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We consider the following Gray–Scott model in BR(0) = {x : |x| < R} ⊂ �N,N = 2, 3:



vt = ε2∆v − v + Av2u in BR(0),

τut = ∆u+ 1 − u− v2u in BR(0),

u, v > 0; ∂u
∂ν

= ∂v
∂ν

= 0 on ∂BR(0)

where ε > 0 is a small parameter. We assume that A = Âε
1
2 . For each Â < +∞ and R < ∞,

we construct ring-like solutions which concentrate on an (N − 1)-dimensional sphere for the

stationary system for all sufficiently small ε. More precisely, it is proved the above problem

has a radially symmetric steady state solution (vε,R , uε,R) with the property that vε,R(r) → 0 in

�N\{r� r0} for some r0 ∈ (0, R). Then we show that for N = 2 such solutions are unstable

with respect to angular fluctuations of the type Φ(r)e
√

−1mθ for some m. A relation between

Â and the minimal mode m is given. Similar results are also obtained when Ω = �N or

Ω = BR2
(0)\BR1

(0) or Ω = �N\BR(0).

1 Introduction and main results

The Gray–Scott model [16, 17] models an irreversible reaction involving two reactants in

a gel reactor, where the reactor is maintained in contact with a reservoir of one of the

two chemicals in the reaction. In dimensionless units it can be written as



Vt = DV∆V − (F + k)V +UV 2 in Ω,

Ut = DU∆U + F(1 −U) −UV 2 in Ω,
∂U
∂ν

= ∂V
∂ν

= 0 on ∂Ω,

(1.1)

where the unknowns U = U(x, t) and V = V (x, t) represent the concentrations of the

two biochemicals at a point x ∈ Ω ⊂ �N,N � 3 and at a time t > 0, respectively;

∆ :=
∑N

j=1
∂2

∂x2
j

is the Laplace operator in �N; Ω is a bounded and smooth domain

in �N; ν(x) is the outer normal at x ∈ ∂Ω; DU,DV are the diffusion coefficients of U and

V respectively. F denotes the rate at which U is fed from the reservoir into the reactor,

and k is a reaction-time constant.
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For various ranges of these parameters, (1.1) are known to admit a rich solution

structure involving pulses or spots, rings, stripes, traveling waves, self-replication spots,

and spatio-temporal chaos. See elsewhere [11, 25, 26, 34, 35, 36, 37, 38, 40, 41] for

numerical simulations and experimental observations.

In the one-dimesnional case, the first rigorous result in constructing single pulse solution

is given in Doelman et al. [11] for (1.1) in the case DU = 1, DV = δ2 � 1. In Doelman

et al. [11], it is assumed that F ∼ δ2, F + k ∼ δ2α/3, where α ∈ [0, 3
2
). Later the stability

of single and multi-pulse solutions in 1-D are obtained in Doelman et al. [10]. Periodic

patterns are constructed in Doelman et al. [13]. In Reynolds et al. [40], a formal matched

asymptotic analysis is used to study the dynamics of self-replicating pulses. The case

DU = DV and the existence and stability of single and multiple pulse solutions are

established in Hale et al. [19, 20]. In Nishiura & Ueyama [34], a skeleton structure of

self-replicating dynamics is proposed, while in Nishiura & Ueyama [35] and Nishiura

et al. [36, 37], spatio-temporal chaos is observed and analyzed. In all of the above four

papers, it is assumed that the diffusivity ratio Dv/Du = O(1). In such a case, the results

are largely numerical. A more detailed analysis is possible when Dv/Du � O(1). In [24],

the equilibria, Hopf bifurcations, and pulse-splitting dynamics for (1.1) in a finite interval

are studied under the small diffusivity ratio assumption. Some related results on the

existence and stability of solutions to the Gray–Scott model in 1-D can also be found in

Ei et al. [14] and Muratov & Osipov [29, 31] and the references therein.

In higher-dimensional case, some formal asymptotic analysis on the construction and

stability of spotty solution in �2 and �3 is given in Muratov & Osipov [29, 31]. In

Wei [44], the second author studied (1.1) in a bounded domain for the shadow system

case which can be reduced to a single equation. For spotty solutions for single equations,

see elsewhere [5, 6, 18, 47, 48], and the references therein. A good review can be found in

Ni [32].

The first rigorous result on the existence and stability of spotty solutions in R2 was

given in Wei [45]. To state the result, it is important to introduce a suitable scaling.

Let us first transform the system (1.1). We follow the notations in Muratov &

Osipov [29]. Set

ε2 =
DVF

DU(F + k)
, A =

√
F

F + k
, τ =

F + k

F
,

x =

√
DU

F
x̄, t =

1

F + k
t̄,

V (x, t) =
√
Fv(x̄, t̄), U(x, t) = u(x̄, t̄).

Let us drop the bar from now on. It is easy to see that (1.1) is equivalent to the

following system 

vt = ε2∆v − v + Auv2, in Ω,

τut = ∆u− uv2 + (1 − u), in Ω,
∂v
∂ν

= ∂u
∂ν

= 0 on ∂Ω.

(1.2)

Note that there are three parameters (ε, A, τ) in equation (1.2). Throughout this paper,
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we always assume that

0 < ε � 1. (1.3)

To study (1.2), we first consider the stationary equation of (1.2):

ε2∆v − v + Auv2 = 0, x ∈ Ω,

∆u− uv2 + (1 − u) = 0, x ∈ Ω,

u > 0, v > 0 in Ω, ∂v
∂ν

= ∂u
∂ν

= 0 on ∂Ω.

(1.4)

In Wei [45], under the condition that

Ω = �2, τ ∼ O(1), A ∼ ε

(
log

1

ε

) 1
2

(1.5)

it is proved that Problem (1.2) has two branches of single spotty steady-state solutions

in �2, with one of them being stable and the other one being unstable. The existence

and stability of symmetric and asymmetric multiple spotty solutions in a bounded two-

dimensional domain are studied in Wei & Winter [49, 50].

As far as the authors know, there has been no rigorous result in �N,N � 3. Since the

physical space is �3, it is natural to study the Gray–Scott model in �3.

In this paper, we take a different regime of A: we assume that

A =
√

6Âε
1
2 (1.6)

where Â is independent of ε. We are concerned with the existence of solutions which

concentrates on an (N − 1)-sphere. This kind of solution is called a ring-like solution. In

particular, we can prove the existence of a ring-like solution for all N � 2, which is of

independent interest.

Recent work by Morgan & Kaper [28] also examines such solutions (a preliminary

report of Morgan & Kaper [28] was announced in 2001 [21]; and was also reported in

Morgan’s PhD thesis [27]). The differences and similarities between Morgan & Kaper [28]

and this paper are discussed in § 11.

By suitable scaling, we shall study the existence of ring-like solutions for the following

Gray–Scott model in a ball BR(0):



ε2∆v − v + Âuv2 = 0, in BR(0),

∆u− (6ε)−1uv2 + (1 − u) = 0, in BR(0),

u > 0, v > 0 in BR(0),
∂v
∂ν

= ∂u
∂ν

= 0 on ∂BR(0),

(1.7)

and the stability of the ring-like solutions for the corresponding Gray–Scott model



vt = ε2∆v − v + Âuv2, in BR(0),

τut = ∆u− (6ε)−1uv2 + (1 − u), in BR(0),

u > 0, v > 0 in BR(0),
∂v
∂ν

= ∂u
∂ν

= 0 on ∂BR(0).

(1.8)

Extensions to �N or to an annulus or to the exterior of a ball will be discussed in § 8.
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2 Main results: existence and stability of ring-like solutions

We now state our main results.

We first define two functions, to be used later: let J1(r) be the radially symmetric

solution of the following problem

J
′′

1 +
N − 1

r
J

′

1 − J1 = 0, J
′

1(0) = 0, J1(0) = 1, J1 > 0. (2.1)

The second radially symmetric function, called J2(r), satisfies

J
′′

2 +
N − 1

r
J

′

2 − J2 + δ0 = 0, J2 > 0, J2(+∞) = 0. (2.2)

Here δ0 is the Dirac measure at 0.

In the case of N = 2, J1(r) = I0(r) and J2(r) = 1
2π
K0(r) are the modified Bessel’s

functions of order 0. (See Abramowitz & Stegun [4].) In the case of N = 3, J1, J2 can be

computed explicitly:

J1 =
sinh r

r
, J2(r) =

e−r

4πr
. (2.3)

Fix R > 0. We then define a new J2,R

J2,R(r) = J2(r) − J
′

2(R)

J
′
1(R)

J1(r) (2.4)

and a new Green’s function GR(r; r0)

G
′′

R +
N − 1

r
G

′

R − GR + δr0 = 0, G
′

R(R; r0) = 0. (2.5)

It is easy to see that

GR(r; r0) =
1

J
′
1(r0)J2,R(r0) − J1(r0)J

′
2,R(r0)

{
J2,R(r0)J1(r), for r < r0,

J1(r0)J2,R(r), for r > r0.
(2.6)

Fix a Â > 0. We suppose the following equation has a unique solution ξ = ξ(Â, r):

(1 − ξ)ξ =
GR(r; r)

Â2
, 0 < ξ <

1

2
. (2.7)

Put

MR(r) :=
(N − 1)

r
+

1 − ξ

ξ

(
J

′

1(r)

J1(r)
+
J

′

2,R(r)

J2,R(r)

)
, (2.8)

where ξ solves (2.7).

Let w(y) be the unique solution for the following ODE:

w′′ − w + w2 = 0 in �, w > 0, w(0) = max
y∈R

w(y), w(y) → 0 as |y| → ∞. (2.9)

In fact, it is easy to see that w(y) can be written explicitly

w(y) =
3

2
sech2

(y
2

)
.

Then we have the following theorem.
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Figure 1. The graph of r versus Â2. Here N = 2, R = 5. The singularity occurs at rR = 3.94.

Theorem 2.1 Suppose that 0 < R < ∞. Then for any Â < ∞ and for ε sufficiently small,

problem (1.7) has a solution (vε,R, uε,R) with the following properties:

• vε,R, uε,R are radially symmetric,

• vε,R(r) = (1 + o(1)) 1

Âξε
w( r− rε

ε
),

• uε,R(r) = 1 − (1 + o(1))GR (r;rε)

Â2ξε
, where GR(r; rε) satisfies:

G
′′

R +
N − 1

r
G

′

R − GR + δrε = 0, G
′

R(R; rε) = 0, (2.10)

where ξε is the root of

1 − ξε =
GR(rε; rε)

Â2ξε
, 0 < ξε <

1

2
, (2.11)

and rε → r0 ∈ (0, rR) where MR(r0) = 0 and rR is such that

(J1J2,R)
′
(rR) = 0. (2.12)

From Theorem 2.1, for finite R, we see that for each Â, there exists a ring-like solution

to (1.7). In fact, it is easy to show that MR(r0) = 0 if and only if the following holds

Â2 = −GR(r; r)

(
1 − r

N − 1

(J1J2,R)′

J1J2,R

)2
N − 1

r

J1J2,R

(J1J2,R)′ (2.13)

A graph of r versus Â2 for N = 2 and R = 5 is given in Figure 1.

From the graph, we see that Â2 blows up as r → rR where rR < R satisfies (2.12). In

fact, if rR is a zero root of (J1J2,R)
′
(see Lemma 3.4 for the existence of rR), then from

(2.13) we see that Â2 → +∞ when r → rR . (The situation is very different for infinite R.

See § 8.)

A similar existence result for the Gierer–Meinhardt system has also been obtained in

Ni & Wei [33]. Theorem 2.1 is alsorelated to papers by Ambrosetti et al. [2, 3] where
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solutions concentrating on a sphere are constructed for singularly perturbed nonlinear

elliptic equations.

Next we study the stability of (vε,R, uε,R) in N = 2 with respect to perturbations in the

following form:

v = vε,R + δφε(r) cos(mθ), u = uε,R + δψε(r) cos(mθ)

where δ is small and φε(r) ∼ rm, ψε(r) ∼ rm for r near 0. That is, we study the eigenvalue

problem of the following type



ε2∆φε − ε2m2

r2
φε − φε + 2Âvε,Ruε,Rφε + Âv2ε,Rψε = λεφε,

∆ψε − m2

r2
ψε − ψε − (6ε)−12vε,Ruε,Rφε − (6ε)−1v2ε,Rψε = τλεψε,

φε = φε(r), ψε = ψε(r),

φ
′
ε(R) = ψ

′
ε(R) = 0.

(2.14)

We introduce the following important function:

ρm,R(r) =
Im(r)Km(r) − K

′
m(R)

I
′
m(R)

I2
m(r)

I0(r)K0(r) − K
′
0(R)

I
′
0(R)

I2
0 (r)

, (2.15)

where Im,Km are the two modified Bessel’s function of order m. See Abramowitz &

Stegun [4] for the definitions.

Now we have the following theorem.

Theorem 2.2 Assume that N = 2. Let (vε,R, uε,R) be the solution constructed in Theorem 2.1

and suppose m � 1
ε
. If

ρm,R(r0) <
ξ

1 − ξ
(2.16)

where ξ is given by (2.7), then the problem (2.14) has an eigenvalue with positive real part.

If τ is small and

ρm,R(r0) >
ξ

1 − ξ
(2.17)

then all the eigenvalues of the problem (2.14) have negative real parts.

The mode m = 0 is stable.

Our final theorem shows that when Â = O(1), the ring solution is always unstable with

respect to some wide band of modes m, and that it is stable with respect to very large

modes m.

Theorem 2.3 Assume that N = 2. Let (vε,R, uε,R) be the solution constructed in Theorem 2.1.

If

1 � m < δ0
1

ε
(2.18)

for some δ0 <
√

5
2

, then theproblem (2.14) has a positive eigenvalue. On the other hand,
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Figure 2. The graph of r versus the first unstable mode m. Here N = 2, R = 5.

if

m >

√
5

2

r0

ε
, (2.19)

then the problem (2.14) has no large unstable eigenvalues.

Fix R = 5. The graph in Figure 2 shows the relation between r and the minimal mode

m.

We observe that m → +∞ as r → rR . However, rR is precisely the value for which

Â → +∞, and so our analysis breaks down in such a limit. A question arises naturally:

are there ring-like solutions which are stable for all m?

In § 9 we use formal asymptotics and numerical computations to study the regime

Âε
1
2 = O(1). We make the following conjecture.

Conjecture 2.1 Let rR be the root of

(J1J2,R)′(rR) = 0. (2.20)

Let

Ac = 2.694 GR(rR, rR) (2.21)

where GR is given by (2.10).

Suppose that A is just below Ac. Then there exists a ring-like solution whose radius is

rR .

Suppose that A is just above Ac. Then a ring-like solution of radius r0 < rR will expand

until its radius reaches rR . It will then split into two concentric rings which will move away

from each other.

Remark Using the far field expansions I0(r) ∼ r−1/2er, K0(r) ∼ r−1/2e−r , it is easy to

see that

rR ∼ R − 1

2
ln(2R) as R → ∞, (2.22)
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GR(rR, rR) ∼ 1

2
+

1

2rR
as R → ∞. (2.23)

Thus for large R we have Ac ∼ 1.347, which is precisely the critical threshold for when

spike splitting in 1-D occurs (see § 9 or also Muratov & Osipov [29] and Kolokolnikov

et al. [24]).

The fate of the two resulting rings is unclear. In Section 10 we perform some numerical

computations of the full two-dimensional system. They suggest that the inner ring even-

ually breaks up into spots, while the outer ring can remain stable for a long time. It is an

open problem to analyse the properties of multi-ring solutions.

3 Preliminaries: some properties of w and MR(r)

In this section, we consider some properties of the functions w(y) and MR(r). We first

state the following facts for w(y).

Lemma 3.1 (1) The following identities hold∫
R

(w′)2 =
1

6

∫
R

w3, (3.1)

∫
R

w3(y)

( ∫ y

−∞
w2(z) dz

)
dy =

∫
R

w3(y)

(∫ ∞

y

w2(z) dz

)
dy =

1

2

∫
R

w3

∫
R

w2. (3.2)

(2) The solution to the following problem

L0φ := φ′′ − φ+ 2w′φ = 0, |φ| � C (3.3)

for some C > 0 is given by φ = cw′ for some constant c.

(3) The eigenvalues of L0 can be arranged as follows:

λ1 =
5

4
, λ2 = 0, λ3 = −3

4
.

Proof Statement (1) can be proved by direct computations. A more general proof can be

given as follows: since w satisfies (2.9), we have (w′)2 = w2 − 2
3
w3. Combining this with

the following identity ∫
R

((w′)2 + w2) =

∫
R

w3

we deduce (3.1). To prove (3.2), we observe that∫
R

w3(y)

(∫ y

−∞
w2(z) dz −

∫ ∞

y

w2(z) dz

)
dy = 0

∫
R

w3(y)

(∫ y

−∞
w2(z) dz +

∫ ∞

y

w2(z) dz

)
dy =

∫
R

w3

∫
R

w2.

Equation (3.2) then follows.

The statement (2) follows from standard ODE theory.

The statement (3) can be proved by using hypergeometric function. See [10]. �
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The following lemma characterizes the eigenvalues of Nonlocal Eigenvalue Problem

(NLEP):

Lφ := φ′′ − φ+ 2wφ− µ

∫
R
wφ∫

R
w2

w2 = λφ, φ ∈ H2(R). (3.4)

Lemma 3.2 (1) If µ� 1 and

Lφ = 0, φ ∈ H2(R)

then φ = cw′ for some constant c.

(2) If µ < 1, then there exists a positive eigenvalue λ0 > 0 to (3.4).

(3) If µ > 1, then there exists a constant C > 0 such that Re(λ) < −C < 0, where λ� 0 is

an eigenvalue of (3.4).

Proof (1) In fact, let Lφ = 0. Then we have

L0

(
φ− 2

∫
R
wφ∫

R
w2

w

)
= 0

where

L0φ := φ′′ − φ+ 2wφ. (3.5)

Since φ ∈ H2(R), by (2) of Lemma 2.1, we have

φ− 2

∫
R
wφ∫

R
w2

w = cw′ (3.6)

for some c. Multiplying (3.6) by wm−1 and integrating over R, we obtain that∫
R

wm−1φ = 0

which implies that φ = cw′.

(2) and (3) follows from Theorem 1.4 of Wei [46]. �

Our next lemma concern again a nonlocal eigenvalue problem in which the coefficient

µ depends on τλ. We consider the following nonlocal eigenvalue problem:

φ′′ − φ+ 2wφ− χ(τλ)

∫
R
wφ∫

R
w2

w2 = λφ. (3.7)

Lemma 3.3 Suppose χ(z) is a continuous function of z. Then

(1) if χ(0) < 1, there exists a positive eigenvalue λ > 0 to (3.7).

(2) If χ(0) > 1, and the following condition holds for τ:

Re[λ̄χ(τλ) − λ] + 6|χ(τλ) − 1|2 � 0 (3.8)

then there exists a positive constant C > 0 such that for all nonzero eigenvalue λ of (3.7)

we have Re(λ) � −C < 0.
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Proof (1) Suppose χ(0) < 1. We can solve (3.7) explicitly. We may assume that φ is

even. We look for a positive eigenvalue λ0 in (0, λ1) where λ1 is the first eigenvalue of

L0φ = φ′′ − φ+ 2wφ (see Lemma 3.1). Then (3.7) is equivalent to the following algebraic

equation:

ρ(λ) =

∫
R

w(L0 − λ)−1w2 −
∫
R
w2

χ(τλ)
=

(
1 − 1

χ(τλ)

)∫
R

w2 + λ

∫
R

w(L0 − λ)−1w. (3.9)

Then

ρ(0) < 0, ρ(t) → +∞ as t → λ1, t < λ1.

Thus, ρ(t) has a zero λ0 in (0, λ1). This proves (1).

(2) is proved in (2.28) of Ward & Wei [42]. �

Finally, we state the following important properties of MR , defined in (2.8), which will

be used in the proof of Theorem 2.1.

Lemma 3.4 (1) For each fixed R > 0, there exists a rR > 0 such that

(J1J2,R)′ > 0, for r ∈ (0, rR), and (J1J2,R)′(rR) = 0 (3.10)

and

MR(rR) > 0. (3.11)

(2) For each fixed Â < +∞, it holds that

MR(r) < 0, for r small. (3.12)

Proof (1) Observe that

(J1J2,R)′(R) = J1
′(R)J2(R) − J2

′(R)J1(R) < 0,

(J1J2,R)′(r) → +∞ as r → 0.

By continuity, (3.10) is thus proved. This then yields that MR(rR) > 0, recalling

MR(r) =
N − 1

r
+

1 − ξ

ξ

(J1J2,R)′

J1J2,R

where ξ satisfies

ξ(1 − ξ) =
J1J2,R

Â2(J1
′J2 − J1J2

′)
, 0 < ξ <

1

2
. (3.13)

(2) For r small and N � 3

J1J2,R

Â2(J1
′J2 − J1J2

′)
∼ r, 0 < ξ <

1

2
, ξ ∼ r,

(J1J2,R)′

J1J2,R
= −(N − 2)

1

r
+ O(1)
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and hence

MR(r) ∼ N − 1

r
− O

(
1

r2

)
< 0

For N = 2, we obtain similarly that for r small

MR(r) ∼ N − 1

r
− O

(
1

r2
(
log 1

r

)2

)
< 0.

This proves (2) of the lemma. �

4 A linear problem

Fixing a point t > 0, we set

Iε :=

(
− t

ε
,
R − t

ε

)
. (4.1)

Let η(s) be a function such that η(s) = 1 for |s| � δ
4

and η(s) = 0 for |s| � δ
2
, where

δ > 0 is a fixed small constant. Set

wε,t(y) = w(y)η
(
1 +

εy

t

)
. (4.2)

Let ξε(t) be such that

1 − ξε =
1

Â2ξε
GR(t; t), 0 < ξε <

1

2
. (4.3)

We rescale

r = t+ εy, v =
1

Âξε
v̂. (4.4)

Dropping the hat, we see that (1.7) is equivalent to



ε2∆v − v + u

ξε
v2 = 0, in BR(0),

∆u− cεuv
2 + (1 − u) = 0, in BR(0),

u > 0, v > 0 in BR(0),
∂u
∂ν

= ∂u
∂ν

= 0 on ∂BR(0),

(4.5)

where

cε =
(
6εÂ2ξ2

ε

)−1
. (4.6)

From now on, we shall work with (4.5) instead.

In the sequel, we denote by T [h] the unique solution of the equation

{
∆u+ 1 − u− cεh

2u = 0 in BR(0),

u(x) = u(|x|), u′(R) = 0,
(4.7)

for h ∈ L∞(BR(0)).
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The equation (4.7) can be solved by using the Green’s function GR(r, r0) defined in

(2.10) of Theorem 2.1. In fact, the operator T can be written in the following way:

1 − T [h](r0) = cε

∫ R

0

GR(r; r0)

(
r

r0

)N−1

h2(r)T [h](r) dr. (4.8)

In this section, we study the operator T [h], where we choose h to be

h =

(
wε,t

(
r − t

ε

)
+ φ

(
r − t

ε

))2

, φ = O(εσ), (4.9)

for a fixed 0 < σ < 1. Let

T [h](r′) = vε(r
′).

By definition, we then have

1 − T [h](r′) = cε

∫ R

0

GR(r; r′)
( r
r′

)N−1

h2vε(r) dr,

and hence

1 − vε(t) =
1

Â2ξ2
ε

GR(t; t)vε(t) + O(εσ). (4.10)

Here we have used the fact that ∫
R

w2 = 6. (4.11)

From (4.3) and (4.10), we arrive at the following:

vε(t) = ξε + O(εσ). (4.12)

Let r′ = t+ εy. Then we have

1 − vε(t+ εy) = cε

∫ R

0

GR(z; t+ εy)
zN−1

(t+ εy)N−1

(
wε,t

(
z − t

ε

)
+ φ

(
z − t

ε

))2

vε(z) dz

= εcε

∫ R−t
ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
(wε,t(z) + φ(z))2vε(t+ εz) dz

= E1 + E2

where

E1 = εcε

∫ R−t
ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
w2
ε,tvε(t+ εy) dz,

E2 = εcε

∫ R−t
ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
[(wε,t(z) + φ(z))2 − (wε,t(z))

2]vε(t+ εz) dz.
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Observe that GR(r; r′) can be expanded as follows: for z̄ < ȳ, we have

GR(t+ z̄; t+ ȳ) =GR(t; t)

(
1+

(
J2,R

′(t)

J2,R(t)
+
N − 1

t

)
ȳ+

J1
′(t)

J1(t)
z̄ + O(|ȳ|2 + |z̄|2)

)
. (4.13)

For ȳ < z̄, there is another expansion

GR(t+ z̄; t+ ȳ) =GR(t; t)

(
1+

(
J1

′(t)

J1(t)
+
N− 1

t

)
ȳ +

J2,R
′(t)

J2,R(t)
z̄ + O(|ȳ|2 + |z̄|2)

)
. (4.14)

Then we have, using (4.12) and (4.13)–(4.14),

E1 = εcε

∫ ∞

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
w2vε(t+ εz) dz

= εcε

∫
R

GR(t+ εz; t+ εy)

(
1 +

ε(N − 1)(z − y)

t
+ O(ε2)

)
w2vε(t+ εz) dz

= αε + ερ(y) + O(ε2|y|2) (4.15)

where

αε = εcεGR(t; t)

∫
R

w2vε(t+ εz) =
GR(t, t)vε(t)

Â2ξ2
ε

+ O(ε) = 1 − ξε + O(εσ) (4.16)

and ρ(y) is defined by

ρ(y) =
αε∫
R
w2

[
J2,R

′(t)

J2,R(t)

(
y

∫ y

−∞
w2 +

∫ ∞

y

zw2(z) dz

)
+
J1

′(t)

J1(t)

(
y

∫ ∞

y

wm +

∫ y

−∞
zw2(z) dz

)]
.

(4.17)

For E2, we have

E2 = 2εcε

∫ R−t
ε

− t
ε

GR(t+ εz; t+ εy)
(t+ εz)N−1

(t+ εy)N−1
[wφ]vε(t+ εz) dz + O(ε2σ)

=
2αε∫
Iε
w2
ε,t

∫
Iε

wε,tφ+ O(ε2σ).

Summarizing all of these estimates, we have obtained the following lemma:

Lemma 4.1 For r′ = t+ εy, we have

T [(wε,t + φ)2](t+ εy) = 1 − αε − ερ(y) − 2αε∫
Iε
w2

∫
Iε

wε,tφ+ O(ε2|y|2 + ε2σ). (4.18)
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5 A nonlinear problem: finite dimensional reduction

In this section, we perform a Liapunov–Schmidt reduction procedure. Such a reduction

method has been introduced and used in many previous studies of spike and layered

solutions (see [1, 5, 6, 7, 15, 18, 47, 48] and the references therein.

For u, v ∈ H1(BR
ε
(0)), we equip it with the following scalar product:

(u, v)ε =

∫
Iε

(u′v′ + uv)(t+ εy)N−1dy (5.1)

(which is equivalent to the norm ‖u‖H1(B R
ε
(0))).

Then orthogonality to the function wε,t
′ in that space is equivalent to, setting

Zε,t = wε,t
′′′ +

ε(N − 1)

t+ εy
wε,t

′′ − wε,t
′ (5.2)

to the orthogonality in L2(Iε), equipped with the following scalar product

〈u, v〉ε =

∫
Iε

(uv)(t+ εy)N−1dy (5.3)

(which is equivalent to the norm ‖u‖L2(�N )).

To this end, we need to define a norm:

‖u‖∗ = ‖u(y)‖L∞(Iε). (5.4)

The following Proposition will be proved in Appendix A.

Proposition 5.1 There exists an ε0 > 0 such that for any ε < ε0, given any h ∈ L∞(Iε), there

exists a unique pair (φ, c) such that the following hold:

φ′′ +
ε(N − 1)

t+ εy
φ′ − φ+ 2wε,tφ− 2(1 − ξ)

∫
Iε
wε,tφ∫
Iε
w2
ε,t

= h+ cZε,t, (5.5)

φ′
(

− t

ε

)
= 0, φ′

(
R − t

ε

)
= 0, 〈φ,Zε,t〉ε = 0. (5.6)

Moreover, we have

‖φ‖∗ � C‖h‖∗. (5.7)

In this section, we solve the following system of equations for (φ, β):

(wε,t + φ)′′ +
ε(N − 1)

t+ εy
(wε,t + φ)′ − (wε,t + φ)

+
1

ξε
(wε,t + φ)2(T [(wε,t + φ)2](t+ εy)) = βZε,t, (5.8)

φ′
(

− t

ε

)
= 0, φε

′
(
R − t

ε

)
= 0,

∫
Iε

φZε,t(t+ εy)N−1 = 0. (5.9)

The main result in this section is to show the following proposition.
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Proposition 5.2 For 0 < t < R and ε sufficiently small, there exists a unique pair

(φε,t, βε(t))satisfying (5.8)–(5.9). Furthermore, (φε,t, βε(t)) is continuous in t and we have the

following estimate

‖φε,t‖∗ � εσ, (5.10)

where σ ∈ ( 1
2
, 1) is a constant.

Proof We write (5.8) in the following form:

Lε[φ] = Eε +Mε[φ] + βZε,t (5.11)

and use contraction mapping theorem. Here

Eε = − ε(N − 1)

t+ εy
wε,t

′ +
1

ξε
w2
ε,t(T [w2

ε,t]) − w2
ε,t (5.12)

and Mε[φ] is given by

Mε[φ] =
1

ξε
(wε,t+φ)2(T [(wε,t+φ)2])− 1

ξε
w2
ε,t(T [w2

ε,t])−2wε,tφ−2(1−ξε)
∫
Iε
wε,tφ∫
Iε
wε,t

w2
ε,t. (5.13)

By Lemma 4.1, it is easy to see that

‖Eε‖∗ � Cεσ. (5.14)

For Mε, we note that

Mε[φ] = ξ−1
ε [(wε,t + φ)2 − w2

ε,t − 2wε,tφ](T [(wε,t + φ)2])

−
(
w2
ε,t

(
T

[
w2
ε,t

])
− w2

ε,t(T [(wε,t + φ)2]) − 2αε

∫
Iε
wε,tφ∫
Iε
w2
ε,t

w2
ε,t

)

− 2wε,tφ

(
1 − (T [(wε,t + φ)2])

ξε

)
.

The first term in Mε[φ] can be estimated as follows:

|(wε,t + φ)2 − w2
ε,t − 2wε,tφ|(T [(wε,t + φ)2])| � C|φ|2.

By Lemma 4.1, it follows that second term and the last term in Mε[φ] can be bounded

by O(ε‖φ‖∗ + ‖φ‖2
∗).

Therefore, we have

‖Mε[φ]‖∗ � C

(
ε‖φ‖∗ + ‖φε‖2

∗

)
. (5.15)

Set B = {‖φ‖∗ < Cεσ} where C is large. Fix φ ∈ B and we consider the map Aε to be

the unique solution given by Proposition 4.2 with h = Eε +Mε[φ]. Then by Proposition

4.2, we have

‖Aε[φ]‖∗ � C‖Eε +Mε[φ]‖∗∗ � Cεσ + ε2σ � Cεσ, (5.16)
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and hence Aε[φ] ∈ B. Moreover, we also have that

‖Aε[φ1] − Aε[φ2]‖∗ � C‖Mε[φ1] −Mε[φ2]‖∗ < ‖φ1 − φ2‖∗. (5.17)

(5.16) and (5.17) show that the map Aε is a contraction map from B to B. By the

contraction mapping theorem, (5.11) has a unique solution φ ∈ B, called φε,t.

The continuity of (φε,t, βε(t)) follows from the uniqueness of (φε,t, βε(t)). �

6 The reduced problem: Proof of Theorem 2.1

In this section we solve the reduced problem and prove our main existence result given

by Theorem 2.1.

In particular, we prove the following.

Proposition 6.1 For ε sufficiently small, βε(t) is continuous in t and we have

βε(t) = c0ε(MR(t)) + O(ε2σ), (6.1)

for some generic constant c0 � 0.

From Proposition 6.1, we can finish the proof of Theorem 2.1.

Proof of Theorem 2.1 By Lemma 3.4, there exists two numbers 0 < r1 < r2 < rR such

that

MR(r1)MR(r2) < 0.

Since ε−1βε(t) = c0MR(t)+O(ε2σ−1), for ε sufficiently small, we also have βε(r1)βε(r2) < 0.

By the continuity of βε(t) and the intermediate mean value theorem, a zero of βε is thus

guaranteed. �

We now prove Proposition 6.1. To this end, we let vε,t = T [(wε,t + φε,t)
2]. Then φε,t

satisfies

φε,t
′′ − φε,t + 2wε,tφε,t = − ε(N − 1)

t+ εy
wε,t

′ + w2
ε,t − ξ−1

ε w2
ε,tvε,t +Nε[φε,t] + βε(t)Zε,t (6.2)

where

Nε[φε,t] = − ε(N − 1)

t+ εy
φε,t

′ + ξ−1
ε ((wε,t + φε,t)

2 − w2
ε,t)vε,t − 2wp−1

ε,t φε,t.

Note that by Lemma 4.1

vε,t(t+ εy) = 1 − αε − ερ(y) + O(ε2|y|2) − 2αε

∫
Iε
wε,tφε,t∫
Iε
w2
ε,t

+ O(ε2σ). (6.3)

Multiplying the equation for φε,t by wε,t
′ and integrating over Iε, we obtain that

βε(t)

∫
Iε

Zε,twε,t
′ =

∫
Iε

[φε,t
′′ − φε,t + 2wε,tφε,t]wε,t

′ +

∫
Iε

ε(N − 1)

t+ εy
φε,t

′wε,t
′

+

∫
Iε

(
ξ−1
ε w2

ε,tvε,t − w2
ε,t

)
wε,t

′ +

∫
Iε

Nε[φε,t]wε,t
′. (6.4)
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We first estimate: ∫
Iε

[φε,t
′′ − φε,t + 2wε,tφε,t]wε,t

′ = O(ε1+σ).

Then using (6.3) we obtain∫
Iε

wε,t
′Nε[φε,t] = −

∫
Iε

(
ε(N − 1)

t+ εy
φε,t

′wε,t
′
)

+

∫
Iε

ξ−1
ε

[
(wε,t + φε,t)

2 − w2
ε,t − 2wε,tφε,t

]
vε,twε,t

′

+ 2

∫
Iε

wε,tφε,t

(
vε,t

ξε
− 1

)
wε,t

′

= O(ε1+σ + ε2σ).

The main term is the following:∫
Iε

wε,t
′w2
ε,t(vε,t − ξε) = ε

(∫
R

w′w2ρ(y) + O(ε2σ)

)
. (6.5)

By using (3.2) of Lemma 3.1 we calculate∫
R

w2

∫
R

w′w2ρ(y) = αε
J2,R

′(t)

J2,R(t)

∫
R

w′w2(y

∫ y

−∞
w2 +

∫ y

−∞
zw2(z))

+
J1

′(t)

J1(t)

∫
R

w′w2(y

∫ ∞

y

w2 +

∫ ∞

y

zw2(z))

= − αε

3

J2,R
′(t)

J2,R(t)

∫
R

w3(y)

∫ y

−∞
w2 − 1

3

J1
′(t)

J1(t)

∫
R

w3

∫ ∞

y

w2

= − αε

6
(
J2,R

′(t)

J2,R(t)
+
J1

′(t)

J1(t)
)

∫
R

w3(y)

∫
R

w2. (6.6)

Combining all of these expressions, we obtain

βε(t)

∫
R

(w(w′)2) = ε
N − 1

t

∫
R

(w′)2 + ε
αε∫

R
w2ξε

∫
R

w3

(
J2,R

′(t)

J2,R(t)
+
J1

′(t)

J1(t)

)
+ O(ε2σ)

= ε

∫
R

(w′)2
[
MR(r) + O(ε2σ−1)

]

using (3.1) of Lemma 3.1.

7 Proofs of Theorem 2.2 and Theorem 2.3

In this section, we use Lemmas 3.2 and 3.3, and apply a compactness argument of Dancer

[9] to prove Theorems 2.2 and 2.3.

We consider large eigenvalues of the following problem:

ε2∆φε − ε2m2

r2
φε − φε + 2Âvε,Ruε,Rφε + Â2v2ε,Rψε = λεφε,

∆ψε − m2

r2
ψε − ψε − 2ε−1vε,Ruε,Rφε − ε−1v2ε,Rψε = τλεψε,

φε = φε(r), ψε = ψε(r),

φε
′(R) = ψ′

ε(R) = 0.

(7.1)

Namely, we assume that λε → λ0 � 0 where λε ∈ C-the set of complex numbers.
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We first derive the limiting eigenvalue problem. We may assume that Re(λ0) � 0 as

otherwise we have stability. To this end, let Gm,R,β(r; r0) be the Green’s function satisfying

G′′ +
N − 1

r
G′ − (1 + β)G− m2

r
G+ δr0 = 0, for 0 < r < R, GR

′(R; r0) = 0, (7.2)

which exists if Re(1 + β) > 0. Assume that

φε(rε + εy) → φ0(y).

Then we have

ψε(rε) =

∫ R

0

Gm,R,τλε(r; rε)(−2vε,Ruε,R − v2ε,Rψε)
rN−1

(rε)N−1
dr

= Gm,R,τλε(rε; rε)

(
− 2Â−1

∫
R

wφ0 − Â−2ξ−2

∫
R

w2ψε(rε) + o(1)

)
.

Hence we obtain

ψε(rε) = Gm,R,τλε(rε; rε)

(
− 2Â−1

∫
R

wφ0 + o(1)

)(
1 + Gm,R,τλε Â

−2ξ−2

∫
R

w2

)
. (7.3)

Substituting (7.3) into the equation for φε, we have that φ0 satisfies

φ0
′′ − φ0 + 2wφ0 − µ(τλ0)

∫
R
wφ0∫
R
w2

= λ0φ0, (7.4)

where µ(τλ0) satisfies

µ(τλ0) =
(1 − ξ)Gm,R,τλ0

(r0; r0)

ξG0(r0, ; r0) + (1 − ξ)Gm,R,τλ0
(r0; r0)

. (7.5)

Recalling Lemma 3.3, we see that if µ(0) < 1, then there exists a positive eigenvalue

λ0 > 0 to (7.4) for all τ > 0. Note that µ(0) < 1 is equivalent to

Gm,R(r0; r0)

G0,R(R0; r0)
>

1 − ξ

ξ
. (7.6)

Observe that

Gm,R(r0; r0) =
Im(r0)Km(r0) − Km

′(R)
Im ′(R)

I2
m(r0)

Im′(r0)Km(r0) −Km
′(r0)Im(r0)

.

By the Wronskian property of Bessel functions (see Abramowitz & Stegun [4]) we have

Im
′Km −Km

′Im =
1

r
.

Using this relation we derive,

Gm,R(r0; r0) = r0

(
Im(r0)Km(r0) − Km

′(R)

Im′(R)
I2
m(r0)

)
, (7.7)
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G0,R(r0; r0) = r0

(
I0(r0)K0(r0) − K0

′(R)

I0′(R)
I2
0 (r0)

)
. (7.8)

Substituting (7.7) and (7.8) into (7.6), we see that (7.6) is equivalent to

ρm,R(r0) <
ξ

1 − ξ
, (7.9)

where ρm,R is defined at (2.15).

To make the above arguments rigorous, we apply arguments of Dancer [9]. We write

(7.1) as follows:

φε = Rε

(
2Âvε,Ruε,Rφε + Âv2ε,RTε[φε]

)
, (7.10)

where Tε[φε] = ψε and Rε = (−ε2∆ + (1 + λε) − ε2m2

r2
)−1. We look for solutions of (7.10)

with λε = λ0 +o(1). Since λ0 > 0, we may assume that λε > 0. The operator Rε is certainly

compact in the class of radially symmetric functions. By using Dancer’s argument, for ε

sufficiently small, (7.10) admits a solution (φε, λε) where λε = λ0 + o(1) > 0.

If ρm,R(r0) <
ξ

1−ξ , then µ(0) > 1. By taking τ small and applying Lemma 3.3, we have

proved Theorem 2.2.

Next we prove Theorem 2.3. Note that ρm,R = O( 1
m
) for m� 1. So if 1 � m � 1

ε
, then

the instability criteria

ρm,R(r) <
ξ

1 − ξ

is satisfied. The previous arguments in Theorem 2.2 can be applied here.

In the case of m = m̂
ε
> c0

ε
for some fixed c0 > 0, the equation for ψε becomes

ε2∆ψε − m̂2

r20
ψε − ε2ψε − 2εvε,Ruε,Rφε − εv2ε,Rψε = τε2λεψε.

By the scaling r = rε + εy, we see that ψε(rε + εy) → ψ0(y) which satisfies

∆ψ0 − m̂2

r20
ψ0 = 0,

and hence ψ0 ≡ 0.

On the other hand, the equation for φε(rε + εy) = φ̂ε(y) becomes

φ̂ε
′′ +

ε

rε + εy
φ̂ε

′ − m̂2

(rε + εy)2
φ̂ε − φ̂ε + Âvε,Ruε,Rφ̂ε + Âv2ε,Rψε = λεφ̂ε,

and thus as ε → 0, φ̂ε → φ0 which satisfies

φ0
′′ − φ0 + 2wφ0 =

(
λ0 +

m̂2

r20

)
φ0. (7.11)

Since the operator L0φ = φ′′ −φ+ 2wφ has only one positive eigenvalue 5
4
, we then have

λ0 +
m̂2

r20
�

5

4
, (7.12)
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which proves Theorem 2.3 if m̂ >
√

5
2
r0. If m̂ <

√
5

2
r0, then (7.11) has a positive eigenvalue

λ0 = 5
4

− m̂2

r20
> 0 and hence (7.1) is unstable in this case.

This finishes the proof of Theorem 2.3.

8 Generalization to other radially symmetric domains

Theorems 2.1 and 2.2 can also be generalized to �N , to the case of an annulus or to the

exterior of a ball. Namely, we consider the following problem:

ε2∆v − v + Âv2u = 0 in Ω,

∆u+ 1 − u− v2u = 0 in Ω,

∂v
∂ν

= ∂u
∂ν

= 0 on ∂Ω,

(8.1)

where Ω = �N, or Ω = BR2
(0)\BR1

(0) or Ω = �N\BR(0).

We consider the general annulus case first. The �N case can be considered as a special

case of annulus with R1 = 0, R2 = +∞ and the exterior of a ball can be considered as

annulus with R1 = R and R2 = +∞. Let J1 and J2 be as defined in (2.1) and (2.2). We

then define two new functions J1,R1
and J2,R2

J1,R1
(r) = J1(r) − J1

′(R1)

J2
′(R1)

J2(r), J2,R2
(r) = J2(r) − J2

′(R2)

J1
′(R1)

J1(r) (8.2)

and a new Green’s function GR1 ,R2
(r; r0)

GR1 ,R2

′′ +
N − 1

r
GR1 ,R2

′ − GR1 ,R2
+ δrε = 0; GR1 ,R2

′(R1; r0) = 0, GR1 ,R2

′(R2; r0) = 0. (8.3)

Similar to (2.6), we have

GR1 ,R2
(r; r0) =

1

W

{
J2,R2

(r0)J1,R1
(r), for R1 < r < r0,

J1,R1
(r0)J2,R2

(r), for r0 < r < R2,
(8.4)

where

W = J1,R1

′(r0)J2,R2
(r0) − J1,R1

(r0)J2,R2

′(r0).

Define

MR1 ,R2
(r) :=

(N − 1)(p− 1)

r
+

1 − ξ

ξ

(J1,R1
J2,R2

)′(r)

J1,R1
(r)J2,R2

(r)
, (8.5)

where ξ satisfies

ξ(1 − ξ) =
GR1 ,R2

(r; r)

Â2
. (8.6)

Note that

J1,0 = J1, J2,+∞ = J2, G0,R(r; r0) = GR(r; r0), M0,R(r) = MR(r). (8.7)

Theorem 8.1 Assume that there exists two points R1 < r1 < r2 < R2 such that

MR1 ,R2
(r1)MR1 ,R2

(r2) < 0. (8.8)
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Figure 3. A graph of r versus Â2 for (R1, R2) = (3, 5).

Figure 4. A graph r versus minimal m for (R1, R2) = (3, 5).

Then for ε sufficiently small, problem (8.1) has a radially symmetric solution (vε,R1 ,R2
, uε,R1 ,R2

)

with the following properties:

(1) vε,R1 ,R2
, uε,R1 ,R2

are radially symmetric,

(2) vε,R1 ,R2
(r) = (1 + o(1))ξεw( r− rε

ε
),

(3) vε,R1 ,R2
(r) = 1 − (1 + o(1))ξε(1 + o(1))(GR1 ,R2

(rε; rε))
−1GR1 ,R2

(r; rε), where GR1 ,R2
(r; rε)

satisfies (8.3) and ξε is defined by the following relation:

1 − ξε =
GR1 ,R2

(rε; rε)

Â2ξε
, 0 < ξε <

1

2
(8.9)

and rε → r0 � 0 where MR1 ,R2
(r0) = 0.

In general, it is difficult to study the function MR1 ,R2
(r). A graph of Â2 and r for

(R1, R2) = (3, 5) is given in Figure 3. The stability of (vε,R1 ,R2
, uε,R1 ,R2

) can also be studied.

Figure 4 shows the relation between r and the minimal m for R1 = 3, R2 = 5 by similar

methods as before.

In the case of �N , we have a more precise result due to the following lemma.
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Lemma 8.1 There exists Âc �
√

2 such that the function M0,+∞(r) = 0 has a solution if and

only if 0 < Â < Âc.

Remark We conjecture that Âc = 1.460 if N = 2 and Âc =
√

2 if N � 3.

Proof Observe that M0,+∞(r) = 0 if and only if the following holds:

Â2 = −G0,+∞
(1 − γ)2

γ
,

1

ξ2 − ξ
=

1

γ
− 2 + γ (8.10)

where G0,+∞ = G0,+∞(r; r) is defined in (2.5) and

γ(r) =
1

N − 1

r(J1(r)J2(r))
′

J1(r)J2(r)
. (8.11)

First, we show that Â2, as given by (8.10), is positive for all r, i.e. γ < 0 for all r > 0. This

is equivalent to showing that u = r(J1J2)
′ is always negative. After some algebra, we obtain:

u′′(r) +
N − 1

r
u′(r) − 4u = 2NJ1J2. (8.12)

Note that J1J2 > 0, u(r) ∼ −(N − 1)C 1
rN−1 as r → ∞, and

u ∼
{

−C, N = 2

−(N − 2)Cr2−N, N > 2
as r → 0.

In the expression above, C is some positive constant that may change from line to line.

Thus u is negative on the boundary of an annulus {x : ε < |x| < R}, for any R large

enough and for any ε small enough. It then follows from the positivity of J1J2 and the

comparison principle that u is negative everywhere on that annulus. Since ε and R are

arbitrary, u(r) < 0 for all r > 0.

It remains to show that

0 < ξ < 1/2 for all r. (8.13)

But this is immediate from (8.10) since γ < 0 implies that 1
γ

− 2 + γ � −4 which is

equivalent to (8.13)

Finally, note that Â2 → 2 as r → ∞, Â2 → 0 as r → ∞, which proves the existence of

Âc �
√

2. �

Remark It is easy to see that ξ = 1
2

at a point rc such that γ(rc) = −1. The

latter implies that G′
0,+∞(rc; , rc) = 0. It then follows from (8.10) that d

dr
Â2|r=rc = 0. In two

dimensions, numerical simulation show that rc = 1.075 is indeed a global maximum Âc
of Â with Â2

c = 4G0,+∞(1.075; 1.075) = 2.133. However in three or higher dimensions,

numerics indicate that no such rc exists, and the maximum Âc =
√

2 is achieved only

at infinity. See Figure 5. That the point rc exists in two dimensions, can be seen as

follows: Simple properties of J1, J2 (see for instance [4]) yield: γ(0) = −1 + 1
N− 1

and

γ(r) = −1+ N− 3
4r2

+O( 1
r3

). for r large. Hence γ > −1 for r near 0 and, when N = 2, γ < −1

for large r. This proves the existence of γ(rc) = −1 in two dimensions. For N � 3, we

have γ > −1 near r = ∞ and so this argument no longer applies.

Combining Lemma (8.1) with Theorem (3), we obtain the following existence of ground-

state solution.
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Figure 5. (a) The graph of r versus Â2 with R = ∞ and for N = 2, 3, 4, 5, as indicated. Note that

for N = 2, Â attains a maximum at r = 1.07. For N > 2, the maximum is attained at infinity.

(b) The graph of r versus ξ with R = ∞ and N as indicated.

Theorem 8.2 There exists Âc �
√

2 such that for ε sufficiently small and for 0 < Â < Âc,

the problem (8.1) with Ω = �N has a radially symmetric solution (vε,0,+∞, uε,0,+∞) with the

following properties:

(1) vε,0,+∞, uε,0,+∞ are radially symmetric,

(2) vε,0,+∞(r) = (1 + o(1))ξεw( r−rε
ε

),

(3) vε,0,+∞(r) = 1 − (1 + o(1))ξε(1 + o(1))(G0,+∞(rε; rε))
−1G0,+∞(r; rε), where G0,+∞(r; rε) sat-

isfies (8.3) and ξε is defined by

1 − ξε =
G0,+∞(rε; rε)

Â2ξε
, 0 < ξε <

1

2
. (8.14)

In addition rε → r0 � 0 as ε → 0 where M0,+∞(r0) = 0. Such a solution dissapears if

Â > Âc.

In Figure 5a we plot the graph of r versus Â2 for dimension N = 2, 3, 4, 5. It is clear

from the graph that Â is bounded. Note also that in the case of two dimensions only, Â

has a maximum at r = 1.07 with ξ = 1
2

at that point.

The stability properties for ring solutions in �N is dramatically different from the

ball case. Our numerical computation shows that (vε,0,+∞, uε,0+∞) is always unstable with

respect to large eigenvalues for all 1 � m � 1
ε
.
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9 Self-replicating rings region: A = O(1).

In this section, we use matched asymptotic analysis to study the case when A = O(1).

Consider again the stability criteria given by (2.17):

ρm,R(r) >
ξ

1 − ξ
.

Note that ρm,R = O(1/m) for large values of m, for a fixed radius r. (See [4].) But for

the ring to be stable, this stability criteria must hold for all m in the range 0 � m � 1
ε
.

It follows that a stable ring can only occur if ξ � O(ε). However, from (2.11) and (1.6),

this corresponds to the regime Â = O(ε− 1
2 ), A = O(1), where our analysis breaks down. It

follows that a ring is always unstable for the regime A = O(ε
1
2 ). A natural question then,

is whether it is possible for a ring to become stable when A = O(1).

When A = O(1), the corresponding one-dimensional problem for the radial profile of

the ring becomes coupled as we show below. Moreover, it was shown [24, 29] that this

one-dimensional problem exhibits spike splitting, where a spike may split into two spikes,

if its distance from the boundary and/or adjacent spikes exceeds a certain threshold. In

two dimensions, this corresponds to a ring splitting into two rings. This phenomenon

is illustrated below in Figure 11. The mechanism here is essentially the same as the

one-dimensional spike-splitting, which we describe here briefly using matched asymptotics

(see also Muratov & Osipov [29] and Kolokolnikov et al. [24]).

We assume that the ring profile has the shape

v(r) =
1

ε
W (y) , u(r) = ε

U (y)

A
, y =

r − r0

ε
,

where both W,U are of order 1. We then obtain:

W ′′ + ε
W ′

r0 + εy
−W +W 2U = 0,

1

ε2
U ′′ +

1

ε

U ′

r0 + εy
−U +

A

ε
− W 2U

ε2
= 0.

Discarding lower-order terms, the problem for the profile of the ring becomes:

W ′′ −W +W 2U = 0, (9.1)

U ′′ −W 2U = 0. (9.2)

Outside the core region of the ring, we have:

u(r0) = 1 −
∫ ∞

0

r

r0
GR(r, r0)v

2(r)u(r)dr

= 1 − 1

A

∫ ∞

− r0
ε

r

r0
GR(r + εy, r0)W

2(y)U(y) dy, (9.3)

ε
U(0)

A
∼ 1 − GR(r0, r0)

A

∫ ∞

−∞
W 2U,

where GR is the radial Green’s function on the disk of radius R, given by (2.10). Since
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U(0) is of order 1, we obtain:

∫ ∞

−∞
W 2U =

A

GR(r0, r0)
.

From (9.2), this yields:

U ′(∞) −U ′(−∞) =
A

GR(r0, r0)
.

Normally, U will not be symmetric. However on a disk of radius R, it is symmetric for

the special case when r0 = rR , i.e. when following condition holds:

(J1(r0)J2,R(r0))
′ = 0, (9.4)

as we now show.

From (9.3) we obtain:

u′(r±
0 ) ∼ − 1

A
d

dr±
0

(
1

r±
0

GR(r, r±
0 )

)∣∣∣
r=r0

r0
∫ ∞

−∞ W
2(y)U(y) dy.

But the matching condition of the outer solution u and the inner solution U is:

U ′(±∞) = Au′(r±
0 ).

Thus we obtain:

U ′(∞) = − 1

J1
′(r0)J2(r0) − J1(r0)J2

′(r0)
r0J1

′(r0)J2,R(r0)

∫ ∞

−∞
W 2(y)U(y) dy

= − 1

J1
′(r0)J2(r0) − J1(r0)J2

′(r0)
r0J1

′(r0)J2,R(r0)
A

GR(r0, r0)

= A
J1

′(r0)J2,R(r0)

J1(r0)J2,R(r0)
,

U ′(−∞) = A
J1(r0)J2,R

′(r0)

J1(r0)J2,R(r0)
.

For U to be symmetric, we must have U ′(∞)+U ′(−∞) = 0, which is exactly the condition

(9.4).

Note that r0 given by (9.4) corresponds to the limiting case Â → ∞ (see (2.13) and the

remark following it), which agrees with the regime A = O(1). Thus we conjecture that r0
in the case A = O(1) will satisfy (9.4).

Assuming U to be symmetric, we thus obtain the following boundary value problem

for U,W :

U ′(0) = 0, U ′(∞) =
A

2GR(rR, rR)
.

In Kolokolnikov et al. [24] and Muratov & Osipov [29] it was shown that the solution to

the core problem exists only if U ′(∞) is small enough. To show this, we plot the graph of

U ′(∞) versus γ = U(0)W (0) in Figure 6.
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Figure 6. The graph of γ = W (0)U(0) versus U ′(∞). The fold point occurs at γ = 1.02, U ′(∞) =

1.347. The dashed curves represent an asymptotic approximations, derived in Kolokolnikov et al. [24].

Numerically, it has a fold point at U ′(∞) = 1.347, γ = 1.02. Thus if we choose U ′(∞)

just above 1.347, the ring ceases to exist. Numerically, this corresponds the ring splitting

into two rings. The mechanism responsible for this is similar to the mechanism proposed

by Nishiura & Ueyama [34] for the case of Dv
Du

= O(1) diffusivity ratio, and is described

below. We let

v =
1

ε
(W + eimθetλΦ(y)),

u =
ε

A
(U + eimθetλΨ (y)),

to obtain the following leading-order eigenvalue problem:

Φ′′ − Φ+ 2WVΦ+W 2Ψ = λΦ

Ψ ′′ − 2WVΦ−W 2Ψ = τλΨ (9.5)

Ψ ′(±∞) = 0 = Φ(±∞).

Note that the leading order problem is independent of the mode m. It follows that all

modes m with m � 1
ε

are stable, provided that the zero mode is stable.

At the fold point, we have dU ′(∞)
dγ

= 0 and therefore we see that

λ = 0, Φ =
dU

dγ
, Ψ =

dW

dγ
,

satisfies (9.5). Solving this system numerically, we obtain a solution for Φ that has a dent,

as shown in Figure 7. This is the eigenfunction that is responsible for ring splitting.

So as A is increased above the threshold where the steady-state solution dissapears,

the shape of the corresponding eigenfunction will deform the spike into two spikes. The

resulting two spikes will then move away from each-other. If the distance between them

becomes too big, their interaction becomes small enough and the whole process may

repeat again.
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Figure 7. Graph of the eigenfunction Φ = dW
dγ

corresponding to λ = 0 at the fold point

U(0)W (0) = 1.02, U ′(∞) = 1.347.

10 Numerical computations

We have performed numerical simulations of Gray–Scott model on a disk. We used

a second order discretization in space, combined with the forward Euler method in

time. Matlab was used for visualization. For all the simulations here, we chose R = 3,

ε = 0.05, τ = 1, and discretized the radial and anglular direction into 60 and 30 intervals,

respectively. The time step was taken to be 0.00005. For initial conditions, we chose a ring

of radius r0 = 1.5 of width ε, and with very small, random perturbations in the angular

direction.

Note that throughout this paper we have assumed that
√

6ε � 1, so that Â � A. (see

(1.6)). Even assuming
√

6ε = 0.1, we would need to take much more than 600R mesh

modes in the radial direction in order to resovle the ring whose core has width O(ε). At

this time, we do not have the code to accurately simulate this regime. Thus we cannot

expect our simulation to have a good quantitative agreement with the theory.

Experiment 1 Here we qualitatively verify that the first unstable mode increases rapidly

as A is increased (see Figure 2). Starting from the same initial condition of a ring

of radius 1.5, Figure 8 shows the solution at time t=30 for A = 0.8, 0.85, 0.87 and 1.0. For

these values of A, we observe that the ring breaks into m spots, where m = 8, 11, 12, 13,

respectively. This agrees with our theoretical prediction that the first unstable mode is

increased as A is increased.

Experiment 2 Next, we increase A, approaching the ring-splitting regime. Figure 9 shows

a simulation for A = 2.0. The initial ring at r0 = 1.5 starts to expand until its radius

reaches about 2.25. It then breaks into many spots. This implies that all lower-modes are

stable, but an instability at a very high mode is triggered. Moreover, the spots form both

at the outside and at the inside of the ring.

Theoretically, A = 2.0 corresponds to the regime Â → ∞. Note that for R = 3, we find

from theory that rR and Ac, defined in Conjecture 2.1, are rR = 2.238 and Ac = 1.837,

respectively. We cannot expect a good quantitative agreement since the value of ε in

our simulations is not small enough; nevertheless, we do find that the ring breakup in
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Figure 8. Solution at time t = 30 with A as indicated.

our simulations occurs at about r = 2.25 which agrees well with the predicted value of

rR = 2.238.

Experiment 3 (see Figure 10) For A = 2.2, the ring again expands until its radius reaches

about 2.25. This time however, the the instability is such that the inside of the ring splits

into many spots, whereas the outside of the ring moves towards to the boundary, and

remains stable for a much longer time. Eventually however, the outside of the ring also

breaks apart.

Experiment 4 (see Figure 11) For A = 2.5, the ring splits into two. The two resulting

rings then start travelling apart. Some time later, the inner ring breaks up. Then much

later the outer ring also breaks.

Experiment 5 (Figure 12) Our last simulation is with A = 4. As a result, a single ring

eventually splits into four. The resulting rings then lose their stability, one-by-one, starting

from the innermost ring, and progressing towards the outermost ring. Note however that

the outer ring can remain stable for a very long time, and becomes unstable only after

the adjacent ring has been broken up.
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Figure 9. Contour plot of v for A = 2.0.

11 Conclusion and discussion

We have performed an extensive study of the ring-like solutions for the Gray-Scott model

in the regime where the ratio of the diffusivity coefficients D2
v

Du
is small, using both rigorous

PDE theory (§ 3–8) and matched asymptotics approach (§ 9).

In Theorems 2.1, 8.1 and 8.3, we rigorously construct ring-like solutions in a ball, �N

an annulus, or the exterior of a ball. Our approach is a Liapunov–Schmidt reduction

method, combined with asymptotic analysis. In the sub-regime where Â = A√
6ε

is of

O(1), we found that the ring-like solution on entire �N exists only if Â is below some

threshold Âc. This behaviour is very different from that of a bounded disk. For a disk of

radius R < ∞, a ring-like solution always exists, and its radius is less than rR < R, where

rR is a zero of (J1J2,R)′(r).

In Theorems 2.2 and 2.3, we study the stability of the ring-like solutions in N = 2. We

have rigorously proved that the ring-like solutions are unstable for large modes 1 �m� 1
ε
.

Our approach is based on the study of a nonlocal eigenvalue problem, using functional

analysis developed in Wei [46] and Ward & Wei [42]. We found that the ring-like solution

on the entire space is always unstable with respect to the first mode of the angular

perturbation cos(θ). By contrast, on a bounded domain, any given number of low modes

can be made stable by choosing Â big enough. However an open question remains: can

a ring be stable with respect to all angular modes?
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Figure 10. Contour plot of v for A = 2.2.

When A = O(1), the equations for u and v cannot be decoupled at the core of the ring.

In such a regime, questions about existence and stability of the ring are reduced to a one-

dimensional core problem (9.1), which we can only solve numerically. Previous numerical

studies of the core problem (see Kolokolnikov et al. [24] and Muratov & Osipov [29])

show that in one dimension, spike splitting will occur if A is increased beyond a certain

threshold. In § 9 we have found a similar threshold in two dimensions: if A > Ac given

by (2.21) then the ring will split into two rings. Numerical simulations confirm this result.

For A just below Ac, we conjecture that there exists a ring solution whose radius is

precisely rR . The angular stability of such ring remains an open problem.

In this work we have addressed the breakup instability of a ring due to O(1) perturb-

ations in the profile. Such instabilities correspond to O(1) unstable eigenvalues, and are

referred to as the large eigenvalues. We have not addressed the small eigenvalues that arise

due to translation invariance of the problem. An instablility of such an eigenvalue can

induce a dynamic change of the ring radius; higher mode small eigenvlaue can also lead to

a zigzag-type instability. See Kolokolnikov et al. [23] for the study on such an instability.

An interesting open problem is to examine a connection between a ring solution and a

spot solution. From (8.10), by using the near-zero expansions of the Bessel functions, for

a single ring on the entire domain with r small, we obtain:

Â2 ∼ 9

2
r ln(r−1), r � 1
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Figure 11. Contour plot of v for A = 2.5.

However our analysis is only valid for r � O(ε) and breaks down when r = O(ε). On the

other hand, it is easy to show that spot solutions exist in the regime Â2 = O(ε ln(ε−1)).

This suggests that a spot can bifurcate into a ring as Â2 is slowly increased beyond

O(ε ln(ε−1)). Indeed numerical simulations suggest that this is indeed the case. When A

is large enough, an initial solution consisting of a spot tends to expand into a ring.

The ring then continues to expand until it breaks up into spots. On the other hand,

for smaller values of A, a single spot may be stable, or may undergo a self-replication,

resulting in two or more spots.

We now compare the our results with those obtained by Morgan & Kaper [28]. They

used the following scaling of the Gray–Scott model:

dV (y, s)

ds
= D∆V − BV +UV 2,

dU(y, s)

ds
= ∆U + Amk(1 −U) −UV 2.

By scaling the variables as follows:

V =
√
Amkv, U = u, s =

1

B
t, y =

1√
Amk

x
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Figure 12. Contour plot of v for A = 4.0.

we re-obtain our system (1.2) with

τ =
B

Amk
, ε =

√
DAmk

B
, A =

√
Amk

B

or

Amk =
1

τ2A2
, B =

1

τA2
, D = ε2τ.

The paper by Morgan & Kaper [28] obtains results for the ring location and its stability.

In addition it contains a linear Turing analysis for the radially-symmetric solutions

together with full numerical simulations.

For the location of the ring, in Morgan & Kaper [28] the same formula (equation (2.35)

of [28]) is obtained as in Theorem 2.1. They use a Melnikov-type calculation to obtain

their results whereas we have used Lyapunov–Schmidt reduction. However, they do not

have any analytical results on the existence of solution to equation (2.35) of Morgan &

Kaper [28]. Indeed, they consider only a bounded domain – in which case a ring solution

exists for any choice of Â. Our result on existence of the bound Âc on Â in case of the

unbounded domain is new. In the case of the bounded domain, we rigorously show the

existence of rR < R, which has the property that the radius of the ring r0 → rR as Â → ∞.

This is also a new result. Another new result that we have obtained using the comparison

principle, is the existence of Â for any given ring radius r0 in the case of the unbounded
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domain. We also consider the general N-dimensional case and examine the qualitative

differences between two and higher dimensions (see the remark after proof of Lemma 8.1).

The analysis of Morgan & Kaper [28] on the other hand, is restricted to two dimensions.

For the stability analysis with respect to angular perturbations, we obtain a simple

sufficient condition (see Theorem 2.2) for when the ring is unstable with respect to

mode m. This condition is also necessary when τ= 0. Our condition involves only Bessel

functions of order m and the ring radius r0. Our proof is rigorous and involves no

numerical computations. By contrast, the stability criteria for the mth mode in Morgan &

Kaper [28] is implicitly contained in integrals of hypergeometric functions which is then

solved by Mathematica. In both cases, the stability analysis is reduced to a non-local

eigenvalue problem. We also find that all modes 1 �m�O( 1
ε
) are unstable for any

τ � O(1), and all modes m >
√

5
2
r0
ε

are stable (Theorem 2.3). These results are new.

For the ring-splitting regime A = O(1), we use formal asymptotics and one-dimensional

numerics to derive an explicit bound Ac in terms of R (see (2.21)) such that the ring-

splitting occurs when A > Ac. This is a new result. We also show that the radius of the

ring for A just below Ac is precisely rR . We then use full numerical simulation to confirm

existence of the ring-splitting regime. In Morgan & Kaper [28], ring splitting is observed

numerically but no analysis of this regime is performed there.

Finally, we mention related works by Muratov et al. [22, 29, 30, 31]. In Muratov &

Osipov [29] the authors use formal asymptotics to derive an expression for the radius

of the ring in three dimensions. Their result (see (5.12) of Muratov & Osipov [29])

does not depend on Bessel functions, unlike the result obtained here. In [30] they also

numerically observe ring breakup into spots, but no rigorous analysis is provided. In

Muratov & Osipov [22], a general, qualitative mechanism of ring breakup into spots for

general reaction diffusion systems is also discussed (see pp. 430–433), and a scaling law

is derived, predicting the instability of some high modes m, but without giving bounds

on the instability band. Theorems 2.2, 2.3 provide these bounds in the specific case of the

Gray–Scott model.

Appendix A: Proof of Proposition 5.1

We first prove that if (φ, c) satisfy (5.5) and (5.6), then for ε sufficiently small, we have

‖φ‖∗ � C‖h‖∗. (A.1)

We prove it by contradiction. Suppose not. Then there exists a sequence εk → 0 and a

sequence of functions φεk satisfying (5.5)–(5.6) such that the following holds:

‖φεk‖∗ = 1, ‖hk‖∗ = o(1),

∫
Iεk

φεkZεk,t(t+ εky)
N−1 = 0.

For simplicity of notations, we drop the dependence on k. Let

Lε[φ] = φ′′ +
ε(N − 1)

t+ εy
φ′ − φ+ 2wε,tφ− 2(1 − ξε)

∫
Iε
wε,tφ∫
Iε
w2
ε,t

w2
ε,t. (A.2)
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Then φε satisfies

Lε[φε] = h+ cZε,t, φε
′
(

− t

ε

)
= φε

′
(
R − t

ε

)
= 0. (A.3)

Multiplying (A.3) by wε,t
′ and integrating over Iε, we obtain that

c

∫
Iε

Zε,twε,t
′ = −

∫
Iε

hwε,t
′ +

∫
Iε

(Lε[φε])wε,t
′. (A.4)

The left-hand side of (A.4) is simply c(
∫
R
pwp−1(w′)2 + o(1)) since Zε,t = 2wε,twε,t

′ + O(ε).

The first term on the right hand side of (A.4) can be estimated as∫
Iε

hwε,t
′ = O(‖h‖∗).

The last term equals∫
Iε

(Lε[φε])wε,t
′ =

∫
Iε

[
φε

′′ +
ε

t+ εy
φε

′ − φε + 2wε,tφε

]
wε,t

′ − 2(1 − ξε)

∫
Iε
wε,tφε∫
Iε
w2
ε,t

∫
Iε

w2
ε,twε,t

′

= o(‖φ‖∗).

Hence we obtain that

|c| = O(‖h‖∗) + o(‖φ‖∗), ‖h+ cZε,t‖∗ = o(1). (A.5)

Next we claim that |φε(y)| → 0 in any compact interval of R. In fact, we consider

φ̄ε(y) = φεχ(εy). Then it is easy to see that ‖φ̄ε‖H2 � C and hence φ̄ε → φ0 weakly in

H2(R) and φ0 satisfies

Lφ0 = 0, |φ0| � Ce−µ1|y|.

By Lemma 3.1, we must have φ0 = cw′. On the other hand,
∫
Iε
φεZε,t(t+ εy)

N−1dy = 0 and

hence
∫
R
φ0w

p−1w′ = 0, which implies that c = 0. Hence, φε → 0 in any compact interval

of R. This shows that

‖wε,tφε‖∗ = sup
y∈Iε

|wε,t(y)φε(y)| = o(1). (A.6)

On the other hand, by Lebesgue’s Dominated Convergence Theorem, we have that∫
Iε

wφε(t+ εy)N−1 → 0,

which implies that ∥∥∥∥
∫
Iε
wε,tφε∫
Iε
w2
ε,t

w2
ε,t

∥∥∥∥
∗

= o(1). (A.7)

Thus we have arrived at the following situation: φε satisfies

φε
′′ +

ε(N − 1)

t+ εy
φε

′ − φε = o(1), φε
′
(

− t

ε

)
= φε

′
(
R − t

ε

)
= 0, φε = O(1). (A.8)
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We claim first that φε(0) = o(1). In fact, suppose not. There exists a sequence of εk → 0

such that φε(0) � δ0 for some constant δ0 > 0. By taking a subsequence, φεk (y) → φ0(y)

in C2
loc(R) and φ0 satisfies

φ0
′′ − φ0 = 0, φ0(0) � δ0 > 0, φ0 = O(e−µ1〈y〉)

which is clearly impossible.

So φε(0) = o(1). Similarly we have φε
′(0) = o(1). Then by the comparison principle,

φε = o(1) for y ∈ Iε. This proves (5.7).

Finally, the existence follows from the Fredholm alternative. To this end, let us set

H = {u ∈ H1(�N)|(u, wε,t′) = 0}.

Observe that φ solves (5.5) and (5.6) if and only if φ ∈ H1(�N) satisfies

∫
�N

(∇φ∇ψ + φψ) − p〈wp−1
ε,t φ, ψ〉ε − qm

∫
Iε
wm−1
ε,t φ∫

Iε
wmε,t

〈wpε,t, ψ〉ε = 〈h, ψ〉ε, ∀ψ ∈H1(�N)

This equation can be rewritten in the following form:

φ+ S(φ) = h̄, (A.9)

where S is a linear compact operator form H to H , h̄ ∈ H and φ ∈ H.

Using the Fredholm alternative, in order to show that equation (A.9) has a uniquely

solvable solution for each h̄, it is enough to show that the equation has a unique solution

for h̄ = 0. To this end, we assume the contrary. That is, there exists (φ, c) such that

Lε[φ] = cZε,t, (A.10)

φ′
(

− t

ε

)
= 0, φ(y) → 0 as y → +∞, 〈φ,Zε,t〉ε = 0. (A.11)

From (A.10), it is easy to see that ‖φ‖∗ < +∞. So without loss of generality, we may

assume that ‖φ‖∗ = 1. But then this contradicts to (A.1).
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