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ABSTRACT

We develop quantile functions from regression models in order to derive risk
margin and to evaluate capital in non-life insurance applications. By utilizing the
entire range of conditional quantile functions, especially higher quantile levels,
we detail how quantile regression is capable of providing an accurate estima-
tion of risk margin and an overview of implied capital based on the historical
volatility of a general insurers loss portfolio. Twomodeling frameworks are con-
sidered based around parametric and non-parametric regression models which
we develop specifically in this insurance setting. In the parametric framework,
quantile functions are derived using several distributions including the flexible
generalized beta (GB2) distribution family, asymmetric Laplace (AL) distri-
bution and power-Pareto (PP) distribution. In these parametric model based
quantile regressions, we detail two basic formulations. The first involves em-
bedding the quantile regression loss function from the nonparameteric setting
into the argument of the kernel of a parametric data likelihood model, this is
well known to naturally lead to the AL parametric model case. The second
formulation we utilize in the parametric setting adopts an alternative quantile
regression formulation in which we assume a structural expression for the re-
gression trend and volatility functions which act to modify a base quantile func-
tion in order to produce the conditional data quantile function. This second
approach allows a range of flexible parametric models to be considered with
different tail behaviors. We demonstrate how to perform estimation of the re-
sulting parametric models under a Bayesian regression framework. To achieve
this, we designMarkov chainMonte Carlo (MCMC) sampling strategies for the
resulting Bayesian posterior quantile regression models. In the non-parametric
framework, we construct quantile functions by minimizing an asymmetrically
weighted loss function and estimate the parameters under the AL proxy distri-
bution to resemble the minimization process. This quantile regression model is
contrasted to the parametric ALmean regression model and both are expressed
as a scale mixture of uniform distributions to facilitate efficient implementation.
The models are extended to adopt dynamic mean, variance and skewness and
applied to analyze two real loss reserve data sets to perform inference and dis-
cuss interesting features of quantile regression for risk margin calculations.
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1. BACKGROUND ON RISK MARGIN CALCULATION

A core component of the work performed by general insurance actuaries in-
volves the assessment, analysis and evaluation of the uncertainty involved in the
claim process with a view to assessing appropriate risk margins for inclusion in
insurance liabilities. An appropriate valuation of insurance liabilities including
risk margin is one of the most important issues for a general insurer. Risk mar-
gin is the component of the value of claims liability that relates to the inherent
uncertainty.

The significance of this task is well understood by the actuarial profession
and has been debated by both practitioners and academic actuaries alike. Much
of the attention involves the non-prescriptive nature of riskmargin requirements
discussed in regulatory guidelines such as Article 77 and Article 101 of the Sol-
vency IIDirectives. InAustralia, a general task forcewas established, developing
a report on risk margin evaluation methodologies presented to the Australian
actuarial profession at the Institute of Actuaries of Australia during the 16th
General Insurance Seminar in 2008. This report aimed to highlight approaches
to risk margin calculations that are often considered. Before briefly discussing
these aspects, we first note the following Solvency II items which relate to the
Solvency Capital Requirement (SCR) and the risk margin.
Article 101 of the Solvency II Directive states,

“The SCR shall correspond to the Value-at-Risk (VaR) of the basic own funds
of an insurance or reinsurance undertaking subject to a confidence level of 99.5%

over a one-year period ”.

Essentially, the basic own funds are defined as the excess of assets over liabili-
ties, under specific valuation rules. In this regard, a core challenge is the capital
market-consistent value of insurance liabilities, which requires a best estimate
typically defined as the expected present value of future cash flows under Sol-
vency II plus a risk margin calculated using a cost of capital approach.
Furthermore, under Article 77 of the 2009 Solvency II Directive, it states that
the risk margin calculation is described as

“The risk margin shall be such as to ensure that the value of the technical
provisions is equivalent to the amount insurance undertakings would be expected
to require in order to take over and meet the insurance obligations. . . it shall be
calculated by determining the cost of providing an amount of eligible own funds
equal to the SCR necessary to support the insurance obligations over the lifetime

thereof. . . ”.
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As can be seen from such specifications, the recommendations to be adopted
are not prescriptive in the required model approaches. Therefore, as discussed
in the white paper produced by the RiskMargins Taskforce, 1998 (RMT), there
have been several approaches considered which range from those that involve
little analysis of the underlying claim portfolio to those that involve significant
analysis of the uncertainty using a wide range of information and techniques, in-
cluding stochastic modeling. The RMThighlighted several approaches adopted
in practice for the assessment of risk margins and pointed to percentile or quan-
tile methods as beingmost prevalent in practice, this provides a good foundation
for the methods we consider.

Traditionally, actuaries that adopt a stochastic framework would evaluate
claims liability using a central estimate which is typically defined as the expected
value over the entire range of outcomes. However, with the inherent uncertainty
that may arise from such an estimator which is not statistically robust and there-
fore sensitive to outlier claims, claims liability measures often differ from their
central estimates. In practice, the approach adopted is typically to then set an
insurance provision so that, to a specified probability, the provision will even-
tually be sufficient to cover the run-off claims. For instance, in order to satisfy
the requirement of the Australian Prudential Regulation Authority (APRA) to
provide sufficient provision at a 75% probability level, the risk margin should be
modeled statistically so that it can capture the inherent uncertainty of the mean
estimate. When this margin is then added to the central estimate, it should pro-
vide a reasonable valuation of claims liability and therefore increases the like-
lihood of providing sufficient provision to meet the level required in GPS 320.
In this regard, it is worth noting that the more volatile a portfolios run-offs or
those that display heavy tailed features may require a higher risk margin, since
the potential for large swings in reserves is greater than that of a more stable
portfolio.

To accommodate these ideas, two common methods for risk margin estima-
tion have been proposed in practice. These are the cost of capital and the per-
centile methods. Under the cost of capital method the actuary determines the
risk margin by measuring the return on the capital required to protect against
adverse development of those unpaid claim liabilities. It is evident that appli-
cation of the cost of capital method requires an estimate of the initial capital
to support the unpaid claim liabilities and also the estimate of return on that
capital. Alternatively, under the percentile or quantile method that we consider
in this paper, which is currently used in Australia, the actuary takes the perspec-
tive that the insurermust be able tomeet its liability with some probability under
some assumptions on the distribution of liabilities. Risk margin is then calcu-
lated by subtracting the central estimate from a predefined critical percentile
value.

Since the percentile-based method involves the estimation of quantiles, it
is therefore natural to consider quantile functions in risk margin calculation.
Quantile regression is a statistical technique to estimate conditional quantile
functions. It provides the ability to incorporate in a rigorous statistical manner,
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regression factors that may be driven by both exogenous features directly related
to the insurance claims run-off stochastic process as well as endogenous factors
that are related to the current micro or macro-economic conditions and the reg-
ulatory environment. Moreover, the model allows one to explain the proportion
of variation in the risk margin allowing for accurate estimation and prediction
of loss reserve.

Just as classical linear regression models based on minimizing sums of
squared residuals enable one to estimate parameters for conditional mean func-
tions in non-parametric models, quantile regression models offer a mechanism
for estimating parameters for the conditional median function as well as the full
range of other conditional quantile functions. Specifically, thismechanism refers
to minimizing an asymmetrically weighted loss function without the need of
specifying any distributional assumption. Hence, this quantile regression model
is non-parametric in nature and robust to distributional assumption. By sup-
plementing the estimation of conditional mean functions with techniques for
estimating an entire family of conditional quantile functions, quantile regres-
sion model reveals the effect of explanatory variables on the entire conditional
distribution of the response variable and not only on its center. Hence, it pro-
vides amore complete statistical analysis of the stochastic relationships between
response and explanatory variables.

Quantile regression has a wide range of applications in economics and fi-
nance. In quantitative investment, least square regression-based analysis is ex-
tensively used in analyzing factor performance, assessing the relative attrac-
tiveness of different firms, and monitoring the risks in their portfolios. Engle
andManganelli (2004) consider the quantile regression for calculating VaR and
constructed a conditional autoregressive VaR (CAVaR) model. VaR is a pop-
ular risk measure defined as a quantile of the loss distribution of a portfolio
within a given time period at a certain confidence level. AccurateVaR estimation
can help financial institutions maintain appropriate capital levels to cover the
risk from the corresponding portfolio. Despite its ample application in finance,
quantile regression still has limited application in a claim reserving context for
risk margin estimation. We propose the use of quantile regression model to esti-
mate the risk margin and demonstrate its advantages through real application.
We highlight its features that have been popularized in finance and explain how
they can be adopted in insurance for risk margin calculation. Through the pro-
posed quantile regression framework, we develop factors and covariates that
explain the risk margin variation directly. It provides a richer characterization
of the data, especially when the data is heavy tailed, allowing us to consider the
impact of a covariate on the entire distribution, notmerely its conditional mean.

This proposed methodology of applying quantile functions to estimate risk
margin differs from the traditional loss reserving approaches of developing sta-
tistical models to capture all features of the claims run-off stochastic structure.
Instead, we propose to target explicitly the conditional quantile functions in a
regression structure. From a statistical perspective, this is a fundamentally dif-
ferent approach to those traditional loss reserving models. However, we will
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illustrate that we can borrow from such models in developing our risk margin
quantile regression framework. In fact, the associate parameter estimation via
loss functions, parameter estimator properties and the resulting quantile in sam-
ple and out of sample forecasts will significantly differ to those achieved when
trying to develop a model for the entire process rather than targeting a particu-
lar quantile level. This is clear from the perspective that only under a Gaussian
distributional assumption for such reserve models (on log scale) would a stan-
dard least squares approach be optimal under the viewpoint of Gauss–Markov
theory. In situations where returns are heavy tailed and skewed alternative mod-
els will prove more appropriate as we will discuss. On the other hand, quantile
regression while focusing on just a particular quantile level is free from such
sensitivity, a property in coherence with its non-parametric nature.

However, non-parametric quantile function does have its context in paramet-
ric regressionmodel because the inverse cumulative distribution function (CDF)
of any data distribution is itself a quantile function. A significant literature on
parametric loss reserving models has been devoted to the study of the choice
of appropriate distributions. For instance, Taylor (2006) estimates percentile-
based riskmargins via a parametricmodel based on the assumption of a log nor-
mal distribution of liability. Other sophisticated distributions to capture flexible
shapes and tail behaviors are also proposed to model severity distribution on
aggregated claim data. These distributions include the generalized-t (GT) (Mc-
Donald and Newey, 1988), Pareto (Embrechts et al., 1997), the Stable family
(Paulson and Faris, 1985; Peters et al., 2011a, b), the Pearson family (Aiuppa,
1988), the loggamma and lognormal (Ramlau-Hansen, 1988), the lognormal
and Burr 12 (Cummins et al., 1999) and type II GB2 distributions (Cummins
et al., 1990, 1999, 2007).

Some of these distributions are defined on a real support, for instance the
GT, and are flexible to model both leptokurtic and platykurtic data. How-
ever, they require log-transformation for claims data and the resulting log-linear
model may be more sensitive to low values than large values (Chan et al., 2008).
On the other hand, the GB2 distribution family with a positive support avoids
such transformation and is very flexible as it includes both heavy-tailed and
light-tailed severity distributions, such as gamma, Weibull, Pareto, Burr12, log-
normal and the Pearson family, hence providing convenient functional forms to
model claims liability. Recently, Dong and Chan (2013) consider an alternative
class of flexible skew and heavy tail models involving the GB2 distribution with
dynamic mean functions and mixture model representation to model long tail
loss reserving data and show that GB2 distribution outperforms some conven-
tional distributions such as Gamma and generalized Gamma.

New distributions and models are also derived to facilitate accurate loss re-
serving. Peters et al. (2009) adopt a Poisson–Tweedie family of models which in-
corporates families such as normal, compound Poisson–Gamma, positive stable
and extreme stable distributions into a family of models. It is shown how such
a generalized regression structure could be used in a claims reserving setting to
model the claims process whilst incorporating covariate structures from the loss
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reserving structure. In this instance, a multiplicative structure for the mean and
variance functions is considered and quantiles are derived from modeling the
entire distribution, rather than specifically targeting a model at the conditional
quantile function. From the perspective of quantile specific regression models,
Cai (2010) proposed a PPmodel which combines the quantile functions for both
power and Pareto distributions. These combinations provide flexible quantile
functions as they enable the modeling of both the main body and tails of a
distribution.

For model inference, both frequentist and Bayesian approaches can be ap-
plied to estimate the traditional parametric regression model. For (nonpara-
metric) quantile regression, Koenker and Machado (1999) show that the AL
distributional family provides a useful model structure which naturally fits
into a quantile regression framework. Yu and Moyeed (2001) further propose
Bayesian approach via the proxy AL distribution expressed as scale mixtures
of uniforms (SMU) to simplify the MCMC simulation. The benefit of using
a Bayesian procedure lies in the adoption of available prior information and
the provision of a complete predictive distribution for the required reserves (de
Alba, 2002). For quantile regression in general, Hu et al. (2012) develop a fully
Bayesian approach for fitting single-index models and in the context of loss re-
serving, Zhang et al. (2012) propose a Bayesian nonlinear hierarchical model
with growth curves to model the loss development process, using data from
individual companies forming various cohorts of claims. Ntzoufras and Del-
laportas (2002) investigate various models for outstanding claims problems and
show that the computational flexibility of a Bayesian approach facilitated the
implementation of complex models. For non-Bayesian experts, the models can
be implemented using the user friendly Bayesian software WinBUGS.

1.1. Contributions

The contribution of this paper is three-fold. First, we develop a range of non-
parametric and parametric quantile regressionmodels in Bayesian approach for
loss reserving. These proposedmodels allow direct modeling of riskmargin, and
hence loss provision, instead of having to estimate the mean then apply a risk
margin. For parametric quantile regression models, we explore different distri-
butional assumptions with both real and positive supports, and distinct distri-
butional features. Secondly, we generalize these distributions to incorporate dy-
namic structures to the mean and, where possible, the variance parameters and
compare their performances. Finally, we show that the estimation of dynamic
shape parameter by accident year provides an analytical framework to estimate
risk margin. This allows us to capture the feature that the cohort of claims in
different accident year may be heterogeneous, and hence applying different risk
margin to different accident year gives us a more appropriate provision in loss
reserving.

The rest of the paper is organized as follows. Section 2 explains the para-
metric and non-parametric models proposed. Section 3 presents the posterior
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quantile regression models in a Bayesian framework. Section 4 details the way
to calculate risk measures and risk margin using our models. Then, we apply
the methodology to two real loss reserve data sets in Sections 5 and 6. Section
7 concludes.

2. QUANTILE REGRESSION FOR CLAIMS RESERVING

In this section, we present quantile regressionmodels and explain their relevance
to loss reserving, this will be undertaken in a non-parametric and a parametric
modeling framework respectively under the Bayesian paradigm. In the process,
we propose a novel analytical approach to perform estimation of the risk mar-
gin under various quantile regression model structures. Of particular focus in
this paper is the class of models based on the AL distributional family. In the
special case of the AL distribution, we demonstrate that risk margin estimation
is achieved naturally through modeling the shape parameters of the AL distri-
bution and hence the inference on the model parameters directly informs the
inference of the risk margin.

In developing a quantile function framework for general insurance claims
development triangles we assume that there is a run-off triangle containing
claims development data in which Yi j will denote the claims with indices i ∈
{0, . . . , I} and j ∈ {0, . . . , J}, where i denotes the accident year and j denotes
the development year (claims can refer to payments, claims incurred, etc.). Fur-
thermore, without loss of generality, we make the simplifying assumption that
the number of accident years is equal to the number of observed development
years, that is, I = J with N = 1

2 I(I + 1) observations. At time I, the index set
in the upper triangular is

Do = {(i, j) : i + j ≤ I + 1}, (1)

and for claims reserving at time I the index set to predict the future claims in
the lower triangle is

Dl = {(i, j) : i + j > I + 1, i ≤ I, j ≤ I} . (2)

Therefore, the vector of observed Yi j in the upper triangle is given by
Yo = {

Yi j : (i, j) ∈ Do
}
and the corresponding vector of covariates is de-

noted by xo = {
xi j : (i, j) ∈ Do

}
. Similarly, Yl = {

Yi j : (i, j) ∈ Dl
}
and xl ={

xi j : (i, j) ∈ Dl
}
are the vectors of claims and covariates in the lower triangle.

In the regression structures, we aim to make inference on the quantile func-
tion of the data within sample, in each cell of Yo as well as the predictive out-off
sample quantile function based on the claim cells in Yl in lower triangle. The
estimation of the quantile function has three main components:
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• The conditional distribution of the regression model which defines a condi-
tional quantile function of the dependent variables, the claims data, given the
explanatory variables.

• The structural component of the regression model based on the link func-
tions and imposed model structures linking the regression structures with
the covariates to the location and scale of the conditional distribution which
defines a conditional quantile functions of the response.

• The actual choice of independent variables, that is, the covariates in the re-
gression model as well as some basis function regression structures in some
of the models proposed.

In the following subsections, we discuss each of these components in turn,
startingwith the distributional aspects of the quantile regressionmodels we con-
sider.

2.1. Non-parametric quantile regression models

In a non-parametric quantile regression approach, we estimate regression co-
efficients without the need to make any assumptions on the distribution of the
response, or equivalently the residuals. If Yi j > 0 is a set of observed losses and
xi j = (1, xi j1, . . . , xi jm) is a vector of covariates that describe Yi j , the quantile
function for the log transformed data Y∗

i j = lnYi j ∈ � is

QY∗(u|xi j ) = α0,u +
m∑
k=1

αk,u xi jk, (3)

where u ∈ (0, 1) is the quantile level, αu = (α0,u, . . . , αk,u) are the linear model
coefficients for quantile level u which are estimated by solving the following loss
function

min
α0,u ,...,αm,u

∑
i, j≤I

ρu(εi j ) =
∑
i, j≤I

εi j [u − I(εi j < 0)], (4)

and εi j = y∗
i j −α0,u −∑m

k=1 αk,u xi jk. Then the quantile function for the original
data is QY(u|xi j ) = exp(QY∗(u|xi j )). Koenker and Hallock (2001) illustrate the
loss function ρu for quantile regression as we represent in Figure 1.

Koenker andMachado (1999) and Yu andMoyeed (2001) show that the pa-
rameter estimates ofαu byminimizing the loss function in (4) is equivalent to the
maximum likelihood estimates of αu when Y∗

i j follow the AL proxy distribution
with pdf

f (y∗
i j |μi j , σ

2
i j , p) = p(1 − p)

σi j
exp

(
− (y∗

i j − μ∗
i j )

σi j
[p − I(y∗

i j ≤ μi j )]
)

, (5)

where the location parameter or mode μ∗
i j equals to QY∗(u|xi j ) in (3), the scale

parameter σi j > 0 and the skewness parameter p ∈ (0, 1) equals to the quantile
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FIGURE 1: Loss function.

level u. Since the pdf (5) contains the loss function (4), it is clear that parameter
estimates which maximize (5) will minimize (4).

In this formulation, the AL distribution represents the conditional distribu-
tion of the observed dependent variables (responses) given the covariates. More
precisely, the location parameter μi j of the AL distribution links the coefficient
vectorαu and associated independent variable covariates in the linear regression
model to the location of the AL distribution. It is also worth noting that under
this representation it is straightforward to extend the quantile regression model
to allow for heteroscedasticity in the response which may vary as a function of
the quantile level u under study. To achieve this, one can simply add a regression
structure linked to the scale parameter σi j in the same manner as was done for
the location parameter.

Equivalently, we assume Y∗
i j conditionally follows an AL distribution de-

noted by Y∗
i j ∼ AL(μ∗

i j , σ
2
i j , u). Then

Y∗
i j = μ∗

i j + ε∗
i jσi j , (6)

where ε∗
i j ∼ AL(0, 1, u), μ∗

i j = α0,u + ∑m
k=1 αk,u xi jk,

σ 2
i j = exp(β0,u + ∑ν

k=1 βk,u si jk) and si jk are covariates in the variance function.
Discussion on the parametric regression model, in particular, the choice of link
function and structure of regression terms will be undertaken in later sections.

2.2. Parametric quantile regression models

In the parametric model based quantile regressions we detail two basic formu-
lations. The first involves embedding the quantile regression loss function from
the non-parametric setting into the argument of the kernel of a parametric data
likelihood model, this is well known to naturally lead to the AL parametric
model case, see Yu and Zhang (2005) and further details in Section 2.2.1.

The second formulation we utilize in the parametric setting adopts an alter-
native quantile regression formulation in which we specify an expression for the
regression general linear model incorporating a structural trend and variance
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function which each act to modify a base quantile function in order to produce
the conditional data quantile function, see discussion on such approaches for
instance in chapter 12 of Gilchrist (2002). This allows us to adopt a parametric
approach to study the structure of quantile function.

Two types of distributions, on real support � or positive support �+ can be
considered and we begin with distributions on �. In this case, we assume that
Y∗
i j ∼ F(y∗|θ) where F(y∗|θ) is the conditional CDF and θ ∈ Θ is a vector of

model parameters including all unknown coefficient parameters and distribu-
tional parameters. The quantile function for the conditional distribution of Y∗

i j
given xi j at a quantile level u ∈ (0, 1) is given by

QY∗(u|xi j ) ≡ inf{y∗ : F(y∗|θ) ≥ u}. (7)

Under this formulation, the conditional quantile function in (7) can be written
as

QY∗(u|xi j ) = μ∗
i j + Qε∗(u)σi j , (8)

where Qε∗(u) = F−1
z∗ (u) is the inverse cdf for the standardized variable Z∗

i j =
Y∗
i j−μ∗

i j

σi j
and again one may incorporate regression structures given as follows for

location and scale functions:

location: μ∗
i j = α0 +

m∑
k=1

αkxi jk, (9)

scale: σ 2
i j = exp(β0 +

ν∑
k=1

βksi jk). (10)

We note that the parameters in (9) for parametric models are not quantile de-
pendent as the parameters in (3). Hence, we remark that the difference between
the non-parametric and the parametric quantile functions in this paper is that in
the parametric structure we make explicit the quantile function of the “residual”
denoted by Qε(u) when the regression structure is still estimated at the mean
(GB2) or mode (AL) of the distribution. To transform the quantile function
QY∗(u|xi j ) back to the original scale of the data Yi j = exp(Y∗

i j ), we suggest
QY(u|xi j ) = exp(QY∗(u|xi j )). It can be shown that the proposed transforma-
tion QY(u|xi j ) = exp(QY∗(u|xi j )) equals to the quantile function for the log-AL
distribution.
Lemma: If Y follows a log asymmetric Laplace distribution such that Y∗ = lnY
follows a asymmetric Laplace distribution with quantile function QY∗(u), the
quantile function for Y is QY(u) = exp(QY∗(u)).

For distributions on �+, we assume that Yi j ∼ F(y|θ) with mean exp(μ∗
i j )

where μ∗
i j is given in (9). Next, we make explicit several possible paramet-

ric models one may consider in quantile regressions for risk margin. Each
model has different associated properties with regard to the relationship of the
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skewness, kurtosis and heaviness of the tail that it imposes on the quantile func-
tion of the response given the covariates.

2.2.1. Asymmetric Laplace distribution. As discussed above, the AL distribu-
tional family is a useful model structure which naturally fits into a quantile
regression framework. As made explicit above, the AL distribution is a three
parameter distribution which has been shown to be directly linked to the esti-
mation of quantiles in a quantile regression framework, see further details in Yu
and Zhang (2005).

Since this realization, the AL family has been utilized in several financial
risk and econometric settings such as Guermat and Harris (2001) who use the
symmetric laplace distribution with GARCH volatility to model short-horizon
asset returns. Chen et al. (2012) extend this to allow skewness via AL distri-
bution. Yu and Moyeed (2001) apply AL distribution for quantile regression
purposes, though as yet, no such developments have been made in the insur-
ance and particularly the risk margin context. Here, we propose such a model
for risk margin estimation.

If we model the residuals εi j by an AL distribution, the quantile function
for observed data Y∗

i j is given by (8) where F−1
z∗ (u) is the inverse cdf (quantile

function)

F−1
AL(u|μ, σ 2, p) =

{
μ + σ

1−p log(
u
p ), if 0 ≤ u ≤ p,

μ − σ
p log(

1−u
1−p ), if p < u ≤ 1.

(11)

To understand how the three location, shape and scale parameters of theALdis-
tribution affect the shape and tails of the distribution it is also useful to note the
following relationship between the parameters and themean, variance, skewness
S and kurtosis K of AL distribution:

E(Y∗) = μ + σ(1 − 2p)
p(1 − p)

, Var(Y∗) = σ 2(1 − 2p + 2p2)
(1 − p)2 p2

, (12)

S(Y∗) = 2[(1 − p)3 − p3]
((1 − p)2 + p2)3/2

, K(Y∗) = 9p4 + 6p2(1 − p)2 + 9(1 − p)4

(1 − 2p + 2p2)2
.

(13)

Note that the shape parameter p of the AL distribution gives the magnitude
and direction of skewness. AL distribution is skewed to left when p > 0.5 and
skewed to right when p < 0.5 and hence it can model the left skewness of most
log transformed loss data directly through this shape parameter p. Moreover,
as the risk margin adopted in insurance industry is mostly greater than 50%,
AL distribution allows the calculation of quantiles rather than mean estimates
fairly easily. Figures 2(a) and (b) show a variety of pdf for AL distribution and
its skewness and kurtosis respectively.
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FIGURE 2: (a) The pdf of asymmetric Laplace distribution. (b) The skewness and kurtosis of asymmetric
Laplace distribution. (Color online)

2.2.2. Power-Pareto model. As the second choice of parametric quantile re-
gression model we consider the framework of Cai (2010). In this approach, a
polynomial PP quantile function model is developed. This model combines a
power distribution with a Pareto distribution, which enables us to model both
the main body and the tails of a distribution. In considering the PP model, the
conditional quantile function of the response (reserve in each cell) are comprised
of two components:

• component 1: a power distribution F1(y) = y
1
γ1 where y ∈ [0, 1] and γ1 > 0

with a corresponding quantile function then given by Q1 (u; γ1) = uγ1 for
u ∈ [0, 1]; and

• component 2: a Pareto distribution function F2(y) = 1 − y− 1
γ2 where y ≥ 1

and γ2 > 0 with a corresponding quantile function then given by Q2 (u; γ2) =
(1 − u)−γ2 .

One may use the fact that the product of the two quantile functions will remain
a strictly valid quantile function producing the new quantile function family
known as the polynomial-PP model. The resulting structural form given by the
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inverse cdf of the Pareto distributionwith an additional polynomial power term:

F−1
PP(u|γ1, γ2) = uγ1(1 − u)−γ2 . (14)

Hence, the quantile function is again given by (8) where Qε∗(u) = F−1
PP(u) and

QY(u) = exp(QY∗(u)).
From the specification of this quantile function, one may then derive the

resulting pdf of the PP model for Y∗
i j = lnYi j which is given by

fPP(y∗
i j |γ1, γ2) = u1−γ1

i j (1 − ui j )γ2+1

σi j [γ2ui j + γ1(1 − ui j )]
,

where ui j is an implicit function of the regression structure which can be ob-
tained by solving the system of equations defined for each observation

y∗
i j = μ∗

i j + uγ1
i j

(
1 − ui j

)−γ2
σi j , (15)

where again we treat the location μ∗
i j = μ∗

i j (α) in (9) and scale σi j = σi j (β) in
(10) as functions of the regression coefficients and associated covariates.

To complete the specification of the polynomial PPmodel, we plot the shape
of the density that can be obtained for a range of different power parameters for
the power and pareto components with a unit scale factor σ = 1. These plots in
Figure 3 demonstrate the flexible skewness, kurtosis and tail features that can
be obtained from such a model by varying the parameters γ1 and γ2.

2.2.3. Generalized Beta distribution of the second type family. The models dis-
cussed so far, that is, the AL and PP families of regression models, require a
log transformation of the data before the modeling to ensure the data has real
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support� that these distributions are defined upon. In performing this transfor-
mation, onemust analyze carefully the effect of the transformation on the ability
to fit such models and the resulting model interpretability must be interpreted
with regard to the transformation. This is particularly the case if zero counts
are present in the data for some accident and development years. Moreover, in
the context of claims reserving, loss data often exhibits heavy-tailed behavior,
particularly for long tail business classes. To account for such features and to
avoid the need of pre-transformation of the data one may consider the family
of GB2 distributions of the second kind.

The type two GB2 distributionGB2 has attractive features for modeling loss
reserve data, as it has a positive support�+ and nests a number of important dis-
tributions as its special cases. The GB2 distribution has four parameters, which
allows it to be expressed in various flexible densities. See Dong and Chan (2013)
for a more detailed description of GB2 distribution including its pdf and distri-
bution family.

If Yi j ∈ �+ conditionally follows a GB2 distribution, then it can be charac-
terized by the density given by

fGB2(yi j |a, bi j , p, q) =
a
bi j

(
yi j
bi j

)ap−1

B(p, q)[1 + (
yi j
bi j

)a]p+q
, for yi j ≥ 0, (16)

where a, p and q are shape parameters and bi j is the scale parameter.
In mean regression, bi j can be linked to the mean μi j of the distribution as

follows:

bi j = μi j B(p, q)

B(p + 1/a, q − 1/a)
, (17)

where μi j is log-linked to a linear function of covariates μ∗
i j in (9) according to

the relationship:

E(Yi j ) = μi j = exp

(
α0 +

m∑
k=1

αk xi jk

)
. (18)

Then the variance is given by

Var(Yi j ) = μ2
i j

{
B(p, q)B(p + 2/a, q − 2/a)

[B(p + 1/a, q − 1/a)]2
− 1

}
. (19)

The GB2 distribution is a generalization from the beta distribution with pdf:

fB(zi j |p, q) = 1
B(p, q)

zp−1
i j (1 − zi j )p+q , (20)
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via the transformation zi j = (
yi j
bi j

)a

1+(
yi j
bi j

)a
. Hence, the cdf of GB2 distribution is given

by

FGB2(yi j |a, bi j , p, q) =
∫ zi j

0

t p−1(1 − t)(q−1)

B(p, q)
dt = B(zi j |p, q)

B(p, q)
= FB(zi j |p, q)

(21)

where B(zi j |p, q) is the incomplete beta function.
The GB2 is directly relevant for quantile regression models since one

may also find its quantile function in closed form according to the following
expression:

QY(u) =
exp

(
α0 +

m∑
k=1

αkxi jk

)
B(p, q)

B(p + 1/a, q − 1/a)

(
F−1
B (u|p, q)

1 − F−1
B (u|p, q)

) 1
a

. (22)

There are many widely known and utilized sub-families of the GB2 fam-
ily, we present two examples of relevance to the context of risk margin estima-
tion that we will explore, corresponding to the GG and the gamma distribution
sub-families.

2.2.4. Two special cases of GB2. To understand the flexibility of the GB2 fam-
ily of models, we consider the case when q = ∞, then the resulting GB2 dis-
tribution sub-family becomes the GG distribution, see discussion inMcDonald
(1984). TheGG family ofmodels was independently introduced by Stacy (1962),
as a three parameter distribution with pdf given by

fGG(yi j |a, bi j , p) = lim
q→∞

a
bi j

(
yi j
bi j

)ap−1

B(p, q)[1 + (
yi j
bi j

)a]p+q

=
a( yi jbi j )

ap exp[−(
yi j
bi j

)a]

yi j	(p)
, for yi j > 0 (23)

where a and p are shape parameters and bi j is scale parameter linked to the
mean of the distribution as

bi j = μi j	(p)
	(p + 1/a)

, (24)

and the mean is again log-linked to a linear function of covariates in (18). The
cdf is

FGG(yi j |a, bi j , p) =
∫ zi j

0

t p−1e−t

	(p)
dt = γ1(zi j |p)

	(p)
= FG(zi j |1, p),
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where γ1(zi j |p) is the lower incomplete gamma function and zi j = (
yi j
bi j

)a. Hence,
the quantile function is given by

QY(u) = exp
(
α0 + ∑m

k=1 αkxi jk
)
	(p)

	(p + 1/a)

(
F−1
G (u|1, p)) 1

a . (25)

The second case is nested within the GG family and corresponds to the two
parameter Gamma distribution which is obtained by further restricting a = 1.
Its pdf and quantile function are well known and can be expressed using Equa-
tions (23) and (25) by replacing a with 1. Having defined clearly the three dif-
ferent quantile regression distributional families that will be considered in the
parametric quantile regression framework, we will introduce the different re-
gression structures we consider in the quantile function under each distribu-
tional assumption in the next section. Meanwhile, we provide a summary of
distinct features in the quantile functions using non-parametric and parametric
approaches, giving insights to actuaries to choose between the two approaches.

In summary, regression under non-parametric approach is conducted at dif-
ferent quantile level by minimizing the loss function in (4) condition on quantile
level u. The quantile level specific regression coefficients reveal relationships be-
tween responses across quantiles, which is of significant interest in estimating
risk margin and VaR in insurance and finance applications. Moreover, as there
is no distribution assumption, parameter estimates are more robust to heavy
tailed data. To estimate these parameters, AL distribution is adopted as a proxy
distribution converting the minimization of loss function to the maximization
of likelihood function for AL distribution. Theoretically, the set of parame-
ters for non-parametric quantile regression at quantile level u are the same as
those for parametricmode regressionwithALdistribution and shape parameter
p = u but their quantile functions, as given by (3) and (8) respectively, are differ-
ent. An important drawback of non-parametric quantile function is its possible
crossover which may occur particularly at extreme quantiles when the data are
rare and are heavily weighted by the asymmetric loss function. As there is no
simple solution to this problem, we believe it is important to be aware of this
limitation when using this framework. On the other hand, parametric quantile
functions are inverses of distribution functions. Hence, there is a clear mathe-
matical framework for their orders across quantile levels. Moreover, parametric
quantile functions can capture more dynamic features in the data through the
modeling of mean/mode (mean/mode regression), variance and skewness when
adopting distributions on real support. However, transformation of data is re-
quired under these distributions.

2.3. Structural components of the regression framework

In the following subsections, we explain how under each different distributional
assumptions for the regression structure, one may introduce a link function
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to relate regression models using independent explanatory variables to the re-
sponse quantiles in order to model trend behaviors in the location and scale
of the quantile function. To simplify all different model considerations we con-
sider only log link functions for distributions on positive support such as GB2
and GG, avoiding the positive constraints on regression parameters to ensure a
positive mean (μi j > 0). Given the set of covariates for the dependent variable
quantity of interest, in this case the conditional quantile function, we assume
the observations are independent.

The possible regression structures we consider will be classified as: location
based explanatory factors, that is, trends in accident and development years;
and scale (heteroscedasticity or variance) based explanatory factors for accident
and development years. We note that when it comes to different distributional
choices since we may transform the observations by taking log to fit distribu-
tions on real support such as AL and PP or consider a log link function in the
mean of distributions on positive support such as GB2 and GG, we are actually
considering multiplicative instead of additive terms in our regressions for the
observations. As such, we explore aspects of ANOVA as well as ANCOVA re-
gression structures in the regression setting. A summary of the model structures
we consider for the location (additive in log scale for μ∗

i j ) and scale components
of each model is provided in Table 7 in Appendix B. In the context of non-
parametric quantile regression, we will allow the influence of covariates to affect
different quantile levels by adopting different weights in the loss function (4),
making for an interesting analysis on the effect of model structure on quantile
level.

We note that since the focus of this manuscript differs to that undertaken in
the Poisson–Tweedie regression context of Peters et al. (2009), in that the focus
of the regression model comparison will be primarily concerned with the model
choice for the distributional form of the conditional quantile function, not so
much on the model structure uncertainty related to all possible covariate model
sub-space structures and nested models, therefore we limit the analysis to the
ANOVA and ANCOVA structures. If one is interested in specialized techniques
to explore and compare all possible models sub-spaces within each distribu-
tional model, we suggest the approach adopted in Peters et al. (2009) or recently
in Verrall and Wuthrich (2013).

2.3.1. Location: Development and accident year trend model structures. The
primary sets of covariates we consider correspond to the accident year and
the development year in the claims reserving structure, as well as transforma-
tions of these through basis functions. From Table 7 in Appendix B, one may
observe that we label models using two subscripts according to their location
(mean/mode/quantile) and variance functions respectively. Models 0• (denoted
by M0•) and 1• (denoted by M1•) are parsimonious location structure specifica-
tions for the general model in (9) with m = 2, that is, the additive structure is
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example coefficients: α0 = 1, αS
1 = 0.5, αC2 = 2 and λ = 0.5 with j ∈ {1, 2 . . . , J} in years.

given by:

Model 0•: μ∗
i j = α0 + α1 × i + α2 × j, (26)

Model 1•: μ∗
i j = α0 + αS

1 F1( j) + αC2 F2( j), (27)

where F1(·) and F2(·) are basis functions defined in Table 7. Under M0• one
assumes a linear trend across accident and development years. If a nonlinear
trend across development years is considered with an assumption of common
behavior down the accident years, one may consider M1• which is a basis regres-
sion model popular in term structure models and known as the Nelson–Siegel
model (Nelson and Siegel, 1987). Examples of typical basis functions we con-
sidered under this choice for the location are given in Figure 4, where we show
the “level”, “slope” and “curvature” structure of the location trend from such
a model.

In the context of an ANOVA model specification for the location, one can
assume a form given by

Model 2•: μ∗
i j = α0 + α1i + α2 j . (28)

This location (trend) function corresponds to the general model in (9) with
m = 2,

α1xi j1 = α1i and α2xi j2 = α2 j .

The parameters α1i and α2 j denote the accident year and development year ef-
fects respectively and they satisfy the following constraints:

α11 = α21 = 0. (29)
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This parametrization is set up in the context of loss reserving so that all pa-
rameters are relative to the first accident year which has the most information.
These location functions (26) to (28) apply to both AL and PP distributions in
general. For Gamma, GG and GB2 distributions with positive support, a log
link function is considered and the location functions become μi j = exp(μ∗

i j ).
When the AL distribution, with the shape parameter p = u is applied, Model
3• (M3•) corresponds to a non-parametric model given by

Model 3•: μ∗
i j,u = α0,u + α1i,u + α2 j,u, (30)

where α•,u are parameters at quantile level u. Then, the quantile functions are
given by QY(u|xi j ) = exp(QY∗(u|xi j )) = exp(μ∗

i j,u) from (3).

2.3.2. Scale: Development and accident year variance model structures. There
are different choices for the structure of the variance function for the AL and PP
distributions but Gamma, GG andGB2 distributions do not have a component
to model σ 2 directly. Model • 0 (M•0) assumes homoscedastic variance σ 2

i j = σ 2.
Models •0 (M•0) to •3 (M•3) are specified as below:

Model •0 : σ 2
i j = σ 2, (31)

Model •1 : σ 2
i j = exp(β0 + β1i ), (32)

Model •2 : σ 2
i j = exp(β0 + β2 j ), (33)

Model •3 : σ 2
i j = exp(β0 + β1i + β2 j ), (34)

where the parameters β1i and β2 j , which denote the accident year and develop-
ment year effects respectively, satisfy the following constraints:

β11 = β21 = 0. (35)

Again, Models •1 to •3 correspond to (10) with β1si j1 = β1i and β2si j2 =
β2 j . Furthermore, for Model 23′, the shape parameter in the AL distribu-
tion is further modeled by the accident year effect, which is specified as
follows:

Model 23′ : pi = φ0 + φ1i . (36)

where the parameters φ1i denote the accident year effect and satisfy the follow-
ing constraints:

φ11 = 0. (37)
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3. BAYESIAN FRAMEWORK: POSTERIOR QUANTILE REGRESSION

The estimation of quantile regression models is straightforward to adopt under
a Bayesian formulation. One of the key advantage of using Bayesian procedures
for practical models such as those we develop above lies in the adoption of avail-
able prior information and the provision of a complete predictive distribution
for the required reserves (de Alba, 2002).

To complete the posterior distribution specification in each model it suffices
to consider the representation of two components: the likelihood of the data for
the regression structure (that is, the density not the quantile function); and the
prior specifications for the model parameters. In the above sections, the quantile
function of the likelihood is presented, along with the associated density for
the observations conditional upon the parameters and covariates, that is, the
likelihood for each model. Therefore, to formulate the Bayesian structure we
simply need to present the prior structures we consider for the parameters in
each model. This will be relatively straightforward for models formed from the
AL distribution structure and the GB2 structures, but not so trivial for the case
of the PP model.

In the real data examples we consider, we adopt an objective Bayesian per-
spective in which we consider relatively uninformative priors. This reflects our
lack of prior knowledge for the model parameters likely ranges or magnitudes.
For instance, the priors for parameters (coefficients) in mean, variance and
skewness quantile regression functions prior to the link transformations are all
selected as Gaussian

α0, α1, αS
1 , α1i , α2, αC2 , α2 j , β1i , β2 j , φ0, φ1i ∼ N(0, 100), (38)

and for the shape parameters of the GB2 distribution are

a ∼ N(0, 100), p ∼ Ga(0.001, 0.001), q ∼ Ga(0.001, 0.001). (39)

Normal and gamma distributions are standard choices of priors for parameters
with a real and positive support respectively, see discussions on possible choices
in Denison et al. (2002). In the case of the AL and GB2 models, these priors
combined with the resulting likelihoods produce in each case standard and well-
defined posterior distributions.

In the case of the PP model, one has to be careful to define the posterior
support to ensure the resulting distribution is normalized and therefore a proper
posterior density. To ensure this is the case, one must impose constraints on the
prior support which can be uniquely characterized by the three sets of param-
eter space constraints �1, �2 and �3, for coefficient vectors α, β and (γ1, γ2)
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respectively, given by:

�1 =
{(

α0,u, . . . , αm,u
)
: α0,u +

m∑
k=1

αk,uxi jk < yi j , ∀i, j ∈ {1, 2, . . . , I}
}

,

�2 =
{(

β0,u, . . . , βν,u
)
: β0,u +

ν∑
k=1

βk,usi jk > ε > 0, ∀i, j ∈ {1, 2, . . . , I}
}

,

�3 = (0,M] × (0, ∞), M ∈ �+.

(40)

Under these parameter space restrictions the resulting posterior for the PP
model can be shown to be well defined as a proper density, see a derivation
and proof in Theorem 1 of Cai (2010).

In Cai (2010), they consider an MCMC scheme for the resulting posteriors
based on standardMetropolis–Hastings steps with rejection when the proposed
parameter values fail to satisfy the posterior support constraints. In general,
this results in a very slowly mixing MCMC chain which will have very poor
properties. We replace this idea with simple block Metropolis within Gibbs
updates which allow for smaller moves in each component of the constrained
posterior support making it more likely to satisfy the constraints and also
simpler to design and tune the proposal for the MCMC scheme. This was a
significant improvement compared to the approach proposed in Cai (2010). We
implement this sampler in R. For the other Bayesian models from the AL and
GB2 models, sampling from the intractable posterior distributions involved the
Gibbs sampling algorithm (Smith and Roberts, 1993; Gilks et al., 1996) and
Metropolis–Hastings algorithm (Hastings, 1970; Metropolis et al., 1953) which
are the most popular MCMC techniques. For readers who are less familiar
with Bayesian computation techniques, we suggest the WinBUGS (Bayesian
analysis Using Gibbs Sampling) package, see Spiegelhalter et al. (2002). The
MCMC algorithms that are implemented for each model in WinBugs and R are
available upon request.

In the Gibbs sampling scheme, a single Markov chain is run for 60,000 to
1,10,000 iterations, discarding the initial 10,000 iterations as the burn-in pe-
riod to ensure convergence of parameter estimates. Convergence is also care-
fully checked by the history and autocorrelation function (ACF) plots. Then,
every 10th simulated value from the Gibbs sampler after the burn-in period was
selected to produce a down-sampled set of samples that will mimic a random
sample of size 10,000 from the joint posterior distribution for inference pur-
poses. Parameter estimates are given by the sample means, which will be the
posterior mean under a quadratic loss function.
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4. QUANTILE PREDICTION FOR RISK MEASURES AND RISK MARGIN

There are two different places in claims reserving where knowledge of the pre-
dicted quantile function obtained fromour regression framework can be directly
of use. The first is related to a risk margin adjustment and the second is related
to risk measure calculations such as those that may be required for SCR under
Article 101 of the Solvency II Directive.

It is common in practice to perform estimation of the predicted reserves by
predicting the mean reserve in each cell in the lower triangleDl and then obtain-
ing a totalmean reserve. In such settings, it is typical to thenmake an adjustment
to the estimated reserve to allow for some amount of uncertainty in this predic-
tion that could come from a range of different sources. One way to achieve this
is to adopt a risk margin adjustment. In such a setting, one takes the estimated
reserve andmakes a risk margin adjustment based on knowledge of the quantile
function of the distribution of the predicted reserves at a regulatory approved
quantile level of significance.

It is important to note that such forms of risk margin adjustment have been
the focus of regulatory discussions in recent months. For instance, it was noted
in September 2014 by the UK’s Bank of England Prudential Regulation Au-
thority that:

“The risk margin is designed to ensure that the overall value of a firm’s technical
provisions is equivalent to the amount that would be expected to be required in
order that a third party can take over and meet the insurance and reinsurance

obligations of the firm”.

As such the risk margin can be seen as being designed not as a substitute for, in-
surers’ normal capital requirements, instead it relates only to the non-hedgeable
risks of cash flows, such as operational, underwriting and certain credit risks.
Its main purpose is to protect against worse than expected outcomes. The risk
margin should ensure that insurers have sufficient assets to safely wind up and
transfer obligations to a third party in the event of insolvency

A second place where knowledge of the predictive quantile function of the
reserves is relevant is for evaluation of a risk measure. A common approach to
reserving based on the mean reserve that is complementary is to also report,
along with the mean reserve, a risk measure. This would involve evaluating an
alternative estimator for the reserve based on for instance the quantification of
a risk measures formed from the quantile function of the distribution of the
predicted reserves. Examples of such alternatives that include specifically in-
formation on the quantile function include the VaR at some specified quantile
level, which is known in Solvency II as the SCR, often then calculated over a
predefined time frame, see discussions in Article 101 of the Solvency II Directive
discussed in the introduction. Other risk measures that could also be considered
and can be obtained from knowledge of the predictive quantile function include
the expected shortfall (ES) and spectral riskmeasures (SRM), see discussions on
properties of such quantile based risk measures for capital and reserving in for
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instance Embrechts et al. (1997), Artzner (1999), Dowd et al. (2006), Delbaen
(2002) and Peters et al. (2013) and the references therein. It is also worth noting
that the Solvency II Directive clearly defines the risk margin and the SCR as
separate concepts.

When calculating any of these required measures for the resulting total out-
standing reserves (OR) one requires to first obtain a quantity such as the pre-
dictive density. The pure Bayesian approach to achieve this is obtained from the
following for each Yi j ∈ Dl :

• Full predictive posterior distribution:

FYi j
(
yi j |D0

) =
∫ yi j

0
fYi j (y|D0) dy =

∫ yi j

0

∫
fYi j (y|θ) π (θ|D0) dθ dy.

Here, all posterior parameter uncertainty is integrated out of the predictive
distribution.

In practice, typically performing this integration for the predictive distri-
bution cannot be done in closed form and is typically approximated using
MCMC sampling procedures. There are also alternative methods that can be
considered to obtain the predictive distribution. One such alternative approach
is often referred to as Empirical Bayes (Carlin and Thomas, 2000). Under
this approach, one would first obtain a posterior point estimator for model
parameters from the posterior conditional on the upper triangular data, de-
noted generically by θ̂(D0). This could be the posterior mean, mode, median
or some other desired point estimator from the posterior π(θ|D0). This would
then be substituted to obtain the approximate predictive distribution. We note
that some authors prefer to refer to empirical Bayes as maximum marginal
likelihood.

A frequentist approach that is often considered in practice, would involve
first obtaining a point estimator for model parameters based on the data in the
upper triangular claims triangle, denoted by θ̂(D0). In general, under a frequen-
tist approach, this estimator may be formed fromminimization of a desired loss
function. We note that this differs from Empirical Bayes in that the estimator
obtained is not based on a prior on the parameters.

In either case, the generically denoted estimator θ̂(D0), would then be sub-
stituted to the model to obtain future predictions. This would produce the ex-
pression given as follows, with different interpretations for how one obtained
θ̂(D0).

• Conditional predictive distribution:

FYi j
(
yi j |̂θ(D0)

) =
∫ yi j

0
fYi j

(
y|̂θ(D0)

)
dy.

Using one of these predictive distributions, one may also be interested in
quantities such as the distribution of the total outstanding claim given by the
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sum of the losses in the lower triangle according to the random variable YT :=∑
(i, j)∈Dl

Yi j which has distribution given under the full predictive distribution
according to convolution given by

FYT
(
yt |̂θ(D0)

)
:= ∗(i, j)∈Dl FYi j

(
y|̂θ(D0)

)
= (

FYI,2 ∗ FYI−1,3 ∗ FYI−2,4 ∗ · · · ∗ FYI,I
) (
y|̂θ(D0)

)
.

(41)

where, one convolves the distributions for the loss elements in the lower triangle
with ∗ the convolution operator. One can then state several features about the
tail behavior of the total loss distribution and also therefore of the high quantiles
as y → ∞, depending on the properties of the individual loss random variables
in the sum.

At this stage, we observe that there is a rich literature on quantile approx-
imations and asymptotics that have been studied in the actuarial context. In
particular, there is an actively growing literature on the highly related topic of
quantile and conditional quantile asymptotics, see for instance detailed discus-
sions of relevance to the actuarial context in Beirlant et al. (2006), Goegebeur
et al. (2014), Borovkov and Borovkov (2008), Kluppelberg andMikosch (1998),
Daouia et al. (2012) and Ori and Cohen (1996)

Here, we consider a simplified discussion on such ideas applied to the quan-
tile regression context considered in this paper. This is not aimed to be a major
component of the study as the general aim of this paper is to discuss the context
of Bayesian quantile regression, instead we give a brief glimpse of how these
methods can complement the ideas we present and can be developed further in
future studies dedicated to studying further this relationship.

For instance, if one has loss distributions on �+ then one can obtain the
lower bound given by

FYT
(
yt |̂θ(D0)

)
:= (

FYI,2 ∗ FYI−1,3 ∗ FYI−2,4 ∗ · · · ∗ FYI,I
) (
y|̂θ(D0)

)
∼ c

∑
(i, j)∈Dl

FYi j
(
y|̂θ(D0)

)
, as y → ∞,

(42)

for some c ≥ 1. Note, if at least one of the lower triangle losses Yi j is distributed
according to a heavy tailed loss distribution, such as sub-exponential, regularly
varying or long tailed loss distributions then one can find the precise value for c.
For instance, if the total loss is max-sum equivalent, then c = 1, see definitions
for regular variation, sub-exponential, long tailed and max-sum equivalence in
Bingham et al. (1989) and in the context of insurance and quantile function
approximations as discussed here, see the recent tutorial and references therein
from Peters et al. (2013).

These conditional predictive distributions can be obtained for any model
approximately by solving the integrals using theMCMC samples obtained from
the posterior π (θ|D0). Then, given a predictive distribution, one can then find
quantile functions according to the following approaches:
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• Full predictive posterior quantile function: is given by
QYi j |D0 (u) := F−1

Yi j

(
yi j |D0

)
which is the solution to the second order ordinary

differential equation

d
dQYi j |D0

fYi j
(
QYi j |D0 (u) |D0

) (
dQYi j |D0

du

)2

+ fYi j
(
QYi j |D0 (u) |D0

) d2QYi j |D0

du2
= 0,

which is obtained by twice differentiating the following identity:

FYi j
(
QYi j |D0 (u) |D0

) =
∫ QYi j |D0 (u)

0
fYi j (y|D0) dy = u. (43)

The solution to this second order ordinary differential equation can often
be found in the form of a power series, see discussions in Gyorgy and Shaw
(2008).

• Conditional predictive quantile function:

QYi j |̂θ(D0)
(u) := F−1

Yi j

(
u |̂θ(D0)

)
, (44)

which is the most convenient choice that we recommend since the inverse of
the predictive distribution in this case takes the closed form expressions for
the particular model considered as detailed in Section 2.2.

• Conditional total reserve quantile function: In many cases, one is also in-
terested in finding the quantile function of the distribution correspond-
ing to the total reserve, which under conditional independence is given by
F−1
YT

(
yt |̂θ(D0)

)
where this is given by the quantile function of the distribu-

tion in equation (41). In general, finding the convolution and inverse of this
convolved distribution must be done numerically. There are many basic re-
sults known about these quantities such as asymptotic results and bounds for
different properties of light and heavy tailed random variables, independent
or dependent, see a discussion in Kaas et al. (2000).

4.1. Light tailed run-off for claims process

In the case in which no loss cells in the claims triangle are heavy tailed, then in
general, one would need to approximate the tail quantile for the partial sum
of all losses. InKaas et al. (2000), they study partial sums of random variables
with no assumption of independence or of identical marginal distributions.
The only assumption is that the tails are not so heavy for each marginal, such
that each marginal has finite mean. It will be useful to recall that for two
random variables X and Y, X proceeds Y under convex ordering X ≤CX Y
iff for all convex real functions g(·) with finite expectations one has

E [g(X)] ≤ E [g(Y)] . (45)
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Thus, two random variables X and Y with equal mean are convex ordered if
their cdfs cross once.
Then, one can show that in such cases for any sequence of loss distributions{
FYi j

}
(i, j)∈Dl

the following convex order relationship holds

∑
(i, j)∈Dl

Yi j ≤CX

∑
(i, j)∈Dl

F−1
Yi j (U), (46)

for U ∼ uniform[0, 1], see derivations in Goovaerts et al. (2000). This result
means that the total loss YT in the convex order sense, comprised of the most
risky joint vector of losses with given marginals, has the comonotonous joint
distribution. The components of which are maximally dependent since all
components are non-decreasing functions of a common random variable U.
Hence, we consider the following quantile function approximation for the
total loss based on the most conservative estimate using the above bound,
given by

F−1
YT (u) =

∑
(i, j)∈Dl

F−1
Yi j (u). (47)

4.2. Heavy tailed run-off for claims process

Alternatively, if additional features of the loss distributions in the lower tri-
angle are known, such as the loss models contain at least one heavy tailed loss
distribution, then one can bound the total quantile function result. This can
be done conservatively by instead considering the T -fold convolution of the
distribution, say F (∗T )

Yi∗ j∗ which correspond to the loss distribution amongst all
the lower triangular loss elements with the dominant index of regular vari-
ation (that is, with the heaviest tails). In such cases, it would be popular to
utilize an asymptotic result for the quantile function of the sum, as the quan-
tile level becomes large u → 1. For instance, one could use the first order
or second order asymptotic results, see discussions in Peters et al. (2013) and
Cruz et al. (2014). As an example, if the quantile regression was structured
such that the distribution of the partial sum YT = ∑

(i, j)∈Dl
Yi j ∼ FYT is

regularly varying with index ρ ≥ 0 with conditionally independent and iden-
tically distributed (i.i.d.) Yi j with each Yi j taking positive support, then one
canwrite the first order tail approximationwhich is asymptotically equivalent
to the following

FYT (y) ∼ T FYi∗ j∗(y), y → ∞, (48)
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see detailed tutorial in Peters et al. (2013). This would lead to the approxima-
tion of the required quantile asymptotically by the expression

QYT |̂θ(D0)
(u) := inf

{
y ∈ R

+ : FYT (y) > u
}

≈ inf
{
y ∈ R

+ : T FYi∗ j∗(y) < 1 − u
}

≈ QYi∗ j∗|̂θ(D0)

(
1 − 1 − u

T

)
:= F−1

Yi∗ j∗

(
1 − 1 − u

T |̂θ(D0)

)
.

(49)

5. MODEL STRUCTURE ANALYSIS FOR ISRAEL DATA

In this section, we perform two core studies: The first involves isolating the struc-
tural components for the quantile regressions, in order to perform a study on
the mean function and variance functions that are most suitable for an exam-
ple of a representative claims reserving data set. This is therefore performed
using Bayesian formulations of the AL model with different assumptions on
the mean and variance functions in both parametric and non-parametric ap-
proaches. The second involves isolating the distributional choices of the regres-
sion model, where we take the best fitting parametric model mean and variance
function structures and use these to study distributional properties under the
different quantile function choices.

The data set used throughout this section is interesting for such a bench-
mark exercise as it has been previously studied and its features are reasonably
well known, see Chan et al. (2008) for more details on the Israel data set. The
data are available in Figure 17 in Appendix A and represent the paid out claim
amounts yi j for an Israel insurance company, covering periods from 1978 to
1995, containing 171 observations. For mathematical convenience, two zero
claim amounts have been replaced with 0.01. Some general trends are observed
in this data. Given an accident year, the claim development amounts generally
increase till the first 4 to 6 development years then this increase is followed by a
generally decreasing trend thereafter. The mean, median, variance and kurtosis
of this data are 4459.7, 3,871, 12,059,232.6 and −0.4 respectively. The overall
skewness is 0.58 and on a log scale is −2.67.

This data has been studied in Chan et al. (2008) using the GT distribution
expressed as scale mixtures of uniform which facilitates the Bayesian implemen-
tation. They adopt the ANOVA and ANCOVAmean structures to study the ac-
cident year and development year effects on the conditional mean functions but
not on any quantile level. Moreover, they also remark that the log transformed
data become negatively skewed which the symmetric GT distribution fails to
accommodate. Hence, they suggest to adopt some skewed error distributions to
improve the model performance.
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Our primary point of departure for these previous studies on this data is
the conjecture that using a measure of average effects may not be appropriate
for understanding loss reserves at higher quantiles. Higher quantile projection is
critical in loss reserving, for reinsurance premium calculations and also in deriv-
ing the riskmargin. In this section, we use all themodels in Section 2 for quantile
projection with an aim to provide a more comprehensive study on model per-
formance with a wide range of distributions having different tails behavior and
model structures for the quantile trends and heteroscedasticity in the accident
and development years.

5.1. Analysis of quantile regression models: Location and scale

To investigate themodel structures for location (mean/mode/quantile) and scale
(variance) functions, we consider two settings: the first class of models involves
the parametric models using the AL distribution with p left to be estimated
(denoted by est), the mode functions given by (26) to (28) and variance being
constant (31) (Models 00–20) or given by (34) (Models 03–23); the second class
of models involves a set of non-parametric models which are also studied with
quantile function (30) and variance being constant (31) or given by (34) (Models
30 and 33) using AL as a proxy distribution with p fixed (denoted by fix) at
different quantile levels.

For model comparison, deviance information criterion (DIC) is adopted, as
detailed in for instance Claeskens andHjort (2008) or Spiegelhalter et al. (2002).
In general, one can consider the DIC as a hierarchical model generalization of
other popular information criterions typically used for model selection such as
the Akaike information criterion (AIC) or the Bayesian information criterion
(BIC). DIC is widely used in Bayesian model selection problems especially in
cases when the posterior distributions of the models are obtained by MCMC
sampling, as adopted in this paper.

Since, models with smaller DIC are preferred to those with larger DIC, then
the results of the model comparisons provided in Table 1 show that among the
parametric models in which p is estimated,M23 with anANOVAmodel for both
accident and development years in modeling both the mode and variance func-
tions is the best fitting model according to DIC. This result is further supported
by the two measures, namely the posterior mean deviance D̄ and the deviance
evaluated at the posterior mean of parameters D̂ as defined under Table 1 which
indicate model fit without model complexity penalty as in DIC. This shows that
the accident year and development year effects are both important in describing
the dynamics of the location and variance. Hence, these ANOVA-type location
and variance functions are applied to most of the subsequent analyses whenever
possible. For the non-parametric models in which p is fixed at various quantile
levels, M33 with ANOVA variance provides better fit than M30 with constant
variance.

Between parametric model M23 and non-parametric models M33, the non-
parametric models provide better model performance according to DIC. These
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TABLE 1

ESTIMATES OF p AND MODEL FIT MEASURES FOR AL PARAMETRIC AND NON-PARAMETRIC MODELS.
(MODELS DETAILED IN APPENDIX B, TABLE 7).

DIC D̄† D̂‡ p DIC D̄† D̂‡ p

Models Variance Constant Models Variance Function

M00 195.41 255.21 315.02 0.85 (est) M03 272.82 334.74 396.66 0.93 (est)
M10 223.30 284.10 344.91 0.88 (est) M13 199.14 247.49 295.85 0.95 (est)
M20 50.94 120.17 189.40 0.81 (est) M23 –20.81 24.91 70.63 0.75 (est)

M30 55.94 125.61 195.28 0.30 (fix) M33 –37.06 38.34 113.74 0.30 (fix)
M30 73.10 152.26 231.43 0.50 (fix) M33 –38.80 35.51 109.82 0.50 (fix)
M30 55.26 132.56 209.87 0.75 (fix) M33 –17.33 53.40 124.12 0.75 (fix)
M30 44.86 116.38 187.91 0.95 (fix) M33 –64.26 3.68 71.62 0.95 (fix)

† D̄ is the posterior mean deviance Eθ [−2 log f (y|θ)]; ‡ D̂ = −2 log f (y|θ̄) where θ̄ is the posterior mean of
θ.
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FIGURE 5: QQ plot for non-parametric models M33 at different quantile levels.

M33 models correspond to the ALmodels with location and variance -functions
for a range of fixed quantile levels p ∈ {0.3, 0.5, 0.75, 0.95}. Then, we study
their performances using quantile–quantile (QQ) plot as shown in Figure 5. The
QQ plot shows linearity except for a few very extreme quantiles and indicates
appropriate fits from the specified model structures for this range of quantile
levels.
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FIGURE 6: Fitted loss of the first accident year across quantiles using M33 with AL distribution.
(Color online)

In addition, we investigate the trends of development year effects as depicted
in Figure 6 which reports the fitted loss Ŷ1 j = exp(μ∗

1 j ) where μ∗
1 j is given by

(30) and calculated using the conditional predictive quantile function in (44)
for the first accident year (i = 1). The quantile levels u correspond to the shape
parameter p set to 0.3, 0.5, 0.75 and 0.95 respectively in AL distribution. The
figure demonstrates that there is a clear requirement for a nonlinear trend in
the development year covariate at all quantile levels. Hence, the trend of fitted
losses increases uniformly until j = 4 and subsequently decreases thereafter at
all quantile levels and they agree closely with the observed trend particularly at
lower quantile levels.

To conclude the benchmark analysis on model structure, we also present for
the best model M33 with quantile and variance functions the estimated model
trends for all accident years, depicted in Figure 7 as four triangular heat maps.
The heat maps each depicts the fitted loss by accident and development years
in the upper triangle at all four quantile levels, where the first row corresponds
to that which was studied in Figure 6. All heat maps show a consistent trend
across development years for all accident years and quantile levels with high
levels of loss as indicated by light colours being around the fourth development
year, particularly for lower accident years. With increasing quantile levels, the
width of light colours for each accident year increases showing higher levels of
fitted losses around the peak.

Although non-parametric models have lower DIC values in general,
Table 1 shows that parametric model M23 actually provides comparable model
fit according to D̄s before model complexity penalty was applied. This is be-
cause parametric models with additional shape parameters are subject to heav-
ier model complexity penalty in DIC. However, it should be noted that para-
metric models provide better model fit in general over a range of models and
quantile levels. For example, D̄ for M23 is 24.91 which is less than those of
M33 except when p = 0.95. In addition, the parametric models have addi-
tional advantages that they will be more readily interpretable as well as directly
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TABLE 2

PARAMETER ESTIMATES AND MODEL FIT MEASURES FOR AL MODELS WITH ANOVA MEAN AND VARIOUS
VARIANCE FUNCTIONS.

Models DIC D̄ D̂ MSE p σ 2

M20 50.94 120.17 189.40 1015.71 0.80 0.02
M21 −4.32 56.66 117.64 849.91 0.74 0.04
M22 6.63 54.29 101.95 755.66 0.68 0.19
M23 −20.81 24.91 70.63 850.10 0.75 0.17
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FIGURE 7: Fitted loss of the upper triangle across quantiles using M33 with AL distribution. (Color online)

usable when calculating risk margins and quantile based risk measures with no
crossover of quantile functions, as was discussed in Section 2.2. For the mode
structure corresponding to model choice M2• under parametric model, we also
studied different variance structures, in order to explore the different choices of
variance functions under the AL distribution.

Again, we confirm that amongst all models with AL distribution,M23 which
incorporates both accident and development year effects for the mode and vari-
ance demonstrates the best model fit according to all DIC, D̄ and D̂. On the
other hand, MSE favors M22 which adopts only development year effect for
the variance. One possible reason might be that the payments made in different
accident years are relatively stable compared to those across development years,
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and hence the development year effect dominates in the variance estimation, a
specific phenomenon in this example.

5.2. Analysis of quantile regression models: Quantile distribution

In this section, we analyze the different model choices from the distributional
perspective. This is not directly trivial to achieve, since each model has different
features that must be taken into consideration in the comparison. It is clear
from previous studies that one should always utilize an ANOVA-type location
function with accident and development years effect (M2•), or at a minimum
incorporate a quadratic or basis function form for the development year effects
such as M1•. In the case of the GB2 and AL models, we will therefore consider
mean structures in M2•. However, in the case of the PP model we will consider
M1•, since purely from a computational perspective it will be easier to implement
an efficientMCMC sampler forM1• compared toM2•. The reason for this is due
to the rejection stage in the Metropolis–Hastings acceptance probability where
under the PP model the prior constraint regions will be easier to satisfy with
less model complexity. In terms of the variance functions, when working with
the GB2 models, we will consider M2• in which we do not specify variance func-
tions as there is no variance parameter in the distribution to model the variance
directly. The variance of the models are given by (19). Then, in the case of the
ALmodel we considerM20 as well asM23 and for the PPmodel we considerM10
and M13.

Table 3 reports the results for the Israel data set which are split according
to models with constant, unspecified and dynamic variance functions. In the
case of constant or unspecified variance, the best performing model is again the
AL model, followed by the GG model. Among distributions in the GB2 family
with positive support, GG provides the best model fit according to DIC with
model complexity penalty while GB2 model provides the best model prediction
according to MSE. Comparing D̄s without model complexity penalty, GG and
GB2 provide very similar model fit. Besides, it is clear that the PP model with
only the basis function regression structure for the mean, given by a quadratic
polynomial for the trend in the development year covariate, and a constant vari-
ance was not sufficient to capture all the features required. We believe that this
is largely due to the fact that such a model is more suitable for heavy tailed run-
off in the claims development and the Israel data clearly does not display such
a feature. It is therefore expected that such a heavy tailed quantile regression
model will not perform as well for this data. When the variance is also modeled,
the ALmodel is clearly significantly better than all the other models considered,
again making M23 with AL model optimal compared to all choices. Since, the
PP model is shown to be not suitable for this data, we will consider analyses
going forward with only the GB2 and AL models.

To further assess the in-samplemodel fits, we display inFigure 8 the observed
losses Yi j and fitted losses Ŷi j = exp(μ∗

i j ) for AL model and Ŷi j = μi j for the
GB2 family models in the upper triangle arranged in ascending order against
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TABLE 3

PARAMETER ESTIMATES AND MODEL FIT MEASURES FOR MODELS WITH VARIOUS DISTRIBUTIONS.

Models DIC D̄ D̂ MSE a p q σ 2

Quantile Regression: Unspecified Variance Function
M2• Gamma 3064.50 3028.93 2993.36 537.82 1 1.87 ∞ –
M2• GG 2707.42 2932.97 3158.52 582.78 33.22 0.08 ∞ –
M2• GB2 3002.82 2964.60 2926.37 526.65 −7.94 1.78 0.17 –

Quantile Regression: Constant Variance Function
M10 PP 3272.14 1021.71 1230.01 1132.12 – – – 14.15
M20 AL 50.94 120.17 189.40 1015.71 – 0.80 – 0.02

Quantile Regression: Non-Constant Variance Function
M13 PP 1502.19 1906.49 2310.98 923.00 – – – 9.10
M23 AL -20.81 24.91 70.63 850.10 – 0.75 – 0.17
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FIGURE 8: Percentiles of fitted losses in the upper triangle using GB2 family and AL distributions.
(Color online)

the order ( percentile) p in the data. In the AL model, we set p = 0.5 that
corresponds to non-parametric median regression to facilitate comparison with
the GB2, GG and gamma models which have mean regression. We can see that
the fitted losses using ALmodel withM33 are closest to the observed losses, GG
and GB2 models provide very similar fitted losses and gamma model provides
the poorest fit. Table 4 reports the observed and fitted losses in Figure 8 for
some specified percentile p = 0.3, 0.5, 0.75 and 0.95 in the data using the four
models.

As the model assessments show adequate model fits, we apply the quan-
tile functions to calculate the losses for each cell (i, j) in the upper triangle
at different quantile levels u. The quantile function is QY∗(u|xi j ) in (8) where
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TABLE 4

SELECTED PERCENTILES OF FITTED LOSSES IN THE UPPER TRIANGLE USING GB2 AND AL MODELS.

Models 0.30 0.50 0.75 0.95

Observed 1,985 3,871 6,990 10,200
M2• Gamma 2,760 4,496 8,036 10,700
M2• GG 2,378 4,498 6,451 8,040
M2• GB2 2,480 4,463 6,526 8,247
M23 AL (p = 0.5) 2,255 3,734 6,422 9,715
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FIGURE 9: Percentiles of predicted quantiles in the upper triangle using GB2 and AL models. (Color online)

Qε∗(u) = F−1
AL(u) is given by (11) for the ALmodel and it is QY(u|xi j ) in (22) for

theGB2model and (25) for theGGandGammamodels. Figure 9 plots quantile
estimates Q̂Y∗(u|xi j ) or Q̂Y(u|xi j ) in ascending order against the percentile p .
This is similar to Figure 8, for example, the fitted quantile Q̂Y(u|xi j ) instead of
fitted mean Ŷi j for the GB2 family is plotted against the percentile. Each line in
Figure 9 corresponds to a quantile level u = 0.3, 0.5, 0.75 and 0.95. These so-
called empirical quantile lines are dense forGGmodel, sparse for gammamodel
and moderate for GB2 model indicating that GB2 distribution provides quan-
tile estimates which can reasonably cover the observed losses across percentile
when the quantile level u gradually increases. We also remark that the empirical
quantiles for AL model in the log scale are convex rather than concave and are
more dense because of the log transformation.
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FIGURE 10: Boxplots of predicted quantile in the upper triangle using GB2 family and AL distributions.

Then Figure 10 reveals the shape of distribution using boxplot for the
estimated losses at each quantile level (line) in Figure 9. The quantile esti-
mates are exp(Q̂Y∗(u|xi j )) for the AL model and Q̂Y(u|xi j ) for the GB2 fam-
ily models. Comparing boxplots across models and quantile levels, the box-
plots for AL model have the heaviest right tails and the ranges of boxplots
differ more at higher quantile levels. In particular, the ranges for gamma and
AL models increase much faster across quantile levels than the GG and GB2
models.

Then Figure 11 plots the quantile functions exp(QY∗(u|xo)) for the AL
model and QY(u|xo) for theGB2 familymodels against the quantile u ∈ (0, 1) as
compared to the empirical quantiles plotted against data percentile p in Figure
9. Since, the quantile functions do not refer to any particular cell in the upper tri-
angle, the location parameters μ∗ and μ involved in calculating exp(QY∗(u|xo))
and QY(u|xo) respectively are taken to be the average of μ∗

i j or μi j over x0 in
the upper triangle. Hence, this graph presents the average reserve level for each
risk cell across quantile level u for the four models. The AL model is the most
conservative at higher quantiles and has the heaviest right tail. This is partially
due to the log transformation.

We further adopt these models to calculate the OR as reported in Table 5
using the conditional predictive approach where the conditional total reserve
quantile function in (47) is adopted for the case of light tailed run-off in the
claim process because the claim distribution was shown to be light tailed in the
previous analyses. Under the Solvency II framework, insurers will have to es-
tablish technical provisions to cover future claims expected from policyholders.
Insurers must also have available financial resources sufficient to cover both a
minimum capital requirement and a SCR. The SCR is based on a VaRmeasure
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TABLE 5

OUTSTANDING RESERVES AT DIFFERENT QUANTILE LEVELS USING GB2 FAMILY AND AL DISTRIBUTIONS.

Models 0.30 0.50 0.75 0.95

M2• Gamma 127,816 198,907 324,515 581,302
M2• GG 203,207 248,409 291,457 323,346
M2• GB2 152,315 225,017 311,625 413,525
M23 AL (p = 0.5) 145,031 176,926 314,454 462,980
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FIGURE 11: Quantile functions using GB2 family and AL distributions. (Color online)

calibrated to a 99.5% confidence level over a one-year time horizon. Results
in Table 5 show that the OR projection increases gradually up to 0.95 quan-
tile level. To fulfill the requirement of SCR, estimates of OR at 0.995 quantile
level are also calculated and they are 5,12,731 and 5,60,430 using GB2 and AL
models respectively. It seems that all the predictions at 0.75 quantile level are
quite close in Table 5. The APRA requires licensed Australian insurers to have
a minimum probability of adequacy of 75% . Hence, all estimations from 75%
quantiles onwards can be considered.

6. RISK MARGIN: AUSTRALIAN CASE STUDY

In general, the guidance on calculation of risk margin by regulators leaves flex-
ibility in the practical modeling approach adopted by practitioners. There are a
few popular approaches considered in practice, some of which involve a degree
of expert opinion. In this section, we aim to consider only approaches based on
statistical models and in particular quantile based methods. In this context, the
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standard practice is to consider the reserve estimate and then try to quantify the
uncertainty associated with the reserve estimator. This uncertainty is typically
measured via a standard error, which is utilized to adjust the reserve. Tradition-
ally, if a loss distribution produces an estimator for the reserve which admits a
normal distribution (approximately under a central limit theorem result), then
setting the risk margin to equal the sample estimator for the reserve plus 0.675
times the sample estimator of standard deviation would result in risk margins
calibrated to approximately the 75th percentile. Note, whilst the total loss distri-
butionmay not have finite secondmoment if a heavy tailed run-off is present, the
variance of the sample estimator for the distribution of the reserve will always
be well defined. It should be noted that this method suffers from drawbacks as
there is both an influential judgment in determining the appropriatemultiple, es-
pecially when the normality assumption is not present due to sample estimators
distribution being skewed. The first plot in Figure 12 illustrates graphically this
traditional method where the blue line represents the assumed normal liability
(loss) distribution, the red arrow indicates the risk margin calculated using tra-
ditional method and the red line denotes the underlying loss distribution which
differ considerably from the assumed normal distribution.

Alternatively, if the traditionally utilized estimate of reserve based on the
mean of the loss distribution is considered but normality is dropped. Then, two
scenarios may arise if one uses the risk margin adjustment based on the tail
quantile of the total loss distribution at say 75%. In this case, the estimated
mean reserve could be above the desired risk margin quantile level of the to-
tal loss distribution, in which case it may be reasonable to make no further
adjustment if the risk margin is already at a tail quantile such as 75%. Alter-
natively, if the estimated mean reserve is below the desired risk margin quantile
level of the total loss distribution, then the difference would be the resulting risk
margin.

Alternatively, one may utilize the quantile regression model obtained for the
total loss distribution. There are two basic ways to achieve this, for instance one
could take instead of amean reserve, a quantile based reserve. The first way con-
siders themedian of the total loss distribution as a central measure and makes a
risk margin adjustment based on the tail quantile of the total loss distribution
at say 75% (as is considered in practice). The second way applies a risk measure
such as VaR which represents a tail quantile of the total loss distribution at say
99.95%, in which case one may judge that a conservative measure of reserve is
obtained from such a tail measure and so no additional risk margin is required.
This is standard in banking regulations such as Basel II/III and being considered
in insurance regulations.

In this section, we adopt the quantile approach for risk margin estimation.
We first extend the best model, model M23 with AL distribution, in the previous
sections to model the risk margin statistically. To achieve this, we generalize
the AL distribution to model the shape parameter p via the following regres-
sion pi = φ0 + φi where φ0 is the intercept and φi denotes accident year ef-
fect. Accident year effect is chosen because risk capital allocation is by accident
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FIGURE 12: Traditional method (upper) versus proposed method (lower).

years. It is worth noting an important assumption which is stated as underlying
this method: actual outstanding claim payments are assumed to be uncorre-
lated between accident years. Therefore, the estimated shape parameter p, which
presents quantile in AL distribution, and also infers riskmargin in the percentile
method, is an applicable risk margin estimate for outstanding claims payments.
The difference between our proposed quantile based method in the second plot
and the traditional method is clearly illustrated in Figure 12.

The data that we used to demonstrate our model is the amount of payments
for all the compulsory third party (CTP) policies in Queensland (QLD) as of
June 2008. CTP insurance policy covers risk that would be referred to as Auto
Bodily Injury in the U.S. and Motor Bodily Injury in the U.K. The data are in
the units of millions summarized by accident and development quarters cov-
ering periods from December 2002 to June 2008. It contains 276 observations
over 23 accident quarters. In order to remove the influence of inflation for reserv-
ing purposes, we utilize the average weekly earning index from the Australian
Bureau of Statistics (ABS) to inflate all the values to December 2008 dollars.
Hence, the data used in this analysis represents the inflated cumulative payment
for QLD CTP portfolio as reported in Figure 18 in Appendix A.

To review features of the data, Figure 13 plots the observed variance across
accident year on original and log scale. It shows that the variance fluctuates a
lot across accident year on the original scale but displays a sharp drop on the log
scale. Figure 14 shows that the skewness are mostly negative on the original and
log scales. The overall skewness of the data is 0.61 and that on the log scale is
−1.08. Trend of skewness reveals a sharp drop at the start and then it fluctuates
across accident years for data on the original scale but increases monotony for
data on the log scale. These changes confirm the necessity of adopting dynamic
variance and skewness in modeling the data.
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FIGURE 13: Observed variance of QLD CTP payment data by accident year.
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FIGURE 14: Observed skewness of QLD CTP payment data by accident year.

Among choices of distributions, the AL distribution allows flexibility in
modeling variance and skewness through modeling directly the scale and
shape parameters σ 2 and p respectively. Furthermore, in the context of non-
parametric regression using AL as a proxy distribution for model implementa-
tion, p indicates the quantile level of a model which corresponds to risk margin
in loss reserving. In the analysis of QLD CTP data, we adopt model M23 with
ANOVA type location and variance functions as preliminary study shows that
M23 also provides the best model performance, similar to Israel data.We further
propose modeling the risk margin p as a linear function of accident quarters.
One reason is that as accident quarter increases, there are more uncertainty in-
volved in estimating the reserves; hence, it is an important factor in risk margin
estimation. This model is called M23′ in Table 7, Appendix B.

Then M23′ with dynamic variance and skewness is compared to two models,
M20 with constant variance and skewness and M23 with just dynamic variance
in Table 6. Although M20 outperform M23′ according to DIC, M23′ provides the
best model fit according to D̄whichmeasures solely themodel fit withoutmodel
complexity penalty. As our aim is to provide the most accurate risk margin esti-
mates, we adopt M23′ in the subsequent risk margin analysis. From a modeling
perspective, it reconciles with our risk margin estimation approach.
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TABLE 6

PARAMETER ESTIMATES AND MODEL FIT MEASURES FOR ANOVA MODELS USING QLD CTP PAYMENT
DATA.

Models DIC D̄ D̂ E(Y) Var(Y) S(Y)

M20 Constant variance & skewness −322.55 −215.65 −108.75 4.33 0.008 −0.28
M23 Dynamic variance −311.36 −197.71 −84.06 7.67 0.22 −0.57
M23′ Dynamic variance & skewness −255.03 −229.46 −203.90 4.77 0.10 −0.18

FIGURE 15: Change of p across accident year using M23′ for risk margin analysis.

FIGURE 16: Estimated variance and skewness in M23′ for risk margin analysis.

Figure 15 demonstrates how the estimated risk margin p̂i changes across
accident quarters i , superimposed with its credibility interval. Figure 16 dis-
plays the corresponding changes in estimated variance and skewness using the
variance and skewness equations in (12) and (13) respectively. The risk margin
p̂i starts at 0.895 at accident quarter 1 when the variance is quite high. After-
wards, it decreases gradually to 0.439 in accident quarter 8 when the variance
is much smaller. From accident quarter 17 onwards, the risk margin increases
again when the variance is large when the data become rare and there are more
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development quarters ahead. In actuarial practice, the calculation of the risk
margin is often not based on a sound model but various simplified methods are
used. This approach enables us to calculate a risk margin for non-life insurance
run-off liabilities in a mathematically consistent way, and provides reasonable
risk margin estimates.

7. CONCLUSION

We apply regression models to estimate loss reserve and risk margin and
compare the performance of quantile functions from two approaches. In the
non-parametric approach, we adopt AL as a proxy distribution for parameter
inference and find models with ANOVA type location and variance and higher
skewness (higher shape parameter p) which corresponds to higher quantile
level, provide better model-fit. In the parametric framework, we built five
models, namely AL, PP, GB2, GG and gamma on real and positive supports.
The AL model provides the best fit because it has specific location and
variance parameters to allow dynamic modeling of both components. We also
investigate three different regression structures, namely ANCOVA, ANOVA
and Poisson–Tweedie regression. The ANOVA model performs the best in our
empirical data study.

Furthermore, we adopt the best performed model, which is the AL model
in a parametric approach with ANOVA location and variance functions, to es-
timate risk margin. This AL model is further generalized to adopt a dynamic
shape parameter p and the resultant model provides us a mathematically con-
sistent way of estimating risk margin because the estimated p corresponds to
the quantile level in a non-parametric model and hence is the best quantile level
for risk margin according to the data. Overall, the results of our studies indicate
that this new risk margins framework offers considerable potential benefits for
reserving purpose.
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FIGURE 17: Israel payment data.
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FIGURE 18: QLD CTP payment data.
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APPENDIX B

The following table shows the model structures considered for each regression analysis.

TABLE 7

MODEL STRUCTURES IN THE QUANTILE REGRESSIONS. NOTE: BASIS FUNCTION CHOICES F1( j) = ( 1−e−λ× j

λ× j

)
,

F2( j) = ( 1−e−λ× j

λ× j − e−λ× j
)
.

Model Model Scale Distribution
Index Model Location Structure Structure Types Model Description

M00 μ∗
i j = α0 + α1 × i + α2 × j σi j = σ AL Location: Simple Additive

Model (parsimonious)
common trend in accident
years and development
years.

Scale: homoscedasticity in
development years scale
parameter (common across
accident years).

M10 μ∗
i j = α0 + αS

1 F1( j) + αC2 F2( j) σi j = σ AL Location: Basis function
regression model with trend
component for
development years given by
Level, Slope and Curvature
components (common
across accident years).

Scale: homoscedasticity in
development years scale
parameter (common across
accident years).

M20 μ∗
i j = α0 + α1i + α2 j σi j = σ AL, PP Location: Fully

parameterized model with
individual trend
components in accident
and development years.

Scale: homoscedasticity in
development years scale
parameter (common across
accident years).

M2• μ∗
i j = α0 + α1i + α2 j Eqn 19. GB2 Location: Fully

parameterized model with
individual trend
components in accident
and development years.
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TABLE 8

MODEL STRUCTURES IN THE QUANTILE REGRESSIONS.

Model Model Location Model Scale Distribution
Index Structure Structure Types Model Description

M21 μ∗
i j = α0 + α1i + α2 j σi j = β0 + β1i AL Location: Fully parameterized

model with individual trend
components in accident and
development years.

Scale: heteroscedasticity in
accident years with common
variance over development
years scale parameter.

M22 μ∗
i j = α0 + α1i + α2 j σi j = β0 + β2 j AL Location: Fully parameterized

model with individual trend
components in accident and
development years.

Scale: heteroscedasticity in
development years with
common variance over accident
years scale parameter.

M23 μ∗
i j = α0 + α1i + α2 j σi j = β0 + β1i + β2 j AL Location: Fully parameterized

model with individual trend
components in accident and
development years.

Scale: heteroscedasticity in
development and accident years
scale parameter.

M23′ μ∗
i j = α0 + α1i + α2 j σi j = β0 + β1i + β2 j

p = φ0 + φ1i

AL Location: Fully parameterized
model with individual trend
components in accident and
development years.

Scale: homoscedasticity in scale
parameter and shape parameter
p (quantile level) has trend in
the accident years (common
across all development years).

M30 μ∗
i j = α0,u + α1i,u + α2 j,u σi j = σ AL as proxy Location: Non-parameterized

model with individual trend
components in accident and
development years.

Scale: not defined in the model.
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