
Math. Struct. in Comp. Science (2019), vol. 29, pp. 169–214. c© Cambridge University Press 2017

doi:10.1017/S0960129517000123 First published online 29 May 2017

Optimal enforcement of (timed) properties with

uncontrollable events

MATTHIEU RENARD†, YL I È S FALCONE‡, ANTOINE

ROLLET†, THIERRY J ÉRON§ and HERVÉ MARCHAND§

†LaBRI, Bordeaux INP, Université Bordeaux, Bordeaux, France

Emails: matthieu.renard@labri.fr, antoine.rollet@labri.fr
‡Univ. Grenoble-Alpes, Inria, Laboratoire d’Informatique de Grenoble, F-38000 Grenoble, France

Email: Ylies.Falcone@univ-grenoble-alpes.fr
§Inria Rennes Bretagne-Atlantique, Rennes, France

Emails: thierry.jeron@inria.fr, herve.marchand@inria.fr

Received 29 April 2016; revised 14 March 2017

This paper deals with runtime enforcement of untimed and timed properties with

uncontrollable events. Runtime enforcement consists in defining and using mechanisms that

modify the executions of a running system to ensure their correctness with respect to a

desired property. We introduce a framework that takes as input any regular (timed) property

described by a deterministic automaton over an alphabet of events, with some of these

events being uncontrollable. An uncontrollable event cannot be delayed nor intercepted by

an enforcement mechanism. Enforcement mechanisms should satisfy important properties,

namely soundness, compliance and optimality – meaning that enforcement mechanisms

should output as soon as possible correct executions that are as close as possible to the

input execution. We define the conditions for a property to be enforceable with

uncontrollable events. Moreover, we synthesise sound, compliant and optimal descriptions of

runtime enforcement mechanisms at two levels of abstraction to facilitate their design and

implementation.

1. Introduction

Runtime verification (Falcone et al. 2013; Leucker and Schallhart 2009) is a powerful

technique which aims at checking the conformance of the executions of a system under

scrutiny with respect to some specification. It consists in running a mechanism that

assigns verdicts to a sequence of events produced by the instrumented system with respect

to a property formalising the specification. This paper focuses on runtime enforcement

(cf. Basin et al. 2013; Falcone et al. 2011; Ligatti et al. 2009; Schneider 2000) which

goes beyond pure verification at runtime and studies how to react to a violation of

specifications. In runtime enforcement, an enforcement mechanism (EM) takes a (possibly

incorrect) execution sequence as input, and outputs a new sequence. EMs should be sound

and transparent, meaning that the output should satisfy the property under consideration

and should be as close as possible to the input, respectively. When dealing with timed

properties, EMs can act as delayers over the input sequence of events (Pinisetty et al.

2014a,c, 2012). That is, whenever possible, EMs buffer input events for some time and

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 170

S
σ

E
E(σ)

ϕ

Fig. 1. Enforcement mechanism E, modifying the execution σ of the system S to E(σ), so that it

satisfies property ϕ.

then release them in such a way that the output sequence of events satisfies the property.

The general scheme is given in Figure 1.

Motivations. We focus on enforcement of properties with uncontrollable events†. In-

troducing uncontrollable events is a step towards more realistic runtime enforcement.

Uncontrollable events naturally occur in many application scenarios where the EM has

no control over certain input events. For instance, certain events from the environment

may be out of the scope of the mechanism at hand. This situation arises for instance in

avionic systems where a command of the pilot has consequences on a specific component.

In this critical domain, one usually adds control mechanisms in specific points of the

architecture in order to verify that nothing wrong happens. Some events may only be

observed by these mechanisms in order to decide if a situation is abnormal, but they

cannot be acted upon, meaning that they are uncontrollable. For instance, the ‘spoiler

activation’‡ command triggered by the pilot is sent by the panel to a control flight system,

and this leads finally to a specific event on the spoilers. Placing an EM directly on the

spoiler prevents events leading to an incoherent state by blocking them, according to the

pilot commands. The pilot commands are out of the scope of the EM, i.e., observable

but uncontrollable. In the timed setting, uncontrollable events may be urgent messages

that cannot be delayed by an EM. Similarly, when a data dependency exists between two

events (e.g., between a write event that displays a value obtained from a previous read

event), the first read event is somehow uncontrollable as it cannot be delayed by the EM

without preventing the write event from occurring in the monitored program.

Challenges. Considering uncontrollable events in the timed setting induces new challenges.

Indeed, EMs may now receive events that cannot be buffered and have to be output

immediately. Since uncontrollable events influence the satisfaction of the property under

scrutiny, the dates of the controllable events stored in memory have to be recomputed

upon the reception of each uncontrollable event to guarantee that the property is still

satisfied after outputting them. Moreover, it is necessary to prevent the system from

reaching a bad state upon reception of any sequence of uncontrollable events. Since

uncontrollable events can occur at any time, the EM must take their potential reception

into account when computing the sequence to be emitted. Then, the occurrence of such

events has to be anticipated, meaning that all possible sequences of uncontrollable events

† This notion of uncontrollable event should not be confused with the notion of uncontrollable transition used

in some supervision and game theory.
‡ The spoiler is a device used to reduce the lift of an aircraft.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 171

have to be considered by the EM. It turns out that a property may not be enforceable

because of certain input sequences. Intuitively, enforceability issues arise because some

sequences of uncontrollable events that lead the property to be violated cannot be avoided.

Thus, new enforcement strategies are necessary for both untimed and timed properties.

Contributions. We introduce a framework for the enforcement monitoring of regular

untimed and timed properties with uncontrollable events. We define EMs at two levels of

abstraction. The synthesised EMs are sound, compliant and optimal. When considering

uncontrollable events, it turns out that the usual notion of transparency has to be

weakened. As we shall see, the initial order between uncontrollable and controllable

events can change in output, contrary to what is prescribed by transparency. Thus, we

replace transparency with a new notion, namely compliance, prescribing that the order of

controllable events is maintained while uncontrollable events are output as soon as they

are received. We define a property to be enforceable with uncontrollable events when it

is possible to obtain a sound and compliant EM for any input sequence. In the timed

setting, the executions are associated with dates from which the property is enforceable.

This paper revisits and extends a first approach in Renard et al. (2015). Most definitions

were modified to ensure optimality of the EMs for any regular property. Some definitions

have been rewritten in a more formal, more modular and clearer way. All the proofs

of soundness, compliance, optimality and equivalence between the different descriptions

of the EM are provided. This new framework can also be used without uncontrollable

events.

Remark 1.1. There exist similarities between supervisory control theory (Ramadge and

Wonham 1987, 1989) and runtime enforcement. For instance, a supervisor is usually

implemented as a monitor deciding at runtime if a command should be activated or

not. Supervisory control usually needs a model of the system, and consists in building a

supervisor from this model by cutting forbidden states and transitions of uncontrollable

events leading to them. Usually, an EM only uses a high-level property. In our work, an

EM is equipped with a memory providing many more possibilities of actions, such as

keeping and releasing events.

Outline. Section 2 introduces preliminaries and notations. Sections 3 and 4 present the

enforcement framework with uncontrollable events in the untimed and timed settings,

respectively. In each setting, we define EMs at two levels of abstraction. Section 5

discusses related work. Section 6 presents conclusions and perspectives. Proofs are in

Appendix A.

2. Preliminaries and notation

Untimed Notions. An alphabet is a finite, non-empty set of symbols. A word over an

alphabet Σ is a sequence over Σ. The set of finite words over Σ is denoted Σ∗. The length

of a finite word w is noted |w|, and the empty word is noted ε. Σ+ stands for Σ∗ \ {ε}. A

language over Σ is any subset L ⊆ Σ∗. The concatenation of two words w and w′ is noted

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 172

Fig. 2. Property ϕex modelling writes on a shared storage device.

w.w′ (the dot is omitted when clear from the context). A word w′ is a prefix of a word w,

noted w′ � w if there exists a word w′′ s.t. w = w′.w′′. The word w′′ is called the residual

of w after reading the prefix w′, noted w′′ = w′−1
.w. Note that w′.w′′ = w′.w′−1

.w = w.

These definitions are extended to languages in the natural way. A language L ⊆ Σ∗ is

extension-closed if for any words w ∈ L and w′ ∈ Σ∗, w.w′ ∈ L. Given a word w and an

integer i s.t. 1 � i � |w|, we note w(i) the ith element of w. Given a tuple e = (e1, e2, . . . , en)

of size n, for an integer i such that 1 � i � n, we note Πi the projection on the ith

coordinate, i.e., Πi(e) = ei. The tuple (e1, e2, . . . , en) is sometimes noted 〈e1, e2, . . . , en〉 in

order to help reading. It can be used, for example, if a tuple contains a tuple. Given a

word w ∈ Σ∗ and Σ′ ⊆ Σ, we define the restriction of w to Σ′, noted w|Σ′ , as the word

w′ ∈ Σ′∗ whose letters are the letters of w belonging to Σ′ in the same order. Formally,

ε|Σ′ = ε and ∀σ ∈ Σ∗, ∀a ∈ Σ, (w.a)|Σ′ = w|Σ′ .a if a ∈ Σ′ and (w.a)|Σ′ = w|Σ′ otherwise. We

also note =Σ′ the equality of the restrictions of two words to Σ′: if σ and σ′ are two words,

σ =Σ′ σ
′ if σ|Σ′ = σ′|Σ′ . We define in the same way �Σ′: σ �Σ′ σ

′ if σ|Σ′ � σ′|Σ′ .

Automata. An automaton is a tuple 〈Q, q0,Σ, −→, F〉, where Q is the set of states, q0 ∈ Q is

the initial state, Σ is the alphabet, −→ ⊆ Q×Σ×Q is the transition relation and F ⊆ Q is the

set of accepting states. Whenever (q, a, q′) ∈ −→, we note it q
a−→ q′. Relation −→ is extended

to words σ ∈ Σ∗ by noting q
σ.a−→ q′ whenever there exists q′′ s.t. q

σ−→ q′′ and q′′
a−→ q′.

Moreover, for any q ∈ Q, q
ε−→ q always holds. An automaton A = 〈Q, q0,Σ,−→, F〉 is

deterministic if ∀q ∈ Q, ∀a ∈ Σ, (q
a−→ q′ ∧ q

a−→ q′′) =⇒ q′ = q′′. A is complete if

∀q ∈ Q, ∀a ∈ Σ, ∃q′ ∈ Q, q
a−→ q′. A word w is accepted by A if there exists q ∈ F such

that q0
w−→ q. The language (i.e., set of all words) accepted by A is denoted by L(A). A

property is a language over an alphabet. A regular property is a language accepted by an

automaton. In the sequel, we assume that a property ϕ is represented by a deterministic

and complete automaton Aϕ. For example, in Figure 2, Q = {q0, q1, q2, q3}, the initial state

is q0, Σ = {Auth, LockOff, LockOn, Write}, F = {q1, q2}, and the transition relation −→
contains for instance (q0, Auth, q1), (q1, LockOn, q2) and (q3, LockOn, q3).

Timed languages. Let R�0 be the set of non-negative real numbers, and Σ a finite alphabet

of actions. An event is a pair (t, a) ∈ R�0 ×Σ. We define date((t, a)) = t and act((t, a)) = a

the projections of events on dates and actions, respectively. A timed word over Σ is a word

over R�0×Σ whose real parts are ascending, i.e., σ is a timed word if σ ∈ (R�0×Σ)∗ and

∀i ∈ [1; |σ| − 1], date(w(i)) � date(w(i + 1)). tw(Σ) denotes the set of timed words over Σ.

For a timed word, σ = (t1, a1).(t2, a2) . . . (tn, an) and an integer i s.t. 1 � i � n, ti is the time

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 173

elapsed before action ai occurs. We naturally extend the notions of prefix and residual to

timed words. We note time(σ) = date(σ(|σ|)) for σ �= ε and time(ε) = 0. We define the

observation of σ at time t as the timed word obs(σ, t) = max�({σ′ | σ′ � σ∧ time(σ′) � t}),
corresponding to the word that would be observed at date t if events were received at

the date they are associated with. We also define the remainder of the observation of σ

at time t as nobs(σ, t) = (obs(σ, t))−1.σ, which corresponds to the events that are to be

received after date t. The untimed projection of σ is ΠΣ(σ) = a1.a2 . . . an, it is the sequence

of actions of σ with dates ignored. σ delayed by t ∈ R�0 is the word noted σ +t t s.t. t is

added to all dates: σ +t t = (t1 + t, a1).(t2 + t, a2) . . . (tn + t, an). Similarly, we define σ −t t,

when t1 � t, to be the word (t1− t, a1).(t2− t, a2) . . . (tn− t, an). We also extend the definition

of the restriction of σ to Σ′ ⊆ Σ to timed words, s.t. ε|Σ′ = ε, and for σ ∈ tw(Σ) and (t, a)

s.t. σ.(t, a) ∈ tw(Σ), (σ.(t, a))|Σ′ = σ|Σ′ .(t, a) if a ∈ Σ′, and (σ.(t, a))|Σ′ = σ|Σ′ , otherwise. The

notations =Σ′ and �Σ′ are then naturally extended to timed words. A timed language is any

subset of tw(Σ). The notion of extension-closed languages is naturally extended to timed

languages. We also extend the notion of extension-closed languages to sets of elements

composed of a timed word and a date: a set S ⊆ tw(Σ)×R�0 is time-extension-closed if for

any (σ, t) ∈ S , for all w ∈ tw(Σ) s.t. σ.w ∈ tw(Σ), for all t′ � t, (σ.w, t′) ∈ S . In other words,

S is time-extension-closed if for every σ ∈ tw(Σ), there exists a date t from which σ and

all its extensions are in S , that is, associated with a date greater or equal to t. Moreover,

we define an order on timed words: we say that σ′ is a delayed prefix of σ, noted σ′ �d σ,

whenever ΠΣ(σ′) � ΠΣ(σ) and ∀i ∈ [1; |σ′| − 1], date(σ(i)) � date(σ′(i)). Note that the

order is not the same in the different constraints: ΠΣ(σ′) is a prefix of ΠΣ(σ), but dates

in σ′ exceed dates in σ. As for the equality = and the prefix order �, we note σ′ �dΣ′ σ

whenever σ′|Σ′ �d σ|Σ′ . We also define a lexical order �lex on timed words with identical

untimed projections, s.t. ε �lex ε, and for two words σ and σ′ s.t. ΠΣ(σ) = ΠΣ(σ′), and

two events (t, a) and (t′, a), (t′, a).σ′ �lex (t, a).σ if t′ < t ∨ (t = t′ ∧ σ′ �lex σ).

Consider for example the timed word σ = (1, a).(2, b).(3, c).(4, a) over the alphabet

Σ = {a, b, c}. Then, ΠΣ(σ) = a.b.c.a, obs(σ, 3) = (1, a).(2, b).(3, c), nobs(σ, 3) = (4, a), and

if Σ′ = {b, c}, σ|Σ′ = (2, b) . (3, c), and for instance (1, a) . (2, b) . (4, c) �d σ, and

σ �lex (1, a).(3, b).(3, c).(3, a). Moreover, if w = (1, a).(2, b), then w−1.σ = (3, c).(4, a).

Timed automata. Let X = {X1, X2, . . . , Xn} be a finite set of clocks, i.e., variables that

increase regularly with time. A clock valuation is a function ν from X to R�0. The set of

clock valuations for the set of clocks X is noted V(X), i.e., V(X) = {ν | ν : X → R�0}.
We consider the following operations on valuations: For any valuation ν, ν + δ is the

valuation assigning ν(Xi) + δ to every clock Xi ∈ X; for any subset X ′ ⊆ X, ν[X ′ ← 0] is

the valuation assigning 0 to each clock in X ′, and ν(Xi) to any other clock Xi not in X ′.

G(X) denotes the set of guards consisting of boolean combinations of constraints of the

form Xi �� c with Xi ∈ X, c ∈ N, and ��∈ {<,�,=,�, >}. Given g ∈ G(X) and a valuation

ν, we write ν |= g when for every constraint Xi �� c in g, ν(Xi) �� c holds.

Definition 2.1 (Timed automaton (Alur and Dill 1992)). A timed automaton (TA) is a tuple

A = 〈L, l0, X, Σ, Δ, G〉, s.t. L is a set of locations, l0 ∈ L is the initial location, X is a set

of clocks, Σ is a finite set of events, Δ ⊆ L× G(X)× Σ× 2X × L is the transition relation,

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 174

and G ⊆ L is a set of accepting locations. A transition (l, g, a, X ′, l′) ∈ Δ is a transition

from l to l′, labelled with event a, with guard g, and with the clocks in X ′ to be reset.

The semantics of a TA A is a timed transition system �A� = 〈Q, q0,Γ, →, FG〉 where

Q = L×V(X) is the (infinite) set of states, q0 = (l0, ν0) is the initial state, with ν0 = ν[X ←
0], FG = G×V(X) is the set of accepting states, Γ = R�0×Σ is the set of transition labels,

each one composed of a delay and an action. The transition relation → ⊆ Q×Γ×Q is a

set of transitions of the form (l, ν)
(δ,a)
−−→ (l′, ν ′) with ν ′ = (ν + δ)[Y ← 0] whenever there is

a transition (l, g, a, Y , l′) ∈ Δ s.t. ν + δ |= g, for δ � 0.

A TA A = 〈L, l0, X,Σ,Δ, G〉 is deterministic if for any different transitions (l, g1, a, Y1, l
′
1)

and (l, g2, a, Y2, l
′
2) in Δ, g1 ∧ g2 is unsatisfiable, meaning that only one transition can be

fired at any time. A is complete if for any l ∈ L and any a ∈ Σ, the disjunction of the

guards of all the transitions leaving l and labelled by a is valid (i.e., it holds for any clock

valuation). An example of a TA is given in Figure 3.

A run ρ from q ∈ Q is a valid sequence of transitions in �A� starting from q, of the

form ρ = q
(δ1 ,a1)−−−→ q1

(δ2 ,a2)−−−→ q2 . . .
(δn,an)−−−→ qn. The set of runs from q0 is noted Run(A) and

RunFG
(A) denotes the subset of runs accepted by A, i.e., ending in a state in FG. The

trace of the run ρ previously defined is the timed word (t1, a1).(t2, a2) . . . (tn, an), with, for

1 � i � n, ti =
∑i

k=1 δk . Thus, given the trace σ = (t1, a1).(t2, a2) . . . (tn, an) of a run ρ from

a state q ∈ Q to q′ ∈ Q, we can define w = (δ1, a1).(δ2, a2) . . . (δn, an), with δ1 = t1, and

∀i ∈ [2; n], δi = ti−ti−1, and then q
w−→ q′. To ease the notation, we will only consider traces

and note q
σ−→ q′ whenever q

w−→ q′ for the previously defined w. Note that to concatenate

two traces σ1 and σ2, it is needed to delay σ2 to obtain a trace: the concatenation σ of σ1

and σ2 is the trace defined as σ = σ1.(σ2 +t time(σ1)). Thus, if q
σ1−→ q′

σ2−→ q′′, then q
σ−→ q′′.

Timed properties. A regular timed property is a timed language ϕ ⊆ tw(Σ) accepted by

a TA. For a timed word σ, we say that σ satisfies ϕ, noted σ |= ϕ whenever σ ∈ ϕ.

We only consider regular timed properties whose associated automaton is complete and

deterministic.

Given a complete and deterministic automaton A s.t. Q is the set of states of �A� and

−→ its transition relation, and a word σ, for q ∈ Q, we note q after σ = q′, where q′

is s.t. q
σ−→ q′. Since A is complete and deterministic, there exists only one such q′. We

note Reach(σ) = q0 after σ. We extend these definitions to languages: if L is a language,

q after L =
⋃

σ∈L q after σ and Reach(L) = q0 after L. These definitions are valid both

in the untimed and timed cases. For the timed case, we also allow to add an extra

parameter to after and Reach, that represents an observation time. For q ∈ Q, t ∈ R�0,

and σ ∈ tw(Σ), q after (σ, t) = (l, ν + t − time(obs(σ, t))), where (l, ν) = q after (obs(σ, t)),

and Reach(σ, t) = q0 after (σ, t). This allows to consider states of the semantics that are

reached after the last action of the input word, by letting time elapse. In particular, note

that for (l, ν) ∈ Q, (l, ν) after (ε, t) = (l, ν + t) is the state reached from (l, ν) by letting time

elapse of t time units. Moreover, for (l, ν) ∈ Q, we note up((l, ν)) = {(l, ν + t) | t ∈ R�0}.
This definition is extended to sets of states: for S ⊆ Q, up(S) =

⋃
q∈S up(q). We also define

a predecessor operator: for q ∈ Q and a ∈ Σ, Preda(q) = {q′ ∈ Q | q′ after a = q} for the

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 175

Fig. 3. Property ϕt modelling writes on a shared storage device.

untimed setting, and Preda(q) = {q′ ∈ Q | q′ after (0, a) = q} for the timed setting. This

definition is extended to words: if σ ∈ Σ∗ (or σ ∈ tw(Σ)), then Predσ(q) = {q′ ∈ Q | q′ after

σ = q}.

Example 2.1 (Shared data storage). Consider the property ϕt described in Figure 3

and representing writes on a shared data storage. A more detailed description of this

property is given in Section 4.3. This property is similar to ϕex (Figure 2), but a

clock has been added to impose that writes should not occur before two time units

have elapsed since the reception of the last LockOff event. Thus, the set of locations

of ϕt is L = {l0, l1, l2, l3}, the initial location is l0, the set of clocks is X = {x},
the alphabet is Σ = {Auth, LockOn, LockOff, Write}, the set of accepting locations is

G = {l1, l2} and the set of transitions contains for instance transitions (l0,�, Auth,�, l1),

(l2,�, Auth,�, l2) and (l3,�, LockOn,�, l3), where � is the guard that holds for every clock

valuation.

Let Q = L×R�0 be the set of states of the semantics of ϕt, where the clock valuations are

replaced by the value of the unique clock x. Then, Reach((2, Auth)) = (l0, 0)after(2, Auth) =

(l1, 2), and, for example, (l2, 3) after ((2, LockOff), 4) = (l1, 2), because the clock is reset

when the LockOff action occurs, and then 4 − 2 = 2 time units remain to reach date 4.

Also, PredWrite((l1, 3)) = {(l1, 3)}, but, for instance, PredWrite((l1, 1)) = � since the only

transition labelled by Write and leading to l1 has guard x � 2.

3. Enforcement monitoring of untimed properties

In this section, ϕ is a regular property defined by an automaton Aϕ = 〈Q, q0,Σ,−→, F〉.
Recall that the general scheme of an EM is given in Figure 1, where S represents the

running system, σ its execution, E the EM, ϕ the property to enforce and E(σ) the output

of the enforcement mechanism, which should satisfy ϕ.

We consider uncontrollable events in the set Σu ⊆ Σ. These events cannot be modified

by an EM, i.e., they cannot be suppressed nor buffered, so they must be output by the

EM whenever they are received. Let us note Σc = Σ \ Σu the set of controllable events,

which can be modified by the EM. An EM can decide to buffer them to delay their

emission, but it cannot suppress them (nevertheless, it can delay them endlessly, keeping

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 176

their order unchanged).§ Thus, an EM may interleave controllable and uncontrollable

events.

In this section, for q ∈ Q, we note uPred(q) =
⋃

u∈Σu
Predu(q), and we extend this

definition to sets of states: for S ⊆ Q, uPred(S) =
⋃

q∈S uPred(q). For S ⊆ Q, we also note

S = Q \ S .

3.1. Enforcement functions and their requirements

In this section, we consider an alphabet of actions Σ. An enforcement function is a

description of the input/output behaviour of an EM. Formally, we define enforcement

functions as follows:

Definition 3.1 (Enforcement function). An enforcement function is a function from Σ∗ to

Σ∗, that is increasing on Σ∗ with respect to �: ∀(σ, σ′) ∈ (Σ∗)2, σ � σ′ =⇒ E(σ) � E(σ′).

An enforcement function is a function that modifies an execution, and that cannot remove

events it has already output.

In the sequel, we define the requirements on an EM and express them on enforcement

functions. As stated previously, an EM should ensure that the executions of a running

system satisfy ϕ, thus its enforcement function has to be sound, meaning that its output

always satisfies ϕ.

Definition 3.2 (Soundness). An enforcement function E : Σ∗ → Σ∗ is sound with respect

to ϕ in an extension closed set S ⊆ Σ∗ if ∀σ ∈ S, E(σ) |= ϕ.

Since there are some uncontrollable events that are only observable by the EM, receiving

uncontrollable events could lead to the property not being satisfied by the output of the

EM. Moreover, some uncontrollable sequences could lead to a state of the property that

would be a non-accepting sink state, leading to the EM not being able to satisfy the

property any further. Consequently, in Definition 3.2, soundness is not defined for all

words in Σ∗, but in a subset S , since it might happen that it is impossible to ensure it

from the initial state. Thus, for an EM to be effective, S needs to be extension closed

to ensure that the property is always satisfied once it has been. If S were not extension

closed, soundness would only mean that the property is sometimes satisfied (in particular,

the identity function would be sound in ϕ). In practice, there may be an initial period

where the EM does not ensure the property (which is unavoidable), but as soon as a safe

state is reached, the property becomes enforceable forever (and the property is guaranteed

to hold). This approach appears to be the closest to the usual one without uncontrollable

events.

The usual notion of transparency (cf. Ligatti et al. 2009; Schneider 2000) states that

the output of an EM is the longest prefix of the input satisfying the property. The name

‘transparency’ stems from the fact that correct executions are left unchanged. However,

because of uncontrollable events, events may be released in a different order from the one

§ This choice appeared to us as the most realistic one. Extending the notions presented in this section in order

to handle enforcement mechanisms with suppression is rather simple.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 177

they are received. Therefore, transparency cannot be ensured, and we define the weaker

notion of compliance.

Definition 3.3 (Compliance). E is compliant with respect to Σu and Σc, noted

compliant(E,Σu,Σc), if ∀σ ∈ Σ∗, E(σ) �Σc σ ∧ E(σ) =Σu σ ∧ ∀u ∈ Σu, E(σ).u � E(σ.u).

Intuitively, compliance states that the EM does not change the order of the controllable

events and emits uncontrollable events simultaneously with their reception, possibly

followed by stored controllable events. We chose to consider EMs that can delay

controllable events. To our opinion, it corresponds to the most common choice in practice.

However, other primitives, such as deletion or reordering of controllable events could be

easily considered. Using other enforcement primitives would require only few changes,

especially adapting the definitions of compliance and optimality, and the construction of

G (see below). When clear from the context, the partition is not mentioned: E is said to

be compliant, and we note it compliant(E).

We say that a property ϕ is enforceable whenever there exists a compliant function that

is sound with respect to ϕ.

In addition, an EM should be optimal in the sense that its output sequences should

be maximal while preserving soundness and compliance. In the same way, we defined

soundness in an extension-closed set, we define optimality as follows:

Definition 3.4 (Optimality). An enforcement function E : Σ∗ → Σ∗ that is compliant with

respect to Σu and Σc, and sound in an extension-closed set S ⊆ Σ∗ is optimal in S if

∀E ′ : Σ∗ → Σ∗, ∀σ ∈ S, ∀a ∈ Σ,

(compliant(E ′) ∧ E ′(σ) = E(σ) ∧ |E ′(σ.a)| > |E(σ.a)|)⇒ (∃σu ∈ Σ∗u, E
′(σ.a.σu) �|= ϕ).

Intuitively, optimality states that if there exists a compliant enforcement function that

outputs a longer word than an optimal enforcement function, then there must exist a

sequence of uncontrollable events that would lead the output of that enforcement function

to violate ϕ. This would imply that this enforcement function is not sound because of

σ.a.σu. Thus, an enforcement function that outputs a longer word than an optimal

enforcement function cannot be sound and compliant. Since it is not always possible to

satisfy the property from the beginning, this condition is restrained to an extension-closed

subset of Σ∗, as is for soundness (Definition 3.2).

Example 3.1. We consider a simple untimed shared storage device. After authentication, a

user can write a value only if the storage is unlocked. (Un)locking the device is decided by

another entity, meaning that it is not controllable by the user. Property ϕex (see Figure 2)

formalises the above requirement. ϕex is not enforceable if the uncontrollable alphabet

is {LockOn , LockOff , Auth }¶ since reading the word LockOn from q0 leads to q3, which

is not an accepting state. However, the existence of such a word does not imply that

it is impossible to enforce ϕex for some other input words. If word Auth is read, then

¶ Uncontrollable events are emphasised in italics.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 178

state q1 is reached, and from this state, it is possible to enforce ϕex by emitting Write

only when in state q1.

3.2. Synthesising enforcement functions

Example 3.1 shows that some input words cannot be corrected by the EM because of

uncontrollable events. Nevertheless, since the received events may lead to a state from

which it is possible to ensure that ϕ will be satisfied (meaning that for any events received

as input, the EM can output a sequence that satisfies ϕ), it would then be possible to

define a subset of Σ∗ in which an enforcement function would be sound.

To be compliant, an EM can buffer the controllable events it has received to emit them

later (i.e., after having received another events). Thus, the set of states from which an EM

can ensure soundness, i.e., ensure it can always compute a prefix of the buffer that leads

to an accepting state, whatever uncontrollable events are received, depends on its buffer.

Thus, to synthesise a sound and compliant enforcement function, one needs to compute

the set of words that can be emitted from a certain state with a given buffer, ensuring

that an accepting state is always reachable. This set will be called G, and to define it, the

set of states from which the EM can wait some events knowing an accepting state will

always be reachable should be known (this set has to be a subset of F since it is possible

that no event is to be received). This set of states, which depends on the buffer, will be

noted S, and is defined in conjunction with another set of states, I, that is used only to

compute S. Thus, for a buffer σ ∈ Σ∗c , we define the sets of states I(σ) and S(σ), which

represent the states from which the EM can output the first event of σ, and the states in

which the EM can wait for another event, respectively.

Definition 3.5 (I, S). Given a sequence of controllable events σ ∈ Σ∗c , we define the sets of

states of ϕ, I(σ) and S(σ) by induction as follows: I(ε) = �, S(ε) = {q ∈ F | qafterΣ∗u ⊆ F}
and, for σ ∈ Σ∗c and a ∈ Σc,

I(a.σ) = Preda(S(σ) ∪ I(σ)),

S(σ.a) = S(σ) ∪max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ.a)) = �}).

Intuitively, S(σ) is the set of ‘winning’ states, i.e., if an EM has reached a state in S(σ)

with buffer σ, it will always be able to reach F , whatever events are received afterwards,

controllable or uncontrollable. Note that since there is a possibility of not receiving any

other event, S(σ) ⊆ F , because the EM could end in any of these states, thus this condition

is needed to ensure that the output of the EM satisfies the property. S(σ.a) is defined as

the biggest subset of F such that no uncontrollable event leads outside of it or I(σ.a),

meaning that whatever uncontrollable event is received from a state in S(σ.a), the state

reached will be either in F (since it will be in S(σ.a)) or in I(σ.a). In both cases, this means

that the EM can reach an accepting state, whatever uncontrollable events are received.

I(σ) is the set of intermediate states, the states that can be ‘crossed’ while emitting a

prefix of the buffer. The states in I(σ) do not need to be in F since no event can be

received while the EM is in these states, because it emits all the controllable word it

wishes to emit at once. I(a.σ) is defined as the set of all states from which following the

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 179

σ E
σc

σs

Fig. 4. Enforcement function.

transition labelled by a leads either to I(σ) or S(σ), meaning that the EM can emit the

first event of its buffer to be able to reach an accepting state, whatever uncontrollable

events are received.

Now, we can use S to define G(q, σ), the set of words that can be emitted from a state

q ∈ Q by an EM with a buffer σ ∈ Σ∗c .

Definition 3.6 (G). For q ∈ Q, σ ∈ Σ∗c , G(q, σ) = {w ∈ Σ∗c | w � σ ∧ q after w ∈ S(w−1.σ)}.

Intuitively, G(q, σ) is the set of words that can be output by a compliant EM to ensure

soundness from state q with buffer σ. When clear from context, the parameters could be

omitted: G is the value of the function for the state reached by the output of an EM with

its buffer.

Now, we use G to define the functional behaviour of the EM.

Definition 3.7 (Functions storeϕ, Eϕ). ‖ Function storeϕ : Σ∗ → Σ∗ × Σ∗ is defined as

— storeϕ(ε) = (ε, ε);

— for σ ∈ Σ∗ and a ∈ Σ, let (σs, σc) = storeϕ(σ), then:

storeϕ(σ.a) =

{
(σs.a.σ

′
s, σ
′
c) if a ∈ Σu

(σs.σ
′′
s , σ

′′
c) if a ∈ Σc

, where:

κϕ(q, w) = max�(G(q, w) ∪ {ε}), for q ∈ Q and w ∈ Σ∗c ,

σ′s = κϕ(Reach(σs.a), σc),

σ′c = σ′s
−1
.σc,

σ′′s = κϕ(Reach(σs), σc.a),

σ′′c = σ′′s
−1
.(σc.a).

The enforcement function Eϕ : Σ∗ → Σ∗ is defined as Eϕ(σ) = Π1(storeϕ(σ)), for any

σ ∈ Σ∗.

Figure 4 gives a scheme of the behaviour of the enforcement function. Intuitively, σs is

the word that can be released as output, whereas σc is the buffer containing the events

that are already read/received, but cannot be released as output yet because they lead

to an unsafe state from which it would be possible to violate the property reading only

uncontrollable events. Upon receiving a new event a, the EM distinguishes the following

two cases:

— If a belongs to Σu, then it is output, as required by compliance. Then, the longest

prefix of σc that satisfies ϕ and leads to a state in S for the associated buffer is also

output.

‖ Eϕ and storeϕ depend on Σu and Σc, but we did not write it in order to lighten the notations.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 180

— If a is in Σc, then it is added to σc, and the longest prefix of this new buffer that

satisfies ϕ and leads to a state in S for the associated buffer is emitted, if it exists.

In both cases, κϕ is used to compute the longest word that can be output, that is the

longest word in G for the state reached so far with the current buffer of the EM, or ε if

this set is empty. The parameters of κϕ are those which are passed to G. They correspond

to the state reached so far by the output of the EM, and its current buffer, respectively.

As seen in Example 3.1, some properties are not enforceable, but receiving some events

may lead to a state from which it is possible to enforce. Therefore, it is possible to define

a set of words, called Pre(ϕ), such that Eϕ is sound in Pre(ϕ), see Proposition 3.2:

Definition 3.8 (Pre). The set of input words Pre(ϕ) ⊆ Σ∗ is defined as follows:

Pre(ϕ) = {σ ∈ Σ∗ | G(Reach(σ|Σu
), σ|Σc

) �= �}.Σ∗

Intuitively, Pre(ϕ) is the set of words in which Eϕ is sound. This set is extension closed,

as required by Definition 3.2. In Eϕ, using S ensures that once G is not empty, then it will

never be afterwards, whatever events are received. Thus, Pre(ϕ) is the set of input words

such that the output of Eϕ would belong to G. Since Eϕ outputs only uncontrollable events

until G becomes non-empty, the definition of Pre(ϕ) considers that the state reached is the

one that is reached by emitting only the uncontrollable events of σ, and the corresponding

buffer would then be the controllable events of σ.

Example 3.2. Considering property ϕex (Figure 2), with the uncontrollable alphabet Σu =

{Auth , LockOff , LockOn }, Pre(ϕex) = Write∗.Auth.Σ∗. Indeed, from the initial state q0,

if an uncontrollable event, say LockOff , is received, then q3 is reached, which is a non-

accepting sink state, and is thus not in S(ε). In order to reach a state in S (i.e., q1 or

q2), it is necessary to read Auth . Once Auth is read, q1 is reached, and from there, all

uncontrollable events lead to either q1 or q2. The same holds true from q2. Thus, it is

possible to stay in the accepting states q1 and q2, by delaying Write events when in q2

until a LockOff event is received. Consequently, q1 and q2 are in S(σ) for all σ ∈ Σ∗c , and

thus Pre(ϕex) = Write∗.Auth.Σ∗, since Write events can be buffered while in state q0 until

event Auth is received, leading to q1 ∈ S(Write∗).

Eϕ, as defined in Definition 3.7, is an enforcement function that is sound with respect to

ϕ in Pre(ϕ), compliant with respect to Σu and Σc, and optimal in Pre(ϕ).

Proposition 3.1. Eϕ as defined in Definition 3.7 is an enforcement function.

Sketch of proof. We have to show that for all σ and σ′ in Σ∗, Eϕ(σ) � Eϕ(σ.σ′). Following

the definition of storeϕ, this holds provided that σ′ ∈ Σ (i.e., σ′ is a word of size 1). Since

� is an order, it follows that the proposition holds for all σ′ ∈ Σ′.

Proposition 3.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.2.

Sketch of proof. We have to show that if σ ∈ Pre(ϕ), then Eϕ(σ) |= ϕ. The proof is made

by induction on σ. In the induction step, considering a ∈ Σ, we distinguish the following

three different cases:

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 181

q0 q1 q2

u

c

u

c

u, c

Fig. 5. Property that can be enforced by blocking all controllable events c.

— σ.a �∈ Pre(ϕ). Then the proposition holds.

— σ.a ∈ Pre(ϕ), but σ �∈ Pre(ϕ). Then the input reaches Pre(ϕ), and since it is extension

closed, all extensions of σ also are in Pre(ϕ), and we prove that the proposition holds

considering the definition of Pre(ϕ).

— σ ∈ Pre(ϕ) (and thus, σ.a ∈ Pre(ϕ) since it is extension closed). Then, we prove

that the proposition holds, based on the definition of storeϕ, and more precisely on

the definition of S, that ensures that there always exists a compliant output that

satisfies ϕ.

Proposition 3.3. Eϕ is compliant as per Definition 3.3.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. Considering σ ∈ Σ∗

and a ∈ Σ, the proof is straightforward by considering the different values of storeϕ(σ.a),

(σ.a)|Σu
, and (σ.a)|Σc

when a ∈ Σc and a ∈ Σu.

Remark 3.1. Notice that for some properties, an enforcement function that would block all

controllable events may still be sound and compliant. Consider, for instance, the property

represented in Figure 5, where c is a controllable event, and u an uncontrollable event.

Then, outputting only the events u and buffering all the c events allows to stay in state q0,

which is accepting and in S(σ) for every word σ ∈ c∗. This means that an EM that blocks

all controllable events would be sound and compliant. Nevertheless, if two controllable

events c are received, they can be output to reach state q2, which is also accepting and

safe for all possible sequences. Then it is possible to release more events. Therefore, an

EM that would output two c events when they are received would be ‘better’ than the first

one blocking all of them, in the sense that its output would be longer (and thus closer to

the input).

For any σ ∈ Pre(ϕ), Eϕ(σ) is the longest possible word that ensures soundness and

compliance, that is controllable events are blocked only when necessary. Thus, Eϕ is also

optimal in Pre(ϕ):

Proposition 3.4. Eϕ is optimal in Pre(ϕ), as per Definition 3.4.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. Once σ ∈ Pre(ϕ),

we know that Eϕ(σ) |= ϕ since Eϕ is sound in Pre(ϕ). Eϕ is optimal because in storeϕ, κϕ
provides the longest possible word. If a longer word were output, then either the output

would not satisfy ϕ, or it would lead to a state that is not in S for the corresponding

buffer, meaning that there would exist an uncontrollable word leading to a non-accepting

state that would not be in S for the buffer. Then, the EM would have to output some

controllable events from the buffer to reach an accepting state, but since the state is not

in S, there would exist again an uncontrollable word leading to a non-accepting state

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 182

Table 1. Example of the evolution of (σs, σc) = storeϕex
(σ), with input

Auth.LockOn.Write.LockOff

σ σs σc

ε ε ε

Auth Auth ε

Auth .LockOn Auth .LockOn ε

Auth .LockOn .Write Auth .LockOn Write

Auth .LockOn .Write.LockOff Auth .LockOn .LockOff .Write ε

that is not in S for the updated buffer. By iterating, the buffer would become ε whereas

the output of the EM would be leading to a non-accepting state. Therefore, outputting a

longer word would mean that the function is not sound. This means that Eϕ is optimal

in Pre(ϕ), since it outputs the longest word that allows to be both sound and compliant.

Example 3.3. Consider property ϕex (Figure 2). We illustrate in Table 1 the EM by showing

the evolution of σs and σc with input σ = Auth . LockOn . Write . LockOff .

3.3. Enforcement monitors

Enforcement monitors are operational descriptions of EMs. We give a representation of

an EM for a property ϕ as an input/output transition system. The input/output behaviour

of the enforcement monitor is the same as the one of the enforcement function Eϕ defined

in Section 3.2. Enforcement monitors are purposed to ease the implementation of EMs.

Definition 3.9 (Enforcement monitor). An enforcement monitor E for ϕ is a transition

system 〈CE, cE0 ,Γ
E, ↪→E〉 such that

— CE = Q× Σ∗ is the set of configurations;

— cE0 = 〈q0, ε〉 is the initial configuration;

— ΓE = Σ∗ × {dump(.), pass-uncont(.), store-cont(.)} × Σ∗ is the alphabet, where the first,

second and third members are an input sequence, an enforcement operation and an

output sequence, respectively.

— ↪→E ⊆ CE×ΓE×CE is the transition relation, defined as the smallest relation obtained

by applying the following rules in order (where w/ �� /w′ stands for (w, ��, w′) ∈ ΓE):

– Dump: 〈q, a.σc〉 ↪
ε/ dump(a)/a
−−−−−−−→E 〈q′, σc〉, if a ∈ Σc, G(q, a.σc) �= � and G(q, a.σc) �= {ε},

with q′ = q after a,

– Pass-uncont: 〈q, σc〉 ↪
a/ pass-uncont(a)/a
−−−−−−−−−−→E 〈q′, σc〉, with a ∈ Σu and q′ = q after a,

– Store-cont: 〈q, σc〉 ↪
a/ store-cont(a)/ε
−−−−−−−−−→E 〈q, σc.a〉, with a ∈ Σc.

In E, a configuration c = 〈q, σ〉 represents the current state of the EM. The state q is

the one reached so far in Aϕ with the output of the monitor. The word of controllable

events σc represents the buffer of the monitor, i.e., the controllable events of the input

that it has not output yet. Rule dump outputs the first event of the buffer if it can

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 183

q1 q2
a,b,

x ≥ 2
a,b

Fig. 6. A timed property enforceable only if Σu = �.

ensure soundness afterwards (i.e., if there is a non-empty word in G, that must begin with

this event). Rule pass-uncont releases an uncontrollable event as soon as it is received.

Rule store-cont simply adds a controllable event at the end of the buffer. Compared to

Section 3.2, the second member of the configuration represents buffer σc in the definition

of storeϕ, whereas σs is here represented by state q which is the first member of the

configuration, such that q = Reach(σs).

Proposition 3.5. The output of the enforcement monitor E for input σ is Eϕ(σ).

In Proposition 3.5, the output of the enforcement monitor is the concatenation of all the

outputs of the word labelling the path followed when reading σ. A more formal definition

is given in the proof of this proposition, in Appendix A.1.

Sketch of proof. The proof is made by induction on the input σ ∈ Σ∗. We consider the

rules applied when receiving a new event. If the event is controllable, then rule store-cont()

can be applied, possibly followed by rule dump() applied several times. If the event is

uncontrollable, then rule pass-uncont() can be applied, again possibly followed by rule

dump() applied several times. Since rule dump() applies only when there is a non-empty

word in G, then this word must begin with the first event of the buffer, and the rule

dump() can be applied again if there was a word in G of size at least 2, meaning that

there is another non-empty word in the new set G, and so on. Thus, the output of all the

applications of the rule dump() corresponds to the computation of κϕ in the definition of

storeϕ, and consequently the outputs of E and Eϕ are the same.

Remark 3.2. Enforcement monitors as per Definition 3.9 are somewhat similar to the

configuration description of EMs in Falcone et al. (2011). The main difference with the

EMs considered in Falcone et al. (2011) is that the rule to be applied depends on the

memory (the buffer), whereas in Falcone et al. (2011) it only depends on the state and the

event received.

4. Enforcement monitoring of timed properties

We extend the framework in Section 3 to enforce timed properties. EMs and their

properties need to be redefined to fit with timed properties. Enforcement functions need

an extra parameter representing the date at which the output is observed. Soundness

needs to be weakened so that, at any time instant, the property is allowed not to hold,

provided that it will hold in the future.

Considering uncontrollable events with timed properties raises several difficulties. First,

as in the untimed case, the order of events might be modified. Thus, previous definitions

of transparency (Pinisetty et al. 2012), stating that the output of an enforcement function

will eventually be a delayed prefix of the input, cannot be used in this situation. Moreover,

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 184

when delaying some events to have the property satisfied in the future, one must consider

the fact that some uncontrollable events could occur at any moment (and cannot be

delayed). Finally, some properties become not enforceable because of uncontrollable

events, meaning that for these properties it is impossible to obtain sound EMs, as shown

in Example 4.1.

In this section, ϕ is a timed property defined by a TA Aϕ = 〈L, l0, X, Σ,Δ, G〉 with

semantics �Aϕ� = 〈Q, q0,Γ,−→, FG〉. As in the untimed setting, for q ∈ Q, we define

uPred(q) =
⋃

u∈Σu
Predu(q), and for S ⊆ Q, uPred(S) =

⋃
q∈S uPred(q) and S = Q \ S .

Example 4.1 (Non-enforceable property). Consider the property defined by the automaton

in Figure 6 with alphabet {a, b}. If all actions are controllable (Σu = �), the property is

enforceable because an EM just needs to delay events until clock x exceeds 2. Otherwise,

the property is not enforceable. For instance, if Σu = {a}, word (1, a) cannot be corrected.

4.1. Enforcement functions and their properties

An enforcement function takes a timed word and the current time as input, and outputs

a timed word:

Definition 4.1 (Enforcement function). Given an alphabet of actions Σ, an enforcement

function is a function E : tw(Σ)× R�0 → tw(Σ) s.t.:

∀σ ∈ tw(Σ), ∀t ∈ R�0, ∀t′ � t,

E(σ, t) � E(σ, t′) ∧ (σ.(t, a) ∈ tw(Σ) =⇒ E(σ, t) � E(σ.(t, a), t)).

Definition 4.1 models physical constraints: an enforcement function cannot remove

something already output. The two conditions correspond to letting time elapse and

reading a new event, respectively. In both cases, the new output must be an extension of

what has been output so far.

Soundness states that the output of an enforcement function should eventually satisfy

the property:

Definition 4.2 (Soundness). An enforcement function E is sound with respect to ϕ in a

time-extension-closed set S ⊆ tw(Σ)× R�0 if ∀(σ, t) ∈ S, ∃t′ � t, ∀t′′ � t′, E(σ, t′′) |= ϕ.

An enforcement function is sound in a time-extension-closed set S if for any (σ, t) in S ,

the value of the enforcement function with input σ from date t satisfies the property in

the future. As in the untimed setting, soundness is not defined for all words in tw(Σ), but

in a set of words, this time associated with dates. The reason is the same as in the untimed

setting: the EM might not be able to ensure soundness from the beginning, because of

bad uncontrollable sequences. Moreover, in the definition of soundness, the set S needs to

be time-extension-closed to ensure that the property remains satisfied once the EM starts

to operate.

Remark 4.1. Soundness could have been defined in the same way as in the untimed

setting, however, with such alternative stronger definition, where the output of the EM

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 185

must always satisfy the property, less properties could be enforced. Weakening soundness

allows to enforce more properties, and to let EMs produce longer outputs.

Compliance states that uncontrollable events should be emitted instantaneously upon

reception, and that controllable events can be delayed, but their order must remain

unchanged.

Definition 4.3 (Compliance). Given an enforcement function E defined on an alphabet Σ,

we say that E is compliant with respect to Σu and Σc, noted compliant(E,Σu,Σc), if ∀σ ∈
tw(Σ), ∀t ∈ R�0, E(σ, t) �dΣc

σ ∧ E(σ, t) =Σu obs(σ, t) ∧ ∀u ∈ Σu, E(σ, t).(t, u) � E(σ.(t, u), t).

Compliance is similar to the one in the untimed setting except that the controllable events

can be delayed. However, their order must not be modified by the EM, that is, when

considering the projections on controllable events, the output should be a delayed prefix

of the input. Any uncontrollable event is released immediately when received, that is,

when considering the projections on uncontrollable events, the output should be equal to

the input.

We say that a property is enforceable whenever there exists a sound and compliant

enforcement function for this property.

For a compliant enforcement function E : tw(Σ) × R�0 → tw(Σ) and a timed word

σ ∈ tw(Σ), we note E(σ) the value of E with input σ at infinite time (i.e., when it

has stabilised). More formally, E(σ) = E(σ, t), where t ∈ R�0 is s.t. for all t′ � t,

E(σ, t′) = E(σ, t). Since σ is finite and E is compliant, the output of E with input word σ

is finite, thus such a t must exist.

As in the untimed setting, we define a notion of optimality in a set.

Definition 4.4 (Optimality). We say that an enforcement function E : tw(Σ)×R�0 → tw(Σ)

that is compliant with respect to Σc and Σu and sound in a time-extension-closed set

S ⊆ tw(Σ)×R�0 is optimal in S if for any enforcement function E ′ : tw(Σ)×R�0 → tw(Σ),

for all σ ∈ tw(Σ), for all (t, a) s.t. σ.(t, a) ∈ tw(Σ),

compliant(E ′,Σu,Σc) ∧ (σ, t) ∈ S ∧ E ′(σ, t) = E(σ, t) ∧ E(σ.(t, a)) ≺d E ′(σ.(t, a))

=⇒ (∃σu ∈ tw(Σu), E
′(σ.(t, a).σu) �|= ϕ).

Optimality states that outputting a greater word (with respect to �d) than the output

of an optimal enforcement function leads to either compliance or soundness not being

guaranteed. This holds from the point where the input begins to belong to the set in

which the function is optimal, and since it is time-extension-closed, the input will belong

to this set afterwards. In Definition 4.4, E is an optimal enforcement function, and E ′ is

another compliant enforcement function, that we consider having a greater output (with

respect to �d) than E for some input word σ.(t, a). Then, since E is optimal, E ′ is not

sound, because there exists a word of uncontrollable events s.t. the output of E ′ after

receiving it eventually violates ϕ.

An EM delaying events should buffer them until it can output them. Being able to

enforce ϕ depends on the possibility of computing a timed word with the events of the

buffer, even when receiving some uncontrollable events, that leads to an accepting state

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 186

from the current one. Thus, we define, for every sequence σ of controllable actions, two

sets of states of the semantics of Aϕ, S(σ) and I(σ). S(σ) is the largest set s.t. from any of

its states, it is possible to wait before emitting a word that leads to FG, knowing that all

along the path, receiving an uncontrollable event will not prevent from computing such a

word again. I(σ) is the set of states from which it is possible to emit the first event of σ

and reach a state from which it is possible to compute a word that leads to FG, again s.t.

receiving uncontrollable events does not prevent from eventually reaching FG.

Definition 4.5 (I, S). The sets of states of �Aϕ�, I(σ) and S(σ) are inductively defined over

sequences of controllable events as follows: I(ε) = � and S(ε) = {q ∈ FG | q after tw(Σu) ⊆
FG} and, for σ ∈ Σ∗c and a ∈ Σc,

I(a.σ) = Preda(I(σ) ∪ S(σ)),

S(σ.a) = S(σ) ∪max⊆({X ∪ Y ⊆ Q | Y ⊆ FG ∧ Y = up(Y)∧
(∀x ∈ X, ∃i ∈ I(σ.a), ∃δ ∈ R�0, x after (ε, δ) = i ∧ ∀t < δ, x after (ε, t) ∈ X)∧
(X ∪ Y) ∩ uPred(X ∪ Y ∪ I(σ.a)) = �})

Intuitively, in Definition 4.5, S(σ) is the set of states of the semantics of ϕ that our EM

will be allowed to reach with a buffer σ. It corresponds to the states from which the EM

will be able to reach FG, meaning that its output will satisfy the property, even if some

uncontrollable events are received. From any state in S(σ), the EM can compute a word

of controllable events (taken from its buffer σ) leading to FG, and if some uncontrollable

events are received, it will also be able to compute a new word to reach FG, with events

taken from its (possibly modified due to previous emissions of events) buffer. The set I(σ)

is the set of states that the output of the EM will be authorised to ‘traverse,’ meaning

that the EM can emit the first event of its buffer σ immediately from these states, but

not wait in them (contrary to the states in S(σ), from which the EM could choose to wait

before emitting a new event).

These sets are defined by induction on σ, which represents the buffer of the EM. If

the EM has its buffer empty (σ = ε), then the set of states from which it can emit

a controllable event is empty, since it can only emit events from its buffer: I(ε) = �.

Nevertheless, some states in FG can be s.t. all uncontrollable words lead to a state in FG,

meaning that from these states, the property will be satisfied even if some uncontrollable

events are received. Consequently, S(ε) = {q ∈ FG | q after tw(Σu) ⊆ FG}.
If a new controllable event a is received, it is added to the buffer, and then the EM

can decide to emit the first event of its buffer to reach a state that is in S or I for its

new buffer, this explains the definition of I(a.σ). Adding a new event to the buffer gives

more possibilities to the EM (since it could act as if it had not received this event), thus

S(σ) ⊆ S(σ.a). Moreover, S(σ.a) is made of the union of two sets, X and Y . X is the set of

states from which the EM can decide to wait before emitting the first event of its buffer,

thus waiting from a state of X has to lead to a state in I(σ.a). Y is the set of states that

are in FG and from which the EM can decide to wait for a new uncontrollable event

before doing anything. Since Y ⊆ FG, if no uncontrollable event is to be received, the

property is satisfied, and otherwise, the EM can decide what to emit to reach FG. In order

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 187

to ensure that receiving uncontrollable events does not prevent from being able to reach

FG with events from the buffer, X and Y are s.t. every uncontrollable event received from

a state in X or Y leads to a state in X, Y or I(σ.a). This is the purpose of the condition

(X ∪Y)∩ uPred(X ∪ Y ∪ I(σ.a)) = �. On top of this, it is necessary to ensure that all the

states reached while waiting from X or Y are in X or Y , otherwise there could be a state

reached by the EM for which there is an uncontrollable event leading to a state from

which it is impossible to reach FG with events of the buffer, meaning that the enforcement

would not be sound. This is ensured by the conditions x after (ε, t) ∈ X and Y = up(Y).

To have the best EM possible, these sets are as large as possible.

Note that if X1 and X2 satisfy the conditions required for X, then X1 ∪X2 also satisfies

them. Thus, the biggest set satisfying these properties exist. The same holds for Y .

For convenience, we also define G : Q × Σc → 2tw(Σ) which gives, for a state q and a

sequence of controllable events σ, the set of timed words made with the actions of σ that

can be output from q in a safe way (i.e., all the states reached while emitting the word

are in the set S corresponding to what remains from σ):

G(q, σ) = {w ∈ tw(Σ) | ΠΣ(w) � σ∧
q afterw ∈ FG ∧ ∀t ∈ R�0, q after (w, t) ∈ S(ΠΣ(obs(w, t))−1.σ)}.

It is now possible to use G to define an enforcement function for ϕ denoted as Eϕ:

Definition 4.6 (Functions storeϕ, Eϕ). Let storeϕ be the function : tw(Σ)×R�0 → tw(Σ)×
tw(Σc)× Σ∗c defined inductively by

∀t ∈ R�0, storeϕ(ε, t) = (ε, ε, ε),

and for σ ∈ tw(Σ), (t′, a) s.t. σ.(t′, a) ∈ tw(Σ), and t � t′, if (σs, σb, σc) = storeϕ(σ, t′), then

storeϕ(σ.(t′, a), t) =

{
(σs.(t

′, a). obs(σ′b, t), σ
′
b, σ
′
c) if a ∈ Σu

(σs. obs(σ′′b , t), σ
′′
b , σ

′′
c) if a ∈ Σc

with

κϕ(q, w) = min
lex

(max
�

(G(q, w) ∪ {ε})), for q ∈ Q and w ∈ Σ∗c ,

bufferc = ΠΣ(nobs(σb, t
′)).σc,

t1 =
min({t′′ ∈ R�0 | t′′ � t′∧

G(Reach(σs.(t
′, a), t′′), bufferc) �= �} ∪ {+∞}),

σ′b = κϕ(Reach(σs.(t
′, a),min({t, t1})), bufferc) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1.bufferc,

t2 =
min({t′′ ∈ R�0 | t′′ � t′∧

G(Reach(σs, t
′′), bufferc.a) �= �} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), bufferc.a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b)

−1.(bufferc.a).

For σ ∈ tw(Σ) and t ∈ R�0, we define Eϕ(σ, t) = (Π1(storeϕ(obs(σ, t), t))).

The function storeϕ takes a timed word σ and a date t as input, and outputs three

words: σs, σb and σc. σs is the output of the enforcement function at time t. σb is the

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 188

timed word, composed of controllable events, that is to be output after the date of the

last event of the input, if no uncontrollable event is received. σc is the untimed word

composed of the remaining controllable actions of the buffer. When time elapses, after

the last event of the input, σs is modified to output the events of σb when the dates

are reached. Since letting time elapse can disable some transitions, it is possible to reach

a state in S or I without emitting any event, and thus σb can change at this moment,

changing from ε to a word in G. This change of σb when letting time elapse can only

happen once, since G will not be empty anymore once it has become non-empty. t1 and

t2 are used for this purpose, they both represent the time at which G becomes non-empty,

if a ∈ Σu or a ∈ Σc, respectively. Words are thus calculated from this point whenever G

has become non-empty, to ensure that what has already been output is not modified. If

G is still empty, then min({t, t1}) (or min({t, t2}), depending on whether a ∈ Σc or a ∈ Σu)

equals to t, meaning that σb = ε. Most of the time, t1 or t2 is equal to t′, it is not the case

only when G was still empty at time t′, but if G was not empty at date t′, then t1 (or t2)

is equal to t′. σc contains the controllable actions of the input that have not been output

and do not belong to σb. It is used to compute the new value of σb when possible. When

receiving a new event in the input, it is appended to σs if it is an uncontrollable event, or

the action is appended to the buffer if it is a controllable one. Then, σb is computed again,

from the new state reached if it was an uncontrollable event, or with the new buffer if it

was controllable. Note that t1 and t2 may not exist, since they are minima of an interval

that can be open, depending on the strictness of the considered guard. In this case, one

should consider the infimum instead of the minimum, and add an infinitesimal delay, s.t.

the required transition is taken.

As mentioned previously, an EM may not be sound from the beginning of an execution,

but some uncontrollable events may lead to a state from which it becomes possible to be

sound. Whenever σb is in G, then it will always be, meaning that the output of Eϕ will

eventually reach a state in FG, i.e., it will eventually satisfy ϕ. Thus, Eϕ eventually satisfies

ϕ as soon as the state reached so far is in S(σb) or I(σb). This leads to the definition

of Pre(ϕ, t), which is the set of timed words for which Eϕ ensures soundness at time t.

For σ ∈ tw(Σ), if (σs, σb, σc) = storeϕ(σ, t), then σ is in Pre(ϕ, t) if and only if the set

G(Reach(σs, t),ΠΣ(nobs(σb, t)).σc) is not empty. Then, Pre(ϕ, t) is used to define Pre(ϕ),

which is the set in which Eϕ is sound.

Definition 4.7 (Pre(ϕ)). Pre(ϕ) = {(σ, t) | σ ∈ Pre(ϕ, t)}, where, for σ ∈ tw(Σ) and t ∈ R�0,

Pre(ϕ, t) = {σ ∈ tw(Σ) | ∃σ′ � σ, ∃t′ � t,

G(Reach(obs(σ′, t′)|Σu
, t′),ΠΣ(obs(σ′, t′)|Σc

)) �= �}.

Note that Pre(ϕ) is time-extension-closed, meaning that once Eϕ is sound, its output

will always eventually satisfy ϕ in the future.

Since the output of our enforcement function consists only of the uncontrollable events

from the input, if G(Reach(obs(σ, t)|Σu
, t),ΠΣ(obs(σ, t)|Σc

)) is not empty, this means that

the enforcement function becomes sound with input σ from time t, since there is a word

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 189

that is safe to emit. Thus, Pre(ϕ, t) is the set of inputs for which Eϕ is sound after date t,

and then Eϕ is sound for any input in Pre(ϕ) after its associated date.

Proposition 4.1. Eϕ as defined in Definition 4.6 is an enforcement function, as per Defini-

tion 4.1.

Sketch of proof. We have to show that for all σ ∈ tw(Σ), for all t ∈ R�0 and t′ � t,

Eϕ(σ, t) � Eϕ(σ, t′), and for all (t, a) s.t. σ.(t, a) ∈ tw(Σ), Eϕ(σ, t) � Eϕ(σ.(t, a), t). To

prove this, we first show by induction that Eϕ(σ, t) � Eϕ(σ, t′). Considering (t′′, a) s.t.

σ.(t′′, a) ∈ tw(Σ), we distinguish different cases according to the values of t′′ compared to

t and t′:

— t′′ � t. Then, in the definition of storeϕ, t1 (or t2, if a is controllable) has the same value

in storeϕ(σ, t) and storeϕ(σ.(t′′, a), t′). Then, comparing t to t1, either Eϕ(σ.(t′′, a), t) = ε

if t < t1, and then Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′), or t � t1, and then there exists σs
and σb s.t. Eϕ(σ.(t′′, a), t) = σs. obs(σb, t) and Eϕ(σ . (t′′, a), t′) = σs . obs(σb, t

′), meaning

that Eϕ(σ . (t′′, a), t) � Eϕ(σ . (t′′, a), t′).

— t′′ � t′. Then the proposition holds because in the definition of Eϕ, only the observation

of the input word at the given time is considered, meaning that Eϕ(σ.(t′′, a), t) = Eϕ(σ, t)

and Eϕ(σ.(t′′, a), t′) = Eϕ(σ, t′). By induction hypothesis, the proposition thus holds.

— t < t′′ < t′. Then, Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) and Eϕ(σ.(t′′, a), t′) = Π1(storeϕ(σ.(t′′, a), t′)),

meaning that, looking at the definition of storeϕ, Eϕ(σ . (t′′, a), t) � Eϕ(σ . (t′′, a), t′).

Thus, Eϕ(σ, t) � Eϕ(σ, t′). Then, what remains to show is that if σ.(t, a) ∈ tw(Σ), then

Eϕ(σ, t) � Eϕ(σ.(t, a), t). Following the definition of storeϕ, it is clear that storeϕ(σ, t) �
storeϕ(σ.(t, a), t) and thus Eϕ(σ, t) � Eϕ(σ.(t, a), t).

Proposition 4.2. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 4.2.

Sketch of proof. As in the untimed setting, the proof is made by induction on the input

σ ∈ tw(Σ). Similarly to the untimed setting, considering σ ∈ tw(Σ), t ∈ R�0 and (t′, a) s.t.

σ.(t′, a) ∈ tw(Σ), there are three possibilities:

— (σ.(t′, a), t) �∈ Pre(ϕ). Then, the proposition holds.

— (σ.(t′, a), t) ∈ Pre(ϕ), but (σ, t′) �∈ Pre(ϕ). Then, this is when the input reaches Pre(ϕ).

Considering the definition of Pre(ϕ), we then prove that it is possible to emit a word

with the controllable events seen so far, leading to an accepting state in S.

— (σ, t′) ∈ Pre(ϕ) (and thus (σ.(t′, a), t) too). Then, we prove again that there exists a

controllable word made with the events which have not been output yet leading to an

accepting state that is in S, but this time considering the definitions of S and I.

Proposition 4.3. Eϕ is compliant as per Definition 4.3.

Sketch of proof. As in the untimed setting, the proof is made by induction on the input

σ, considering the different cases where the new event is controllable or uncontrollable.

The only difference with the untimed setting is that one should consider dates on top of

actions.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 190

Proposition 4.4. Eϕ is optimal in Pre(ϕ) as per Definition 4.4.

Sketch of proof. This proof is made by induction on the input σ. Whenever σ ∈ Pre(ϕ),

since Eϕ is sound in Pre(ϕ), then Eϕ(σ) is the maximal word (with respect to �d) that

satisfies ϕ and is safe to output. It is maximal because in the definition of storeϕ, κϕ
returns the longest word with lower delays (for lexicographic order), which corresponds

to the maximum with respect to �d. Thus, outputting a greater word (with respect to �d)

would lead to G being empty, meaning that the EM would not be sound. Thus, Eϕ is

optimal in Pre(ϕ), since it outputs the maximal word with respect to �d that allows to be

sound and compliant.

4.2. Enforcement monitors

As in the untimed setting, we define an operational description of an EM whose output

is exactly the output of Eϕ, as defined in Definition 4.6.

Definition 4.8. An enforcement monitor E for ϕ is a transition system 〈CE, cE0 ,Γ
E, ↪→E〉 s.t.:

— CE = tw(Σ)× Σ∗c × Q× R�0 × {�,⊥} is the set of configurations.

— cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration.

— ΓE = ((R�0×Σ)∪{ε})×Op×((R�0×Σ)∪{ε}) is the alphabet, composed of an optional

input, an operation and an optional output.

The set of operations is {compute(.), dump(.), pass-uncont(.), store-cont(.), delay(.)}.
Whenever (σ, ��, σ′) ∈ ΓE, it will be noted σ/ �� /σ′.

— ↪→E is the transition relation defined as the smallest relation obtained by applying the

following rules given by their priority order:

– Compute: 〈ε, σc, q, t,⊥〉 ↪
ε/ compute()/ε
−−−−−−−−→E 〈σ′b, σ′c, q, t,�〉, if G(q, σc) �= �, with σ′b =

κϕ(q, σc) +tt, and σ′c = ΠΣ(σ′b)
−1.σc,

– Dump: 〈(tb, a).σb, σc, q, tb,�〉 ↪
ε/ dump(tb,a)/(tb,a)−−−−−−−−−−→E 〈σb, σc, q′, tb,�〉, with q′ =

q after (0, a),

– Pass-uncont: 〈σb, σc, q, t, b〉 ↪
(t,a)/ pass-uncont(t,a)/(t,a)
−−−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc, q

′, t,⊥〉, with q′ =

q after (0, a),

– Store-cont: 〈σb, σc, q, t, b〉 ↪
(t,c)/ store-cont((t,c))/ε
−−−−−−−−−−−−→E 〈ε,ΠΣ(σb).σc.c, q, t,⊥〉,

– Delay: 〈σb, σc, (l, v), t, b〉 ↪
ε/ delay(δ)/ε
−−−−−−−→E 〈σb, σc, (l, v + δ), t + δ, b〉.

In a configuration 〈σb, σc, q, t, b〉, σb is the word to be output as time elapses; σc is the

sequence of controllable actions from the input that are not used in σb and have not been

output yet; q is the state of the semantics reached after reading what has already been

output; t is the current time instant, i.e., the time elapsed since the beginning of the run;

and b indicates whether σb and σc should be computed (due to the reception of a new

event, for example).

The timed word σb corresponds to nobs(σb, t) from the definition of storeϕ, whereas σc
is the same as in the definition of storeϕ. The state q represents σs, s.t. q = Reach(σs, t).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 191

Fig. 7. Example of property without uncontrollable events.

Proposition 4.5. The output of E for input σ is Eϕ(σ).

As in the untimed setting, in Proposition 4.5, the output of the enforcement monitor

is the concatenation of the outputs of the word labelling the path followed by the

enforcement monitor when reading σ. A formal definition is given in the proof of this

proposition, in Appendix A.2.

Sketch of proof. The proof is done by induction on σ. When receiving a new event,

the rule store-cont() can be applied if it is controllable, or rule pass-uncont() if it is

uncontrollable. Doing so, the last member of the configuration is set to ⊥, meaning that

the word to be emitted can be computed. If the input is in Pre(ϕ), then rule compute()

can be applied, and then the second member of the configuration will have the same

value as the second member of storeϕ, and the same goes for the third members. Then,

rule delay() can be applied, to reach the date of the first event in the second member of

the current configuration, and then rule dump() can be applied to output it. This process

can be repeated until the desired date is reached. Thus, when date t is reached, what has

been emitted since the last rule store-cont() or pass-uncont() is obs(σb, t), where σb was

computed by rule compute() as second member. Considering the definition of storeϕ, it

follows that the output of E with input σ at date t is Eϕ(σ, t).

4.3. Example

Consider Figure 3, representing a property modelling the use of some shared writable

device. We can get the status of a lock through the uncontrollable events LockOn and

LockOff indicating that the lock has been locked by someone else, and that it is unlocked,

respectively. The uncontrollable event Auth is sent by the device to authorise writings.

Once the Auth event is received, we are able to send the controllable event Write after

having waited some time for synchronisation. Each time the lock is taken and released,

we must also wait before issuing a new Write order. The sets of events are Σc = {Write}
and Σu = {Auth , LockOff , LockOn }. Now, let us follow the output of the storeϕ function

over time with the word σ = (1, Auth) . (2, LockOn) . (4, Write) . (5, LockOff) . (6, LockOn) .

(7, Write) . (8, LockOff) as input: let (σs, σb, σc) = storeϕ(obs(σ, t), t). Then the values taken

by σs, σb and σc over time are given in Table 2. To calculate them, notice that for any

valuation ν : {x} → R�0, (l1, ν) ∈ S(ε) and (l2, ν) ∈ S(ε), since all uncontrollable words

from l1 and l2 lead to l1 or l2, which are both accepting states.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 192

Fig. 8. Execution of an enforcement monitor with input (1, Auth) . (2, LockOn) . (4, Write) .

(5, LockOff) . (6, LockOn) . (7, Write) . (8, LockOff).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 193

Table 2. Values of (σs, σb, σc) = storeϕt
((1, Auth) . (2, LockOn) . (4, Write) . (5, LockOff) .

(6, LockOn) . (7, Write) . (8, LockOff)) over time.

t σs σb σc

1 (1, Auth) ε ε

2 (1, Auth).(2, LockOn) ε ε

4 (1, Auth).(2, LockOn) ε Write

5 (1, Auth).(2, LockOn).(5, LockOff) (7, Write) ε

6 (1, Auth).(2, LockOn).(5, LockOff).(6, LockOn) ε Write

7 (1, Auth).(2, LockOn).(5, LockOff).(6, LockOn) ε Write . Write

8 (1, Auth).(2, LockOn).(5, LockOff).(6, LockOn). (10, Write).(10, Write) ε

(8, LockOff)

10 (1, Auth).(2, LockOn).(5, LockOff).(6, LockOn). ε ε

(8, LockOff).(10, Write).(10, Write)

We can also follow the execution of an enforcement monitor enforcing the property

in Figure 3, watching the evolution of the configurations as semantic rules are applied.

In a configuration, the input is on the right, the output on the left, and the middle is

the current configuration of the enforcement monitor. Variable t defines the global time

of the execution. Figure 8 shows the execution of the enforcement monitor with input

(1, Auth) . (2, LockOn) . (4, Write) . (5, LockOff) . (6, LockOn) . (7, Write) . (8, LockOff)). In

Figure 8, valuations are represented as integers, giving the value of the only clock x of the

property, LockOff is abbreviated as off, LockOn as on and Write as w. The first column

depicts the dates of events, then red text is the current output (σs) of the EM, blue text

shows the evolution of σb and green text depicts the remaining input word at this date.

We can observe that the final output is the same as the one of the enforcement function:

(1, Auth).(2, on).(5, off).(6, on).(8, off).(10, w).(10, w).

Remark 4.2. The EM in Definition 4.6 outputs longer timed words than the approach

in Pinisetty et al. (2012) and Pinisetty et al. (2014c) when applied only with controllable

events thanks to optimality considerations. Consider the property in Figure 7 over the set

of controllable actions Σ ⊇ {Write}, and the input timed word (1, Write).(1.5, Write) input

to the EM. The output obtained with our approach at date t = 4 is (4, Write).(4, Write)

whereas the output obtained in Pinisetty et al. (2012) would be (2, Write).

5. Related work

Runtime enforcement was pioneered by the work of Schneider with security auto-

mata (Schneider 2000), a runtime mechanism for enforcing safety properties. In Schneider

(2000), monitors are able to stop the execution of the system once a deviation of the

property has been detected. Later, Ligatti et al. proposed edit-automata, a more powerful

model of enforcement monitors able to insert and suppress events from the execution.

Later, more general models were proposed where the monitors can be synthesised from

regular properties (Falcone et al. 2011). More recently, Bloem et al. (2015) presented

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 194

a framework to synthesise enforcement monitors for reactive systems, called shields,

from a set of safety properties. A shield acts instantaneously and cannot buffer actions.

Whenever a property violation is unavoidable, the shield allows to deviate from the

property for k consecutive steps (as in Charafeddine et al. (2015)). Whenever a second

violation occurs within k steps, then the shield enters into a fail-safe mode, where it

ensures only correctness. Another recent approach by Dolzhenko et al. (2015) introduces

Mandatory Result Automata (MRAs). MRAs extend edit automata by refining the

input/output relationship of an EM and thus allowing a more precise description of the

enforcement abilities of an EM in concrete application scenarios. All the previously men-

tioned approaches considered untimed specifications, and do not consider uncontrollable

events.

In the timed setting, several monitoring tools exist. RT-Mac (Sammapun et al. 2005)

permits to verify at runtime timeliness and reliability correctness. LARVA (Colombo et al.

2009a,b) takes as input safety properties expressed with DATEs (Dynamic Automata with

Events and Timers), a timed model similar to timed automata.

In previous work, we introduced runtime enforcement for timed properties (Pinisetty et al.

2012) specified by timed automata (Alur and Dill 1992). We proposed a model of EMs

that work as delayers, that is, mechanisms that are able to delay the input sequence of

timed events to correct it. While Pinisetty et al. (2012) proposed synthesis techniques only

for safety and co-safety properties, we then generalised the framework to synthesise an

enforcement monitor for any regular timed property (Pinisetty et al. 2014a,c). In Pinisetty

et al. (2014b), we considered parametric timed properties, that is timed properties with

data-events containing information from the execution of the monitored system. In our

approach, the optimality of the EM is based on the maximisation of the length of the

output sequence. When applied in the case of controllable events only, this improves the

preceding results.

Basin et al. (2011) introduced uncontrollable events for security automata (Schneider

2000). The approach in Basin et al. (2011) allows to enforce safety properties where some

of the events in the specification are uncontrollable. More recently, they proposed a more

general approach (Basin et al. 2013) related to the enforcement of security policies with

controllable and uncontrollable events. They presented several complexity results and how

to synthesise EMs. In case of violation of the property, the system stops the execution.

They handle discrete time, and clock ticks are considered as uncontrollable events. In our

approach, we consider dense time using the expressiveness of timed automata, any regular

properties, and our monitor are more flexible since they block the system only when

delaying events cannot prevent from violating the property, thus offering the possibility

to correct many violations.

6. Conclusion and future work

This paper extends previous work on enforcement monitoring with uncontrollable events,

which are only observable by an EM. We present a framework for both untimed and timed

regular properties, described with (untimed) automata and timed automata, respectively.

We provide a functional and an operational description of the EM, and show their

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 195

equivalence. Adding uncontrollable events leads to the necessity of changing the order

between controllable and uncontrollable events, which requires some existing notions to

be adapted. Therefore, we replace transparency with compliance, and then give EMs,

i.e., enforcement functions and enforcement monitors, for regular properties and regular

timed properties. Since not every property can be enforced, we also give a condition,

depending on the property and the input word, indicating whether the EM is sound

with respect to the property under scrutiny or not. The EMs output immediately all

the received uncontrollable events, and store the controllable ones, until soundness can

be guaranteed. Then, they output events only when they can ensure that soundness will

be satisfied. The proposed EMs are then sound and compliant, even with the reception

of some uncontrollable events. They are also optimal in the sense that they output the

longest possible word, with the least possible dates in the timed setting.

One possible extension is to take some risks, outputting events even if some un-

controllable events could lead to a bad state, and introducing, for example, some

probabilities. Implementing the given enforcement devices for the untimed setting is pretty

straightforward, whereas implementation in the timed setting needs more attention due

to computing in timed models. Another interesting direction for further investigation is

to use game theory in order to compute the behaviour of the EM. This approach should

permit to compute the behaviour before the execution, thus leading to an optimised

implementation.

Appendix A. Proofs

A.1. Proofs for the untimed setting

In all this section, we will use the notations from Section 3, meaning that ϕ is a property

whose associated automaton is Aϕ = 〈Q, q0,Σ,−→, F〉. In some proofs, we also use notations

from Definition 3.7.

Proposition 3.1. Eϕ as defined in Definition 3.7 is an enforcement function.

Proof. Let us consider σ ∈ Σ∗ and σ′ ∈ Σ∗. If σ′ = ε, then Eϕ(σ) = Eϕ(σ.σ′) � Eϕ(σ.σ′).

Otherwise, let us consider (σs, σc) = storeϕ(σ), a = σ′(1) and (σt, σd) = storeϕ(σ.a). Then,

if a ∈ Σu, σt = σs.a.σ
′
s, where σ′s is defined in Definition 3.7, meaning that σs � σt.

If a ∈ Σc, then σt = σs.σ
′′
s , where σ′′s is defined in Definition 3.7, thus again, σs � σt.

In both cases, Eϕ(σ) = σs � σt = Eϕ(σ.a). Since order � is transitive, this means that

Eϕ(σ) � Eϕ(σ.a) � Eϕ(σ.a.σ′(2)) � . . . � Eϕ(σ.σ′). Thus, Eϕ is an enforcement function.

Lemma A.1. ∀σ ∈ Σ∗c , ∀a ∈ Σc, I(σ) ⊆ I(σ.a).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀a ∈ Σc, I(σ) ⊆ I(σ.a).’ Let us show by

induction that P(σ) holds for every σ ∈ Σ∗c .

— Induction basis: If a ∈ Σc, then since I(ε) = �, I(ε) ⊆ I(a). Thus, P(ε) holds.

— Induction step: Let us suppose that for n ∈ N, for all σ ∈ Σ∗c s.t. |σ| � n, P(σ) holds.

Let us then consider σ ∈ Σ∗c s.t. |σ| = n + 1, and a ∈ Σc. Let (h, σ0) ∈ Σc × Σ∗c
be s.t. σ = h.σ0 (they must exist since |σ| > 0). Then, |σ0| = n, and by induction

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 196

hypothesis, P(σ0) holds, meaning that I(σ0) ⊆ I(σ0.a). Moreover, following the definition

of S(σ0.a), S(σ0) ⊆ S(σ0.a). It follows that S(σ0) ∪ I(σ0) ⊆ S(σ0.a) ∪ I(σ0.a), and thus

I(σ) = I(h.σ0) = Predh(S(σ0)∪ I(σ0)) ⊆ Predh(S(σ0.a)∪ I(σ0.a)) = I(h.σ0.a) = I(σ.a). This

means that P(σ.a) holds.

Thus, by induction on the size of σ ∈ Σ∗c , for all σ ∈ Σ∗c , P(σ) holds. This means that for

all σ ∈ Σ∗c , for all a ∈ Σc, I(σ) ⊆ I(σ.a).

Lemma A.2. ∀σ ∈ Σ∗c , ∀q ∈ Q, ∀u ∈ Σu, (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀q ∈ Q, ∀u ∈ Σu, (q ∈ S(σ)) =⇒ (qafteru ∈
S(σ) ∪ I(σ)).’ Let us show by induction that P(σ) holds for any σ ∈ Σc.

— Induction basis: Let us consider u ∈ Σu and q ∈ S(ε). Then, since u ∈ Σu, u ∈ Σ∗u, and

following the definition of S(ε), q after u ∈ S(ε). Thus, q after u ∈ S(ε) ∪ I(ε).

— Induction step: Let us suppose that for σ ∈ Σ∗c , P(σ) holds. Let us then consider

u ∈ Σu, a ∈ Σc, and q ∈ S(σ.a). Then, either q ∈ S(σ) or q ∈ max⊆({Y ⊆ FG |
Y ∩ uPred(Y ∪ I(σ.a)) = �}). If q ∈ S(σ), then by induction hypothesis, P(σ) holds,

meaning that q after u ∈ S(σ) ∪ I(σ). Following lemma A.1, I(σ) ⊆ I(σ.a), and since

S(σ) ⊆ S(σ.a), it follows that S(σ)∪I(σ) ⊆ S(σ.a)∪I(σ.a). Thus, qafteru ∈ S(σ.a)∪I(σ.a).

Otherwise, q ∈ max⊆({Y ⊆ FG | Y ∩ uPred(Y ∪ I(σ.a)) = �}), and thus q after u ∈
S(σ.a) ∪ I(σ.a). Thus, P(σ.a) holds.

By induction on σ, it follows that P(σ) holds for any σ ∈ Σ∗c . Thus, for all σ ∈ Σ∗c , for

all u ∈ Σu, for all q ∈ Q, (q ∈ S(σ)) =⇒ (q after u ∈ S(σ) ∪ I(σ)).

Lemma A.3. ∀σ ∈ Σ∗c , ∀q ∈ S(σ) ∪ I(σ),G(q, σ) �= �.

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀q ∈ S(σ)∪ I(σ),G(q, σ) �= �.’ Let us show

by induction that P(σ) holds for any σ ∈ Σ∗c .

— Induction basis: Let us consider q ∈ S(ε) ∪ I(ε). Then, since I(ε) = �, q ∈ S(ε).

Following the definition of S(ε), this means that ε is s.t. ε � ε and q after ε = q ∈
S(ε) = S(ε−1.ε). Thus, ε ∈ G(q, ε), meaning that G(q, ε) �= �, and thus that P(ε) holds.

— Induction step: Let us suppose that for n ∈ N, for all σ ∈ Σ∗c s.t. |σ| � n, P(σ) holds.

Let us then consider σ ∈ Σ∗c s.t. |σ| = n, a ∈ Σc and q ∈ S(σ.a) ∪ I(σ.a). Then, we

consider two cases:

– q ∈ S(σ.a), then ε is s.t. ε � σ.a and q after ε ∈ S(σ.a) = S(ε−1.(σ.a)), thus

ε ∈ G(q, σ.a).

– q ∈ I(σ.a), then let (h, σ0) ∈ Σc×Σ∗c be s.t. h.σ0 = σ.a (they must exist since |σ.a| > 0).

Then, I(σ.a) = I(h.σ0) = Predh(S(σ0)∪ I(σ0)), meaning that q ∈ Predh(S(σ0)∪ I(σ0)).

By induction hypothesis, since |σ0| = |σ| = n, P(σ0) holds, meaning that G(q after

h, σ0) �= �. Let us then consider w ∈ G(q after h, σ0). Then, w is s.t. w � σ0 and

(qafterh)afterw ∈ S(w−1.σ0). Thus, h.w � h.σ0 and qafter(h.w) = (qafterh)afterw ∈
S(w−1.σ0) = S((h.w)−1.(h.σ0)). Thus, h.w ∈ G(q, h.σ0) = G(q, σ.a).

In both cases, G(q, σ.a) �= �, meaning that P(σ.a) holds. By induction on the size of

σ ∈ Σ∗c , it follows that P(σ) holds for any σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all

q ∈ S(σ) ∪ I(σ), G(q, σ) �= �.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 197

Lemma A.4. ∀σ ∈ Σ∗, (σ �∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (σs = σ|Σu
∧ σc = σ|Σc

).

Proof. For σ ∈ Σ∗, let P(σ) be the predicate ‘(σ �∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒
(σs = σ|Σu

∧ σc = σ|Σc
).’ Let us show by induction that P(σ) holds for any σ ∈ Σ∗.

— Induction basis: storeϕ(ε) = (ε, ε) and since ε|Σu
= ε|Σc

= ε, P(ε) holds.

— Induction step: Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us then consider a ∈ Σ,

(σs, σb) = storeϕ(σ), and (σt, σd) = storeϕ(σ.a). Then, if σ.a ∈ Pre(ϕ), P(σ.a) holds. Let

us now consider that σ.a �∈ Pre(ϕ). Then, since Pre(ϕ) is extension closed, σ �∈ Pre(ϕ),

and thus, by induction hypothesis, σs = σ|Σu
and σc = σ|Σc

. We consider two cases:

– a ∈ Σu, then σt = σs.a.σ
′
s, with σ′s ∈ G(Reach(σs.a), σc) ∪ {ε}. Since σ.a �∈ Pre(ϕ),

G(Reach((σ .a)|Σu
), (σ.a)|Σc

) = �. Moreover, since a ∈ Σu, (σ.a)|Σu
= σ|Σu

.a = σs.a

and (σ.a)|Σc
= σ|Σc

= σc, thus G(Reach(σs.a), σc) = �. It follows that σ′s ∈ {ε},
meaning that σt = σs.a = σ|Σu

.a = (σ.a)|Σu
, and σd = σ′−1

s .σc = σc = σ|Σc
= (σ.a)|Σc

.

– a ∈ Σc, then σt = σs.σ
′′
s , with σ′′s ∈ G(σs, σc.a)∪ {ε}. Since σ.a �∈ Pre(ϕ), G(Reach((σ

.a)|Σu
), (σ.a)|Σc

) = �. Moreover, since a ∈ Σc, (σ.a)|Σu
= σ|Σu

= σs and (σ.a)|Σc
=

σ|Σc
.a = σc.a. Thus, G(Reach(σs), σc.a) = �, meaning that σ′′s = ε. Thus, σt = σs =

σ|Σu
= (σ.a)|Σu

and σd = σ′′−1
s .(σc.a) = σc.a = σ|Σc

.a = (σ.a)|Σc
.

In both cases, P(σ.a) holds. By induction on σ ∈ Σ∗, for all σ ∈ Σ∗, if σ �∈ Pre(ϕ) and

(σs, σc) = storeϕ(σ), then σs = σ|Σu
and σc = σ|Σc

.

Proposition 3.2. Eϕ is sound with respect to ϕ in Pre(ϕ), as per Definition 3.2.

Proof. Let P(σ) be the predicate: ‘(σ ∈ Pre(ϕ) ∧ (σs, σc) = storeϕ(σ)) =⇒ (Eϕ(σ) |=
ϕ ∧Reach(σs) ∈ S(σc)).’ Let us prove by induction that for any σ ∈ Σ∗, P(σ) holds.

— Induction basis: If ε ∈ Pre(ϕ), then following the definition of Pre(ϕ), G(Reach(ε), ε) �=
�. Thus, ε ∈ G(Reach(ε), ε) (since ε is the only word satisfying ε � ε). This means

that Reach(ε) after ε = Reach(ε) ∈ S(ε). Considering that storeϕ(ε) = (ε, ε), it follows

that Eϕ(ε) = ε, and thus, since S(ε) ⊆ FG, Eϕ(ε) |= ϕ. Thus, P(ε) holds.

— Induction step: Suppose now that, for σ ∈ Σ∗, P(σ) holds. Let us consider a ∈ Σ,

(σs, σc) = storeϕ(σ), and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds. We

consider three different cases:

– (σ.a) �∈ Pre(ϕ). Then, P(σ.a) holds.

– (σ.a) ∈ Pre(ϕ) ∧ σ �∈ Pre(ϕ). Then, since Pre(ϕ) is extension-closed, it follows that

σ . a ∈ {w ∈ Σ∗ | G(Reach(w|Σu
), w|Σc

) �= �}, meaning that G(Reach((σ . a)|Σu
), (σ .

a)|Σc
) �= �. Moreover, since σ �∈ Pre(ϕ), following lemma A.4, σs = σ|Σu

and

σc = σ|Σc
. Now, we consider two cases:

• If a ∈ Σu, then (σ.a)|Σu
= σ|Σu

.a = σs.a, and (σ.a)|Σc
= σ|Σc

= σc. Thus,

G(Reach(σs.a), σc) �= �, meaning that σ′s = (σs.a)
−1.σt ∈ G(Reach(σs.a), σc).

Thus, following the definition of G, Reach(σs.a) after σ′s = Reach(σs.a.σ
′
s) =

Reach(σt) ∈ S(σ′s
−1
.σc) = S(σd). Moreover, since S(σd) ⊆ FG, Eϕ(σ.a) = σt |= ϕ.

This means that P(σ.a) holds.

• If a ∈ Σc, then (σ.a)|Σu
= σ|Σu

= σs, and (σ.a)|Σc
= σ|Σc

.a = σc.a. Thus,

G(Reach(σs), σc.a) �= �, meaning that σ′′s = σ−1
s .σt ∈ G(Reach(σs), σc.a). As in

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 198

the case where a ∈ Σu, it follows that Reach(σt) ∈ S(σd) and thus Eϕ(σ.a) |= ϕ.

This means that P(σ.a) holds.

Thus, if σ.a ∈ Pre(ϕ) but σ �∈ Pre(ϕ), P(σ.a) holds.

– σ ∈ Pre(ϕ) (and then (σ.a) ∈ Pre(ϕ) since Pre(ϕ) is extension closed). Then, by

induction hypothesis, P(σ) holds, meaning that Reach(σs) ∈ S(σb) and Eϕ(σ) |= ϕ.

Again, we consider two cases:

• If a ∈ Σu, then, since Reach(σs) ∈ S(σc), following lemma A.2, Reach(σs) after

a = Reach(σs.a) ∈ S(σc)∪ I(σc). Following lemma A.3, G(Reach(σs.a), σb) �= �.

Thus, σ′s = (σs.a)
−1.σt ∈ G(Reach(σs.a), σc). It follows that Reach(σs.a.σ

′
s) =

Reach(σt) ∈ S(σ′−1
s .σc) = S(σd), and thus, since S(σd) ⊆ FG, Eϕ(σ.a) = σt |= ϕ.

Henceforth, P(σ.a) holds.

• If a ∈ Σc, then, since Reach(σs) ∈ S(σc) and S(σc) ⊆ S(σc.a), Reach(σs) ∈
S(σc.a). Following lemma A.3, G(Reach(σs), σc.a) �= �. Thus, σ′′s = σ−1

s .σt ∈
G(Reach(σs), σc.a). As in the case where a ∈ Σu, this leads to σt ∈ S(σd) and

Eϕ(σ.a) |= ϕ. Henceforth, P(σ.a) holds.

Thus, if σ ∈ Pre(ϕ), P(σ.a) holds.

In all cases, P(σ.a) holds. Thus, P(σ) =⇒ P(σ.a). By induction on σ, ∀σ ∈ Σ∗, (σ ∈
Pre(ϕ) ∧ (σs, σb) = storeϕ(σ)) =⇒ (Eϕ(σ) |= ϕ ∧Reach(σs) ∈ S(σb)). In particular, for all

σ ∈ Σ∗, (σ ∈ Pre(ϕ)) =⇒ (Eϕ(σ) |= ϕ). This means that Eϕ is sound with respect to ϕ in

Pre(ϕ).

Proposition 3.3. Eϕ is compliant as per Definition 3.3.

Proof. For σ ∈ Σ∗, let P(σ) be the predicate: ‘((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc
.σc =

σ|Σc
∧ σs|Σu

= σ|Σu
).’ Let us prove that for all σ ∈ Σ∗, P(σ) holds.

— Induction basis: storeϕ(ε) = (ε, ε) and ε|Σc
= ε|Σc

.ε, and ε|Σu
= ε|Σu

. Thus, P(ε) holds.

— Induction step: Let us suppose that for σ ∈ Σ∗, P(σ) holds. Let us consider (σs, σc) =

storeϕ(σ), a ∈ Σ and (σt, σd) = storeϕ(σ.a). Let us prove that P(σ.a) holds.

– Case 1: a ∈ Σu. Then, σt = σs.a.σ
′
s, where σ′s is defined in Definition 3.7, and σt.σd =

σs.a.σc. Therefore, σt|Σc
.σd = (σt.σd)|Σc

, since σd ∈ Σ∗c . Thus, σt|Σc
.σd = σs|Σc

.σc. Since

P(σ) holds, σt|Σc
.σd = σ|Σc

= (σ.a)|Σc
.

Moreover, since σ′s ∈ Σ∗c , σt|Σu
= σs|Σu

.a. Since P(σ) holds, this means that σt|Σu
=

σ|Σu
.a = (σ.a)|Σu

.

Thus, P(σ.a) holds.

– Case 2: a ∈ Σc. Then, σt = σs.σ
′′
s , where σ′′s is defined in Definition 3.7, and

σt.σd = σs.σc.a. Therefore, σt|Σc
.σd = (σt.σd)|Σc

= (σs.σc.a)|Σc
= σs|Σc

.σc.a. Since P(σ)

holds, this means that σt|Σc
.σd = σΣc

.a = (σ.a)|Σc
.

Moreover, since σ′′s ∈ Σ∗c , σt|Σu
= σs|Σu

. Since P(σ) holds, this means that σt|Σu
=

σ|Σu
= (σ.a)|Σu

.

Thus, P(σ.a) holds.

In both cases, P(σ.a) holds. Thus, for all σ ∈ Σ∗, for all a ∈ Σ, P(σ) =⇒ P(σ.a).

By induction on σ, for all σ ∈ Σ∗, ((σs, σc) = storeϕ(σ)) =⇒ (σs|Σc
.σc = σ|Σc

∧ σs|Σu
=

σ|Σu
). Moreover, if σ ∈ Σ∗, u ∈ Σu, (σs, σc) = storeϕ(σ) and (σt, σd) = storeϕ(σ.u), then

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 199

σt = σs.u.σ
′
s, where σ′s is defined in Definition 3.7. Thus, σs.u � σt, and since σs = Eϕ(σ)

and σt = Eϕ(σ.u), it follows that Eϕ(σ).u � Eϕ(σ.u). Thus, for all σ ∈ Σ∗, Eϕ(σ)|Σc
�

σ|Σc
∧ Eϕ(σ)|Σu

= σ|Σu
∧ ∀u ∈ Σu,Eϕ(σ).u � Eϕ(σ.u), meaning that Eϕ is compliant.

Lemma A.5. ∀σ ∈ Σ∗c , ∀q ∈ Q, (q �∈ S(σ)) =⇒ (∃σu ∈ Σ∗u, q after σu �∈ F ∧ ∀σ′u � σu, σ
′
u �=

ε =⇒ q after σ′u �∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate ‘∀σu ∈ Σ∗u, qafterσu ∈ F∨∃σ′u �
σu, σ

′
u �= ε ∧ q after σ′u ∈ S(σ) ∪ I(σ).’ Let us show the contrapositive of the lemma, that is

that for all σ ∈ Σ∗c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). We consider two cases:

— If σ = ε, let us consider q ∈ Q s.t. P(ε, q) holds. Then, since ε ∈ Σ∗u and there does

not exist a word w satisfying w � ε ∧ w �= ε, it follows that q = q after ε ∈ F .

Let us consider σu ∈ Σ∗u. Then, since P(ε, q) holds, either q after σu ∈ F , or there

exists σ′u � σu such that σ′u �= ε and q after σ′u ∈ S(ε) ∪ I(ε). In this last case, since

I(ε) = �, q after σ′u ∈ S(ε). Following the definition of S(ε), since σ′−1
u .σu ∈ Σ∗u,

(q after σ′u) after (σ′−1
u .σu) = q after σu ∈ F . Thus, in all cases q after σu ∈ F . Thus, for

all σu ∈ Σ∗u, q after σu ∈ F , meaning that q ∈ S(ε).

— If σ �= ε, there exists σ′ ∈ Σ∗c and a ∈ Σ s.t. σ = σ′.a, meaning that S(σ) is s.t.

S(σ) = S(σ′) ∪ max⊆({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) = �}). Let us consider q ∈ Q

s.t. P(σ, q) holds. Then, we define Y = {q after σu | σu ∈ Σ∗u ∧ ∀σ′u � σu, σ
′
u �= ε =⇒

q after σ′u �∈ S(σ) ∪ I(σ)}. Since P(σ, q) holds, Y ⊆ F . Moreover, if y ∈ Y and u ∈ Σu,

then

– either y after u ∈ S(σ) ∪ I(σ), and then y after u ∈ (Y ∪ S(σ)) ∪ I(σ),

– or yafteru �∈ S(σ)∪I(σ). Then, if σu ∈ Σu is s.t. y = qafterσu (σu exists since y ∈ Y),

then y after u = (q after σu) after u = q after (σu.u) �∈ S(σ) ∪ I(σ). Since σu.u ∈ Σ∗u,

y after u ∈ Y ⊆ (Y ∪ S(σ)) ∪ I(σ).

Thus, y after u ∈ (Y ∪ S(σ)) ∪ I(σ), and since following lemma A.2, S(σ) ∩ uPred

(S(σ) ∪ I(σ)) = �, this means that (Y ∪ S(σ)) ∩ uPred((Y ∪ S(σ)) ∪ I(σ)) = �. It

follows that (Y ∪ S(σ)) ⊆ max⊆({Z ⊆ F | Z ∩ uPred(Z ∪ I(σ)) = �}) ⊆ S(σ). Since

q ∈ Y ⊆ S(σ), this means that q ∈ S(σ).

Thus, for σ ∈ Σ∗c and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). This means that the contrapositive also

holds, thus q �∈ S(σ) =⇒ ¬P(σ, q), meaning that q �∈ S(σ) =⇒ (∃σu ∈ Σ∗u, q after σu �∈
F ∧ ∀σ′u � σu, q after σ′u �= ε =⇒ q after σ′u �∈ S(σ) ∪ I(σ)).

Proposition 3.4. Eϕ is optimal in Pre(ϕ) as per Definition 3.4.

Proof. Let E be an enforcement function s.t. compliant(E,Σc,Σu), and let us consider

σ ∈ Pre(ϕ) and a ∈ Σ s.t. E(σ) = Eϕ(σ) and |E(σ.a)| > |Eϕ(σ.a)|. Let us also consider

(σs, σc) = storeϕ(σ). Let us show that there exists σu ∈ Σ∗u s.t. E(σ.a.σu) �|= ϕ. We consider

two cases:

— a ∈ Σu. Then, since E is compliant, and E(σ) = Eϕ(σ) = σs, there exists σ′s1 � σc
s.t. E(σ.a) = E(σ).a.σs1 = σs.a.σ

′
s1. Moreover, there exists σ′s � σc s.t. Eϕ(σ.a) =

Eϕ(σ).a.σ′s = σs.a.σ
′
s. Since |E(σ.a)| > |Eϕ(σ.a)|, |σs1| > |σ′s|. Considering that σ′s =

max�(G(Reach(σs.a), σc) ∪ {ε}), it follows that σs1 �∈ G(Reach(σs.a), σc). Following the

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 200

definition of G, this means that either σs1 �� σc, but since E ′ is compliant, this is not

possible, or that Reach(σs.a) after σs1 �∈ S(σ−1
s1 .σc). Let us consider q = Reach(σs.a.σs1)

and σc1 = σ−1
s1 .σc. Then, q �∈ S(σc1). Following lemma A.5, this means that there exists

σu ∈ Σ∗u s.t. q after σu �∈ F and for all σ′u � σu, σ
′
u �= ε =⇒ q after σ′u �∈ S(σc1) ∪ I(σc1).

Then, we consider two cases:

– If E(σ.a.σu) = σs.a.σs1.σu, then Reach(E(σ.a.σu)) �∈ F , meaning that E(σ.a.σu) �|= ϕ.

– Otherwise, since E is compliant, there exists σs2 � σc1 and σu1 � σu s.t. σs2 �= ε,

σu1 �= ε and E(σ.a.σu1) = σs.a.σs1.σu1.σs2. Let us consider q′ = q after σu1.σs2 and

σc2 = σ−1
s2 .σc1. Then, since σu1 � σu and σu1 �= ε, q after σu1 �∈ S(σc1) ∪ I(σc1). Thus,

q′ = q after σu1.σs2 �∈ S(σc2) ∪ I(σc2), because otherwise, q after σu1 = Predσs2 (q
′) ∈

Predσs2 (S(σc2) ∪ I(σc2)) ⊆ I(σc1), which is absurd. Then, we can again use lemma

A.5 to find a word σu2 ∈ Σ∗u s.t. q′ after σu2 �∈ F and for any σ′u � σu2, q
′ after σ′u �∈

S(σc2) ∪ I(σc2). Since σs2 �= ε, |σc2| < |σc1|, thus the operation can be repeated

a finite number of times (at most until all the controllable events of σ appear

in the output of E). Thus, there exists n ∈ N, there exists (σu1, σu2, . . . , σun), and

(σs1, σs2, . . . , σsn), s.t. E(σ .a .σu1 .σu2 . · · · .σun) = σs .a .σs1 .σu1 .σs2 .σu2 . · · · .σsn .σun, and

Reach(σs .a.σs1 .σu1 .σs2 .σu2 .· · · .σsn .σun) �∈ F . This means that, if σu = σu1 .σu2 .· · · .σun,
then σu ∈ Σ∗u and E(σ . a . σu) �|= ϕ.

Thus, in all cases, there exists σu ∈ Σ∗u s.t. E(σ . a . σu) �|= ϕ.

— a ∈ Σc. The proof is the same as in the case where a ∈ Σu, by replacing occurrences of

‘σs.a’ by ‘σs,’ and occurrences of ‘σb’ by ‘σb.a.’

Thus, if E is an enforcement function s.t. there exists σ ∈ Pre(ϕ), and a ∈ Σ s.t.

compliant(E,Σu,Σc), E(σ) = Eϕ(σ) and |E(σ.a)| > |Eϕ(σ.a)|, then there exists σu ∈ Σ∗u s.t.

E(σ.a.σu) �|= ϕ. This means that Eϕ is optimal in Pre(ϕ).

Proposition 3.5. The output of the enforcement monitor E for input σ is Eϕ(σ).

Proof. Let us introduce some notation for this proof: For a word w ∈ ΓE∗, we

note input(w) = Π1(w(1)).Π1(w(2)) . . .Π1(w(|w|)), the word obtained by concatenat-

ing the first members (the inputs) of w. In a similar way, we note output(w) =

Π3(w(1)).Π3(w(2)) . . .Π3(w(|w|)), the word obtained by concatenating all the third members

(outputs) of w. Since all configurations are not reachable from cE0, for w ∈ ΓE∗, we note

Reach(w) = c whenever cE0 ↪
w−→E c, and Reach(w) = ⊥ if such a c does not exist. We also

define the Rules function as follows:

Rules :

{
Σ∗ → ΓE∗

σ �→ max�({w ∈ ΓE∗ | input(w) = σ ∧Reach(w) �= ⊥})

For a word σ ∈ Σ∗, Rules(σ) is the trace of the longest valid run in E, i.e., the sequence

of all the rules that can be applied with input σ. We then extend the definition of output

to words in Σ∗: for σ ∈ Σ∗, output(σ) = output(Rules(σ)). We also note ε the empty

word of Σ∗, and εE the empty word of ΓE∗. For σ ∈ Σ∗, let P(σ) be the predicate,

‘Eϕ(σ) = output(σ) ∧ (((σs, σc) = storeϕ(σ) ∧ Reach(Rules(σ)) = 〈q, σE
c 〉) =⇒ (q =

Reach(σs) ∧ σc = σE
c)).’

Let us prove by induction that for all σ ∈ Σ∗, P(σ) holds.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 201

— Induction basis: Eϕ(ε) = ε = output(ε). Moreover, storeϕ(ε) = (ε, ε) and Reach(εE) =

cE0. Therefore, as cE0 = 〈q0, ε〉, P(ε) holds, because Reach(ε) = q0.

— Induction step: Let us suppose now that for some σ ∈ Σ∗, P(σ) holds. Let us consider

(σs, σc) = storeϕ(σ), q = Reach(σs), a ∈ Σ and (σt, σd) = storeϕ(σ.a). Let us prove that

P(σ.a) holds.

Since P(σ) holds, Reach(Rules(σ)) = 〈q, σc〉 and σs = output(σ). We consider two

cases:

– a ∈ Σu. Then, considering σ′s = (σs.a)
−1.σt, σt = σs.a.σ

′
s. Since a ∈ Σu, rule

pass-uncont can be applied: Let us consider q′ = q after a. Then, 〈q, σc〉
↪
a/ pass-uncont(a)/a
−−−−−−−−−−→E 〈q′, σc〉. Then, if σ′s = ε, G(q′, σc) = � or G(q′, σc) = {ε}, meaning

that no other rule can be applied, and thus P(σ.a) would hold. Otherwise, σ′s �= ε

and thus σ′s ∈ G(q′, σc), meaning that G(q′, σc) �= � and G(q′, σc) �= {ε}, thus rule

dump(σc(1)) can be applied. Since σ′s � σc, σ
′
s(1) = σc(1), thus if q1 = q′ after σc(1),

q1 = q′ after σ′s(1). If σ′s(1)−1.σ′s �= ε, then σ′s(1)−1.σ′s ∈ G(q1, σc(1)−1.σc), meaning

that rule dump can be applied again. Rule dump can actually be applied |σ′s| times,

since for all w � σ′s, if w �= σ′s, then w−1.σ′s �= ε and w−1.σ′s ∈ G(q′ after w,w−1.σc).

Thus, after rule dump has been applied |σ′s| times, the configuration reached

is 〈q′ after σ′s, σ
′−1
s .σc〉. Moreover, the output produced by all the rules dump is

σ′s. Since no rule can be applied after the |σ′s| applications of the rule dump,

output(σ.a) = output(σ).a.σ′s = σt and Reach(Rules(σ.a)) = 〈q′ after σ′s, σ
′−1
s .σc〉 =

〈q after a after σ′s, σd〉 = 〈Reach(σs) after a after σ′s, σd〉 = 〈Reach(σs.a.σ
′
s), σd〉 =

〈Reach(σt), σd〉.
Thus, if a ∈ Σu, P(σ.a) holds.

– a ∈ Σc. Then, considering σ′′s = σ−1
s .σt, σt = σs.σ

′′
s . Since a ∈ Σc, it is possible

to apply the store-cont rule, and 〈q, σc〉 after a/ store-cont(a)/ε = 〈q, σc.a〉. Then,

as in the case where a ∈ Σu, rule dump can be applied |σ′′s | times, meaning

that the configuration reached would then be 〈q after (σc.a)(1) . (σc.a)(2) . · · · .
(σc.a)(|σ′′s |), (σc.a)(|σ′′s | + 1) . (σc.a)(|σ′′s | + 2) . · · · . (σc.a)(|σc.a|)〉. Since σ′′s � σc.a,

(σc.a)(1) . (σc.a)(2) . · · · . (σc.a)(|σ′′s |) = σ′′s , thus Reach(Rules(σ.a)) = 〈q after σ′′s , σ
′′−1
s .

(σc.a)〉 = 〈Reach(σt), σd〉. Moreover, output(σ.a) = output(σ).σ′′s = σs.σ
′′
s = σt =

Eϕ(σ.a).

Thus, if a ∈ Σc, P(σ.a) holds. This means that P(σ) =⇒ P(σ.a). Thus, by induction on σ,

for all σ ∈ Σ∗, P(σ) holds. In particular, for all σ ∈ Σ∗, Eϕ(σ) = output(σ).

A.2. Proofs for the timed setting

Proposition 4.1. Eϕ as defined in Definition 4.6 is an enforcement function as per Defini-

tion 4.1.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: ‘∀t ∈ R�0, ∀t′ � t,Eϕ(σ, t) � Eϕ(σ, t′).’

Let us show by induction that for all σ ∈ tw(Σ), P(σ) holds.

— Induction basis: σ = ε. Then, let us consider t ∈ R�0, and t′ � t. Then, Eϕ(ε, t) = ε �
ε = Eϕ(ε, t′). Thus, P(ε) holds.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 202

— Induction step: Let us suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′′, a)

s.t. σ.(t′′, a) ∈ tw(Σ), t ∈ R�0 and t′ � t.

– If t � t′′, then let us consider (σs, σb, σc) = storeϕ(σ, t′′), (σt1, σd1, σe1) = storeϕ
(σ.(t′′, a), t), and (σt2, σd2, σe2) = storeϕ(σ.(t′′, a), t′). Then, Eϕ(σ.(t′′, a), t) = σt1 and

Eϕ(σ.(t′′, a), t′) = σt2.

• If a ∈ Σu, then considering t1 as defined in Definition 4.6, t1 = min({t0 ∈
R�0 | t0 � t′′ ∧G(Reach(σs.(t

′′, a), t0),ΠΣ(nobs(σb, t
′′)).σc) �= �}). Then, σd1 =

minlex(max�(G(Reach(σs. (t′′, a),min({t, t1})),ΠΣ(nobs(σb, t
′′)).σc) ∪ {ε})) +t

min({t, t1}), and σd2 = minlex(max� (G(Reach (σs.(t
′′, a),min({t′, t1})),ΠΣ

(nobs(σb, t
′′)).σc) ∪ {ε})) +t min({t′, t1}).

· Case 1: t � t1. Since t′ � t, then t′ � t1, thus min({t′, t1}) = min({t, t1}) = t1,

thus σd1 = σd2. It follows that

σt1 = σs.(t
′′, a). obs(σd1, t) � σs.(t

′′, a). obs(σd1, t
′) = σs.(t

′′, a). obs(σd2, t
′) = σt2.

· Case 2: t < t1. Then, min({t, t1}) = t. Since t < t1, by definition of t1, this

means that G(Reach(σs. (t
′′, a), t),ΠΣ(nobs(σb, t

′′)).σc) = �, and thus σd1 = ε.

Since σd1 = ε, σt1 = σs.(t
′′, a) � σs.(t

′′, a). obs(σd2, t
′) = σt2.

Thus, if t′ � t � t′′ and a ∈ Σu, P(σ) =⇒ Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′).

• Otherwise, a ∈ Σc, and then considering t2 as defined in Definition 4.6,

t2 = min({t0 ∈ R�0 | t0 � t′′ ∧ G(Reach(σs, t0),ΠΣ(nobs(σb, t
′′)).σc.a) �= �}).

Then, σd1 = minlex(max�(G(Reach(σs, min({t, t2})), ΠΣ(nobs(σb, t
′′)) . σc . a)∪

{ε})) +t min({t, t2}), and

σd2 = minlex(max�(G(Reach(σs,min({t′, t2})),ΠΣ(nobs(σb, t
′′)).σc.a) ∪ {ε}))

+t min({t′, t2}).
· Case 1: t � t2. Since t′ � t, t′ � t2, meaning that min({t, t2}) = min({t′, t2}) =

t2, and thus σd1 = σd2. It follows that σt1 = σs. obs(σd1, t)) � σs. obs(σd1, t
′) =

σs. obs(σd2, t
′) = σt2.

· Case 2: t < t2. Then, G(Reach(σs,min({t, t2})),ΠΣ(nobs(σb, t
′′)).σc.a) = �,

meaning that σd1 = ε. Thus, σt1 = σs � σs. obs(σd2, t
′) = σt2.

Thus, if t′ � t � t′′ and a ∈ Σc, P(σ) =⇒ Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′).

Therefore, if t′ � t � t′′, for all a ∈ Σ, P(σ) =⇒ Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′).

– If t′ < t′′, then t < t′′, and obs(σ.(t′′, a), t) = obs(σ, t), and obs(σ.(t′′, a), t′) = obs(σ, t′).

Thus, Eϕ(σ.(t′′, a), t) = storeϕ(obs(σ.(t′′, a), t), t) = storeϕ(obs(σ, t), t) = Eϕ(σ, t), and

Eϕ(σ.(t′′, a), t′) = storeϕ(obs(σ.(t′′, a), t′), t′) = storeϕ(obs(σ, t′), t′) = Eϕ(σ, t′). Since

P(σ) holds, then Eϕ(σ.(t′′, a), t) = Eϕ(σ, t) � Eϕ(σ, t′) = Eϕ(σ.(t′′, a), t′).

– If t < t′′ � t′, then obs(σ.(t′′, a), t) = obs(σ, t). Since P(σ) holds, then Eϕ(σ, t) �
Eϕ(σ, t′′). Let (σs, σb, σc) = storeϕ(σ, t′′) and (σt, σd, σe) = storeϕ(σ.(t′′, a), t′). Then,

σt = σs.(t
′′, a). obs(σe, t

′) if a ∈ Σu, and σt = σs. obs(σe, t
′) if a ∈ Σc. In both

cases, σs � σt. This means that Eϕ(σ, t′′) � Eϕ(σ.(t′′, a), t′). Thus, Eϕ(σ.(t′′, a), t) =

Eϕ(σ, t) � Eϕ(σ, t′′) � Eϕ(σ.(t′′, a), t′).

Thus, if t < t′′ � t′, then P(σ) =⇒ Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 203

Consequently, in all cases, if t � t′, then P(σ) =⇒ Eϕ(σ.(t′′, a), t) � Eϕ(σ.(t′′, a), t′).

Finally, P(σ) =⇒ P(σ.(t′′, a)).

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R�0, for all

t′ � t, Eϕ(σ, t) � Eϕ(σ, t′).

Now, let us consider σ ∈ tw(Σ) and (t, a) s.t. σ.(t, a) ∈ tw(Σ). Then, if (σs, σb, σc) =

storeϕ(σ, t) and (σt, σd, σe) = storeϕ(σ.(t, a), t), then either σt = σs.(t, a).σ
′
s, or σt = σs.σ

′′
s ,

whether a is controllable or uncontrollable, respectively, where σ′s and σ′′s are defined

in Definition 4.6. In both cases, σs � σt. Thus, Eϕ(σ, t) = Π1(storeϕ(obs(σ, t), t)) = σs �
σt = Π1(storeϕ(obs(σ.(t, a), t))) = Eϕ(σ.(t, a), t). This holds because, since σ.(t, a) ∈ tw(Σ),

time(σ) � t, thus obs(σ, t) = σ. Thus, for all σ ∈ tw(Σ), for all t ∈ R�0 and t′ � t,

Eϕ(σ, t) � Eϕ(σ, t′) and Eϕ(σ, t) � Eϕ(σ.(t, a), t). This means that Eϕ is an enforcement

function.

Lemma A.6. ∀t ∈ R�0, ∀σ ∈ tw(Σ), (σ �∈ Pre(ϕ, t) ∧ (σs, σb, σc) = storeϕ(σ, t)) =⇒ (σs =

σ|Σu
∧ σb = ε ∧ σc = ΠΣ(σ|Σc

)).

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate ‘∀t � time(σ), (σ �∈ Pre(ϕ, t)∧(σs, σb, σc) =

storeϕ(σ, t)) =⇒ (σs = σ|Σu
∧ σb = ε ∧ σc = ΠΣ(σ|Σc

)).’ Let us prove by induction that for

all σ ∈ tw(Σ), P(σ) holds.

— Induction basis: For σ = ε, let us consider t ∈ R�0. Then, storeϕ(ε, t) = (ε, ε, ε).

Considering that ε ∈ tw(Σu), and ε = ΠΣ(ε|Σc
), P(ε) trivially holds (whether ε ∈ P(ϕ, t)

or not).

— Induction step: Suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) s.t.

σ.(t′, a) ∈ tw(Σ) and t � t′. Let us also consider (σs, σb, σc) = storeϕ(σ, t′) and (σt, σd,

σe) = storeϕ(σ.(t′, a), t). Then, if σ.(t′, a) ∈ Pre(ϕ, t), P(σ.(t′, a)) trivially holds. Thus, let

us suppose that σ.(t′, a) �∈ Pre(ϕ, t). Since σ � σ.(t′, a) and t � t′, it follows that σ �∈
Pre(ϕ, t′). By induction hypothesis, this means that σs = σ|Σu

, σb = ε and σc = ΠΣ(σ|Σc
).

Then, since σ.(t′, a) �∈ Pre(ϕ, t) following the definition of Pre(ϕ, t), this means that for

all t′′ � t, G(Reach(obs(σ.(t′, a), t′′)|Σu
, t′′),ΠΣ(obs(σ.(t′, a), t′′)|Σc

)) = �. In particular,

G(Reach((σ.(t′, a))|Σu
, t),ΠΣ((σ.(t′, a))|Σc

)) = � (since t � t′, obs(σ.(t′, a), t) = σ.(t′, a)).

Then, there are two cases:

– Case 1: a ∈ Σu. Then, since (σ.(t′, a))|Σu
= σ|Σu

.(t′, a) = σs.(t
′, a) and

ΠΣ((σ.(t′, a))|Σc
) = ΠΣ(σ|Σc

) = ΠΣ(nobs(σb, t
′)).σc, we have G(Reach(σs.(t

′, a), t),ΠΣ

(σb, t
′).σc) = �. This means that t < t1, where t1 is defined in Definition 4.6,

and thus σd = ε. Since σt = σs.(t
′, a). obs(σd, t), σt = σs.(t

′, a) = (σ.(t′, a))|Σu
and

σe = σc = σ|Σc
= (σ.(t′, a))|Σc

. Thus, P(σ.(t′, a)) holds if a ∈ Σu.

– Case 2: a ∈ Σc. Then, (σ.(t′, a))|Σu
= σ|Σu

= σs, and ΠΣ((σ.(t′, a))|Σc
) = ΠΣ(σ|Σc

).a =

ΠΣ(nobs(σb, t
′)).σc.a. Thus, G(Reach(σs, t),ΠΣ(nobs(σb, t

′).σc.a)) = �. This means

that t < t2, where t2 is defined in Definition 4.6, and thus σd = ε. Since

σt = σs. obs(σd, t), σt = σs = σ|Σu
= (σ.(t′, a))|Σu

, and σe = ΠΣ(nobs(σb, t
′)).σc.a =

ΠΣ(σ|Σc
).a = ΠΣ((σ.(t′, a))|Σc

). Thus, P(σ.(t′, a)) holds if a ∈ Σc.

Thus, P(σ) =⇒ P(σ.(t′, a)).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 204

By induction, for all σ ∈ tw(Σ), P(σ) holds. Thus, for all σ ∈ tw(Σ), for all t ∈ R�0, if

(σs, σb, σc) = storeϕ(σ, t) and (σ, t) �∈ Pre(ϕ), then σs = σ|Σu
, σb = ε, and σc = ΠΣ(σ|Σc

).

Lemma A.7. ∀σ ∈ Σ∗c , ∀a ∈ Σc, I(σ) ⊆ I(σ.a).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀a ∈ Σc, I(σ) ⊆ I(σ.a).’ Let us show by

induction that P(σ) holds for all σ ∈ Σ∗c .

— Induction basis: Let us consider a ∈ Σc. Then, I(ε) = � ⊆ I(a).

— Induction step: Suppose now that for σ ∈ Σ∗c , for all σ′ ∈ Σ∗c s.t. |σ′| � |σ|, P(σ′) holds.

Let us then consider a ∈ Σc, a
′ ∈ Σc and (h, σ0) ∈ Σc×Σ∗c s.t. h.σ0 = σ.a (h and σ0 exist

because σ.a �= ε). Then, I(σ.a.a′) = I(h.σ0.a
′) = Predh(S(σ0.a

′) ∪ I(σ0.a
′)), and I(σ.a) =

I(h.σ0) = Predh(S(σ0)∪ I(σ0)). Following the definition of S, S(σ0) ⊆ S(σ0.a
′). Moreover,

by induction hypothesis, since |σ0| � |σ|, P(σ0) holds, meaning that I(σ0) ⊆ I(σ0.a
′).

Thus, S(σ0) ∪ I(σ0) ⊆ S(σ0.a
′) ∪ I(σ0.a

′). It follows that I(σ.a) = Predh(S(σ0) ∪ I(σ0)) ⊆
Predh(S(σ0.a

′) ∪ I(σ0.a
′)) = I(σ.a.a′). Thus, for all a′ ∈ Σc, I(σ.a) ⊆ I(σ.a.a′), meaning

that P(σ.a) holds.

By induction, P(σ) holds for every σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all a ∈ Σc,

I(σ) ⊆ I(σ.a).

Lemma A.8. ∀q ∈ Q, ∀σ ∈ Σ∗c , (q ∈ S(σ)) =⇒ (∀u ∈ Σu, q after (0, u) ∈ S(σ) ∪ I(σ)).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀q ∈ Q, (q ∈ S(σ)) =⇒ (∀u ∈ Σu, q after

(0, u) ∈ S(σ) ∪ I(σ)).’ Let us show by induction on σ that P(σ) holds for every σ ∈ Σ∗c .

— Induction basis: Let us consider q ∈ S(ε). Then, for all u ∈ Σu, since (0, u) ∈ tw(Σu),

considering the definition of S(ε), q after (0, u) ∈ S(ε). Thus, q ∈ S(ε) ∪ I(ε). Thus, P(ε)

holds.

— Induction step: Let us suppose that for σ ∈ Σ∗c , P(σ) holds. Let us consider a ∈ Σc and

q ∈ S(σ.a). Then, considering the definition of S(σ.a), following two cases are possible:

– Either q ∈ S(σ), and then, by induction hypothesis, for all u ∈ Σu, q after (0, u) ∈
S(σ)∪I(σ). S(σ) ⊆ S(σ.a), and following lemma A.7, I(σ) ⊆ I(σ.a), thus, qafter(0, u) ∈
S(σ.a) ∪ I(σ.a).

– or q ∈ S(σ.a)\S(σ), and then, since (S(σ.a)\S(σ))∩uPred((S(σ.a) \ S(σ)) ∪ I(σ.a)) =

�, it follows that if u ∈ Σu, q after (0, u) ∈ (S(σ.a) \ S(σ)) ∪ I(σ.a) ⊆ S(σ.a) ∪ I(σ.a).

In both cases, for all u ∈ Σu, q after (0, u) ∈ S(σ.a) ∪ I(σ.a), meaning that P(σ.a) holds.

Thus, by induction, for all σ ∈ Σ∗c , P(σ) holds. Thus, for all σ ∈ Σ∗c , for all q ∈ S(σ), for

all u ∈ Σu, q after (0, u) ∈ S(σ) ∪ I(σ).

Lemma A.9. For all σ ∈ Σ∗c , for all q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒ (G(q, σ) �= �).

Proof. For σ ∈ Σ∗c , let P(σ) be the predicate ‘∀q ∈ Q, (q ∈ S(σ) ∪ I(σ)) =⇒ (G(q, σ) �=
�).’ Let us then prove by induction on σ that P(σ) holds for every σ ∈ Σ∗c .

— Induction basis: Let us consider q ∈ S(ε) ∪ I(ε). Since I(ε) = �, this means that

q ∈ S(ε). Then, ε satisfies ε � ΠΣ(ε). Moreover, since S(ε) ⊆ FG, q after ε = q ∈ FG,

and for all t ∈ R�0, qafter (ε, t) ∈ S(ε), because otherwise there would exist σu ∈ tw(Σu)

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 205

s.t. q after (ε, t) after σu �∈ FG, meaning that q after (σu +t t) �∈ FG, and thus q would not

be in S(ε). Thus, ε ∈ G(q, ε). This means that G(q, ε) �= �, and thus that P(ε) holds.

— Induction step: Let us suppose that for n ∈ N, for all σ ∈ Σ∗c , |σ| � n =⇒ P(σ). Let

us consider σ ∈ Σ∗c s.t. |σ| = n, a ∈ Σc and q ∈ S(σ.a) ∪ I(σ.a).

– If q ∈ I(σ.a), let us consider (h, σ0) ∈ Σc × Σ∗c s.t. σ.a = h.σ0. Then, q ∈ I(h.σ0) =

Predh(S(σ0) ∪ I(σ0)), and since |σ0| = |σ| = n � n, by induction hypothesis,

G(q after (0, h), σ0) �= �. Let us consider w ∈ G(q after (0, h), σ0). Then, (0, h).w

satisfies ΠΣ((0, h).w) � h.σ0, q after ((0, h).w) = q after (0, h) after w ∈ FG, and

for all t ∈ R�0, q after ((0, h).w, t) = q after (0, h) after (w, t) ∈ S(ΠΣ(w)−1.σ0) =

S(ΠΣ((0, h).w)−1.(h.σ0)). Thus, (0, h).w ∈ G(q, h.σ0) = G(q, σ.a). Thus, G(q, σ.a) �= �.

– If q ∈ S(σ.a), then there are again two cases:

• If q ∈ S(σ), then by induction hypothesis, G(q, σ) �= �. Since G(q, σ) ⊆
G(q, σ.a), it follows that G(q, σ.a) �= �.

• Otherwise, q ∈ X ∪ Y , where X and Y are defined in the definition of S(σ.a).

· If q ∈ X, then there exists i ∈ I(σ.a) and δ ∈ R�0 s.t. q after (ε, δ) = i, and for

all t � δ, q after (ε, t) ∈ X ⊆ S(σ.a). Since i ∈ I(σ.a), we showed previously

that G(i, σ.a) �= ε. Let us consider w ∈ G(i, σ.a). Then, w +t δ satisfies

ΠΣ(w +t δ) � σ.a, q after (w +t δ) = i after w ∈ FG, and for all t ∈ R�0,

if t < δ, then q after (w +t δ, t) = q after (ε, t) ∈ X ⊆ S(σ.a), otherwise,

q after (w +t δ, t) = i after (w, t− δ) ∈ S(σ.a). Thus, w +t δ ∈ G(q, σ.a). Thus,

G(q, σ.a) �= �.

· Otherwise, q ∈ Y , and then ε satisfies ΠΣ(ε) � σ.a, q after ε ∈ FG, and for

all t ∈ R�0, q after (ε, t) ∈ up(q) ⊆ up(Y) = Y ⊆ S(σ.a). Thus, ε ∈ G(q, σ.a).

Thus, G(q, σ.a) �= �.

Thus, for all q ∈ S(σ.a)∪I(σ.a), G(q, σ.a) �= �. Thus, P(σ.a) holds. By induction on σ, P(σ)

holds for ever σ ∈ Σ∗c , meaning that for all σ ∈ Σ∗c , for all q ∈ S(σ) ∪ I(σ), G(q, σ) �= �.

Proposition 4.2. Eϕ is sound with respect to ϕ in Pre(ϕ) as per Definition 4.2.

Proof. Notation from 4.6 is to be used in this proof:

κϕ(q, w) = min
lex

(max
�

(G(q, w) ∪ {ε})), for q ∈ Q and w ∈ Σ∗c ,

bufferc = ΠΣ(nobs(σb, t
′)).σc,

t1 =
min({t′′ ∈ R�0 | t′′ � t′∧

G(Reach(σs.(t
′, a), t′′), bufferc) �= �} ∪ {+∞}),

σ′b = κϕ(Reach(σs.(t
′, a),min({t, t1})), bufferc) +t min({t, t1}),

σ′c = ΠΣ(σ′b)
−1.bufferc,

t2 =
min({t′′ ∈ R�0 | t′′ � t′∧

G(Reach(σs, t
′′), bufferc.a) �= �} ∪ {+∞}),

σ′′b = κϕ(Reach(σs,min({t, t2})), bufferc.a) +t min({t, t2}),
σ′′c = ΠΣ(σ′′b)

−1.(bufferc.a).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 206

For σ ∈ tw(Σ) and t � time(σ), let P(σ, t) be the predicate ‘(σ ∈ Pre(ϕ, t) ∧ (σs, σb, σc) =

storeϕ(σ, t)) =⇒ (Eϕ(σ) |= ϕ ∧ nobs(σb, t) −t t ∈ G(Reach(σs, t),ΠΣ(nobs(σb, t)).σc)).’ Let

also P(σ) be the predicate: ‘∀t � time(σ),P(σ, t).’ Let us show that for all σ ∈ tw(Σ), P(σ)

holds.

— Induction basis: For σ = ε, let us consider t ∈ R�0.

– Case 1: ε �∈ Pre(ϕ, t). Then, P(ε) trivially holds.

– Case 2: ε ∈ Pre(ϕ, t). Then, there exists t′ � t s.t. G(Reach(obs(ε, t′)|Σu
, t′), ε) �= �,

meaning that G(Reach(ε, t′), ε) �= �. Thus, following the definition of

G(Reach(ε, t′), ε), ε ∈ G(Reach(ε, t′), ε) and Reach(ε) ∈ FG. Since Eϕ(ε) = ε and

Reach(ε) ∈ FG, Eϕ(ε) |= ϕ. Thus, because storeϕ(ε) = (ε, ε, ε), P(ε, t) holds.

Thus, in both cases, P(ε, t) holds, meaning that P(ε) holds.

— Induction step: Suppose that for σ ∈ tw(Σ), P(σ) holds. Let us consider (t′, a) s.t.

σ.(t′, a) ∈ tw(Σ), and t � t′ = time(σ.(t′, a)). Let us also consider (σs, σb, σc) =

storeϕ(σ, t′) and (σt, σd, σe) = storeϕ(σ.(t′, a), t).

– Case 1: σ.(t′, a) �∈ Pre(ϕ, t). Then, P(σ.(t′, a), t) trivially holds.

– Case 2: σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ �∈ Pre(ϕ, t′). Then, σ �∈ Pre(ϕ, t′), thus, following

lemma A.6, σs = σ|Σu
, σb = ε, and σc = ΠΣ(σ|Σc

). Since σ.(t′, a) ∈ Pre(ϕ, t), and σ �∈
Pre(ϕ, t′), there exists t′′ ∈ R�0 s.t. t′ � t′′ � t, and G(Reach(obs(σ.(t′, a), t′′)|Σu

, t′′),ΠΣ

(obs(σ.(t′, a), t′′)|Σc
)) �= �. Since t′′ � t′ = time(σ.(t′, a)), then obs(σ.(t′, a), t′′) =

σ.(t′, a). This means that G(Reach((σ.(t′, a))|Σu
, t′′),ΠΣ((σ.(t′, a))|Σc

)) �= �.

• If a ∈ Σu, then considering that (σ.(t′, a))|Σu
= σ|Σu

.(t′, a) = σs.(t
′, a), σb = ε, and

σc = ΠΣ(σ|Σc
), this means that G(Reach(σs.(t

′, a), t′′),ΠΣ(nobs(σb, t
′)).σc) �= �.

Thus, t1 � t′′ � t, meaning that σd−tt1 ∈ G(Reach(σs.(t
′, a), t1),ΠΣ(σb).σc). Thus,

considering the definition of G, it follows that nobs(σd, t)−tt ∈ G(Reach(σs.(t
′, a).

obs(σd, t), t),ΠΣ(obs(σd, t))−1.(ΠΣ(nobs(σb, t
′)).σc)). Moreover, ΠΣ(nobs(σb, t

′)).

σc = σ|Σc
, thus ΠΣ(obs(σd, t))

−1.(ΠΣ(nobs(σb, t
′)).σc) = ΠΣ(nobs(σd, t)).σe, mean-

ing that nobs(σd, t)−t t ∈ G(Reach(σt, t), ΠΣ(nobs(σd, t)).σe). Thus, P(σ.(t′, a), t)

holds.

• Otherwise, a ∈ Σc. Then, (σ.(t′, a))|Σu
= σ|Σu

= σs, σb = ε and σc = ΠΣ((σ .

(t′, a))|Σc
) = ΠΣ(σ|Σc

).a. This means that G(Reach(σs, t
′′),ΠΣ(nobs(σb, t

′)).σc .a) �=
�. Thus, t2 � t′′ � t, therefore σd−t t2 ∈ G(Reach(σs, t2),ΠΣ(nobs(σb, t

′)) . σc . a).

It follows that nobs(σd, t) −t t ∈ G(Reach(σs . obs(σd, t), t),ΠΣ(obs(σd, t))
−1 .

(ΠΣ(nobs(σb, t
′)) . σc . a)). Moreover, ΠΣ(nobs(σb, t

′)).σc.a = ΠΣ((σ.(t′, a))|Σc
) =

ΠΣ(σd).σe. Thus, ΠΣ(obs(σd, t))
−1 . (ΠΣ(nobs(σb, t

′)) . σc . a) = ΠΣ(nobs(σd, t)) .

σe. Thus, nobs(σd, t) −t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)).σe). This means that

P(σ.(t′, a), t) holds.

Thus, if σ.(t′, a) ∈ Pre(ϕ, t) ∧ σ �∈ Pre(ϕ, t′), P(σ, t) =⇒ P(σ.(t′, a), t).

– Case 3: σ.(t′, a) ∈ Pre(ϕ, t) and σ ∈ Pre(ϕ, t′). Then, consider wb = nobs(σb, t
′) −t

t′. By the induction hypothesis, since σ ∈ Pre(ϕ, t′), Eϕ(σ) |= ϕ and wb ∈
G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)).σc).

• If a ∈ Σu, then since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)) .σc), Reach(σs, t
′)after

(wb, 0) = Reach(σs, t
′) ∈ S(ΠΣ(nobs(σb, t

′)).σc). Thus, following lemma A.8, since

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 207

a ∈ Σu, Reach(σs, t
′) after (0, a) = Reach(σs.(t

′, a)) ∈ S(ΠΣ(nobs(σb, t
′)).σc) ∪

I(ΠΣ(nobs(σb, t
′)).σc). Then, following lemma A.9, this means that G(Reach(σs.

(t′, a)),ΠΣ(nobs(σb, t)).σc) �= �. It follows that t1 = t′, thus min({t, t1}) =

t1 = t′, and σd −t t
′ ∈ G(Reach(σs . (t

′, a), t′),ΠΣ(nobs(σb, t
′)) . σc). This im-

plies that Reach(σs . (t
′, a) . σd) = Reach(Eϕ(σ . (t′, a))) ∈ FG, meaning that

Eϕ(σ.(t′, a)) |= ϕ. Moreover, following the definition of G, nobs(σd, t) −t t ∈
G(Reach(σs.(t

′, a). obs(σd, t), g),ΠΣ(obs(σd, t))−1 . (ΠΣ(nobs(σb, t
′)).σc)). Thus,

since σt = σs .(t
′, a) .obs(σd, t) and ΠΣ(σd).σe = ΠΣ(nobs(σb, t

′)).σc, it follows that

nobs(σd, t)−t t ∈ G(Reach(σt, t),ΠΣ(nobs(σd, t)).σe). This means that P(σ.(t′, a), t)

holds.

• Otherwise, a ∈ Σc. Since wb ∈ G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc), wb satisfies

ΠΣ(wb) � ΠΣ(nobs(σb, t
′)).σc � ΠΣ(nobs(σb, t

′)).σc.a, Reach(σs, t
′) after wb ∈

FG, and for all t′′ ∈ R�0, Reach(σs, t
′) after (wb, t

′′) ∈ S(ΠΣ(nobs(σb, t
′)).σc).

Since ΠΣ(nobs(σb, t
′)).σc � ΠΣ(nobs(σb, t

′)).σc.a, S(ΠΣ(nobs(σb, t
′)).σc) ⊆ S(ΠΣ

(nobs(σb, t
′)).σc.a). Thus, for all t′′ ∈ R�0, Reach(σs, t

′) after (wb, t
′′) ∈ S(ΠΣ(nobs

(σb, t
′)).σc.a). This means that wb ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)) . σc . a). It

follows that G(Reach(σs, t
′),ΠΣ(nobs(σb, t

′)).σc.a) �= �, and thus, using the same

reasoning as in the case where a ∈ Σu, t2 = t′, and σd is s.t. Reach(σs, t
′) after

σd ∈ FG, meaning that Eϕ(σ.(t′, a)) |= ϕ, and nobs(σd, t) −t t ∈ G(Reach(σt, t),

ΠΣ(nobs(σd, t)).σe). Thus, P(σ.(t′, a), t) holds.

Thus, in all cases, for all t � t′,P(σ) =⇒ P(σ.(t′, a), t). This means that P(σ) =⇒ ∀t �
t′,P(σ.(t′, a), t). Thus, P(σ) =⇒ P(σ.(t′, a)). By induction, for all σ ∈ tw(Σ), P(σ) holds.

In particular, for all (σ, t) ∈ Pre(ϕ),Eϕ(σ) |= ϕ. This means that Eϕ is sound in Pre(ϕ).

Proposition 4.3. Eϕ is compliant as per Definition 4.3.

Proof. For σ ∈ tw(Σ), let P(σ) be the predicate: ‘∀t � time(σ), (σs, σb, σc) = storeϕ(σ, t)

=⇒ σs|Σu
= σ|Σu

∧ ΠΣ(σs|Σc
. nobs(σb, t)).σc = ΠΣ(σ|Σc

) ∧ σs|Σc
�d σ|Σc

.’ Let us prove by

induction that for all σ ∈ tw(Σ),P(σ) holds.

— Induction basis: For σ = ε. storeϕ(ε) = (ε, ε, ε), and ε|Σc
= ε|Σu

= ΠΣ(ε) = ε. Thus, P(ε)

trivially holds.

— Induction step: Suppose now that for some σ ∈ tw(Σ),P(σ) holds. Let us consider

(t′, a) s.t. σ.(t′, a) ∈ tw(Σ), t � time(σ), (σs, σb, σc) = storeϕ(σ, t′) and (σt, σd, σe) =

storeϕ(σ.(t′, a), t). Then, by induction hypothesis, σs|Σu
= σ|Σu

, ΠΣ(σs|Σc
.σb).σc = ΠΣ(σ|Σc

)

and σs|Σc
�d σ|Σc

.

– a ∈ Σu. By construction, σd satisfies ΠΣ(σd) � ΠΣ(nobs(σb, t
′)).σc and σd �= ε =⇒

date(σd(1)) � t′.

• Projection on Σu: Since a ∈ Σu, σt|Σu
= (σs.(t

′, a). obs(σd, t))|Σu
. σd ∈ tw(Σc), thus

σt|Σu
= σs|Σu

.(t′, a) = σ|Σu
.(t′, a) = (σ.(t′, a))|Σu

.

• Projection on Σc: ΠΣ(σt|Σc
. nobs(σd, t)) . σe = ΠΣ((σs . (t

′, a) . obs(σd, t))|Σc
.

nobs(σd, t)) . σe = ΠΣ(σs|Σc
. σd) . σe = ΠΣ(σs|Σc

) .ΠΣ(σd) . σe. By construction,

ΠΣ(σd) . σe = ΠΣ(nobs(σb, t
′)). σc. Thus, ΠΣ(σt|Σc

.σd).σe = ΠΣ(σs|Σc
).

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 208

ΠΣ(nobs(σb, t
′)).σc = ΠΣ(σs|Σc

. nobs(σb, t
′)).σc = ΠΣ(σ|Σc

) = ΠΣ((σ.(t′, a))|Σc
).

Moreover, σt ∈ tw(Σ), and since σt = σs.(t
′, a). obs(σd, t), it follows that for

all i ∈ [1; | obs(σd, t)|], date(σd(i)) � t′. Since σs|Σc
�d σ|Σc

, for all i ∈ [1; |σs|Σc
|],

date(σs|Σc
(i)) � date(σ|Σc

(i)). Thus, for all i ∈ [1; |σt|Σc
|], date(σt|Σc

(i)) � date

(σ|Σc
(i)). Since ΠΣ(σt|Σc

.σd).σe = ΠΣ(σ|Σc
), ΠΣ(σt|Σc

) � ΠΣ(σ|Σc
). Thus, σt|Σc

�d

σ|Σc
= (σ.(t′, a))|Σc

.

This means that if a ∈ Σu, P(σ.(t′, a)) holds.

– a ∈ Σc. By construction, σd satisfies ΠΣ(σd) � ΠΣ(σb).σc.a, and σd �= ε =⇒
date(σd(1)) � t′.

• Projection on Σu: σt|Σu
= (σs . obs(σd, t))|Σu

. Since σd ∈ tw(Σc), σt|Σu
= σs|Σu

=

σ|Σu
= (σ.(t′, a))|Σu

.

• Projection on Σc: ΠΣ(σt|Σc
. nobs(σd, t)) . σe = ΠΣ((σs . obs(σd, t))|Σc

. nobs(σd, t)) .

σe = ΠΣ(σs|Σc
. σd) . σe = ΠΣ(σs|Σc

) .ΠΣ(σd) . σe. By construction, it is ensured that

ΠΣ(σd).σe = ΠΣ(nobs(σb, t
′)).σc.a. It follows that ΠΣ(σt|Σc

.σd).σe = ΠΣ(σs|Σc
).ΠΣ

(nobs(σb, t
′)).σc.a = ΠΣ(σs|Σc

. nobs(σb, t
′)).σc.a = ΠΣ(σ|Σc

).a = ΠΣ((σ.(t′, a))|Σc
).

Moreover, considering t2 as defined in Definition 4.6, t2 � t′, and t � t′,

thus min({t, t2}) � t′, which means that since there exists wd ∈ tw(Σ) s.t.

σd = wd +t min({t, t2}), if σd �= ε, then date(σd(1)) � t′. Thus, for all i ∈
[1; |σd|], date(σd(i)) � t′ = time(σ.(t′, a)). This still holds if σd = ε, because

then [1; |σd|] = �. Since σs|Σc
�d σ|Σc

, for all i ∈ [1; |σs|Σc
|], date(σs|Σc

(i)) �
date(σ|Σc

(i)). Thus, for all i ∈ [1; |σt|Σc
|], date(σt|Σc

(i)) � date((σ . (t′, a))|Σc
(i)).

Since ΠΣ(σt|Σc
. nobs(σd, t)) . σe = ΠΣ((σ.(t′, a))|Σc

), ΠΣ(σt|Σc
) � ΠΣ((σ.(t′, a))|Σc

).

Thus σt|Σc
�d (σ.(t′, a))|Σc

.

Thus, if a ∈ Σc, P(σ.(t, a)) holds.

Thus, P(σ) =⇒ P(σ.(t, a)). By induction, for all σ ∈ tw(Σ), for all t � time(σ), (σs, σb, σc) =

storeϕ(σ, t) =⇒ σs|Σu
= σ|Σu

∧ΠΣ(σs|Σc
. nobs(σb, t)).σc = ΠΣ(σ|Σc

)∧ σs|Σc
�d σs|Σc

. Thus, Eϕ

is compliant.

Lemma A.10. ∀σ ∈ Σ∗c , ∀q ∈ Q, (q �∈ S(σ)) =⇒ (∃σu ∈ tw(Σu), (q after σu �∈ Fg) ∧ (∀t >
0, q after (σu, t) �∈ S(σ) ∪ I(σ)) ∧ (∀σ′u � σu, σ

′
u �= ε =⇒ q after σ′u �∈ S(σ) ∪ I(σ))).

Proof. For σ ∈ Σ∗c and q ∈ Q, let P(σ, q) be the predicate ‘∀σu ∈ tw(Σu), (q after σu ∈
FG)∨ (∃t > 0, q after (σu, t) ∈ S(σ)∪ I(σ))∨ (∃σ′u � σu, σ

′
u �= ε∧ q after σ′u ∈ S(σ)∪ I(σ)).’ Let

us show the contrapositive of the proposition, that is that for all σ ∈ Σ∗c , for all q ∈ Q,

(P(σ, q)) =⇒ (q ∈ S(σ)).

— If σ = ε, let us consider q ∈ Q s.t. P(ε, q) holds. Then, since ε ∈ tw(Σu), q after ε = q ∈
FG, or there exists t > 0 s.t. q after (ε, t) ∈ S(ε) ∪ I(ε), or there exists σ′u � ε s.t. σ′u �= ε

and q after σ′u ∈ S(ε)∪ I(ε). Since σ′u � ε, σ′u = ε, meaning that this last condition does

not hold for σu = ε. Thus, q ∈ FG or there exists t ∈ R�0 s.t. q after (ε, t) ∈ S(ε) ∪ I(ε).

Since I(ε) = � and S(ε) ⊆ FG, if the second condition holds, then q after (ε, t) ∈ FG,

meaning that q ∈ FG. Thus, q ∈ FG.

Moreover, since P(ε, q) holds, for all σu ∈ tw(Σu), q after σu ∈ FG or there exists

t ∈ R�0 s.t. q after (σu, t) ∈ S(ε) ∪ I(ε) ⊆ FG, meaning that q after σu ∈ FG, or there

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 209

exists σ′u � σu s.t. q after σ′u ∈ S(ε) ∪ I(ε). If the last condition holds, since I(ε) = �,

then q after σ′u ∈ S(ε). Then, following the definition of S(ε), since σ′u
−1
.σu ∈ tw(Σu),

it follows that q after σ′u after σ′u
−1
.σu = q after σu ∈ FG. Thus, for all σu ∈ tw(Σu),

q after σu ∈ FG, meaning that q ∈ S(ε).

— If σ �= ε, there exists (σ′, a) ∈ Σ∗c × Σc s.t. σ = σ′.a. Let us consider q ∈ Q s.t.

P(σ, q) holds. Then, for all σu ∈ tw(Σu), q after σu ∈ FG, or there exists t > 0 s.t.

q after (σu, t) ∈ S(σ)∪ I(σ), or there exists σ′u � σu s.t. σ′u �= ε and q afterσ′u ∈ S(σ)∪ I(σ).

Let Xs and Ys be s.t. S(σ) = S(σ′.a) = S(σ′) ∪Xs ∪ Ys, with

– ∀x ∈ Xs, ∃i ∈ I(σ′.a), ∃δ ∈ R�0, x after (ε, δ) = i ∧ ∀t � δ, x after (ε, t) ∈ Xs,

– Ys ⊆ FG ∧ up(Ys) = Ys and

– (Xs ∪ Ys) ∩ uPred(Xs ∪ Ys ∪ I(σ′.a)) = �.

Xs and Ys correspond to the sets X and Y in the definition of S(σ′.a), respectively. Let

us consider X0 = {q after (σu, t) | σu ∈ tw(Σu) ∧ t ∈ R�0 ∧ ∀t′ ∈]0; t] , q after (σu, t
′) �∈

S(σ) ∪ I(σ) ∧ ∀σ′u � σu, σ
′
u �= ε =⇒ q after σ′u �∈ S(σ) ∪ I(σ)} and Y0 = {y ∈ X0 |

up(y) ⊆ X0 ∪ Ys}. Then, Y0 ⊆ X0, and up(Y0) = Y0. Moreover, if y ∈ Y0, then

up(y) ⊆ X0 ∪ Ys, and more precisely, up(y) ⊆ Y0 ∪ Ys, since all the states in up(y)

are also in Y0 if y ∈ Y0. Since up(Ys) = Ys, either up(y) ⊆ Y0 or there exists t ∈ R�0

s.t. for all t′ < t, y after (ε, t′) ∈ Y0 and up(y after (ε, t)) ⊆ Ys. Since P(σ, q) holds,

and Ys ⊆ FG, in both cases, y ∈ FG, meaning that Y0 ⊆ FG. Let us now consider

Y = Ys ∪ Y0, X = Xs ∪ (X0 \ Y0) and x ∈ X. Let us suppose that x �∈ Xs, meaning

that x ∈ X0 \ Y0. Following the definition of X0 and Y0, this means that there exists

δ > 0 and i ∈ S(σ) ∪ I(σ) such that x after (ε, δ) = i, and they can be chosen such

that for all t < δ, x after (ε, t) ∈ X0. Suppose now that i ∈ S(σ), and more precisely

that i ∈ Ys. Then, up(i) ⊆ Ys and up(i) ∩ uPred(Xs ∪ Ys ∪ I(σ)) = �, and since for all

t < δ, x after (ε, t) ∈ X0, it follows that up(x) ⊆ X0 ∪ Ys, meaning that x ∈ Y0, which

is absurd. Thus, i �∈ Ys. This means that either i ∈ I(σ) or i ∈ Xs. Thus, there exists

δ′ ∈ R�0 s.t. iafter (ε, δ′) ∈ I(σ) and for all t < δ′, iafter (ε, t) ∈ Xs ⊆ X (if i ∈ I(σ), then

δ′ = 0). Then, x after (ε, δ + δ′) = i, and for all t < δ + δ′, x after (ε, t) ∈ X. Moreover,

(X ∪Y)∩ uPred(X ∪ Y ∪ I(σ)) = � since Y = Ys ∪Y0 ⊆ S(σ)∪X0, X ⊆ Xs ∪X0, and

X ∪ Y = X0 ∪ S(σ). This means that X ∪ Y ⊆ S(σ) and since X0 ⊆ X ∪ Y , X0 ⊆ S(σ).

Since q = q after (ε, 0) with ε ∈ tw(Σu) and t ∈ R�0, q ∈ X0 and thus q ∈ S(σ). Thus,

if σ �= ε and q ∈ Q, P(σ, q) =⇒ q ∈ S(σ).

Thus, for all σ ∈ Σ∗c , for all q ∈ Q, P(σ, q) =⇒ q ∈ S(σ). Thus, the contrapositive

also holds, meaning that for all σ ∈ Σ∗c , for all q ∈ Q, q �∈ S(σ) =⇒ ¬P(σ, q), that is

q �∈ S(σ) =⇒ (∃σu ∈ tw(Σu), q after σu �∈ FG ∧ ∀t > 0, q after (σu, t) �∈ S(σ) ∪ I(σ) ∧ ∀σ′u �
σu, σ

′
u �= ε =⇒ q after σ′u �∈ S(σ) ∪ I(σ)).

Proposition 4.4. Eϕ is optimal in Pre(ϕ) as per Definition 4.4.

Proof. Let us consider E ′ : tw(Σ) × R�0 → tw(Σ), that is compliant with respect to

Σc and Σu. Let us also consider σ ∈ tw(Σ) and (t′, a) s.t. σ.(t′, a) ∈ tw(Σ). Suppose

now that (σ, t′) ∈ Pre(ϕ), E ′(σ, t′) = Eϕ(σ, t′) and that Eϕ(σ.(t′, a)) ≺d E ′(σ.(t′, a)).

Consider (σs, σb, σc) = storeϕ(σ, t′), and (σt, σd, σe) = storeϕ(σ.(t′, a), t), where t is s.t. σt =

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 210

Eϕ(σ.(t′, a)). Then, considering proof of soundness, since (σ, t′) ∈ Pre(ϕ), nobs(σb, t
′)−t t

′ ∈
G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)).σc).

— If a ∈ Σu, this means that σd −t t
′ ∈ G(Reach(σs.(t

′, a)),ΠΣ(nobs(σb, t
′)).σc). Let

us consider q = Reach(σs.(t
′, a)) and buffc = ΠΣ(nobs(σb, t

′)).σc. Then, σd −t t
′ =

minlex(max�(G(q, buffc))). E ′ is compliant with respect to Σc and Σu, thus, since

Eϕ(σ, t′) = E ′(σ, t′), there exists σd2 ∈ tw(Σ) s.t. E ′(σ.(t′, a)) = σs.(t
′, a).σd2. Since

Eϕ(σ.(t′, a)) ≺d E ′(σ.(t′, a)), then σd ≺d σd2, thus σd −t t
′ ≺d σd2 −t t

′ = wd2, meaning

that wd2 �∈ G(q, buffc). Then, following the definitions of G and S, there are several

cases:

– ΠΣ(wd2) �� buffc. But, since E ′ is compliant, and E ′(σ) = Eϕ(σ), this is not possible.

– q after wd2 �∈ FG, meaning that E ′(σ.(t′, a)) �|= ϕ.

– There exists t′′ ∈ R�0 s.t. q after (wd2, t
′′) �∈ S(ΠΣ(obs(wd2, t

′′))−1.buffc). Let us then

note buffc2 = ΠΣ(obs(wd2), t
′′)−1.buffc and q2 = q after (wd2, t

′′). Then, following

lemma A.10, there exists σu ∈ tw(Σu) s.t. q2 after σu �∈ FG, for all t > 0,

q after (σu, t) �∈ S(buffc2) ∪ I(buffc2), and for all σ′u � σu, σ
′
u �= ε =⇒ q2 after σ′u �∈

S(buffc2)∪ I(buffc2). Then, considering that E ′ is compliant, either E ′(σ.(t′, a).(σu +t

t′′)) = σs.(t
′, a). obs(wd2 +t t

′, t′′).(σu +t t
′′), meaning that E ′(σ.(t′, a).σu) �|= ϕ, or there

exists σ′u � σu, wd3 �= ε such that ΠΣ(wd3) � ΠΣ(buffc2) and Reach(E ′(σ.(t′, a).(σ′u +t

(t′ + t′′)))) = q2 after σ′u after wd3. Since σ′u � σu, q2 after (σ′u, date(wd3(1))) �∈
S(buffc2) ∪ I(buffc2). Considering the definition of I, q2 after σ′u after wd3(1) �∈
S(ΠΣ(wd3(1))−1.buffc2) ∪ I(ΠΣ(wd3(1))−1.buffc2), because otherwise q2 after σ′u ∈
Predwd3(1)(S(ΠΣ(wd3(1))−1.buffc2)∪I(ΠΣ(wd3(1))−1.buffc2)) = I(buffc2), which is wrong.

In the same way, q2afterσ′uafter(wd3, date(wd3(1))) �∈ S(ΠΣ(obs(wd3, date(wd3(1))))−1 .

buffc2) ∪ I(ΠΣ(obs(wd3, date(wd3(1))))−1. buffc2). Thus, since it is not in S, we can

find again a word in tw(Σu) s.t. the output of E ′ will never be in S nor I, and end

up outside of FG. Whatever controllable events E ′ will output, its output will never

reach S nor I, and since E ′ can only output a limited number of controllable events

(no more than |buffc|), at some point it will not be able to output controllable

events anymore, and then there will be an uncontrollable word leading its output

outside of FG. Concatenating all the uncontrollable words obtained from lemma

A.10, there would be σug ∈ tw(Σu) s.t. E ′(σ.(t′, a).σug) �|= ϕ.

Thus, if a ∈ Σu, there exists σu ∈ tw(Σu) such that E ′(σ.(t′, a).σu) �|= ϕ.

— If a ∈ Σc, then since (σ, t′) ∈ Pre(ϕ), σd −t t
′ ∈ G(Reach(σs, t

′),ΠΣ(nobs(σb, t
′)).σc.a).

Considering q = Reach(σs) and buffc = ΠΣ(nobs(σb, t
′)).σc.a, the previous proof (when

a ∈ Σu) still holds. Thus, if a ∈ Σc, there also exists σu ∈ tw(Σu) s.t. E ′(σ.(t′, a).σu) �|= ϕ.

This means that whenever E ′(σ) = Eϕ(σ) ∧ Eϕ(σ.(t′, a)) ≺d E ′(σ.(t′, a)), then there exists

σu ∈ Σu s.t. E ′(σ.(t′, a).σu) �|= ϕ. Thus, Eϕ is optimal.

Proposition 4.5. The output of E for input σ is Eϕ(σ).

Proof. In this proof, we use some notation from Section 4.2:

— CE = tw(Σ)× Σ∗c × Q× R�0 × {�,⊥} is the set of configurations.

— cE0 = 〈ε, ε, q0, 0,⊥〉 ∈ CE is the initial configuration.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 211

— ΓE = ((R�0×Σ)∪{ε})×Op×((R�0×Σ)∪{ε}) is the alphabet, composed of an optional

input, an operation and an optional output.

— The set of operations, to be applied in the given order is

{compute , dump , pass-uncont , store-cont , delay }.
Let us also introduce some specific notation. For a sequence of rules w ∈ ΓE∗, we note

input(w) = Π1(w(1)).Π1(w(2)) . . .Π1(w(|w|)) the concatenation of all inputs from w. In the

same way, we define output(w) = Π3(w(1)).Π3(w(2)) . . .Π3(w(|w|)) the concatenation of all

outputs from w. Since all configurations are not reachable from cE0, for a word w ∈ ΓE∗,

we will say that Reach(w) = c if cE0 ↪
w−→E c, or Reach(w) = ⊥ if such a c does not exist. Let

us also define function Rules which, given a timed word and a date, returns the longest

sequence of rules that can be applied with the given word as input at the given date:

Rules :

{
tw(Σ)× R�0 → ΓE

(σ, t) �→ max�({w ∈ ΓE | input(w) = σ ∧Reach(w) �= ⊥ ∧Π4(c) = t})

Since time is not discrete, the rule delay can be applied an infinite number of times by

slicing time. Thus, we consider that the rule delay is always applied a minimum number

of times, i.e., when two rules delay are consecutive, they are merged into one rule delay,

whose parameter is the sum of the parameters of the two rules. The runs obtained are

equivalent, but it allows to consider the maximum (for prefix order) of the set used in the

definition of Rules. We then extend output to timed words with a date: for σ ∈ tw(Σ),

and a date t, output(σ, t) = output(Rules(σ, t)). For σ ∈ tw(Σ) and t ∈ R�0, let P(σ, t) be

the predicate, ‘Eϕ(σ, t) = output(σ, t)∧ (((σs, σb, σc) = storeϕ(obs(σ, t), t)∧ 〈σE
b , σ

E
c , q

E, t, b〉 =
Reach(Rules(σ, t))) =⇒ σE

b = nobs(σb, t) ∧ σE
c = σc ∧ qE = Reach(σs, t) ∧ (b = � =⇒

G(qE, σE
c) �= �)).’ Let P(σ) be the predicate ‘∀t ∈ R�0,P(σ, t) holds.’ Let us then prove that

for all σ ∈ tw(Σ),P(σ) holds.

— Induction basis: For σ = ε, let us consider t ∈ R�0. Then, storeϕ(ε, t) = (ε, ε, ε) and

Reach(ε, t) = 〈l0, v0 + t〉. On the other hand, the only rules that can be applied

are delay, and possibly compute, since there is not any input, nor any element

to dump. Thus, Rules(ε, t) = ε/ delay(t)/ε, or there exists t′ � t s.t. Rules(ε, t) =

ε/ delay(t′)/ε . ε/ compute()/ε . ε/ delay(t− t′)/ε. Let us consider c = Reach(Rules(ε, t)).

Then, c = 〈ε, ε, 〈l0, v0 + t〉, t, b〉. If rule compute appears in Rules(ε, t), then b = �,

meaning that G(q0 after (ε, t′), ε) �= �, and thus that G(q0 after (ε, t), ε) �= � since

t � t′. Otherwise b = ⊥. All the other values remain unchanged between the two cases.

In both cases, output(Rules(ε, t)) = ε = Eϕ(ε, t). Thus, P(ε) holds.

— Induction step: Let us suppose now that for some σ ∈ tw(Σ), P(σ) holds. Let us consider

(t′, a) ∈ R�0 × Σ s.t. σ.(t′, a) ∈ tw(Σ). Let us then prove that P(σ.(t′, a)) holds. Let us

consider t ∈ R�0, c = 〈σE
b , σ

E
c , q

E, t′, b〉 = Reach(Rules(σ, t′)), (σs, σb, σc) = storeϕ(σ, t′)

and (σt, σd, σe) = storeϕ(obs(σ.(t′, a), t), t). If t < t′, then obs(σ.(t′, a), t) = obs(σ, t) and

P(σ.(t′, a), t) trivially holds, since P(σ) holds. Thus, in the following, we consider that

t � t′, so that storeϕ(obs(σ.(t′, a), t), t) = storeϕ(σ.(t′, a), t):

– If a ∈ Σu, rule pass-uncont can be applied. Let us consider c′ = c after ((t′, a)/

pass-uncont((t′, a))/(t′, a)). Then, c′ = 〈ε,ΠΣ(σE
b).σ

E
c , q
′, t′,⊥〉 with q′ = qE after (0, a).

Then, if t � tE1, where tE1 = min({t′′ | t′′ � t′ ∧ G(q′ after (ε, t′′ − t′),ΠΣ(σE
b).σ

E
c) �=

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 212

�}), then rule delay(tE1 − t′) can be applied, followed by rule compute. Since

qE = Reach(σs, t
′), σE

b = nobs(σb, t
′), and σE

c = σc (by induction hypothesis), then

G(q′ after (ε, t′′ − t′),ΠΣ(σE
b).σ

E
c) = G(Reach(σs.(t

′, a), t′′),ΠΣ(nobs(σb, t
′)).σc), thus

tE1 = t1, where t1 is defined in Definition 4.6. Thus, c′ after ((ε/ delay(tE1 − t′)/ε) .

(ε/ compute /ε)) = 〈σE
d , σ

E
e , q
′ after (ε, t1 − t′), t1,�〉, with σE

d = κϕ(q′ after (ε, t1 −
t′),ΠΣ(σE

b).σ
E
c) +tt1 = κϕ(Reach(σs.(t

′, a), t1),ΠΣ(σb).σc)+t t1 = σd, and thus σE
e = σe.

Then, rules delay and dump can be applied until date t is reached. In the end,

Reach(Rules(σ.(t′, a), t)) = c′ afterw, where w is composed of an alternation of rules

delay and dump, thus Reach(Rules(σ.(t′, a), t)) = 〈nobs(σE
d , t), σ

E
e , q
′after(obs(σE

d , t)−t

t′, t− t′), t,�〉 = 〈nobs(σd, t), σe,Reach(σt, t), t,�〉. Then, output(Rules(σ . (t′, a), t)) =

output(Rules(σ, t′)) . (t′, a) . obs(σE
d , t) = σs . (t

′, a) . obs(σd, t) = σt. Thus, if t � t1,

P(σ.(t′, a), t) holds. Otherwise, t < t1, and then rule dump cannot be applied, since

Π5(c
′) = ⊥, and rule compute also cannot be applied. Thus, the only rule that

can be applied is delay, so that Reach(Rules(σ.(t′, a), t)) = 〈ε,ΠΣ(σE
b).σ

E
c , q
′ after

(ε, t − t′), t′,⊥〉. Since t < t1, this means that σd = ε and σe = ΠΣ(σb) . σc. Thus,

output(Rules(σ . (t′, a), t)) = output(Rules(σ, t′)).(t′, a) = σs.(t
′, a) = σt, and σE

d = σd,

and σE
e = σe. This means that P(σ.(t′, a), t) holds when t < t1. Thus, if a ∈ Σu, then

P(σ.(t′, a), t) holds for all t � t′.

– Otherwise, a ∈ Σc. Then, rule store-cont can be applied. Let us consider c′ = c after

((t′, a)/ store-cont(a)/ε). Then, c′ = 〈ε,ΠΣ(σE
b).σ

E
c .a, q

E, t′,⊥〉. Let us consider tE2 =

min({t′′ ∈ R�0 | t′′ � t′ ∧G(qE after (ε, t′′ − t′),ΠΣ(σE
b).σ

E
c .a) �= �}). Since G(qE after

(ε, t′′ − t′),ΠΣ(σE
b).σ

E
c .a) = G(Reach(σs, t

′′),ΠΣ(nobs(σb, t
′)).σc.a), it follows that tE2 =

t2 as defined in Definition 4.6. If t � tE2 = t2, then rule delay(t2− t′) can be applied,

followed by rule compute. Then, c′ after ((ε/ delay(t2 − t′)/ε).(ε/ compute()/ε)) =

〈σE
d , σ

E
e , q after (ε, t2 − t′), t2,�〉, where σE

d = κϕ(q after (ε, t2 − t′),ΠΣ(σE
b).σ

E
c .a) +t

t2 = κϕ(Reach(σs, t2),ΠΣ(σb).σc.a) +t t2 = σd. Then, σE
e = σe. Then, an alternation

of rules delay and dump can be applied until date t is reached. This leads to

Reach(Rules(σ . (t′, a), t)) = 〈nobs(σE
d , t), σE

e , q after (obs(σE
d , t), t), t, �〉 =

〈nobs(σd, t), σe, Reach(σt, t), t, �〉. Moreover, output(Rules(σ . (t′, a), t)) =

output(σ, t′). obs(σd, t) = σs. obs(σd, t) = Eϕ(σ.(t′, a), t). Thus, if t � t2, P(σ.(t′, a), t)

holds. Otherwise, t < t2, meaning that σE
d = ε = σd, and σE

e = ΠΣ(σE
b).σ

E
c .a =

ΠΣ(nobs(σb, t′)) . σc . a = σe, and output(σ . (t′, a), t) = output(σ, t′) = σs =

Eϕ(σ.(t′, a), t). Thus, P(σ.(t′, a), t) holds.

Thus, P(σ) =⇒ P(σ.(t, a)).

Thus, by induction, for all σ ∈ tw(Σ),P(σ) holds. In particular, for all σ ∈ tw(Σ), and for

all t ∈ R�0, output(σ, t) = Eϕ(σ, t), meaning that the output of the enforcement monitor

E with input σ at time t is exactly the output of function Eϕ with the same input and the

same date.

References

Alur, R. and Dill, D. (1992). The theory of timed automata. In: de Bakker, J., Huizing, C., de Roever,

W. and Rozenberg, G. (eds.) Real-Time: Theory in Practice, Lecture Notes in Computer Science,

vol. 600, Berlin Heidelberg: Springer, 45–73.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

Optimal enforcement of (timed) properties with uncontrollable events 213

Basin, D., Jugé, V., Klaedtke, F. and Zălinescu, E. (2013). Enforceable security policies revisited.

ACM Transactions on Information and System Security. 16 (1) 3:1–3:26.

Basin, D., Klaedtke, F. and Zalinescu, E. (2011). Algorithms for monitoring real-time properties.

In: Khurshid, S. and Sen, K. (eds.) Proceedings of the 2nd International Conference on Runtime

Verification (RV 2011), Lecture Notes in Computer Science, vol. 7186, Springer-Verlag, 260–275.

Bloem, R., Könighofer, B., Könighofer, R. and Wang, C. (2015). Shield synthesis: - Runtime

enforcement for reactive systems. In: Proceedings of the Tools and Algorithms for the Construction

and Analysis of Systems - 21st International Conference, TACAS 2015, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,

533–548.

Charafeddine, H., El-Harake, K., Falcone, Y. and Jaber, M. (2015). Runtime enforcement for

component-based systems. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing, 2015, 1789–1796.

Colombo, C., Pace, G. J. and Schneider, G. (2009a). LARVA — safer monitoring of real-time

Java programs (tool paper). In: Hung, D.V. and Krishnan, P. (eds.) Proceedings of the 7th

IEEE International Conference on Software Engineering and Formal Methods (SEFM 2009), IEEE

Computer Society, 33–37.

Colombo, C., Pace, G. J. and Schneider, G. (2009b). Safe runtime verification of real-time properties.

In: Ouaknine, J. and Vaandrager, F.W. (eds.) Proceedings of the 7th International Conference on

Formal Modeling and Analysis of Timed Systems (FORMATS 2009), Lecture Notes in Computer

Science, vol. 5813, Springer, 103–117.

Dolzhenko, E., Ligatti, J. and Reddy, S. (2015). Modeling runtime enforcement with mandatory

results automata. International Journal of Information Security 14 (1) 47–60.

Falcone, Y., Havelund, K. and Reger, G. (2013). A tutorial on runtime verification. In: Broy,

M., Peled, D.A. and Kalus, G. (eds.) Engineering Dependable Software Systems, NATO Science

for Peace and Security Series, D: Information and Communication Security, vol. 34, IOS Press,

141–175.

Falcone, Y., Mounier, L., Fernandez, J. and Richier, J. (2011). Runtime enforcement monitors:

Composition, synthesis, and enforcement abilities. Formal Methods in System Design 38 (3) 223–

262.

Leucker, M. and Schallhart, C. (2009). A brief account of runtime verification. Journal of Logic

Programming 78 (5) 293–303.

Ligatti, J., Bauer, L. and Walker, D. (2009). Run-time enforcement of nonsafety policies. ACM

Transactions on Information and System Security 12 (3) 19:1–19:41.

Pinisetty, S., Falcone, Y., Jéron, T. and Marchand, H. (2014a). Runtime enforcement of regular timed

properties. In: Cho, Y., Shin, S.Y., Kim, S., Hung, C. and Hong, J. (eds.) Symposium on Applied

Computing, SAC, Gyeongju, Republic of Korea: ACM, 1279–1286.

Pinisetty, S., Falcone, Y., Jéron, T. and Marchand, H. (2014b). Runtime enforcement of parametric

timed properties with practical applications. In: Lesage, J., Faure, J., Cury, J.E.R. and Lennartson,

B. (eds.) Proceedings of the 12th International Workshop on Discrete Event Systems, WODES,

Cachan, France: International Federation of Automatic Control, 420–427.

Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A. and Nguena-Timo, O. (2014c). Runtime

enforcement of timed properties revisited. Formal Methods in System Design 45 (3) 381–422.

Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H., Rollet, A. and Nguena-Timo, O.L. (2012). Runtime

enforcement of timed properties. In: Qadeer, S. and Tasiran, S. (eds.) Runtime Verification, 3rd

International Conference, RV 2012, Revised Selected Papers, Lecture Notes in Computer Science,

vol. 7687, Istanbul, Turkey: Springer, 229–244.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

M. Renard, Y. Falcone, A. Rollet, T. Jéron and H. Marchand 214

Ramadge, P.J. and Wonham, W.M. (1987). Supervisory control of a class of discrete event processes.

SIAM Journal on Control and Optimization 25 (1) 206–230.

Ramadge, P.J. and Wonham, W.M. (1989). The control of discrete event systems. Proceedings of the

IEEE 77 (1) 81–98.

Renard, M., Falcone, Y., Rollet, A., Pinisetty, S., Jéron, T. and Marchand, H. (2015). Enforcement

of (timed) properties with uncontrollable events. In: Leucker, M., Rueda, C. and Valencia, F.D.

(eds.) Theoretical Aspects of Computing - ICTAC 2015, Lecture Notes in Computer Science, vol.

9399, Springer International Publishing, 542–560.

Sammapun, U., Lee, I. and Sokolsky, O. (2005). RT-MaC: Runtime monitoring and checking

of quantitative and probabilistic properties. In: Proceedings of the IEEE 19th International

Conference on Embedded and Real-Time Computing Systems and Applications, 0:147–153.

Schneider, F.B. (2000). Enforceable security policies. ACM Transactions on Information and System

Security 3 (1) 30–50.

https://doi.org/10.1017/S0960129517000123 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129517000123

