.1), (2.2) and (2.4) could be accomplished

numerically, as is reported in Quintero et al. (2019), but the purpose here is to provide
an approximate analytical solution in the limit Re� 1, which will be shown to be in
excellent agreement with experiments, thus notably simplifying the calculations. With
that idea in mind, notice first that the Re−1/2 dependence depicted in (2.2) suggests
that the fields u(r, t) and h(r, t) can be expressed as

u(r, t)= u0(r, t)+ Re−1/2u1(r, t)+O(Re−1),

h(r, t)= h0(r, t)+ Re−1/2h1(r, t)+O(Re−1).

}
(3.1)

Indeed, the substitution of the ansatz (3.1) into (2.2) yields the following two
equations for u0(r, t) and h0(r, t):

∂u0

∂t
+ u0

∂u0

∂r
= 0 H⇒

Du0

Dt
= 0

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
=−rh0

∂u0

∂r
H⇒

D(rh0)

Dt
=−rh0

∂u0

∂r
,

 (3.2)

with D/Dt ≡ ∂/∂t + u0∂/∂r, and the following two additional equations for u1(r, t)
and h1(r, t):

∂u1

∂t
+ u0

∂u1

∂r
+ u1

∂u0

∂r
=−

λu0

h0
√

t
H⇒

Du1

Dt
+ u1

∂u0

∂r
=−

λu0

h0
√

t
and

∂(rh1)

∂t
+ u0

∂(rh1)

∂r
+ u1

∂(rh0)

∂r
=−rh0

∂u1

∂r
− rh1

∂u0

∂r

H⇒
D(rh1)

Dt
+ rh1

∂u0

∂r
=−

∂

∂r
(rh0u1).


(3.3)

Equations (3.2) and (3.3) need to satisfy the boundary conditions deduced from (2.4)
at the boundary (r, t)= (

√
3x, x) separating the drop and the lamella regions. For those

cases in which δ(x)=
√

x/Re� ha(x) the Taylor expansion of u in (2.4) yields u(r=
√

3x, x)' ua(x)(1− δ(x)/(2ha(x))). It happens, however, that in spite of Re� 1, the
ratio δ(x)/ha(x) could be close to unity for sufficiently large values of the Ohnesorge
number or for sufficiently large times after impact (Eggers et al. 2010; Visser et al.
2015). Motivated by this fact, the boundary conditions in (2.4) will be approximated
here as

h(
√

3x, x)= ha(x)+
√

x
2

Re−1/2
; u(

√
3x, x)'

√
3
x
−

√
3χ

2ha(x)
Re−1/2, (3.4a,b)
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with χ a constant such that the expression in (3.4) is a good approximation to the
exact value of u in (2.4) for all values of t. Indeed, consider for instance that δ/h' 1:
in this case, equation (3.4) would be, for χ = 2/3, an excellent approximation to the
initial condition for u in (2.4). For the range of Ohnesorge numbers considered here,
10−3 . Oh . 10−2, the ratio δ(t)/ha(t) is close to unity or even slightly larger than
one and, hence, equation (3.4) is a very good approximation to the exact value of u
given in (2.4) for χ = 0.6; this is the reason why all the results presented here have
been calculated for χ = 0.6. Notice, however, that for the impact of drops with values
of the Ohnesorge number larger than those considered here, δ/ha > 1 and χ in (3.4)
should be even smaller i.e. χ < 0.6.

From (3.1) and (3.4) it is thus deduced that

u0 =

√
3
x
, u1 =−

√
3χ

2ha(x)
, h0 = ha(x) and h1 =

√
x

2

at (r, t)= (
√

3x, x).

 (3.5)

The integration along rays dr/dt=
√

3/x of the momentum equation in (3.2), subjected
to the corresponding boundary condition in (3.5), yields (see figure 2a)

u0(r, t)=

√
3
x

along
dr
dt
=

√
3
x
H⇒ r=

√
3x+

√
3
x
(t− x)

H⇒ r=

√
3
x

t H⇒ x= 3
( t

r

)2

H⇒ u0(r, t)=

√
3

3(t/r)2
=

r
t
.

 (3.6)

Moreover, the integration of the equation for h0(r, t) in (3.2) along the ray dr/dt =
√

3/x yields

∂(rh0)

∂t
+ u0

∂(rh0)

∂r
+

rh0

t
= 0 H⇒

D(rh0t)
Dt

= 0

H⇒ h0(r, t)= 9
t2

r4
ha[3(t/r)2],

 (3.7)

where we have made use of the fact that ∂u0/∂r= 1/t, of the relationship between x
with r and t in (3.6) and of the corresponding boundary condition in (3.5).

Now, multiplying by t both sides of equations in (3.3), one obtains that:

D(u1t)
Dt
=−

λu0

h0
√

t
t,

D(rh1t)
Dt

=−
1
t
∂

∂r
(rh0tu1t). (3.8a,b)

The equation for u1 in (3.8) can be integrated along rays r=
√

3/xt (see figure 2a)
taking into account that, by virtue of (3.7), D(rh0t)/Dt= 0:

D(u1t)
Dt
=−

λu0

h0
√

t
t H⇒

D(u1t)
Dt
=−
λu0rt2

rh0t
√

t
=−

λu0

rh0t
√

t

√
3
x

t3

H⇒
D(u1trh0t)

Dt
=
−3λ

x
t5/2

H⇒ u1(r, t)=−
1

tha(x)

[√
3χx
2
+

2
√

3λ
7x5/2

(t7/2
− x7/2)

]
,


(3.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

11
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.117


304 J. M. Gordillo, G. Riboux and E. S. Quintero

where we made use of the boundary condition for u1 in (3.5) and also of the fact that,
along rays dr/dt = u0 =

√
3/x departing from the spatio-temporal boundary (r, t) =

(
√

3x, x), r=
√

3/xt, u0 =
√

3/x and rh0t=
√

3xha(x)x (see figure 2a).
To integrate the equation for h1 in (3.8) it is first convenient to notice that

∂(u1trh0t)/∂r can be calculated as the increment d(u1trh0t) between two neighbouring
rays departing from the spatio-temporal boundary (r, t)= (

√
3x, x) at the consecutive

instants x − dx and x which, at a given instant t are thus separated a distance
dr =

√
3/2x−3/2tdx (see figure 2a). Consequently, making use of the solution for

u1trh0t in (3.9) and of dr=
√

3/2x−3/2tdx,

−
1
t
∂

∂r
(u1trh0t)=−

2

14
√

3t2
[(52.5χ − 30λ)x3

− 12λx−1/2t7/2
], (3.10)

where use of the boundary condition for u1 in (3.5) has been made.
Hence, the integration of the equation for h1 in (3.8) along the ray dr/dt =

√
3/x

yields

rh1t−
√

3xxh1(x)=
2

14
√

3

[
(52.5χ − 30λ)x3(t−1

− x−1)

+
24λ

5
x−1/2(t5/2

− x5/2)

]

H⇒ h1(r, t)=
1
rt

[√
3

2
x2
+

√
3(105χ − 60λ)

42
x3(t−1

− x−1)

+
24
√

3λ
105

x−1/2(t5/2
− x5/2)

]
,



(3.11)

where use of the result in (3.10) and of the boundary condition for h1 in (3.5) has
been made. Equations (3.1), (3.6), (3.7), (3.9), (3.11) provide the following expressions
for u(r, t) and h(r, t):

u(r, t)=
r
t
−

Re−1/2

t

[√
3χx

2ha(x)
+

2
√

3λ
7ha(x)x5/2

(t7/2
− x7/2)

]
+O(Re−1)

h(r, t)= 9
t2

r4
ha[3(t/r)2] +

Re−1/2

rt

[√
3

2
x2
+

√
3(105χ − 60λ)

42
x3(t−1

− x−1)

+
24
√

3λ
105

x−1/2(t5/2
− x5/2)

]
+O(Re−1).


(3.12)

Figure 3 shows that our theoretical prediction for the height of the lamella given
in (3.12) in the limit Re→∞, with ha(x) approximated by (A 20) in appendix A, is
in excellent agreement with the results obtained from the boundary integral numerical
simulations reported in Riboux & Gordillo (2016); the predicted values of h(r, t)
calculated using other theoretical approaches are also included in this figure.
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FIGURE 3. (Colour online) (a) The analytical expression for h0(r, t) = 9t2/r4ha[3(t/r)2]
in (3.12), represented with a black line accurately predicts, in the lamella region

√
3t 6

r< s(t), the thickness of the thin liquid film calculated numerically in Riboux & Gordillo
(2016) [1], for the free slip case (λ=0, Re→∞) and We=100: notice that the simulations
in Riboux & Gordillo (2016) reveal that h(r, t) does not depend on We for We� 1. (a)
t = 0.19, (b) 0.25, (c) 0.32, (d) 0.45, (e) 0.55, ( f ) 0.70, (g) 0.90 and (h) t = 1.10. The
functions h(r, t) predicted using the theoretical approaches in Roisman (2009) [2], Eggers
et al. (2010) [3], Wang & Bourouiba (2017) [4] are also included in this figure.

4. Comparison with experiments

The analytical expressions of u(r, t) and h(r, t) are given by (3.12), so we can now
proceed to integrate the system (2.1) once the initial values for s, v and b are specified
at the instant the lamella is initially ejected. Indeed, the thin liquid film is not formed
right at the instant t= 0 when the drop first touches the substrate, but at the ejection
time te > 0 determined in Riboux & Gordillo (2014, 2017). In Riboux & Gordillo
(2014, 2017) we predicted and also verified experimentally that, if Re1/6Oh2/3 < 0.25,
a condition which is fulfilled by all experimental conditions reported here, the ejection
time can be expressed as te = 1.05We−2/3. Then, the system (2.1) is integrated in
time once the functions u(r, t) and h(r, t) in (3.12) are particularized at r= s(t) and
once the following initial conditions are imposed at t= te (Riboux & Gordillo 2015):
s(te)=

√
3te, v(te)= (1/2)

√
3/te and b(te)=

√
12t3/2

e /π. The results obtained integrating
the system (2.1) once the value of the free constant λ is fixed here to λ= 1, are in
remarkable agreement with experimental observations for the two types of substrates
considered here, as figures 4 and 5 show.

Figure 6 shows a comparison between theory and the measured values of s(t)
in Visser et al. (2015), who analysed the spreading of micrometre-sized droplets
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 4. (Colour online) Comparison between the predicted and the observed position
of the rim bordering the expanding lamella for the case of a water droplet of radius
R = 1.46 mm impacting against a superhydrophobic substrate (top part of each image)
or against a hydrophilic substrate (bottom part of each image). From left to right, V =
1.59 m s−1 (We = 50), V = 1.94 m s−1 (We = 76) and V = 2.37 m s−1 (We = 114). The
values of the dimensionless instants of time corresponding to each of the rows in the
figure are: (a) t= T(V/R)≈ 0.5, (b) t≈ 1.0, (c) 1.5, (d) 2.0 and (e) 2.5 and ( f ) 3.5.

impacting a solid substrate at velocities exceeding 10 m s−1. The cases studied in
Visser et al. (2015) correspond to values of the Ohnesorge number Oh∼ 2× 10−2, an
order of magnitude larger than the values of Oh in figures 4 and 5; hence, in Visser
et al. (2015), the value of the ratio δ(t)/ha(t) is close to unity for all t. The good
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(a)

(b)

(c)

(d)

(e)

(f)

FIGURE 5. (Colour online) Comparison between the predicted and the observed position
of the rim bordering the expanding lamella for the case of a water droplet of radius
R = 1.43 mm impacting against a glass substrate (left, V = 3.57 m s−1, We = 261) or
a superhydrophobic substrate (right, V = 3.58 m s−1, We = 264). The values of the
dimensionless instants of time corresponding to each of the rows in the figure are: (a)
t= T(V/R)≈ 0.5, (b) t≈ 1.0, (c) 1.5, (d) 2.0 and (e) 2.5 and ( f ) 3.5.

agreement between the theoretical and experimental results depicted in figure 6, gives
strong further support to our theory.

The integration of the system (2.1) could be avoided if just the maximum spreading
radius of the drop, smax, had to be predicted. Indeed, figure 7 indicates states that, very
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10110010-1

5.0

1.0

0.5

WeD = 150, ReD = 696 [1]

WeD = 1560, ReD = 2290 [1]

Model

t

s

FIGURE 6. (Colour online) Comparison between the experimental data in Visser et al.
(2015) [1] and the theoretical results. Here, β = 1 and, as in the rest of calculations
presented here, λ= 1 and χ = 0.6. WeD= 2We and ReD= 2Re because Visser et al. (2015)
defined the Weber and Reynolds numbers using the diameter instead of the drop radius.

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

7
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2.00
1.75
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0.50
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W
eh

u2 /(
1+

ı)

t

s

t

We = 50
We = 100
We = 200

(a) (b)

FIGURE 7. (a) Calculated position of the rim for Oh = 2.9 × 10−3 and three values of
the Weber number. The vertical lines indicate the instant of time for which the value of
the local Weber number defined in (4.1) is equal to one. (b) Time evolution of the local
Weber number defined in (4.1).

close to the maximum spreading radius, the rim velocity is zero and also that the value
of the local Weber number, defined here as

Welocal(t)=We
u2(s, t)h(s, t)

1+ β
, (4.1)

is Welocal ' 1. Therefore, the substitution into the momentum equation in (2.1) of
v = 0, of dv/dt = 0 and of the values of the functions u(r, t) and h(r, t) given
in (3.12) particularized at r= smax and at t= tmax, with tmax the instant of time at which
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s m
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Equation (4.2)
Leidenfrost, ¬ = 0

¬ = 0

Superhydrophobic, ı = 1

Oh = 2.9 ÷ 10-3

Oh = 22 ÷ 10-3

[6]

[1]

[1]
[2]
[3]
[4]
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[7]
[8]

(a) (b)

FIGURE 8. (Colour online) (a) Comparison between the experimental data in [1] Clanet
et al. (2004), [2] Tsai et al. (2011), [3] Antonini et al. (2012), [4] Quintero et al. (2019),
[5] Tran et al. (2012) and the maximum spreading radius calculated solving the algebraic
equation (4.3) – continuous lines. (b) Comparison between the experimental data and
theory in [6] Wildeman et al. (2016) (thin black lines), [7] Stow, Hadfield & Ziman (1981)
and [8] Visser et al. (2015) and the maximum spreading radius calculated theoretically
solving the algebraic equation (4.3) – thick lines. The results have been obtained for the
same values of β as in [6] Wildeman et al. (2016), β = 1.

r = smax yields, to leading order, in the limits We � 1 and Re � 1, the following
equation for smax:

h0u2
0 + Re−1/2(h1u2

0 + 2h0u0u1)− (1+ β)We−1
= 0

H⇒ 9ha(xmax)− 33/4 12λx−3/4
max

35
Re−1/2s5/2

max − (1+ β)We−1s2
max = 0,

 (4.2)

with xmax = 3(tmax/smax)
2 and where O(Re−1) terms have been neglected. Moreover, in

spite of the value of xmax depends on We, Re and θ , we checked that xmax lies within
a limited range of values, such that tmax > xmax, see figure 2(b).

Therefore, we could further simplify (4.2) if xmax is approximated by a constant
value which we fix here to xmax = 2, for which 9ha(xmax) ' 0.45 (see (A 20) in
appendix A) and 33/4(12x−3/4

max )/35' 0.45. Therefore, equation (4.2) can be written as

(1+ β)We−1s2
max + 0.45λRe−1/2s5/2

max − 0.45= 0, (4.3)

which resembles the equation for smax deduced in Wildeman et al. (2016) using
energetic arguments. Let us point out here that (4.2) and (4.3) express the same
type of balance as that found in the study of Savart sheets: the momentum flux is
compensated with the interfacial tension forces at the maximum spreading radius
(Taylor 1959; Gordillo, Lhuissier & Villermaux 2014).

Figures 8(a,b) shows that our prediction for smax calculated using (4.3) compares
very favourably with published experimental data, providing further support to our
theoretical approach. Another evidence showing the robustness of our analysis is given
next. Indeed, a direct comparison of our theoretical result in (4.3) with the equation
for the maximum spreading radius in Laan et al. (2014) – which in our variables can
be written as

sLaan
max = Re1/521/5 P1/2

1+ P1/2
= Re1/5 f̄ (P) (4.4)
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101100 102 101 103102

100
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Laan et al. (2014) Laan et al. (2014)
Laan et al. (2014) - theoryEquation (4.6), ı = 0
Equation (4.3), ¬ = 1, ı = 0
Equation (4.3), ¬ = 0, ı = 1

[1]s m
ax

WeP

f

(a)

(b)

FIGURE 9. (Colour online) (a) Comparison between the Padè approximant in Laan et al.
(2014) and the function f (P) predicted by our theoretical result in (4.6). (b) smax calculated
using (4.3) and the equation in Laan et al. (2014), smax = 21/5We1/2 for the case of
Leidenfrost droplets, λ= 0.

with P=We Re−2/5 – can be easily made once we express smax as

smax = Re1/5f . (4.5)

The substitution of (4.5) into (4.3) yields the following expression for f (P):

(1+ β)P−1f 2
+ 0.45λf 5/2

− 0.45= 0. (4.6)

Figure 9, where the functions f̄ (P) and f (P) defined respectively in (4.4) and (4.6) are
compared, shows that our theoretical result for f (P) calculated solving equation (4.6)
is very close to the Padè approximant given in Laan et al. (2014). However, figure 9
also shows that smax calculated using (4.3) is in better agreement with experiments
than the prediction in Laan et al. (2014) for the case of Leidenfrost droplets, λ= 0
(Tran et al. 2012; Wildeman et al. 2016).

5. Conclusions

In this contribution we have presented a model which is not only able to predict,
in a self-consistent way, the maximum spreading diameter of drops impacting a solid
wall, but also the time evolution of the position and of the thickness of the rim. Our
theory also provides the averaged velocity field and the thickness of the thin film
region located upstream the rim for arbitrary values of the advancing contact angle
and of the Reynolds and Weber numbers whenever Re� 1 and We� 1. The good
agreement of our predictions with the experimental observations indicates that our
results could also be used to determine the time evolution of the diameters and of the
sizes of the droplets ejected for drop impact velocities beyond the splashing threshold
(Riboux & Gordillo 2015; Quintero et al. 2019).
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Appendix A

The radial position and the thickness of the rim, indicated here using the time-
dependent variables s(t) and b(t) (see figures 1 and 2), can be calculated from the
following balances of mass and momentum at the rim (Taylor 1959; Culick 1960)

α
π

4
db2

dt
=

∫ h(s,t)

0
ū(s, z, t) dz− vh(s, t),

ds
dt
= v,

α
πb2

4
dv
dt
=

∫ h(s,t)

0
[ū(s, z, t)− v]2 dz− (1+ β)We−1

− fτ ,

 (A 1)

with z the coordinate perpendicular to the wall, fτ the viscous friction at the wall and
ū(r, z, t) and h(r, t) in (A 1) the radial velocity and the thickness of the thin film –
the lamella – which extends along the spatio-temporal region located in between the
impacting drop and the rim, namely,

√
3t 6 r 6 s(t) (see figures 1 and 2). We will

show next that, to solve the system of (A 1), it will suffice to know the values of
the height of the lamella particularized at r= s(t) and also the averaged value of the
radial velocity at r= s(t). Indeed, notice first that, for a given velocity field ū(r, z, t),
the mass balance applied to a portion of the lamella of height h(r, t), width dr and
angular extension dη yields

∂(rh)
∂t
+
∂

∂r

(
r
∫ h

0
ū(r, z, t) dz

)
= 0. (A 2)

Defining the averaged velocity u(r, t) as

u(r, t)h(r, t)=
∫ h

0
ū(r, z, t) dz, (A 3)

the mass balance (A 2) reads

∂(rh)
∂t
+
∂

∂r
(ruh)= 0. (A 4)

The application of the momentum balance to the same differential portion of the
lamella yields

∂

∂t
(ruh)+

∂

∂r

(
r
∫ h

0
ū2(r, z, t) dz

)
=−

rτw

Re
, (A 5)

where we have taken into account that the lamella is slender and, hence, pressure
gradients can be neglected; in (A 5) τw indicates the dimensionless shear stress at
the wall. Since the integral form of the momentum equation (A 5) is not strongly
dependent on the specific form of the boundary-layer type of velocity profile (see
the discussion in (Batchelor 1967, pp. 319–320) about the integral method to analyse
boundary layers firstly introduced by von Kármán), for simplicity we assume here
that

ū(r, z, t)=w0(r, t)−w0F(z) with F(z)= 1− z/δ for z 6 δ
and F(z)= 0 if z> δ, (A 6a,b)
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with δ the boundary-layer thickness. Making use of (A 6) and of the fact that∫ h

0
F(z) dz= δ/2 and

∫ h

0
F2(z) dz= δ/3, (A 7a,b)

equation (A 3) yields

u(r, t)h(r, t)=
∫ h

0
ū(r, z, t) dz=w0(r, t)h(r, t)(1− δ/(2h))⇒w0 =

u
1− δ/(2h)

. (A 8)

Therefore, using (A 6) and (A 8), the momentum flux can be expressed as

∫ h

0
ūū dz= u2h+

u2h
(1− δ/(2h))2

[
δ

3h
−

(
δ

2h

)2
]

(A 9)

and, consequently, equation (A 5) can be written as

∂

∂t
(ruh)+

∂

∂r
(ru2h)=−

rτw

Re
−
∂

∂r

(
ru2h

(1− δ/(2h))2

[
δ

3h
−

(
δ

2h

)2
])

. (A 10)

Using (A 6) and (A 8), the dimensionless shear stress at the wall can be expressed as

τw =
w0

δ
=

u
δ(1− δ/(2h))

(A 11)

and hence, making use of the continuity (A 4), the momentum equation (A 10) can be
written as

∂u
∂t
+ u

∂u
∂r
=−

u
hReδ(1− δ/(2h))

−
1
rh
∂

∂r

(
ru2h

(1− δ/(2h))2

[
δ

3h
−

(
δ

2h

)2
])

. (A 12)

Let us point out that in the limit δ/h� 1 the boundary-layer thickness does not
depend on r but, interestingly, there are two different algebraic expressions for δ(t).
Indeed, for t≈ te� 1, with te∝We−2/3 the instant of time at which the liquid sheet is
first ejected, the lamella is fed by the fluid coming from a local region surrounding
the root of the lamella; in this case, δ(t) ∝ tRe−1/2 (Riboux & Gordillo 2014, 2015,
2017). However, for larger times, the fluid entering the liquid sheet comes from a
stagnation-point type of flow and, in this case, δ ∝

√
tRe−1/2 (Roisman 2009; Eggers

et al. 2010). Since the time interval during which δ ∝ tRe−1/2 is t ∼ te � 1 namely,
much smaller than the time characterizing the drop spreading process, the equation
for δ(t) used here is δ=

√
t/Re (Roisman 2009; Eggers et al. 2010). Therefore, since

the lamella is slender, ∂h/∂r� 1, equation (A 12) can be written as

∂u
∂t
+ u

∂u
∂r
=−

u
hReδ

[
1

1− δ/(2h)
+

1
(1− δ/(2h))2

(
1
3
−

1
4
δ

h

)(
ut
r
+ 2t

∂u
∂r

)]
.

(A 13)
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FIGURE 10. (Colour online) (a) Representation of the function G defined in (A 14) as a
function of the ratio δ/h. (b) The polynomial P(x) in (A 20) (black line) matches the
time evolution of the height of the lamella calculated at r =

√
3x using the boundary

integral method described in Riboux & Gordillo (2016). The function ha(x) does not
depend neither on Re nor on We for We� 1. Here, We= 300.

In the frictionless case, u= r/t (Roisman 2009; Eggers et al. 2010) and hence, the
right-hand side of (A 13) verifies, for δ =

√
t/Re

1
1− δ/(2h)

+
1

(1− δ/(2h))2

(
1
3
−

1
4
δ

h

)(
ut
r
+ 2t

∂u
∂r

)
'G(δ/h)

=
1

1− δ/(2h)
+

1
(1− δ/(2h))2

(
1−

3
4
δ

h

)
' 2, (A 14)

where the function G(δ/h) defined in (A 14) and plotted in figure 10(a), is rather
insensitive to the ratio δ/h. Therefore, the momentum equation (A 12) can be written
as

∂u
∂t
+ u

∂u
∂r
=−

λu
hReδ

=−
λu

h
√

Re t
, (A 15)

with λ a constant that will take into account: (i) the prefactor multiplying the ratio
√

t/Re, (ii) the type of velocity profile used to describe the flow field within the
boundary layer and (iii) the deviations from the assumption made here that δ=

√
t/Re,

a result which is only valid in the boundary-layer approach for a flow field outside
the boundary layer of the form u = r/t (Roisman 2009; Eggers et al. 2010). It will
be shown in the main text the experimental results can be reproduced for a value of
the constant λ= 1.

The solution of the system of partial differential equations describing both the
height of the lamella h(r, t) and the averaged velocity u(r, t), given by (A 4) and
(A 15),

∂(rh)
∂t
+ u

∂(rh)
∂r
=−rh

∂u
∂r

and
∂u
∂t
+ u

∂u
∂r
=−λ

u

h
√

Re t
, (A 16a,b)

particularized at r= s(t), permit us to integrate the system (A 1) in time.
Indeed, notice that (A 9) can be accurately approximated as∫ h

0
ūū dz= u2h+

u2h
(1− δ/(2h))2

δ

3h
, (A 17)
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and also that the force exerted by the wall on the rim, fτ (see (A 1)) is given by

fτ =
w2

0δ

3
+ γ We−1 Ca v =

u2h
(1− δ/(2h))2

δ

3h
+ γ We−1 Ca v, (A 18)

with γ ∼ O(1). Indeed, the flux of momentum entering into the drop through the
boundary layer, w2

0δ/3, does not contribute to accelerate the rim because the fraction
of the momentum injected closer to the solid is decelerated by the wall. The second
term at the right of (A 18) is the integral of the viscous shear forces at the wall
∼Re−1v/b along a region of width ∼b. Then, taking into account the definition of
the mean velocity in (A 3), the system of (A 1) can be written as

α
π

4
db2

dt
= [u(s, t)− v]h(s, t),

ds
dt
= v,

α
πb2

4
dv
dt
= [u(s, t)− v]2h(s, t)− (1+ β)We−1

− γ We−1 Ca v.

 (A 19)

We will limit ourselves here to discussing the cases for which Ca� 1 and hence, the
last term in (A 19), will be neglected.

Let us finally point out that, in the potential flow case, the thickness of the liquid
film at the boundary separating the drop and lamella regions i.e. at r=

√
3x, can be

accurately calculated as ha(x)= P(x), with

P(x) =
9∑

i=0

pixi with

p0 = 3.95812707× 10−4, p1 = 1.22669850× 10−1,

p2 =−1.04054024× 10−1, p3 = 4.37229580× 10−2,

p4 =−1.09184802× 10−2, p5 = 1.70579418× 10−3,

p6 =−1.67926979× 10−4, p7 = 1.01063551× 10−5,

p8 =−3.39290090× 10−7, p9 = 4.86535897× 10−9, (A 20)

see figure 10(b).
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