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Turbulent natural convection along a vertical
plate immersed in a stably stratified fluid
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The paper considers the moderately turbulent natural convection flow of a stably
stratified fluid along an infinite vertical plate (wall). Attention is restricted to
statistically stationary flow driven by constant surface forcing (heating), with Prandtl
number of unity. The flow is controlled by the surface energy production rate Fs ,
molecular viscosity/diffusivity ν and ambient stratification in terms of the Brunt–
Väisälä (buoyancy) frequency N . Following the transition from a laminar to a
turbulent regime, the simulated flow enters a quasi-stationary oscillatory phase. In
this phase, turbulent fluctuations gradually fade out with distance from the wall, while
periodic laminar oscillations persist over much larger distances before they fade out.
The scaled mean velocity, scaled mean buoyancy and scaled second-order turbulence
statistics display a universal behaviour as functions of distance from the wall for given
value of dimensionless combination Fs/(νN2) that may be interpreted as an integral
Reynolds number. In the conducted numerical experiments, this number varied in
the range from 2000 to 5000.

1. Introduction
Unsteady natural convection flows abound in nature and technology. Such flows are

notoriously difficult to analyse theoretically because of the intrinsic coupling between
the temperature and velocity fields. The case of unsteady laminar one-dimensional
natural convection along an infinite vertical plate (sometimes referred to as a double-
infinite plate because no leading or trailing edges are considered) provides one of the
few scenarios where the Boussinesq equations of motion and thermodynamic energy
may be solved analytically (Gebhart et al. 1988). Analytical solutions for unsteady
one-dimensional natural convection along an infinite vertical plate were obtained in
the 1950s and 1960s for a variety of surface forcings, though with a restriction to
unstratified environments. The stability of these unstratified flows was analysed by
Armfield & Patterson (1992) and Daniels & Patterson (1997, 2001). The extension
of the one-dimensional convection framework to include ambient stratification is a
relatively recent development (Park & Hyun 1998; Park 2001; Shapiro & Fedorovich
2004a, b, 2006).

Shapiro & Fedorovich (2004b) considered unsteady laminar natural convection in
a stratified flow adjacent to a single infinite vertical plate (wall). Analytical solutions
were obtained for a Prandtl number of unity for the cases of impulsive (step) change
in plate perturbation temperature, sudden application of a plate heat flux and for
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arbitrary temporal variations in plate perturbation temperature or plate heat flux.
Vertical motion in a stably stratified fluid was associated with a simple negative
feedback mechanism: rising warm fluid cooled relative to the environment, whereas
subsiding cool fluid warmed relative to the environment. Because of this feedback,
the laminar convective flow in stably stratified fluid adjacent to a double-infinite
plate eventually approached a steady state, whereas the corresponding flow in an
unstratified fluid did not.

In a companion paper, Shapiro & Fedorovich (2004a) explored the Prandtl number
dependence of unsteady laminar natural convection of a stably stratified fluid along a
single vertical plate both numerically and analytically. The developing boundary layers
were thicker, more vigorous, and more sensitive to the Prandtl number at smaller
Prandtl numbers (<1) than at larger Prandtl numbers (>1). The gross temporal
behaviour of the flow after the onset of convection was of oscillatory-decay type
for Prandtl numbers near unity, and of non-oscillatory-decay type for large Prandtl
numbers. Stability analyses of the steady-state versions of these flows were conducted
by Gill & Davey (1969) and Bergholz (1978).

In the context of turbulent natural convection, Phillips (1996) and Versteegh &
Nieuwstadt (1998, 1999) numerically studied the flow of an unstratified fluid in
a slot between two differentially heated vertical walls. In the direct numerical
simulation (DNS) study of Versteegh & Nieuwstadt (1999), the extension of a
two-region inner/outer scaling method of George & Capp (1979) for a turbulent
convection flow along a single wall was employed to determine the basic functional
dependencies (scaling laws) relating the mean and turbulent flow variables to the
governing parameters and suitably normalized distance from the wall. Comparing
the scalings proposed by George & Capp (1979) with the DNS results, Versteegh
& Nieuwstadt (1999) concluded that the mean temperature profile and temperature
variance were in a good agreement with the theoretical scalings, but the mean velocity
profile and velocity variances were not. However, one should take into account
that the Versteegh & Nieuwstadt (1999) study was concerned with one-dimensional
flow between two double-infinite walls, while George & Capp (1979) considered the
two-dimensional flow along a single semi-infinite wall (in the presence of leading
edge). A finding of particular importance, based on the DNS results of Versteegh &
Nieuwstadt (1999) and on the laboratory data of Boudjemadi et al. (1997), was that
of the exchange coefficient becoming negative in a layer near the wall. This implies
that the commonly adopted gradient transfer hypothesis breaks down in the near-wall
region of the studied convection flow, in contrast to the situation in conventional
wall-bounded flows (Tennekes & Lumley 1972).

It should be born in mind, however, that these preceding studies have all been
conducted with unstratified fluids. As it is well known from geophysical fluid dynamics,
stratification plays a crucial role in the structure of turbulent flows (Cushman-Roisin
1994). Moreover, in the specific context of semi-infinite vertical-plate (wall) convection,
the fully developed boundary layer flow is height-dependent over the entire wall in
the case of unstratified fluid, while the fully developed flow in stratified fluid is height-
dependent only in the region of the leading edge (Armfield, Patterson & Lin 2007),
with the flow solution becoming height-independent at large distances along the wall.

To our knowledge, the structure of turbulent natural convection flow along a
vertical heated wall in the presence of ambient stratification has not been studied by
means of DNS so far. The present paper considers the same physical scenario as in
Shapiro & Fedorovich (2004b), that is, natural convection along an infinite vertical
wall in a stably stratified fluid, but for the surface buoyancy forcing large enough
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Figure 1. Schematic of the flow along a heated wall.

that the flow becomes turbulent. Attention is restricted to the case of convection
flow driven by constant surface buoyancy flux, with Prandtl number of unity. DNS
is employed as the basic tool of the study, and the numerical results are analysed at
times large enough that a statistically stationary state has been achieved.

2. Governing equations
The three-dimensional Boussinesq equations of motion, thermodynamic energy and

mass conservation in a right-hand Cartesian (x, y, z) coordinate system attached to
the wall are (Shapiro & Fedorovich 2004a):

∂ui

∂t
+ uj

∂ui

∂xj

= −∂p′′

∂xi

+ βT ′′δi1 + ν
∂2ui

∂xj∂xj

, (1)

∂T ′′

∂t
+ uj

∂T ′′

∂xj

= −γ u1 + κ
∂2T ′′

∂xj∂xj

, (2)

∂ui

∂xi

= 0, (3)

where i =1, 2, 3, j = 1, 2, 3, u = (u1, u2, u3) ≡ (u, v, w) is the three-dimensional velocity
vector with the components along the coordinate axes x ≡ x1 and y ≡ x2 (the along-
wall coordinates with x being vertical) and z ≡ x3 (normal to the wall directed away
from it) (see figure 1), p′′ = [p − p∞(x)]/ρr is the normalized deviation of pressure p
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from its hydrostatic value p∞(x) far away from the wall, ρr is a constant reference
density, T ′′ = T − T∞(x) is the perturbation temperature, T∞(x) is a linearly varying
ambient temperature far away from the wall, γ ≡ dT∞/ dx + g/cp is the stratification
parameter, ν is the kinematic viscosity, κ is the molecular thermal diffusivity, β = g/Tr

is the buoyancy parameter (g is the gravitational acceleration and Tr is a constant
reference temperature), δij is the Kronecker delta and the Einstein rule of summation
over repeated indices is applied.

In terms of buoyancy b ≡ −g ρ−ρ∞(x)
ρr

� g T −T∞(x)
Tr

= βT ′′ (with ρ∞ denoting the ambient

density) and Brunt–Väisälä (or buoyancy) frequency in the ambient stably stratified
fluid N =

√
γβ , the governing equations (1)–(3) may be rewritten as

∂ui

∂t
+ uj

∂ui

∂xj

= −∂p′′

∂xi

+ bδi1 + ν
∂2ui

∂xj∂xj

, (4)

∂b

∂t
+ uj

∂b

∂xj

= −N2u1 + κ
∂2b

∂xj∂xj

, (5)

∂ui

∂xi

= 0. (6)

These equations are to be applied to a fluid bounded by a single double-infinite vertical
wall (no leading edge) in an otherwise unbounded domain. The wall is located at
z = 0. The surface forcing (buoyancy flux specified at the wall surface) is temporally
constant and uniform along the wall.

We apply in (4)–(6) the Reynolds decomposition of flow fields (Pope 2000):
ϕ = ϕ̄(z) + ϕ′(t, x, y, z), where ϕ is a generic flow variable, ϕ̄(z) is its average value
that depends only on the distance from the wall and ϕ′(t, x, y, z) is the turbulent
perturbation of ϕ. Averaging (4)–(6) spatially (over x–y planes) and temporally (over
t), and applying the surface conditions of impermeability (w =0 at z = 0) and no slip
(u = v = 0 at z = 0), we reduce the system (4)–(6) to

b + ν
∂2u

∂z2
− ∂u′w′

∂z
= 0, (7)

−uN2 + κ
∂2b

∂z2
− ∂b′w′

∂z
= 0, (8)

−∂p′′

∂z
− ∂w′w′

∂z
= 0, (9)

where (9) immediately integrates to the relationship p′′ = −w′w′ (where we have
assumed that w′w′ vanishes at z = ∞). In (7) and (8), b now denotes mean buoyancy
and u denotes the mean flow velocity component along the wall (with overbars
omitted), while u′w′ and b′w′ represent z components of turbulent kinematic fluxes
of mean momentum and buoyancy, respectively. In the remainder of this study, we
will restrict our attention to a Prandtl number of unity (Pr = ν/κ =1).

At the surface (denoted by the subscript s), the flow should satisfy the no-slip
condition, so us ≡ u(0) = 0, and a constant surface buoyancy flux −ν(∂b/∂z)|s = Fs

is prescribed. For the case of a heated wall, Fs > 0. At very large distances from the
wall, the flow disturbance induced by the heated wall is expected to vanish, so u = 0
and b = 0 as z → ∞. From no-slip and impermeability conditions, it follows that
turbulent fluxes u′w′ and b′w′ must both vanish at z = 0. Furthermore, we assume
that these fluxes vanish as z → ∞. With such boundary conditions, the surface energy
production rate Fs , kinematic diffusivity ν and ambient stratification frequency N
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completely determine the structure of the considered turbulent natural convection
flow.

3. Numerical simulation
3.1. Numerical algorithm

The considered flow case is investigated by means of DNS. The DNS algorithm
employed to solve (4)–(6) with Pr = ν/κ = 1 is generally the same as that used
to reproduce laminar convection regimes in Shapiro & Fedorovich (2004a) and
previously applied for the large eddy simulation of laboratory and atmospheric
convective boundary layers in Fedorovich, Nieuwstadt & Kaiser (2001); Fedorovich
et al. (2004a); Fedorovich, Conzemius & Mironov (2004b). In the current version of
the numerical code, the time advancement is performed by a hybrid leapfrog/Adams–
Moulton third-order scheme (Shchepetkin & McWilliams 1998). The spatial
derivatives are approximated by second-order finite-difference expressions on a
staggered grid. The Poisson equation for pressure is solved with a fast Fourier
transform technique over the x–y planes and a tri-diagonal matrix inversion method
in the wall-normal direction. No-slip and impermeability conditions are applied on
the velocity field at the wall. The third equation of motion is used as a boundary
condition for the pressure at the wall and at the outer boundary of the domain (large
z). Normal gradients of prognostic variables (velocity components and buoyancy)
are set to zero at the outer boundary of the computational domain, and periodic
boundary conditions are imposed at the x–z and y–z boundaries of the domain.

In the simulations, we tried to reproduce a representative variety of turbulent flow
regimes without going beyond the capabilities of the numerical scheme employed
or straining computer resources (all simulations have been performed on a standard
two-processor workstation). For these two reasons, we limited the maximum Reynolds
number (Re) value to 5000 (the method used for evaluating Re in our experiments
will be explained in § 4). This value was large enough to obtain reasonably developed
turbulence while allowing use of relatively compact numerical grids and providing
sufficiently long time series of variables to track the flow development. The simulations
described in this paper were conducted on the (x × y × z) = 256 × 256 × Nz uniformly
spaced (
x =
y = 
z = 
) grids, with Nz depending on the Re number of the
simulated flow (Nz = 600 in the flow case with Re =5000). The grid spacing 
 was
chosen to ensure that the resolvability condition 
 � (π/1.5)Lm is satisfied (Pope
2000), where Lm = min(ν3/4F −1/4

s , F 1/2
s N−3/2) with ν3/4F −1/4

s and F 1/2
s N−3/2 being,

respectively, analogues of the Kolmogorov microscale (Tennekes & Lumley 1972)
and of the Ozmidov length scale commonly encountered in oceanography (Smyth &
Moum 2000). Numerical experiments in which the grid spacing and size were varied
individually by factors between 0.5 and 2 showed that, once the resolvability condition
was satisfied, the dependence of the mean flow and turbulence statistics on the grid
cell size and domain dimensions was very minor, with the discrepancies being of the
order of a per cent and less.

3.2. Convection flow structure

Figure 2 shows the spatial (in the z direction) and temporal evolution of the velocity
(u component) and buoyancy fields in the central point of the x–y plane from
the simulation with Fs = 0.5 m2 s−3, ν = 10−4 m2 s−1, N = 1 rad s−1 and 
= 0.0025 m.
After the transition stage that takes about one period of gravity-wave oscillation
(2π/N), both fields reveal the essentially turbulent nature of the flow close to the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
00

77
57

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009007757


46 E. Fedorovich and A. Shapiro

50(a)

(b)

45

40

35

30

–1

0

–2
2
6
10
14
18
22
26
30
34
38
42
46
50
54

1

2

3

4

5

6

7

8

25

20

15

10

5

0 0.5 1.0 1.5

0.5

z (m)

1.0 1.5

T
im

e 
(s

)

50

45

40

35

30

25

20

15

10

5

0

T
im

e 
(s

)

Figure 2. Spatial and temporal evolution of (a) velocity (in m s−1) and (b) buoyancy (in
m s−2) fields in the central point of the x–y plane for the flow case with Fs = 0.5 m2 s−3,
ν = 10−4 m2 s−1 and N = 1 rad s−1. Negative contours are dashed. Zero contours are marked
by bold solid lines.

heated wall and an oscillatory quasi-periodic behaviour of the flow at larger distances
from the wall. In the immediate vicinity of the wall, the flow remains quasi-laminar.
With increasing distance from the wall, turbulent fluctuations develop on a relatively
broad scale range. However, only fluctuations with a frequency equal to the natural
buoyancy frequency N dominate at larger distances from the wall. Fluctuations
with other frequencies decay more rapidly away from the wall. These dominant
oscillations are apparent far beyond the thermal and dynamic turbulent boundary
layers (see figure 3).

A similar oscillatory flow pattern at large distances from the wall was observed in
the Shapiro & Fedorovich (2006) study of a laminar natural convection flow along a
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Figure 3. Time series of mean velocity (a) and buoyancy (b) for the same flow case as in
figure 2 at different distances from the wall: 0.00125m (solid black line), 0.0625m (solid grey
line), 0.125m (dashed grey line), 0.25 m (dashed black line) and 0.5 m (dashed and dotted black
line) from the wall.

wall with a temporally periodic surface thermal forcing. In the present case, however,
the oscillatory flow motions result from interactions between turbulence and ambient
stable stratification under the conditions of a temporally constant surface buoyancy
forcing.

Flow fields in figures 2 and 3 also reveal that the boundary-layer flow along the
wall becomes statistically stationary as time grows. Remarkably, the thermal boundary
layer, whose depth may be estimated from the position of a convoluted contour of
zero buoyancy in figure 2(b), is much shallower than the dynamic (momentum)
boundary layer in figure 2(a). Figure 3 displays time series of simulated velocity
and buoyancy fields at different distances from the wall for the same flow case. The
relative shallowness of the thermal boundary layer, noted above, is manifested in
figure 3(b) by the fast drop of buoyancy away from the wall. Another previously
discussed feature of the flow, the persistent oscillatory fluctuations of the flow fields
with frequency N at large distances from the wall, is also clearly seen in figure 3.
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Figure 4. (a) Buoyancy (b, in m s−2) and (b) velocity (u, in m s−1) fields over x–z (a) y–z
(b) cross-sections of the numerical domain at t = 49.1 s (which corresponds to about eight
oscillation periods) for the flow case shown in figures 2 and 3. Distances are indicated in
metres. Negative contours are dashed. Zero contours are marked by bold solid lines.

Insight into the spatial structure of the turbulent convection flow at a fixed time
in the simulation may be gained from the snapshots of the flow cross-sections shown
in figure 4. Both buoyancy and velocity fields exhibit a markedly irregular behaviour
typical of a developed turbulent flow. The buoyancy fluctuations reach their maximum
magnitude in the close vicinity of the wall, while the velocity fluctuations appear to
be largest at distances from the wall roughly corresponding to the position of the
convoluted interface separating regions of positive and negative buoyancy. Buoyancy
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fluctuations in the relatively deep region of negative buoyancy are rather weak and
lack any remarkable structural features.

On the other hand, the structure of the velocity field in the area of maximum
intensity of velocity fluctuations at z about 0.15 m in the x–z cross-section shows a
moderate degree of coherence, with velocity fluctuations being organized in elongated
streaks directed along the mean flow. In the y–z cross-section, the projections of these
streaks appear as organized structures oriented along z. At larger distances from the
wall, this feature disappears, and velocity fluctuations in both the x–z and y–z planes
become more isotropic. In the flow region around z =0.3 m, zones of positive and
negative velocity fluctuations coexist, and one can see splashes of positive momentum
penetrating rather deeply into the region with overall negative velocity values.

This reverse flow, along with the offset negative buoyancy region, is a signature
feature of the simulated convection flow in the presence of stable stratification. In the
case of an unstratified flow simulation with N = 0 (not shown), the reverse flow and
the negative buoyancy patch do not develop, and regions of positive momentum and
buoyancy persistently grow in depth with time.

3.3. Mean profiles and turbulence statistics

Figure 5 shows the mean flow profiles and kinematic fluxes of momentum and
buoyancy for four flow cases with ν = 10−4 m2s−1 and N = 1 s−1, surface buoyancy
flux Fs ranging from 0.2 to 0.5 m2 s−3, and grid spacing 
= 0.0025 m. These profiles
were obtained by averaging the flow fields spatially over x–y planes and temporally
over seven oscillation periods beyond the transition stage. The dimensional profiles
of mean buoyancy and along-wall velocity show considerable sensitivity to Fs . For
instance, the velocity maximum in the case of Fs = 0.5 m2 s−3 is almost twice as large as
in the case of Fs = 0.2 m2 s−3. The differences between buoyancy profiles corresponding
to different Fs are largest in the close vicinity of the wall. The difference in depth
between the thermal and dynamic boundary layers, already noted above, is clearly
seen from comparing the rate of decay of buoyancy with distance from the wall to
that of velocity after it reached its maximum in close vicinity of the wall. Velocity
gradients on the left of the maximum, in the inner flow region, are markedly larger
than those on the outer side. This pronounced asymmetry of the velocity maximum
increases with growing Fs . The region of reverse mean flow (negative u) in figure 5(a)
is narrower than the zone of negative mean buoyancy and is shifted outwards (larger
z) with respect to the buoyancy minimum. The overall depths of both the reverse flow
and region of negative buoyancy grow with Fs . Although there are large quantitative
differences between the turbulent flow and the corresponding laminar flow (Shapiro
& Fedorovich 2004b), the basic mean flow structure is qualitatively the same: warm
(relative to environment) fluid rises along the wall, whilst cool fluid subsides at some
distance from the wall.

Large relative differences between second-order turbulence statistics (kinematic
fluxes and variances) for flows with different surface forcing intensities are apparent
in figures 5(b) and 6. Greater Fs values lead to larger magnitudes of both fluxes and
variances. As seen in figure 5, zero crossings in the mean profiles of b and u are
quite precisely co-located with the minima and maxima of the fluxes u′w′ and b′w′,
as predicted by (7) and (8). It can also be seen in figure 5 that positions of zero
fluxes are closely associated with positions of zero gradients of corresponding mean
profiles. Moreover, throughout the whole flow, there is an apparent anti-correlation
between the turbulent fluxes and the gradients. These features allow us to infer that
close flux-gradient relationships in terms of positive exchange coefficient are valid
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Figure 5. Profiles of (a) mean flow buoyancy (in m s−2; black) and velocity (in m s−1; grey),
and (b) of kinematic fluxes of buoyancy (in m2 s−3; black) and momentum (in m2 s−2; grey)
for the flow cases with ν = 10−4 m2 s−1, N = 1 rad s−1 and Fs equal to 0.2 (short-dash lines),
0.3 (dashed and dotted lines), 0.4 (long-dash lines) and 0.5 (solid lines) m2 s−3. Distances are
indicated in metres.

throughout the entire simulated flow, even in the very close vicinity of the wall, in
contrast to the near-wall region of the unstratified flow in a double-wall channel
simulation of Versteegh & Nieuwstadt (1999).

Figure 5 also shows that positive peaks of both u′w′ and b′w′ fluxes are rather
narrow (especially, that of the buoyancy flux), and there is no indication of any
extended flow region with constancy (even approximate) of any flux with distance
from the wall. In more conventional boundary-layer type flows, driven, for instance,
by imposed pressure gradient along the wall, the existence of distance intervals with
constant (slowly varying) momentum and buoyancy fluxes is used as a foundation for
similarity analyses and scalings. Clearly, such a constant-flux formalism would not
apply, at least in a straightforward manner, to the flow that is considered in our study.
Furthermore, we did not find any evidence of scale separation in the simulated flow
cases that would allow the flow to be subdivided into regions where any of the three
governing parameters (Fs , ν, N) could be dropped from consideration. For instance,
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Figure 6. Profiles of variances of (a) buoyancy (in m2 s−4; black) and u velocity component
(in m2 s−2; grey), and (b) w (in m2 s−2; black) and v (in m2 s−2; grey) velocity components
for the flow cases with ν = 10−4 m2 s−1, N =1 rad s−1 and Fs equal to 0.2 (short-dash lines),
0.3 (dashed and dotted lines), 0.4 (long-dash lines) and 0.5 (solid lines) m2 s−3. Distances are
indicated in metres.

even at relatively large distances from the wall, the molecular viscosity/diffusivity
in combination with surface buoyancy flux would influence the local flow structure
through the near-wall peak velocity value that is directly determined by their combined
effect. Analogously, the influence of stratification (in terms of N) is started to be felt
in the simulated flow already in the immediate vicinity of the wall, so it would be
impossible to isolate a flow region where dependence on N may be neglected. The
above conclusions based on the observations of the simulated flow structure are
supported by scaling considerations presented in § 4.

As profiles of the buoyancy variance in figure 6(a) reveal, the buoyancy fluctuations
attain their maximum magnitude extremely close to the wall (again note logarithmic
scaling of z in the plot), even closer to the wall than the location of the peak
mean velocity. The drop of b′b′ beyond the maximum is also rather fast; significant
fluctuations of the buoyancy are restricted to a comparatively thin near-wall layer.
Velocity fluctuations, on the other hand, grow in magnitude relatively slowly with
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distance from the wall, with u′u′ reaching its maximum at a location, where the
buoyancy variance has dropped to very low levels. The post-maximum decay of u′u′

is also much more gradual than that of b′b′. Overall, the velocity fluctuations of
notable magnitudes are distributed over a layer that is a few times thicker than the
layer which contains buoyancy fluctuations. Development of velocity fluctuations
normal to the wall is apparently hampered by the presence of the wall. This
explains the relatively slow growth of w′w′ with z (figure 6b) compared to u′u′

in figure 6(a) and v′v′ in figure (6b). Curiously, profiles of the latter variance for
different Fs consistently display secondary maxima very close to the wall, at distances
comparable to those at which mean velocity maxima occur (see figure 6a). To explain
these secondary maxima in v′v′, the estimates of second-order turbulence moment
budgets would be needed, but those are not available at this point. Profiles of
crossflow (v and w) velocity variances for given Fs overlap beyond their maxima
and, at larger distances from the wall (z > 0.3 m), follow rather closely the profiles
of u′u′. This behaviour of the variances points to an isotropization of the velocity
fluctuations with increasing distance from the wall. This is another feature that could
be investigated by means of evaluating budgets of variances of the individual velocity
components.

4. Scaling considerations
Noting that in the case of Pr = 1 (ν = κ) the governing parameters of the flow ν, N

and Fs have, respectively, dimensions of [L2 T1], [T1] and [L2 T3], and introducing
generic scales L (for distance), V (for velocity), and B (for buoyancy), the Π theorem
(Langhaar 1951) allows us to write

L = ν1/2N−1/2fL(Fsν
−1N−2), V = ν1/2N1/2fV (Fsν

−1N−2),

B = ν1/2N3/2fB(Fsν
−1N−2), (10)

where fL, fV and fB are dimensionless functions of the dimensionless combination
(number) Fsν

−1N−2. This combination may be interpreted as an integral Reynolds
number of the flow. Indeed, integrating (8) over z from 0 [where b′w′ = 0 and
κ(∂b/∂z) = ν(∂b/∂z) = −Fs] to ∞ (where b′w′ = 0 and ∂b/∂z = 0), we come to

Ṽ L̃

ν
≡

∫ ∞

0

u dz

ν
=

Fs

νN2
≡ Re, (11)

where L̃ ≡ 1
Ṽ

∫ ∞
0

u dz and Ṽ are integral length and velocity scales of the considered
flow.

Expression (11) also provides an integral constraint for the velocity profile:∫ ∞
0

udz = Fs/N
2, which indicates that the velocity integral does not depend on the

viscosity/diffusivity and is entirely determined by the ratio of the surface buoyancy
forcing to the ambient stratification strength in terms of N2. By calculating integrals
of the simulated velocity profiles shown in figure 5(a), we evaluated this constraint
and found it to be valid within a single per cent accuracy.

The Shapiro & Fedorovich (2004b) length, velocity and buoyancy scales for the
laminar convection (they may be called the laminar or l-scales),

L = ν1/2N−1/2 ≡ Ll, V = Fsν
−1/2N−3/2 ≡ Vl, B = Fsν

−1/2N−1/2 ≡ Bl, (12)
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are particular cases of the scales (10) that correspond to fL =1, fV = Re and fB = Re.
This scaling provides the following l-scaled equations of mean momentum and
buoyancy balance:

bl +
∂2ul

∂z2
l

− Re
∂τl

∂zl

= 0, (13)

−ul +
∂2bl

∂z2
l

− Re
∂Fl

∂zl

= 0, (14)

ul = 0 and ∂bl/∂zl = −1 at zl = 0, (15)

ul = 0 and bl = 0 as zl → ∞, (16)

where Re = VlLl/ν = Fsν
−1N−2, zl = z/Ll , ul = u/Vl , bl = b/Bl , τl = (u′w′)l = u′w′/V 2

l ,
and Fl = (b′w′)l = b′w′/(VlBl). Dimensionless quantities ul , bl , τl and Fl in (13)–(16)
should universally depend on zl for all ν, N and Fs that produce, in combination, the
same value of Re = Fsν

−1N−2.
The deduced universal behaviour of the scaled flow fields provides a framework for

testing the appropriateness of the numerical procedure applied to simulate the flow.
Indeed, by keeping the grid spacing and the domain size constant, and varying values
of ν, N and Fs , we implicitly prescribe different ratios between 
 and Lm [under the
constraint 
 � (π/1.5)Lm (see § 3.1)], as well as between 
 and the domain size. By
varying the basic parameters of the flow in this manner, we also test the statistical
adequacy of the calculated turbulence moments.

First, we demonstrate that our numerical code is able to reproduce the universality
of the mean velocity and buoyancy profiles for the flow cases with two different Re
numbers (3000 and 4000).

The first considered flow case with Re = 3000 is one of the flow cases (with
Fs = 0.3m2 s−3, ν =10−4 m2 s−1, and N = 1 s−1) previously examined in § 3. For this
flow case: 
= 0.0025 m and Lm = ν3/4F −1/4

s = 0.00135 m (see § 3.1). The second
simulated case with Re =3000 and 
= 0.0025 m differs from the first one by
setting values of the governing parameters to Fs = 0.9 m2 s−3, ν =

√
3 × 10−4 m2 s−1

and N =
4

√
3 rad s−1 (this provides Lm = 0.00155 m).

In the case of Re =4000, the simulated flow with 
= 0.0025 m, Fs = 0.4m2 s−3,
ν = 10−4 m2 s−1 and N = 1 s−1 (corresponding to Lm =0.00126 m), also considered in
§ 3, is compared to the flow with 
= 0.0025 m, Fs = 0.8 m2 s−3, ν =

√
2 × 10−4 m2 s−1

and N =
4

√
2 rad s−1 (corresponding to Lm = 0.00137 m).

For all these cases, the velocity and buoyancy fields from the DNS output were
averaged over time and x–y planes in the manner described in § 3 and then scaled with
corresponding l-scales of velocity and buoyancy before being plotted against non-
dimensional zl . The scaled profiles of velocity and buoyancy shown in figures 7(b) and
7(d ) clearly confirm that computed normalized u and b indeed perform in a universal
manner with different sets of ν, N and Fs that combine into the same Re = Fsν

−1N−2.
The universal behaviour is also observed in the scaled profiles of the Re = 3000

case kinematic fluxes of buoyancy b′w′ and momentum u′w′, represented in the scaled
equations (13) and (14), as well as in the buoyancy b′b′ and velocity u′u′ variances (see
figure 8). These simulation results demonstrate the overall similarity of turbulence
structure in convection flows of same Re and also suggest that computational
parameters and averaging procedures adopted for the simulations and have been
chosen adequately.
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Figure 7. Original ((a) and (b) with buoyancy in m s−2, velocity in m s−1, distances in metres)
and l-scaled (c and d ) profiles of mean buoyancy (dashed lines) and velocity (solid lines) for
flow cases with Re = 3000 (a and c) and Re = 4000 (b and d ). In (a) and (c), black lines refer
to the case of ν = 10−4 m2 s−1, N = 1 rad s−1, Fs = 0.3 m2 s−3 and grey lines refer to the case

of ν =
√

3 × 10−4 m2 s−1, N =
4

√
3 rad s−1, Fs = 0.9 m2 s−3. In (b) and (d ), black lines refer to

the case of ν =10−4 m2 s−1, N = 1 rad s−1, Fs = 0.4 m2 s−3 and grey lines refer to the case of

ν =
√

2 × 10−4 m2 s−1, N =
4

√
2 rad s−1, Fs = 0.8 m2 s−3.

5. Conclusions
Turbulent natural convection flow along a double-infinite heated vertical plate

(wall) immersed in a stably stratified fluid has been investigated numerically by
means of DNS. The considered flow is driven by a maintained spatially uniform
wall buoyancy flux. To our knowledge, this is the first DNS study of the structure
of turbulent natural convection flow along a vertical heated wall in the presence of
ambient stratification.

Following the transition from a laminar to a turbulent regime, the simulated
flow enters a quasi-stationary oscillatory phase. In this phase, turbulent fluctuations
gradually fade out with distance from the wall, while periodic laminar oscillations
persist over much larger distances before they fade out. Such oscillatory flow motions
result from interactions between turbulence and ambient stable stratification. It should
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Figure 8. Original (a and b) and l-scaled (c and d ) profiles of turbulent momentum (solid
lines) and buoyancy (dashed lines) kinematic fluxes for flow cases with Re = 3000. Black lines
refer to the case of ν =10−4 m2 s−1, N = 1 rad s−1, Fs =0.3 m2 s−3 and grey lines refer to the

case of ν =
√

3 × 10−4 m2 s−1, N =
4

√
3 rad s−1, Fs = 0.9 m2 s−3. In (a) and (b), buoyancy is in

m s−2, buoyancy flux is in m2 s−3, velocity variance and momentum flux are in m2 s−2 and
distances are in metres.

be stressed that this oscillatory flow occurs under the conditions of a temporally
constant surface buoyancy forcing.

The basic structure of the mean flow (averaged over time and wall-parallel planes)
is similar to that of the laminar convection: warm (relative to environment) fluid
rises along the wall, whilst cool fluid subsides at some distance from the wall.
Close relations between the gradients of mean fields and intensities of corresponding
turbulent fluxes are observed over the simulated turbulent flow. This implies that
the turbulent fluxes are directed in a conventional manner that is opposite to the
gradients of the corresponding mean fields, throughout the entire domain.

No extended flow region has been identified with constancy (even approximate) of
any of the fluxes with distance from the wall. Consequently, a constant-flux formalism
appears to be inapplicable to the simulated flow within the investigated parameter
ranges. Moreover, no evidence has been found of scale separation in the simulated
flow cases that would allow the flow to be subdivided into regions where any of
governing parameters (Fs , ν, N) could be dropped from consideration.

The flow structure was found to be determined by a single dimensionless
combination of the governing flow parameters Fsν

−1N−2, which was shown to
have a meaning of an integral Reynolds number. It was demonstrated that any
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expressions for length L, velocity V and buoyancy B scales in terms of the governing
parameters, should yield normalized profiles of velocity, buoyancy, and kinematic
fluxes of momentum and heat that are universal functions of scaled distance from
the wall for any particular Re = Fsν

−1N−2. An integral constraint for the velocity
profile,

∫ ∞
0

u dz = Fs/N
2, derived from the analysis of the governing flow equations,

was confirmed by the numerical data.
Profiles of the crossflow velocity variance for different magnitudes of the surface

forcing consistently display secondary maxima very close to the wall, at distances
comparable to those of the mean velocity maxima. An explanation of this and other
peculiar turbulence structure features, like the observed isotropization of the velocity
fluctuations with increasing distance from the wall, would require estimates of the
second-order turbulence moment budgets in the simulated flow and analyses of its
turbulence spectra.
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