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Abstract

During 20 years, the European astrobiologists collaborated within EANA, the European
Astrobiology Network Association, to help European researchers developing astrobiology pro-
grammes to share their knowledge, to foster their cooperation, to attract young scientists to
this quickly evolving interactive field of research, and to explain astrobiology to the public
at large. The experiment of Stanley Miller in 1953 launched the ambitious hope that chemists
would be able to shed light on the origins of life by recreating a simple life form in a test tube.
However, the dream has not yet been accomplished, despite the great volume of effort and
innovation put forward by the scientific community.

Quite different scenarios and routes, often in competition, have been followed and tested in the
laboratory to explain the origin of life, thus opening many questions:

• Organic life versus mineral life?
• Home-made organics versus extra-terrestrial delivery?
• Organics from atmospheric CO2 or CH4 or from hydrothermal systems?
• Warm little pond or submarine vent environment?
• Primeval soup or metabolism first for the inception of life?
• Bulk chemistry or chemistry on the rocks?
• Unique event or plurality?
• Reasoned chemistry or messy alchemy-type approach?
• Chance mechanism versus determinate mechanism for the origin of homochirality?

Life emerged on Earth when parts of chemical automata self-assembled to generate autom-
ata capable of both self-reproduction and evolution. Sometimes, a minor error during this pro-
cess generated more efficient automata, which became the dominant entities. Like Luigi
Pirandello in his ‘Six Characters in Search of an Author’, chemists are in search of the ingre-
dients (the actors), the environment (the scene) and the most plausible scenarios for a start of
life on Earth, about 4 billion years ago.

Six characters in search of a scenario
1. The first chemical automata most likely emerged in liquid water. According to its molecular

weight, water should be a gas under standard terrestrial conditions. Its liquid state is due to
its ability to form hydrogen bonds, which also makes water a good solvent. Water is essen-
tial in the production of clays and other weathering products of minerals in rock, which
would have provided a continual supply of nutrients for life (Westall and Brack, 2018).
The earliest environments in which chemical automata developed were locations in
which wet−dry cycling conditions prevailed, thereby helping to drive the types of prebiotic
chemical reactions required for the emergence of life as we know it (Forsythe et al., 2015;
Becker et al., 2019; Campbell et al., 2019; Damer and Deamer, 2020).

2. It is generally believed that the essential components of primitive chemical automata were
organic molecules, i.e., molecules containing carbon and hydrogen atoms associated with oxy-
gen, nitrogen and sulphur atoms, as known in present-day life. With the exception of the small
amounts of organic molecules formed in the primitive atmosphere, the majority of carbon
molecules on the early Earth were either delivered by carbonaceous chondrites (Pizzarello
and Shock, 2010), micrometeorites (Maurette, 2006; Rojas et al., 2021), and cometary material
(Altwegg et al., 2016), or formed in the subsurface by processes catalysed by aqueous reactions
on the surfaces of subsurface rocks (Martin et al., 2008; Westall et al., 2018).

3. Rock and minerals constituting the earliest environments would have played an essential
role in the processes that led to the emergence of life (Hazen and Sverjensky, 2010).

1André Brack co-founded EANA with Beda Hoffmann, Gerda Horneck and David Wynn-Williams (Brack et al., 2001). The
network was formalized in Spring 2001 during the First European Workshop on Exo/Astobiology held in Frascati, Italy.
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Pumice is an example of a rock type that has been promoted as
a unique substrate with remarkable potential to support the
origin of life (Brasier et al., 2011). Clays also offer advanta-
geous features as key minerals in origin of life scenarios due
to their (1) molecular order and repeating topological arrange-
ment with the ability to serve as polymerization templates, (2)
large adsorption capacity with the ability to concentrate
organic chemicals, and (3) shielding capacity to protect tem-
plated organic molecules against sunlight and other types of
incoming radiation (Ertem, 2021). The confinement of several
types of organic molecules essential for life in silica gel were
likely also necessary for the earliest life (Gorrell et al., 2017;
Dass et al., 2018).

4. The environmental ‘stage’.

Any plausible model for the origin of life must take into account
the geological complexity and diversity of the primitive Earth.
Liquid water was present at Earth’s surface due to the size of
the planet, its distance from the Sun, and the greenhouse atmos-
phere maintained by crustal recycling as a result of plate tectonics
and volcanism that continuously released water and key atmos-
pheric gases important for life, such as CO2 trapped in subducted
carbonates. Other environmental conditions on the ancient Earth
were very different from those of today: anoxygenic (Schopf et al.,
2017), a warm to hot and acidic ocean; a high flux of ultraviolet
(UV) radiation (Ranjan and Sasselov, 2017); and a great amount
of volcanic and hydrothermal activity (Nisbet and Sleep, 2001;
Westall et al., 2018). Accordingly, hydrothermal environments
at Earth’s surface have gained renewed interest as possible cradles
for the origin of life (Sojo et al., 2016; Branscomb and Russell,
2018; Westall et al., 2018; Deamer et al., 2019; Damer and
Deamer, 2020; White et al., 2020).

5. Far from equilibrium wet−dry cycling reactants

One can envision a promising area for future research that con-
sists of an open system in which far-from-equilibrium wet−dry
cycling of organic reactions occurs repeatedly and iteratively at
mineral surfaces under hydrothermal-like conditions. Additional
detailed reviews about the origins of cellular life can be found
in the literature (Schrum et al., 2010; Lambert et al., 2012;
Ruiz-Mirazo et al., 2014; Camprubí et al., 2019).

6. Systems chemistry, the reduction of a problem to a set of
essential characteristics, was first used in 2005 by von
Kiedrowski (Kindermann et al., 2005; Stankiewicz and
Eckardt, 2006) when describing the kinetic and computational
analysis of a nearly exponential organic replicator. As a rele-
vant example of the system chemistry approach, Sutherland’s
team showed that precursors of ribonucleotides, amino acids
and lipids can all be derived by the reductive homologation
of hydrogen cyanide and some of its derivatives, and thus
that all the cellular subsystems could have arisen simultan-
eously through common chemistry (Patel et al., 2015). The
essence of systems chemistry has also been recently expanded
(Strazewski, 2019).

Two main possible strategies

Two distinct operational approaches, autotrophy and hetero-
trophy, are promoted as enabling the earliest life, their differences
depending upon the role played by CO2. In the ‘metabolism-first

approach,’ the proponents of autotrophic life call for the direct
formation of simple molecules from CO2 to rapidly generate life
(Wächtershäuser, 2007). Energy sources with the capacity to
reduce CO2 were likely provided by the oxidative formation of
pyrite from iron sulphide and hydrogen sulphide, which would
have given rise to a two-dimensional ‘surface metabolism’. A
laboratory test of this scenario in an oceanic setting, as proposed
by Michael Russell and colleagues (Martin et al., 2008), simulated
the prevailing conditions in alkaline hydrothermal vents and gen-
erated low yields of simple organics (Herschy et al., 2014). Hence,
a challenge remains for the proponents of a metabolism first
approach, namely, to produce large enough precursor prebiotic
molecules to support the emergence of life as we know it.

In the second hypothesis, the primeval soup scenario (also
known as ‘replication first’), complex organic molecules accumu-
lated in a warm little pond, à la Darwin. Laboratory efforts to gen-
erate a primitive living cell-like system with hydrothermal
conditions, wet–dry cycling, or minerals continue to the present,
with further endeavours required to focus on constraining the
boundary conditions to produce key molecules, such as protein
enzymes and ribonucleic acid (RNA), and to compartmentalize
them (Monnard and Walde, 2015).

For compartmentalization, amphiphilic compounds can spon-
taneously assemble into membranous vesicles in hydrothermal
fluids (Milshteyn et al., 2018; Damer and Deamer, 2020).
Experiments that demonstrate how different prebiotically avail-
able building blocks can become the precursors of vesicle-forming
phospholipids were reviewed by Fiore and Strazewski (2016). For
example, mixtures of C10–C15 single-chain amphiphiles form
vesicles in aqueous solutions at temperatures of ∼70 °C in the
presence of isoprenoids and under strongly alkaline conditions
(Jordan et al., 2019). Vesicles functionalized with RNA and pep-
tides would have provided an interesting step towards the forma-
tion of early protocells (Izgu et al., 2016).

As for prebiotic peptides, considerations include the role of min-
eral surface chemistry in controlling their origin (Erastova et al.,
2017) and formation on oxide surfaces (Lambert et al., 2013;
Kitadai et al., 2017) and on other minerals (Kitadai et al., 2021).
The self-assembly of longer prebiotic polypeptides produced by
the condensation of non-activated amino acids on oxide surfaces
has also been reported (Martra et al., 2014). Environmentally driven
wet–dry cycles would have favoured ester-mediated amide bond for-
mation (Forsythe et al., 2015), and short peptides were likely to have
played a role in the steps that led to the formation of a protocell
(Fishkis, 2007), as reviewed in Frenkel-Pinter et al. (2020).

RNA played probably a starring role in life’s emergence (Budin
and Szostak, 2010; Bernhardt, 2012; Higgs and Lehman, 2015;
Benner et al., 2020), and significant progress in producing it abio-
tically in a ‘one-pot synthesis’ has been made. As already men-
tioned, Sutherland’s team has simultaneously produced the
precursors of nucleic acid amino acids and lipids, starting with
hydrogen cyanide, hydrogen sulphide, and UV light (Patel
et al., 2015). The synthesis of the pyrimidine nucleosides driven
solely by wet–dry cycles has also been reported (Becker et al.,
2019). In addition, 5′-mono- and diphosphates can form select-
ively in one-pot reactions in the presence of phosphate-containing
minerals. Diamidophosphate efficiently phosphorylates a wide
variety of potential building blocks, nucleosides/nucleotides,
amino acids, and lipid precursors under aqueous conditions.
Significantly, higher-order structures, oligonucleotides, peptides,
and liposomes, are formed under the same phosphorylation reac-
tion conditions (Gibard et al., 2018).
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Conclusion

Despite encouraging results, it still seems difficult to consider that
life started with true RNA molecules, long RNA strands being not
simple enough and yet too difficult to build under prebiotic con-
ditions. As a prediction, a promising avenue will consist of open
wet–dry cycling organic reactions running far from equilibrium,
at mineral surfaces and under hydrothermal-like conditions. Let
brave chemists face the challenge. To young astrobiologists,
I absolutely agree with James Fraser Stoddart when he recom-
mended ‘Whatever you do, tackle a ‘big problem’ in chemistry.
Although the road you will travel along will be quite unpredictable,
it will reveal an endless supply of surprises and the experience will
be a rewarding one’ (Stoddart, 2012).
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