
A Method of Over Bounding Ground
Based Augmentation System (GBAS)

Heavy Tail Error Distributions

Ronald Braff and Curtis Shively

(Center for Advanced Aviation System Development at The MITRE Corporation)
(Email : rbraff@cox.net)

The purpose of this paper is to describe a statistical method for modelling and accounting for
the heavy tail fault-free error distributions that have been encountered in the Local Area
Augmentation System (LAAS), the FAA’s version of a ground-based augmentation system

(GBAS) for GPS. The method uses the Normal Inverse Gaussian (NIG) family of distri-
butions to describe a heaviest tail distribution, and to select a suitable NIG family member
as a model distribution based upon a statistical observability criterion applied to the FAA’s

LAAS prototype error data. Since the independent sample size of the data is limited to
several thousand and the tail probability of interest is of the order of 10x9, there is a chance
of mismodelling. A position domain monitor (PDM) is shown to provide significant miti-
gation of mismodelling, even for the heaviest tail that could be encountered, if it can meet

certain stringent accuracy and threshold requirements. Aside from its application to GBAS,
this paper should be of general interest because it describes a different approach to navi-
gation error modelling and introduces the application of the NIG distribution to navigation

error analysis.
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1. INTRODUCTION. To meet the stringent accuracy and signal integrity re-
quirements for precision approach and landing, GPS requires a local ground-based
augmentation system (GBAS). A GBAS enhances accuracy by providing a single
correction to each pseudorange measurement that accounts for common errors,
such as incorrect satellite ephemeris and clock bias, and unknown propagation de-
lays due to the ionosphere and troposphere. It ensures the integrity of the satellite
signals by employing monitors to detect errors due to satellite failures (e.g., dis-
torted signal waveform) as well as ground facility errors. A top-level description of
the FAA’s GBAS, the Local Area Augmentation System (LAAS) Ground Facility
(LGF), can be found in (Braff, 1997–98). Detailed requirements of the LAAS Cate-
gory I (CAT I) airborne equipment are given in (RTCA, 2000). The CAT I LGF
has already been specified (FAA, 2002). The CAT II/III LAAS requirements are
under development. This paper is concerned with an aspect of integrity that involves
the LGF’s contribution to the fault-free errors in the pseudorange corrections, and

THE JOURNAL OF NAVIGATION (2005), 58, 83–103. f The Royal Institute of Navigation
DOI: 10.1017/S0373463304003029 Printed in the United Kingdom

https://doi.org/10.1017/S0373463304003029 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463304003029


the illustrative application is to CAT I. The characterization of these errors is prob-
lematic because their tail probability has to be bounded by order 10x9 (CAT I) and
10x11 (CAT II/III), and it is obviously impossible to acquire a sufficient indepen-
dent sample size to make such estimates from data.

1.1. Over bounding of fault-free errors. The fault-free errors are due to satellite
signal multipath and receiver/antenna noise. From analysis of data, the tail prob-
ability of these errors even at thet3s points of their distribution is sometimes found
to be significantly heavier than that of the Gaussian distribution. The LGF addresses
this heavy-tail problem by multiplying the root-mean-square (RMS) error of each
correction by an ‘‘ inflation factor ’’ greater than 1 to establish the broadcast estimate
of the RMS error (called spr_gnd) such that the probability of exceeding the lateral
(LPL) and vertical (VPL) protection levels is smaller than or equal to an allocated
requirement. This process is called ‘‘error over bounding. ’’ The spr_gnd value for each
of the corrections is transmitted to the aircraft where they are the inputs to standard
equations that calculate VPL and LPL for the fault-free errors (RTCA, 2000). The
VPL and LPL are then compared to corresponding alert limits (VAL and LAL). An
alert is given if any of these protection levels exceed their corresponding alert limits.
The fault-free integrity check in the aircraft has the effect of ruling out poor satellite
geometries that significantly amplify the fault-free fault errors in the position domain
(dilution-of-precision effect).

A procedure for establishing the inflation factor, If, for over bounding is to deter-
mine its solution in the following equation

Prob{R>Kspr gnd
}=2

ZxK If s

x1

fr (r)dr=2W(xK) (1)

fr : assumed zero mean and symmetric probability density function (PDF) of the
correction errors
K: required multiple of sigma, K=5.8 for CAT I GBAS to achieve probability
6.67r10x9

W : Gaussian cumulative distribution function (CDF) with zero mean and unit vari-
ance
If : Inflation factor that causes the tail probability to equal 2W (xK)
s : RMS error of the corrections, spr_gnd=If s

It is seen that the effect of the inflation factor is to increase the tail points totKIf s
so that the required Gaussian tail probability for K is achieved at these points.

The over bounding challenge for heavy tails is to find a suitable PDF (fr) in (1) that
can be used in the derivation of the inflation factor. The FAA has been sponsoring
research on two approaches to derive such a PDF. The preferred approach is to base
the PDF on physical principles. The other one is to find a method to base the PDF on
statistical principles. The latter approach, the subject of this paper, serves as a sub-
stitute in the event that the more difficult physical method is not developed in time
when LAAS is first implemented.

1.2. Physically derived fault-free error model. From the physics of nominal multi-
path and reference antenna gain pattern, the multipath contaminated signal at the
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antenna output is derived. The multipath model could represent the topology of an
actual site. This signal model is then the input to a model of receiver signal processing
including receiver noise. The output is a time series of the navigation sensor error due
to multipath and receiver noise. This time series is then sampled and processed to
form an error distribution. Errors from diffuse and specular multipath are being
considered. So far, it has been found difficult to derive an acceptable error distri-
bution by this method. References (Brenner, 1998) and (Pervan, 2000) contain early
discussions of this type of modelling for LAAS.

1.3. Statistically derived fault-free error model. From the observation of large
error behaviour, a heavy tail error distribution is estimated using a statistical method.
The method has to be conservative due to insufficient data. The conservatism of the
estimation method leads to an inflation factor that is expected to be larger than one
that would be derived from a physical model. If the inflation factor is too large,
system availability could be significantly decreased.

There has been interest in estimating heavy-tail distributions for navigation errors.
For example, in Campos, 2002 a family of exponential distributions of the form,
Fb(x)=A exp(xa|x|b), 0<bf2, is introduced. In this expression b=2 and b=1
correspond to the Gaussian and Laplacian distributions, respectively. It was found in
Campos, 2002 that the distribution with b=0.5 provides the best fit to an aircraft
altitude distribution. Years ago, it was shown that the Laplacian distribution could
have a physical interpretation as an approximation of a mixture of Gaussian dis-
tributions of different standard deviations due to the pooling of error data from
navigation systems having different accuracies (Parker, 1966). If the distribution of
standard deviation values is uniformly distributed the error distribution approaches
the Laplacian. Gaussian mixtures are a general class of heavy-tail distributions that
have been studied in detail (Cornell, 1990).

The approach taken in this paper does not postulate an error distribution that is
formed by matching it to the data’s distribution. Rather it starts with the recognition
that the tail probability is mathematically limited. This limitation is illustrated by the
well-known Chebyshev inequality when the mean is zero, Prob{|x|>K}fKx2, where
K is the standard deviation multiplier. If certain reasonable constraints are placed on
the probability density function (PDF), it could be possible to further decrease this
upper bound tail probability. The constraints on the PDF are based on characteristics
of the Gaussian distribution. These characteristics are symmetry about the central
point, strictly decreasing, greater than zero at all points, and differentiable at all
points, including the central point. To date, our organization’s research has derived
an upper bound probability for only the constraints of symmetry and non-increasing
PDF. Its form is a Dirac delta function located at the central point combined with a
uniform distribution (Marshall, 2003). The appendix describes this PDF. Although
this distribution is a mathematical construct and is not even physically realizable,
it does provide an upper bound that is somewhat smaller than the Chebyshev. The
resulting inequality is Prob{|x|>K}f(4/9) Kx2.

As stated previously, it is impossible to attain a sufficient independent sample size
to estimate the actual tail probability. Therefore, the (4/9) Kx2 upper bound is used
as a benchmark of the conservatism of the tail probability derived from any candidate
error distribution that is based on observation of the existing data. For example,
considering the family of exponential distributions in Campos, 2002, the PDF has an
infinite derivative at the central point when b<1 so it has no resemblance to the
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observed LAAS correction error distributions which are not overly steep at the cen-
tral point. Therefore, by our adopted constraints, that family of distributions has to
be restricted to be in the interval 1 (Laplacian)fbf2 (Gaussian), and the Laplacian
provides the heaviest tail probability. The Laplacian tail probability at the CAT I
t5.8s points (2.74r10x4) is about 50 times smaller than the (4/9) Kx2 tail prob-
ability bound (0.0132).

The Normal Inverse Gaussian (NIG) (Hanssen, 2002) is a family of distributions
that match the four aforementioned constraints and provide a wide variety of dis-
tributions. As will be shown in the next section, a modification of the standard form
of the NIG produces a family of distributions containing a heaviest tail probability.
This heaviest tail probability is closely approximated by 0.181Kx2 for all K, which is
about 0.4 of the (4/9) Kx2 upper bound. Therefore, a conjecture is made that if the
theoretical upper-bound distribution were further constrained to be strictly decreas-
ing, non-truncated and differentiable at all points then its tail probability would be
even closer to the NIG heaviest tail distribution. Therefore, the NIG heaviest tail
distribution is assumed to be a reasonable estimate of the least upper bound tail
probability.

Figure 1 contains plots of the heaviest tail NIG and (4/9)Kx2 bounds that illustrate
the foregoing discussion. Note that the ratio of the two bounds is approximately
constant for all values of K. Included in the figure is the value of the shape parameter
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Figure 1. Tail probability upper bounds.
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of the NIG that yields the maximum tail probability for each value of K. Note, that
this parameter does not vary much with change in the K value.

The inflation factor for the heaviest tail NIG for CAT I (K=5.8)=12.9 is much too
large to be practical. Therefore, the scope of this paper is to use a statistical method,
based on the observability of large errors, to derive a practical inflation factor. A
member of the family of NIG distributions provides the model for the estimation, and
the heaviest tail probability member is used to analyze a worst-case mismodelling of
the distribution.

1.4. Contents of paper. The contents of the paper and their order are as follows:

’ Description of NIG family of distributions, and its extension to the distribution
of the average error from M reference receivers to gauge tail thinning from the
M – 1 convolutions

’ Definition of a large error observability criterion that is used as the rationale for
the selection of the NIG family member for inflation factor estimation

’ Comparison of selected NIG family member to error data collected at the FAA’s
LAAS Test Facility (LTF)

’ Transformation of N range domain error distributions from N satellites to the
position domain to gauge tail thinning from an additional N – 1 convolutions

’ Derivation of inflation factor
’ Description and analytical evaluation of a Position Domain Monitor (PDM)

that could be used to provide a real-time check on any mismodelling
’ Summary and discussion

2. NORMAL INVERSE GAUSSIAN DISTRIBUTION. The general
form of the NIG contains four parameters, one to account for symmetry, one for a
bias and two for shape (Hanssen, 2002). Setting the former two parameters to zero
yields a symmetric, strictly decreasing, differentiable and zero mean PDF given by

f(r,a, d)=
ad

p

exp(ad)ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2+d2

p K1 a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2+d2

p� �

Variance: s2=
d

a

(2)

r : fault-free errors in the pseudorange corrections
a, d : distribution shape parameters with dimensions lengthx1 and length, respect-
ively
K1 : modified Bessel function of the second kind, degree 1

The Fourier transform of the PDF in (2) (Hanssen, 2002) is

W(v,a, d)= exp(ad) exp(xd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 +v2

p
) (3)

To derive the PDF of the errors of the average of the pseudorange corrections from
M reference receivers, M – 1 convolutions of (2) are needed. Such convolutions can
be accomplished by multiplying Fourier transforms and then taking the inverse trans-
form. The multiplication is facilitated by the exponential forms in (3). The resulting
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Fourier transform is given by

W(v,a, d)M = exp((Ma)d) exp xd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Ma)2 +v2

q� �
(4)

The PDF in (2) is modified as follows to ensure that the variance remains constant
as the shape parameters are varied (Braff, 2003). Let s0 be the RMS of the PRC errors
from one reference receiver. A relationship for any s0 is established as a=d0/s0,
d=s0d0, where d0 is a dimensionless parameter that establishes the shape of the dis-
tribution and the heaviness of its tails. The inverse Fourier transform is derived by
substituting these values into (4) and noting the relationship between (2) and (3). The
resulting PDF for the errors of the average of M corrections is then given by

favg(r, d0 ,M)=
M d0

2

p

exp(M d0
2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2+ s2
0 d

2
0

q K1
M d0

s0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2+ s2

0 d
2
0

q� �
(5)

Equation (5) is the working equation that will be used in the analyses.
The two-sided tail probability is defined as

Prob{R > Ks}=2

Z1
Ks

favg (r, d0,M)dr (6)

The FAA’s GBAS, Local Area Augmentation System (LAAS), nominally broad-
casts the average correction from M=4 reference receivers. The tail probabilities for
M=1 (single reference receiver correction) and M=4 are plotted in Figure 2 for
K=5.8, the value used in the CAT I protection level equations.

In Figure 2, the NIG tail probability for M=1 increases with decrease in shape
parameter (d0), until it reaches a maximum at d0=0.148. It has the same tail prob-
ability as the Laplacian distribution when d0 is B1. As d0 becomes large, the tail
probability approaches that of the Gaussian. The M=4 plot illustrates how aver-
aging the corrections thins the tails of the distribution with respect to multiples of s0/
dM except when d0<0.1. Note that for all d0, the M=4 tails are thinner than the
M=1 tails when the tail points are defined by equal magnitudes rather than as
multiples of sigma.

3. RANGE DOMAIN OBSERVABILITY OF LAAS CORRECTION
ERRORS. In the collection and analysis of LAAS correction error data it has
been found that, due to independent sample size limitation, the tail probability can
only be observed out to the t3 – t4 ssample points of the distribution. This limi-
tation is due to the sorting of data into satellite-elevation-angle bins, temporal cor-
relation, and the diurnal repeatability of multipath error over at least several days.
Even if the core of the distribution up to t4 ssample tested to be Gaussian, it would
be risky to assume that further out the distribution remained Gaussian or followed
some other distribution unless there were a physical basis for this assumption. For
CAT I, a model of the tail probability up to the t5.8 ssample points and a means
for accounting for any mismodelling are needed.

The proposed method addresses this problem by selecting a mathematical distri-
bution (e.g., an NIG family member) such that if its tails were not heavy enough to
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bound those of the true distribution, then observation of the data would reveal, with
high probability, at least one error value that is greater than a selected value. This
technique is expected to produce an inflation factor that is larger than that produced
by a physical-based model, but still contains some uncertainty due to relatively small
sample size.

To select an appropriate distribution, observability as applied here needs to be
defined. It is defined as the probability of observing at least one error beyond the
tKssample points when the independent sample size is n. It is quantified as

Pobs(K)=1x(P0(K))n (7)

Pobs(K): probability of observing at least one error beyond tKssample points
P0(K): probability not observing an error beyond tKssample points per single obser-
vation for the selected distribution

P0(K)=2

ZKssample

0

favg(r, d0,M)dr (8)
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Figure 2. NIG tail probabilities as a function of the shape parameter.
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No errors were observed beyond t4 ssample in the FAA data collection. For this
analysis, the selected criterion for observability is Pobs(4.5)=0.999. This means that it
is near certain that the selected distribution at least bounds the tail at thet4.5ssample

points. Thet4.5ssample points rather than the 4.0ssample points are selected to provide
a more conservative distribution as will be discussed below. Dealing with covering
lack of observability up to the t5.8s points is also discussed below.

3.1. Selection of NIG family member. The next step is to determine which NIG
family member satisfies the Pobs(4.5)=0.999 observability criterion. Figure 3 contains
plots of the probability of not observing at least one value (1xobservability) beyond
a given multiple (K) of ssample for an independent sample size of 6699. This sample
size corresponds to the two heaviest-tail bins in the FAA’s LAAS Test Prototype
(LTP) data collection campaign (Warburton, 2002). The plots are for the average of
4 reference receivers which generated the LTP data, and is the nominal LAAS con-
figuration.

In Figure 3, the top-most curve represents the Gaussian distribution. Its prob-
ability of not being observed beyond 4.5 ssample is practically 1. This implies that
any distribution that is close to Gaussian would most likely be unobservable in the
tail. Therefore, a Gaussian or near-Gaussian assumption would need to be based on
physical reasoning.
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Figure 3. Unobservability of large errors (sample size=6699, average of four reference receivers).
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The remaining curves are for a range of NIG family members. The NIG for
d0=0.65 meets the observability criterion. Its observability for various tail points is
given in Table 1.

Referring to Figure 3, if the t4.0ssample points had been selected then the NIG for
d0 B 0.9 would have been selected. That distribution is less conservative in that it has
thinner tails than the d0=0.65 distribution.

To provide a perspective of how conservative the NIG (d0=0.65) tail probability is
in general beyond the t4.5 ssample points, it is compared in Figure 4 to the heaviest
tail NIG and the Gaussian tail. Recall in the introduction that an argument is made
for considering the heaviest tail NIG to be close to the mathematical upper bound
when reasonable constraints on the PDF were applied. Referring to Figure 4, the tail
probability (sum of both sides) at the t5.8 ssample points is 1.4r10x4 (d0=0.65) and
4.2r10x3 (d0=0.148), and their ratio is 0.033. The ratio indicates that, at worst, there
is a mathematical potential for two orders-of-magnitude of mismodelling in the tail
probability. This should be tempered by the common sense observation that the
model tail probability at the t5.8 s points is of the order of 10x4, which is quite
heavy, being about five orders-of-magnitude heavier than the Gaussian tail. How-
ever, if the tail probability uncertainty is still not acceptable for CAT I application

Table 1. Observability of Selected NIG (d0=0.65).

Tail Points (t) 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Observability 1 1 1 0.999 0.953 0.76 0.49
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Figure 4. Comparison of tail probabilities.
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after the inflation factor is applied, an independent monitor could be employed as will
be discussed below.

3.2. Correspondence to data. It is noted that the analysis up to this point has not
referred to any error distribution derived from data except for the observability of a
large error with respect to sample size. Figure 5 contains the CDF derived from one
of the elevation bins having the heaviest t3 – t4 ssample tail probabilities
(Warburton, 2002). Each elevation bin was sampled every two weeks for nine
months. The comparisons are with the CDF where the mean has been removed (dark
solid line, ‘‘0, 0.0531’’). The NIG values are displayed as ‘‘Xs’’ superimposed on the
figure. Note that the NIG (d0=0.65) is a good representation of the data. Although it
should be a necessary condition that the selected distribution should resemble the
data, since there is no known physical reason for the resemblance, no explicit credit is
taken for it.

4. DETERMINING INFLATION FACTOR TO ACHIEVE
GAUSSIAN OVER BOUND OF TAIL PROBABILITY. In this sec-
tion, the inflation factor, If, implicitly defined in (1), that causes the two-sided tail
probability at thet5.8spr_gnd points to be equal 2W(x5.8)=6.63r10x9 is derived. It
is first derived in the range domain for the distribution representing the average of

NIG CDF (δ0 = 0.65, Μ = 4):

K = _4 _ 3 _ 2 _ 1 0 1 2 3 4

0.0011 0.0052 0.026 0.134 0.5 0.9740.866 0.995 0.999

Figure 5. Comparison of FAA data CDF from elevation bin 17 to NIG (Courtesy FAAWilliam

J. Hughes Technical Center (Warburton, 2002)).
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M=4 corrections. In DeCleene, 2000 it is proven that if the range domain distri-
bution is over bounded then the resulting position domain distribution is also over
bounded. The average correction distribution is over bounded rather than the indi-
vidual reference receiver corrections because the average correction has thinner tails
due to the Mx1 convolutions involved in the transformation from a single reference
receiver error distribution to the distribution of the average of M receivers. Further
reduction of the error distribution tails occurs during the transformation to the po-
sition domain. Therefore, a general method for position domain error over bounding
is also discussed.

4.1. Over bounding of average correction. The average correction inflation factor
is calculated implicitly by substituting from (5), favg(r, 0.65, 4), into (1). The result is
If=2.2.

4.2. Over bounding in the position domain. For efficiency of exposition, only the
vertical position error is considered. The same analysis applies to the lateral error.
The vertical position RMS error can be expressed in a simplified form as

sv=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
n=1

s2
v, n

vuut (9)

sv,n : vertical component of RMS correction error due to satellite n
N: number of satellites in solution (No4)

The vertical position error distribution depends upon the satellite geometry, error
distributions of the N range measurements, and the weights used in the least-squares-
position solution. Therefore, there would need to be a different inflation factor
for each satellite configuration. To circumvent this problem, a worst-case tail prob-
ability in the position domain is needed. This worst case occurs when the RMS error
from a single satellite (sv,max) dominates the total RMS error. The worst case distri-
bution can be formulated based on the constraint that the projection elements in the
row vectors of the position solution matrix sum to zero in order to remove the re-
ceiver clock error. Using this constraint, a condition for the least upper bound was
predicted and then verified by simulation (sample size=105). The condition is that the
ratio of the largest RMS error to the total RMS error is limited to a specific value.

sv, maxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n=1

s2
v,n

s f
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1+
1

Nx1

r (10)

This condition can be satisfied by a projection vector containing N elements of the
form sv,maxx

sv,max

Nx1 x
sv,max

Nx1 :::::x
sv,max

Nx1

� �
. For comparison the best case occurs when all

of the sv,n are equal.
The PDF for the worst-case vertical position solution is obtained by the convol-

ution of the N PDFs, where individual values of sv,n are set equal to the elements of
the above vector and substituted as the values of s0 in (5) with d0=0.65 and M=4.
The convolution is done most easily and much faster by the Fast Fourier Transform
(FFT) method. The resulting vertical position PDF was constructed from a cubic
spline interpolation of the inverse FFT. The PDF is then substituted into (1) for the
over bound calculation.
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4.3. Over bound results. Figure 6 contains plots of inflation factor as a function
of the number of satellites in a position solution.

The plot with the O symbols is for the worst case tail probability in a position
domain solution. The resulting range of inflation factors is narrow, varying from
about 1.9 to 2.1 as N varies from 4 to 12. As can be seen, a slight reduction of the
inflation factor is achievable if over bounding is done in the position domain using
this general method. The best case shown at the bottom of the figure is too optimistic
in that actual and simulation data indicate that satellite geometries produce results
that are more toward the worst case.

The increase of worst-case inflation factor with increase in N is surprising. An
explanation is that as N increases the tails of the resulting position distributions
narrow due to the multiple convolutions ; however, the ratio in (10) also increases.
Apparently the tail thinning cannot quite offset the increase in the ratio.

4.4. Inflation factor for smaller sample sizes. The results so far are for the NIG
model where d0=0.65 and sample size equal to 6699. The NIG model needed for
smaller sample sizes is determined by applying the P0(4.5)=0.999 observability cri-
terion to smaller sample sizes. Table 2 contains the independent sample sizes needed
to satisfy the P0(4.5)=0.999 as a function of various values of the shape parameter d0.
The inflation factor is then calculated for each of the d0 values.
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Figure 6. CAT I inflation bounds as a function of the number of satellites in the position solution

(M=4 reference receivers).
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Note how the values of d0 decrease with decrease in sample size. For example, for a
sample size of about 2000, the NIG model would be d0=0.35. Figure 7 is a plot of
inflation factor as a function of sample size for the N=7 satellite position solution.
Recall from Figure 2 that the tail probability increases as d0 decreases. Thus as the
sample size decreases, the inflation factor increases as expected. From a system
availability consideration, it is desirable for the inflation factor to be no more than
about 2. In Figure 7, referring to the position domain worst case, it is indicated that
the independent sample size would have to be greater than 6000–7000 to meet this
goal.

5. POSITION DOMAIN MONITOR FOR MITIGATING
MISMODELLING. A position domain monitor (PDM) is an independent
GBAS receiver that is located away from the reference receivers. It generates

Table 2. Sample Sizes Needed to Satisfy P0(4.5)=0.999 Observability Criterion

Shape Parameter (d0) 0.25 0.35 0.45 0.55 0.65

Sample Size 1260 1890 3000 4650 6700

Relating Sample Size to Inflation Factor Based on 4.5 Sigma Criterion 
for 0.999 Observability
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Figure 7. Relating independent sample size to inflation factor.
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position solutions using the transmitted pseudorange corrections. The test statistic
is the differences between the position solution and the known antenna location.
Thus the PDM has the potential to detect unexpected large non-common fault free
errors, such as those due to site environmental changes as well as mismodelling of
the initially assumed error distribution. That is, the PDM can detect errors due to
the LGF or change in its environment, but not common errors due to the satellites.
There can be hundreds of different combinations of satellites available for a position
solution. For example, with 9 satellites in view there are 382 possible combinations
of 4 or more satellites. There seems to be no need to process all satellite combina-
tions. The PDM only processes those satellite combinations that produce protec-
tion levels that are just below the alert limit and enough combinations are chosen to
include all of the satellites. There is no need to process those combinations that
produce protection levels greater than the alert limit because they would be excluded
by the airborne protection level monitors. It is assumed that those satellite combi-
nations whose protection levels are well below the alert limit need not be processed
because large correction errors would be more likely to be detected through their
amplification by the poorer satellite geometries that cause the protection levels to
approach the alert limit.

As will be shown below by analysis, for the PDM to be effective its accuracy must
be comparable to the accuracy obtained from the averaging of the M=4 reference
receivers. It is proposed to attain this accuracy by increasing the PDM reference
receivers’ smoothing time from 100 to 400 s and to remove the repeatable satellite
multipath that occurs every day at the same sidereal time. These concepts are cur-
rently being validated through the PDM prototype that is being developed at the
FAA’s William J. Hughes Technical Center.

5.1. PDM effectiveness in detecting mismodelling of the distribution tails. The
PDM effectiveness is determined by comparing the integrity risk of mismodelling
without the PDM and with the PDM. This risk is defined as the probability that a
ground facility generated fault-free error in the position solution exceeds Kspr_gnd
(K=5.8 for CAT I) and the PDM threshold is not exceeded. Assuming the correction
and PDM errors are each NIG distributed with M=4 and M=1 reference receivers,
respectively, the vertical risk equation is given by

H0 risk=2

Z1
KIfsv, avg

ZKT sv, pdm xv

xKT sv, pdm xv

fv corr(v, d0 4, N) fv pdm(e, d0 1, N) dedv (11)

v: represents the vertical position error due to the fault-free LGF errors
e: represents the vertical error due to the PDM fault-free errors
fv_corr : PDF of ground facility fault-free component of vertical errors
fv_pdm: PDF of PDM fault-free vertical errors
sv,pdm: vertical position RMS error of PDM test statistic
sv,avg : vertical position component RMS error of average corrections from 4 refer-
ence receivers
If : inflation factor
KT: PDM threshold multiplier
N: number of satellites in position solution
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sv pdm=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1+C2

pdm)s
2
v, avg

q
Cpdm: ratio of PDM RMS error to sv,avg (a parameter of the analysis)

From (10), sv, avg=sv, max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ 1

Nx1

q
, and without loss of generality sv,max can be set

equal to any value.
The worst case position domain heavy tail for an N=7 satellite position solution is

the selected example. If=2.05 corresponds to NIG with d0=0.65. The PDFs in (11)
are derived from (5) (s0=1) using multiple convolutions of the form

fv, corr(v, d0 ,M,N)=
favg(r=sv1, d0 , 4)

sv1
� favg(r=sv2 , d0 , 4)

sv2
. . .� favg(r=svN , d0 , 4)

svN
(12)

sv1 = sv, max , svn =
sv,max

Nx1 (n=2, 3 . . .N)

� : symbol for convolution

Figure 8 contains plots of the integrity risk, with and without the PDM, as a
function of d0. 0.148fd0<0.65 represents mismodelling in the sense that the actual
tail probability is heavier than that assumed in the model. Recall that the heaviest

PDM Effectiveness to Ensure Overbounding for Inflation Set for Worst Case Position
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Figure 8. PDM mitigation of tail probability mismodelling.

NO. 1 OVER BOUNDING GBAS TAIL ERROR DISTRIBUTIONS 97

https://doi.org/10.1017/S0373463304003029 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463304003029


tail occurs when d0=0.148, and this is assumed to be the heaviest tail that can be
encountered based on PDF constraints discussed in the Introduction. The PDM
threshold multiplier is set to 6 and the RMS PDM error is assumed equal to that of
the four reference receivers. The rationale and issues with these PDM parameter
assumptions are discussed below.

The dashed curve indicates the integrity risk without the PDM. The maximum
possible risk is of the order of 10x4 which is somewhat more than four orders-of-
magnitude greater than the risk requirement. The solid curve representing the integ-
rity risk with the PDM indicates that the maximum possible risk would be two orders-
of-magnitude greater than the risk requirement, and allows the risk requirement to be
met for mismodelling that is represented by 0.4<d0<0.65. Referring to Figure 2, it is
seen that for d0=0.4, the tail probability at the t5.8s points for M=4 reference
receivers is about 10x3. From the data collected so far there is no indication of such a
significant heavy tail. Therefore, if the PDM receive function can be designed to be as
accurate as the average of the reference receivers and its threshold multiplier can be
limited to about 6, the PDM should be effective in mitigating mismodeling.

5.2. Sensitivity of PDM risk mitigation to accuracy. The integrity risk is analyzed
with respect to the accuracy of the PDM relative to the average of the reference
receivers. The variation in accuracy is accomplished by varying the PDM relative
accuracy parameter, Cpdm, defined under (11). Figure 9 contains plots of integrity risk
for Cpdm values of 1, 1.5 and 2. Cpdm=2 would represent the expected PDM accuracy
relative to that of four reference receivers if there were no accuracy enhancements. As
can be seen in the figure, the PDM would provide essentially no risk mitigation for
mismodelling if its accuracy were not enhanced.

For significant risk mitigation, as assumed for PDM performance, the PDM has to
be at least as accurate as the average of the reference receivers (Cpdm=1). For the
PDM to completely mitigate mismodelling down to the assumed heaviest possible tail
probability (d0=0.148), calculation indicates that the PDM relative accuracy would
have to be about 0.1, which is deemed impossible to attain.

5.3. Sensitivity of PDM risk mitigation to threshold setting. The integrity risk is
analyzed with respect to the threshold setting multiplier KT with the PDM accuracy
assumed to be equal to that of the average of the reference receivers. Figure 10
contains plots of the integrity risk for KT=5, 6…8. Examination of the figure in-
dicates that to achieve two orders-of-magnitude mismodelling mitigation for the
heaviest tail, KT should be no greater than 7.

The threshold cannot be set to just satisfy an integrity risk requirement. It must
also satisfy a continuity risk requirement. To obtain some insight into the impact of
continuity risk, the following assumptions are made:

’ Allowable PDM false alert rate about once per yearpfalse alert rate y10x4/h
’ In estimating the false detection probability per independent PDMmeasurement,

assume 100 s reference receiver smoothing time yieldsy18 independent measure-
ments/h

’ Assume 10 satellite combinations are processed for each independent
measurement

’ False detection probability per independent measurement needs to be f10x4/
(10r18)=5.6r10x7 per independent measurement to meet the assumed allow-
able false alert rate.
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If the test statistic distribution were Gaussian, the false detection probability per
independent event would be 2r10x9 and 2.5r10x12 for KT=6 and 7, respectively,
which would meet both the integrity and continuity risk requirements. If the test
statistic were the NIG with d0=0.65 then KT=11.4, which would only meet the
continuity requirement. Since the NIG was chosen as an over bounding distribution
for integrity, it may be too conservative for continuity risk estimation. For example,
the ‘‘B-value monitor’’ in the LGF, which processes pseudorange corrections, has
a specified K multiplier in the range 5–6 (FAA, 2002). The feasibility of KT less than
7 will be determined from PDM prototype data when the accuracy enhancements are
completed.

6. SUMMARY. An analysis is performed to determine an upper bound on the
tail probability of the fault-free errors of the GBAS corrections that are due to
errors attributed to the ground facility, such as multipath and noise. An argument
is made that the upper bound tail probability is approximately 0.181 Kx2 for a single
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Figure 9. PDM accuracy impact on mismodelling mitigation.
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reference receiver, where K is the standard deviation multiplier. This value is the
maximum tail probability of the family of Normal Inverse Gaussian (NIG) dis-
tributions. The actual value of the upper bound is in the interval 0.181 Kx2f
Probtailf0.444 Kx2 (4/9B0.444). The 0.444 Kx2 value is an upper tail probability
for a non-increasing PDF. In terms of the CAT I value, K=5.8, 0.0054<
Probtailf0.0132). The NIG distribution with tail probability 0.0054 would have
been sufficient to derive the inflation factor. Unfortunately, this would result in an
inflation factor of B13, which is much too large to be practical.

To circumvent this difficulty, a large fault free error observability criterion is
introduced that is a function of the independent sample size and assumes that the
underlying distribution is a member of the NIG family of distributions. The
observability criterion is based on the results of a LAAS prototype data collection
campaign conducted by the FAA, where no fault-free errors greater than 4-sigma
were observed. The NIG family provides a wide representation of tail probabilities
and has the same desirable attributes as those of the Gaussian distribution, in-
cluding ease of computation. Assuming the differential corrections are the average
of four independent ground facility reference receivers and using the observability

Analysis of PDM Threshold
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Figure 10. PDM threshold setting impact on mismodelling mitigation.
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analysis, the NIG family member with shape parameter d0=0.65 is selected. The
CDF of this distribution is compared to the worst-case CDF from the FAA data
collection, and it is observed that it provides a good fit. However, although satis-
fying, no credit is taken for this fit because there is no identifiable physical reason
for the fit.

The selected NIG tail probability for a four receiver average is 1.4r10x4. The
corresponding Gaussian tail probability at the t5.8-sigma points is 6.63r10x9.
To ‘‘over bound’’ the NIG to yield the Gaussian tail probability an inflation
factor of 2.2 is needed. In GBAS the inflation factor multiplies the estimated
standard deviation of the corrections to account for the heavy tails of the error dis-
tribution.

Since the standard transformation of the pseudorange errors to the position do-
main is a linear operation, there is the potential for further tail thinning through the
multiple convolutions. Note, for the average pseudorange correction from four re-
ceivers there are three convolutions. If there were N satellites in the position solution
there would be an additional Nx1 convolutions. However, there are an enormous
number of different solutions due to the vast varieties of satellite geometries. There-
fore, an upper bound on the tail probability in the position domain is formulated
based on an inherent characteristic of the position solution row vectors. Using this
upper bound, an inflation factor varying from 2 to 2.1 was derived, depending on the
number of satellites in view.

Although the selected NIG distribution is considered conservative (1.4r10x4 for
CAT I), it is based on observability of a limited independent sample size (6699).
Therefore, there is a chance that the selected NIG is a mismodelled distribution. Since
the tail probability of the NIG increases towards its maximum as the shape parameter
d0 decreases, the mismodelling is defined as the real distribution with NIG 0.148f
d0<0.65. For detecting mismodelling, the concept of a position domain monitor
(PDM) is introduced. The PDM is an independent ground receiver that is located
away from the reference receivers. It includes the broadcast pseudorange corrections
in its position solutions. The test statistic is the differences between the position
solutions and the known location of the PDM antenna. For the PDM to be effective,
mathematical analysis indicates that the accuracy of the PDM receiver needs to be
at least as good as that of the average corrections, and its threshold needs to be
no greater than 6–7 stest. It is the authors’ opinion that the heaviness of the selected
NIG tails is sufficient for CAT I application and that the PDM should not be needed
for CAT I.

7. DISCUSSION. The derived inflation factor of 2 to account for the heaviness
of the tails is large due to conservative assumptions. If this were the only inflation
factor to be considered, there would be more than enough margin to accommodate
it because the measured RMS of the corrections is usually somewhat less than one-
half of the requirement. However, there are other inflation factors that also multiply
the estimated pseudorange correction RMS error, such as those that have to account
for confidence and bias. It is the authors’ opinion that the only way to potentially
obtain a smaller inflation factor to account for tail probability heaviness is to
base it on a physical model that statistically accounts for multipath, antenna
and receiver processing as discussed in the paper’s introduction. The development

NO. 1 OVER BOUNDING GBAS TAIL ERROR DISTRIBUTIONS 101

https://doi.org/10.1017/S0373463304003029 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463304003029


of such a model is more difficult than the statistical model discussed herein. The
method described herein is developed as a substitute until a suitable physical model
is developed.
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APPENDIX: HEAVY TAIL PROBABILITY UPPER BOUND

An attempt was made to derive a heavy tail probability upper bound that is smaller than the Chebyshev

inequality, Prob{|x|>K}fKx2 ; where K is the standard deviation multiplier. So far a PDF has been

derived that produces an upper bound for the constraints of non-increasing and unit area and any variance.

The form of the PDF is a Dirac delta function at the origin combined with a rectangular distribution. This

form was derived from an application of the calculus of variations, and its derivation is given in an

unpublished report (Marshall, 2003). Figure 11 contains a description of this PDF. The upper bound tail

probability is (4/9)Kx2. Since no GBAS distributions even remotely resemble this distribution, it is only

considered as a means for a mathematical establishment of an upper bound.
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The maximum tail NIG (d0=0.148) PDF is plotted on a logarithmic scale in Figure 12 along with the

non-increasing PDF model in Figure 11. Note, the NIG PDF resembles the non-increasing PDF in that it

has a sharp peak and near-level tails. The maximum tail NIG should also be considered only as a means

to derive mathematically an upper bound heavy tail probability for a strictly decreasing PDF.
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Constraints: Non-increasing PDF, area = 1, variance =1 

Parameter values: X1 = (3/2)K, f1 = (4/9)K-3, p = 1 – (4/3)K-2, q = (4/9)K-2  

Figure 11. Definition of non-increasing PDF used to establish upper bound on tail probability.
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Figure 12. Comparison of upper bound probability density functions.
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