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Abstract

U-max statistics were introduced by Lao and Mayer in 2008. Such statistics are natural
in stochastic geometry. Examples are the maximal perimeters and areas of polygons and
polyhedra formed by random points on a circle, ellipse, etc. The main method to study
limit theorems for U-max statistics is via a Poisson approximation. In this paper we
consider a general class of kernels defined on a circle, and we prove a universal limit
theorem with the Weibull distribution as a limit. Its parameters depend on the degree of
the kernel, the structure of its points of maximum, and the Hessians of the kernel at these
points. Almost all limit theorems known so far may be obtained as simple special cases
of our general theorem. We also consider several new examples. Moreover, we consider
not only the uniform distribution of points but also almost arbitrary distribution on a
circle satisfying mild additional conditions.

Keywords: Weibull distribution; Poisson approximation; U-max statistics; random
perimeter; random area
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1. Introduction

U-statistics were introduced in probability by Halmos [3] and Hoeffding [4] in the mid-
1940s as a functional generalization of sample mean. Let ξ1, ξ2, . . . be a sequence of
independent identically distributed random elements taking values in a measurable space
(X,A). We define a real-valued symmetric Borel function f (x1, . . . , xm) on the space Xm,

which we call a kernel of degree m.
U-statistics are defined as follows:

Un =
(

n

m

)−1 ∑
J

f (ξi1, . . . , ξim), (1.1)

where n ≥ m and the set

J = {(i1, . . . , im) : 1 ≤ i1 < · · · < im ≤ n}.
Over the past few decades, U-statistics have been studied in detail in many publications, and
the state of the art is presented in the monographs [7] and [11].
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826 Y. NIKITIN AND E. SIMAROVA

In 2008 Lao and Meyer [9, 10, 14] independently considered the so-called U-max statistics,
which are obtained from (1.1) by removing the normalizing factor and replacing the sum with
the maximum over the set J :

Mn = max
J

f (ξi1, . . . , ξim). (1.2)

The U-min statistics M′
n are defined in a similar way by replacing max with min.

Lao and Mayer mainly studied the limit behavior of maximal and minimal distances, areas
and perimeters of sets formed by random points on a circle or a sphere. They used the Poisson
approximation from the monograph [2] and the paper [16], and proved a number of theorems
on convergence to a Weibull distribution.

Lao and Mayer studied the kernels of low degrees, for example the area and perimeter
of random triangles (see [10]). Koroleva and Nikitin considered U-max statistics of a more
complicated nature (see [6]). In particular, they considered the maximal perimeter among all
perimeters of convex m-gons, where random vertices are chosen from n independent points
uniformly distributed on a circle. This was generalized in another direction in the papers [17]
and [18], where a generalized perimeter of a random convex polygon was considered.

These papers considered the uniform distribution of points on the unit circle. More general
distributions were used by Lao and Mayer for some particular two-dimensional kernels, namely
for the distances between points and the scalar product of two position vectors in [9], [10],
and [14]. More complicated kernels were studied in [15], namely the areas and perimeters of
inscribed polygons with more general conditions on the distribution of vertices. A common
feature of all papers was that they investigated specific particular cases of U-max statistics and
U-min statistics.

This paper is devoted to a significant generalization of known limit theorems for U-max
and U-min statistics. We consider an almost arbitrary distribution of points on a circle, as well
as a wide and general class of smooth kernels with a natural structure of the set of extreme
points. In this formulation, the limit behavior is determined by the degree of the kernel f , by
the Hessian of the kernel at the maximal points, and also by the distribution of the points on the
circle. The general formulas are used for kernels of a special type with convexity properties.
Most of the previously known results can be deduced from Theorem 3.1 but we also provide
some new examples.

Our paper consists of several parts. First, in Section 2, we introduce the basic notation and
restrictions, and then in Section 3 we formulate the general limit relations we have obtained.
Further, in Sections 4 and 5 we apply our results to some specific classes of kernels. For these
classes, more explicit and relatively simple limit theorems for U-max statistics of geometric
nature are obtained. Some interesting examples are also given. A detailed proof of the main
result of Section 3 is rather painstaking and is of considerable length. Therefore we place it at
the end of the paper; it occupies Sections 6 and 7.

2. Preliminaries

In this section we introduce necessary conditions and definitions. We consider U-max statis-
tics with a fixed kernel f depending on m points V1, . . . , Vm lying on the unit circle S1 with
center O at the origin, that is,

f : (S1)m →R.

Further, we always assume that m ≥ 2.
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Generalized limit theorems for U-max statistics 827

Let βi denote the angle between the vectors OV1 and OVi+1 (taken counterclockwise). We
call such angles central. In this way,

βi =∠V1OVi+1. (2.1)

Sometimes for the sake of brevity we will use the notation

β = (β1, . . . , βm−1) ∈ [0, 2π )m−1. (2.2)

All angles that appear in this paper are considered modulo 2π . All algebraic operations
involving several angles are also considered modulo 2π, unless otherwise stated.

Now we give some conditions that will be used below.

A. Conditions on the kernel f .

A1. The function f is invariant with respect to rotations. Equivalently, this means that the
function f can be written in the form

f (V1, . . . , Vm) = h(β1, . . . , βm−1) = h(β), (2.3)

where βi are central angles, and h : [0, 2π )m−1 →R is a function.

A2. The function f cannot be changed after any permutation of the points V1, . . . , Vm.
Therefore the function h is also a symmetric function of its arguments.

A3. The function h is continuous and can be continuously extended to a function
h : [0, 2π ]m−1 →R.

A4. The function h reaches its maximal value M and this maximum is realized only at a finite
number of points W1, . . . , Wk ∈ [0, 2π ]m−1. It is assumed that none of these points lie
on the boundary of the domain of definition of the function h. In other words, Wj

i ∈
(0, 2π ) for all i ∈ {1, . . . , k}, j ∈ {1, . . . , m − 1}, where Wj

i is the jth component of the
point Wi.

Condition A4 together with condition A2 allows us to make the following conclusion about
the structure of the maxima of the function f : there is only a finite number of points (up to
rotations) where the maximal value of the function f is attained. Moreover, none of these
points have matching components.

A5. There exists δ > 0 such that the function h is three-times continuously differentiable in
the δ-neighborhood of any maximum point Wi, i ∈ {1, . . . , k}.

A6. Consider the Hessian matrix Gi of the form

Gi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2h(Wi)

∂2x1

∂2h(Wi)

∂x1∂x2
. . .

∂2h(Wi)

∂x1∂xm−1

∂2h(Wi)

∂x1∂x2

∂2h(Wi)

∂2x2
. . .

∂2h(Wi)

∂x2∂xm−1
...

...
. . .

...

∂2h(Wi)

∂xm−1∂x1

∂2h(Wi)

∂xm−1∂x2
. . .

∂2h(Wi)

∂2xm−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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828 Y. NIKITIN AND E. SIMAROVA

We require that the condition
det(Gi) �= 0

holds for all i ∈ {1, . . . , k}.

B. Conditions on the distribution of points.

B1. The random points V1, . . . , Vn are independently distributed on the unit circle S1 with
the same probability density function p(x).

B2. The density function p is continuous (therefore it can be considered as a non-negative
continuous 2π -periodic function p : R→R+ such that

∫ 2π

0 p(x)dx = 1).

B3. There exists at least one maximal point of the kernel (which we denote by W∗) such that

∫ 2π

0

[
p(x)

m−1∏
l=1

p
(
x + Wl∗

)]
dx �= 0.

Similar conditions on p(x) arose in [15].

Remark 2.1. The conditions imposed on the density p are not too restrictive. For example,
continuous densities separated from zero or continuous densities taking the value 0 only on
a set of measure less than 2π/m are suitable for these conditions. A useful example of non-
uniform distribution is the von Mises distribution (see e.g. [13]).

3. Main results

Now we state the main result of this paper.

Theorem 3.1. (General theorem.) Suppose that a kernel f and points V1, . . . , Vn satisfy all
conditions A and B. Let Mn be the U-max statistic constructed by a kernel f, that is, Mn =
max1≤i1<...<im≤n f (Vi1, . . . , Vim).

Then for every t > 0 the following relation holds true:

lim
n→∞ P

{
n2m/(m−1)(M − Mn) ≤ t

} = 1 − exp

(
− t(m−1)/2Km

m!
)

,

where

Km = (2π )(m−1)/2

�
(m+1

2

) k∑
i=1

(
1√

det(−Gi)

∫ 2π

0
p(x)

m−1∏
l=1

p
(
x + Wl

i

)
dx

)

and M is from condition A4. The rate of convergence is O
(
n−1/(m−1)

)
.

Theorem 3.1 immediately implies several simple but very useful consequences. As far as
we know, these consequences are new. First of all, Theorem 3.1 can be modified slightly for
U-min statistics.

Corollary 3.1. Let us replace the maximum M with the minimum μ and consider the points of
minimum in conditions A4, A5, A6, and B3. Let M′

n denote the U-min statistic constructed by
a kernel f, i.e. M′

n = min1≤i1<...<im≤n f (Vi1, . . . , Vim).
Then for each t > 0 we have

lim
n→∞ P

{
n2m/(m−1)(M′

n − μ) ≤ t
} = 1 − exp

(
− t(m−1)/2Km

m!
)

,
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where

Km = (2π )(m−1)/2

�
(m+1

2

) k∑
i=1

(
1√

det(Gi)

∫ 2π

0
p(x)

m−1∏
l=1

p
(
x + Wl

i

)
dx

)
.

Corollary 3.2. (Particular case.) If p is the uniform density, then the constant Km from
Theorem 3.1 has the following form:

Km = 1

(2π )(m−1)/2�
(m+1

2

) k∑
i=1

1√
det(−Gi)

.

Remark 3.1. Theorem 3.1 may be applied to a rather wide class of kernels from stochastic
geometry but of course not to all of them. In [18] the definition of a generalized perimeter
was introduced. It is the sum of the yth degrees of the side lengths of a polygon constructed
on m given points on a circle. It is shown that for y > 1 and m > 1 + π/(arccos 1/

√
y), the

generalized perimeter attains its maximum on the configuration of points in which some of
them coincide. This shows that our result cannot be applied to this rather simple variant of the
problem. In this case the limit relation is still an open question.

Remark 3.2. Note that condition A3 may be replaced with the following one: the function h
is continuous and can be continuously extended to a function h : [0, 2π ]m−1 →R∪ {−∞}. It
follows from the fact that the function ĥ(x) = max(h(x), M − 1), where M is from condition A4
and f̂ constructed from ĥ by (2.3), satisfies Theorem 3.1. The limiting relation does not change
after replacing f̂ with f .

In the following sections we give limit theorems for U-max statistics generated by kernels
of a special form that attain their maximum only at the vertices of a regular polygon. This
special case covers a large number of standard geometric characteristics.

4. Limit behavior of U-max statistics for several functions depending on the side lengths
of the polygon

Suppose that V1, . . . , Vm and β1, . . . , βm−1 are as introduced earlier, and also for a moment
assume that 0 = β0 ≤ β1 ≤ . . . ≤ βm−1 ≤ βm = 2π . We construct functions f and h via the
following formula:

f (V1, . . . , Vm) = h(β1, . . . , βm−1) =
m∑

i=1

g(βi − βi−1), (4.1)

where g : [0, 2π ] →R is continuous and three-times continuously differentiable in some
neighborhood of the point 2π/m. We also require g′′(2π/m) �= 0. Further, we define the func-
tion h on [0, 2π ]m−1 so that it is symmetric and corresponds to the function f by (2.3). Such a
function f satisfies conditions A1 and A3. Condition A2 also holds since the function f depends
only on the angles between neighboring vectors OV1, . . . , OVm.

Under additional restrictions we get the following statement.

Theorem 4.1. Suppose that the points V1, . . . , Vn are independently distributed on S1 with a
common continuous density p(x) such that∫ 2π

0

m−1∏
l=0

p

(
x + 2π l

m

)
dx > 0.
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Consider the U-max statistic Mn with a kernel f of the form (4.1). Suppose that this kernel
attains its maximum only at the vertices of a regular m-gon.

Then for any t > 0 the following limit relation holds:

lim
n→∞ P

{
n2m/(m−1)

(
mg

(
2π

m

)
− Mn

)
≤ t

}
= 1 − exp

(
− t(m−1)/2Km

m

)
, (4.2)

where

Km = (2π )(m−1)/2
[∫ 2π

0

∏m−1
l=0 p

(
x + 2π l

m

)
dx

]
(−g′′( 2π

m

))(m−1)/2
�

(m+1
2

)√
m

.

Proof. Let us first prove that the function f and density p satisfy conditions A and B from
Section 3. It was established above that conditions A1, A2, and A3 are met. The fulfillment
of condition A4 follows from the fact that a regular polygon is the only maximal point of
the function f . Condition A5 follows from formula (4.1) and the differentiability assump-
tion. Conditions B1 and B2 are obviously satisfied (they are assumed in the statement of the
theorem). It remains to check the properties A6 and B3; then we can use Theorem 3.1.

By (2.2), a regular m-gon corresponds to some permutation of the angles in W∗ =
(W1, . . . , Wm−1), where Wi = 2π i/m. Thus there are (m − 1)! maxima of the corresponding
function h, and the Hessian determinants of the function h at all these points are the same. It
allows us to restrict ourselves to the case 0 ≤ β1 ≤ . . . ≤ βm−1 ≤ 2π . Thus the condition that
the maximum of the function f is attained only on a regular m-gon means that the point W∗
is the maximum of the function h among all points with ordered angles. Together with the
condition ∫ 2π

0

m−1∏
l=0

p

(
x + 2π l

m

)
dx > 0,

it implies the validity of condition B3. Next we obtain an explicit formula for the determinant
of the Hessian matrix of the function h at the point W∗ and make sure that it is not equal to
zero. This fact implies the fulfillment of condition A6, and then an application of Theorem 3.1
finishes the proof of Theorem 4.1.

By simple calculations, we get

∂2h

∂xi∂xj
(W∗) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if |i − j| > 1,

2g′′
(

2π

m

)
if i = j,

−g′′
(

2π

m

)
if |i − j| = 1.

Therefore the Hessian matrix at the point W∗ is

G(W∗) = g′′
(

2π

m

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0

−1 2 −1 0 . . . 0

0 −1 2 −1 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= g′′
(

2π

m

)
Bm−1.
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The determinant of the tridiagonal Toeplitz matrix Bm−1 is well known: it is equal to m.
Hence

det(−G(W∗)) = m ·
(

−g′′
(

2π

m

))m−1

�= 0,

and the conditions of Theorem 3.1 are satisfied. Recalling the fact that there are (m − 1)!
maxima of the function h with the same determinant of the Hessian matrix and the same
integral, we obtain the desired limit relation. �

Lemma 4.1. For strictly concave functions g : [0, 2π ] →R, the maximum of the function f
defined by (4.1) is attained only at the vertices of a regular m -gon.

Proof. We assume that 0 ≤ β1 ≤ . . . ≤ βm−1 ≤ 2π . Let us prove that the point W∗ =
(W1, . . . , Wm−1), where Wi = 2π i/m, is the only maximum of the function f among all points
with ordered angles. Due to Jensen’s inequality we have

f (V1, . . . , Vm) =
m∑

i=1

g(βi − βi−1) ≤ mg

(
βm − β0

m

)
= mg

(
2π

m

)
=

m∑
i=1

g
(
Wi − Wi−1).

(4.3)

The function g is strictly concave; therefore, if the arguments of the function g are not all equal,
inequality in (4.3) is strict. �

By combining Theorem 4.1 and Lemma 4.1, we obtain the following corollary.

Corollary 4.1. Suppose that a function g : [0, 2π ] →R is continuous, strictly concave, three-
times continuously differentiable in a neighborhood of the point 2π/m and g′′(2π/m) �= 0. Let
the function f be defined by (4.1). Then the U-max statistic with a kernel f satisfies relation
(4.2) of Theorem 4.1.

Corollary 4.2. In Theorem 4.1 we may consider functions f for which a regular polygon is the
only point of minimum. Then, for the U-min statistic M′

n generated by a kernel f, the following
limit relation holds for any t > 0 (similarly to (4.2)):

lim
n→∞ P

{
n2m/(m−1)

(
M′

n − mg

(
2π

m

))
≤ t

}
= 1 − exp

(
− t(m−1)/2Km

m

)
,

where

Km = (2π )(m−1)/2
[∫ 2π

0

∏m−1
l=0 p

(
x + 2π l

m

)
dx

]
(
g′′( 2π

m

))(m−1)/2
�

(m+1
2

)√
m

.

In particular, this is the case when we consider the strictly convex functions g in
Corollary 4.1 instead of strictly concave ones.

Remark 4.1. If p is the uniform density, then the constant Km from Theorem 4.1 satisfies

Km = 1(−2πg′′( 2π
m

))(m−1)/2
�

(m+1
2

)√
m

. (4.4)
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Example 4.1. (Maximal perimeter of inscribed polygon.) Let us consider the maximal perime-
ter of an inscribed convex m-gon with random vertices on a circle with m ≥ 3. This is the
U-max statistic with a kernel f of the form (4.1), where g(x) = 2 sin(x/2). This function is
strictly concave, hence the results follow from Theorem 4.1. The limit behavior of the U-max
statistic with such a kernel in the case of the uniform distribution of points may be found in [6];
the result coincides with Remark 4.1 with this function g, so the result [6] is a simple special
case of our results.

Example 4.2. (Maximal area of inscribed polygon.) Another U-max statistic considered in [6]
was the area of an inscribed convex m-gon with m ≥ 3. It is generated by a kernel f of the form
(4.1), where g(x) = 1

2 sin x. The maximum of the function f is attained only on a regular m-gon;
see e.g. [20, problem 57a]. Therefore the limit theorem for this U-max statistic follows directly
from Theorem 4.1 and Remark 4.1. The results of [6] and more general results of [15] again
follow from ours as simple special cases. Similar statements hold for the areas and perimeters
of the described random polygons considered in [6]; they also follow from Theorem 4.1 with
some g(x).

Example 4.3. (Sum of the distances from the center to the vertices of described polygon.) Let
us now consider the example of a kernel that did not arise earlier in the literature on the limit
behavior of U-max statistics. We define a kernel f : (S1)m →R∪ {+∞} with m ≥ 3 as follows:
construct the described convex m-gon with vertices at points A1, . . . , Am such that its sides
touch the circle S1 at points U1, . . . , Um. Define the function

f (V1, . . . , Vm) =
m∑

i=1

|OAi|

as the sum of distances from the center to the vertices of the described m-gon. It is possible
that some vertex Ai goes to infinity; in this case we define f (V1, . . . , Vm) = +∞.

The function f can be written in the form (4.1) when g(x) = (cos (x/2))−1, if 0 ≤ x < π,

and g(x) = +∞ otherwise. The case g(x) = +∞ can occur if some vertex Ai goes to infinity.
Note that

g′′(x) = 1 + sin2 (x/2)

4 cos3 (x/2)
> 0 for x ∈ [0, π ),

so the function is strictly convex on [0, π ). By Corollary 4.2, the minimum will be attained at
the vertices of a regular m-gon, and for the U-min statistic M′

n generated by a kernel f we have
for any t > 0

lim
n→∞ P

{
n2m/(m−1)

(
M′

n − m

cos π
m

)
≤ t

}
= 1 − exp

(
− t(m−1)/2Km

m

)
,

where

Km =
(
8π cos3 π

m

)(m−1)/2[∫ 2π

0

∏m−1
l=0 p

(
x + 2π l

m

)
dx

]
(
1 + sin2 π

m

)(m−1)/2
�

(m+1
2

)√
m

.

Example 4.4. (Generalized perimeter of the polygon.) In [17, 18] a definition of a generalized
perimeter was introduced. A generalized perimeter of order y is the sum of the yth degrees of
the side lengths of a convex inscribed polygon constructed on m given points. This function
may also be written as

f (V1, . . . , Vm) =
m∑

i=1

g(βi − βi−1),
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where g(x) = 2y siny (x/2). The function g is convex for negative y and concave for y ∈ (0, 1],
so the limit relation obtained in these cases for U-min and U-max statistics, respectively, is
also a special case of the equality (4.4) (see [17]).

For y ∈ (1, 2] and m = 3, the function g is not concave but the function f also attains its
maximum only on the vertices of regular triangle, so relation (4.2) with constant (4.4) from
Theorem 4.1 also holds true in this case. This was shown in [18].

Example 4.5. (Further generalization of the perimeter.) The concept of a generalized perime-
ter introduced in [17] may be generalized further. Suppose that a kernel f is given by

f (V1, . . . , Vm) =
m∑

i=1

r(|ViVi+1|), (4.5)

where r : [0, 2] →R is a function and the points V1, . . . , Vm are ordered counterclockwise,
and we also assume that the kernel is symmetric. By |ViVi+1| we denote the length of the
side of the polygon. The generalized perimeter introduced in [17] and [18] corresponds to the
function r(x) = xy.

If the function r is continuous, strictly concave, increasing, three-times continuously
differentiable in some neighborhood of the point 2 sin(π/m) and r′′(2 sin(π/m)) �= 0,

then the function g(x) = r(2 sin(x/2)) is strictly concave. By Corollary 4.1, we can write the
limit relation for U-max statistics from Theorem 4.1. It is also possible to replace the conditions
of strict concavity and increasing with the conditions of concavity and strict increasing.

Similarly, if r is a continuous strictly convex decreasing function which is three-
times continuously differentiable in some neighborhood of the point 2 sin(π/m), and
r′′(2 sin(π/m)) �= 0, then the function g(x) = r(2 sin(x/2)) is strictly convex. By Corollary 4.2,
we can write the limit relation for U-min statistics. The condition of strict convexity and
decreasing may be replaced by the condition of convexity and strict decreasing.

In particular, let us use the function r(x) = e−axxb(ln (x/2))c. Such functions were consid-
ered by Alexander and Stolarsky in [1]. Let τ (a, b, c) denote the function that is equal to 1 if
the function r is strictly concave and increasing, and equal to −1 if the function r is strictly
convex and decreasing. Then the following equality from [1] is true:

τ (a, b, c) =

⎧⎪⎪⎨
⎪⎪⎩

(−1)c if a ≥ 0, b ≤ 0, c ∈N,

−1 if a ≥ 0, b ≤ 0, c = 0, a2 + b2 �= 0,

1 if a = 0, 0 < b ≤ 1, c = 0.

We may study the limit behavior of U-max (resp. U-min) statistics Mn (resp. M′
n) with a kernel

f constructed by (4.5) in the case when τ = 1 (resp. τ = −1). It can be simply done by using
g(x) = r(2 sin(x/2)) in Theorem 4.1.

5. Limit behavior of U-max statistics for several functions depending on the side lengths
and diagonals of a polygon

In this section the arguments are very similar to those in Section 4. We define a kernel
f and the corresponding function h by the set of angles (β1, . . . βm−1) introduced in (2.2).
The connection between f and h is given by (2.3). We again define the function h using a
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continuous function g : [0, 2π ] →R, but in a different way. The restrictions on the function g
will be different, and the function h itself is defined via the following analogue of (4.1):

f (V1, . . . , Vm) = h(β1, . . . , βm−1) =
∑

0≤i<j≤m−1

g(|βj − βi|), where β0 = 0. (5.1)

In other words, in this section we consider functions depending on the angles between any
pairs of points Vi and Vj, but not only on the angles between adjacent points, as was done in
the previous section.

We state an analogue of Theorem 4.1 for a kernel f of the form (5.1).

Theorem 5.1. Suppose that the points V1, . . . , Vn are independently distributed on S1 with a
common continuous density function p(x) such that

∫ 2π

0

m−1∏
l=0

p

(
x + 2π l

m

)
dx > 0.

Consider a continuous function g : [0, 2π ] →R which is three-times continuously differen-
tiable in the neighborhoods of points 2πs/m for all s ∈ {1, . . . , m − 1} and such that g(x) =
g(2π − x). We construct a function f by (5.1) and suppose that it attains its maximum only at
the vertices of a regular m-gon. Let Mn be the U-max statistic with a kernel f . Consider the
symmetric matrix G = (gi,j)

m−1
i,j=1, where

gi,j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−g′′
(

2π |i − j|
m

)
if i �= j,

m−1∑
s=1

g′′
(

2πs

m

)
if i = j.

(5.2)

If det G �= 0, then, for any t > 0, the following limit relation holds:

lim
n→∞ P

{
n2m/(m−1)

(
1

2

m−1∑
s=1

mg

(
2πs

m

)
− Mn

)
≤ t

}
= 1 − exp

(
− t(m−1)/2Km

m

)
, (5.3)

where

Km = (2π )(m−1)/2
[∫ 2π

0

∏m−1
l=0 p

(
x + 2π l

m

)
dx

]
√

det(−G)�
(m+1

2

) .

The proof of this theorem is similar to the proof of Theorem 4.1 and therefore omitted.

Remark 5.1. If the values of second derivatives at the points 2πs/m are negative for all s ∈
{1, . . . , m − 1}, then

gi,i >

m−1∑
j=1i �=j

|gi,j|.

Matrices with such a property are called diagonally dominant, and according to [5, Chapter 6,
§ 1, p. 392, Th. 6.1.10] the determinants of such matrices are non-zero.
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Now we describe the extreme points of the function f for concave g having some symmetry
property. This is an analogue of Lemma 4.1.

Lemma 5.1. Suppose that a function g : [0, 2π ] →R is a continuous and strictly concave
function such that g(x) = g(2π − x). Then the function f defined by (5.1) attains its maximum
only at the vertices of a regular m -gon, and its maximal value is equal to

1

2

m−1∑
s=1

mg

(
2πs

m

)
.

Proof. Without loss of generality, we assume that the vertices V1, . . . , Vm are ordered
counterclockwise. Let P(k, V1, . . . , Vm) denote the sum

∑m
i=1 g(βi+k − βi) assuming that

β0 = 0, βm+s = 2π + βs for s ∈ {0, . . . , m − 1}. Then

f (V1, . . . , Vm) = 1

2

m−1∑
i=1

P(i, V1, . . . , Vm).

We prove that the maximum of P(k, V1, . . . , Vm) is attained only on a regular m-gon.
Due to strict concavity,

P(k, V1, . . . , Vm) =
m∑

i=1

g(βi+k − βi) ≤ mg

(
2πk

m

)
,

and equality is achieved only when βi+k − βi = 2πk/m for all i and k. Therefore the maximal
value is attained only at the vertices of a regular polygon. �

Combining the results of Theorem 5.1 and Lemma 5.1, we obtain the following corollary.

Corollary 5.1. If a function g : [0, 2π ] →R is continuous, strictly concave, three-times con-
tinuously differentiable in the neighborhoods of points 2πs/m for all s ∈ {1, . . . , m − 1}, and
also has the property g(x) = g(2π − x), and if the probability density function p is continuous
and ∫ 2π

0

m−1∏
l=0

p

(
x + 2π l

m

)
dx > 0,

then for the U-max statistic Mn with a kernel f of the form (5.1), relation (5.3) of Theorem 5.1
holds.

Similarly to Section 4, this statement can be reformulated for U-min statistics and strictly
convex functions g.

Remark 5.2. One of the main differences between Sections 5 and 4 is the condition g(x) =
g(2π − x), which was not involved in Section 4. It gives the equality of elements on the main
diagonal of the matrix G introduced in Theorem 5.1. This condition also implies that g(|βi −
βj|) = r(|ViVj|), where |ViVj| is the length of the segment ViVj.

Thus, by analogy with Example 4.5, we may say that all the functions f satisfying (5.1)
are the generalized sums of pairwise distances between points. This shows that the functions g
from Examples 4.1 and 4.3 cannot be used to construct the functions f in (5.1). This property
holds for the function g from Examples 4.1, 4.4, and 4.5. Such functions g are also differen-
tiable on (0, 2π ), and Remark 5.1 holds for them. Therefore the functions f constructed in
these examples by (5.1) satisfy Theorem 5.1.
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Example 5.1. As already mentioned, the function g(x) introduced in Example 4.5 may be used
in this case as well.

Example 5.2. (Sum of pairwise distances between vertices.) Consider the simple case where
g(x) is defined in Example 4.1, and the resulting function f (V1, . . . , Vm) is the sum of the
pairwise distances between points V1, . . . , Vm with m ≥ 3. According to [19], the maximum is
attained only at the vertices of a regular polygon and is equal to m cot(π/2m). The limit relation
(5.3) holds but we did not manage to calculate the exact constant Km in it for an arbitrary m.
The elements of the matrix G involved in Theorem 5.1 have the following form:

gi,j =

⎧⎪⎪⎨
⎪⎪⎩

1

2
sin

|i − j|π
m

if i �= j,

−1

2
cot

π

2m
if i = j.

Example 5.3. (Pairwise sum of inverse distances between vertices.) Let g(x) = (2 sin(x/2))−1

and construct a kernel f using formula (5.1) with m ≥ 3. It is easy to see that the constructed
kernel f is equal to

f (V1, . . . , Vm) =
∑
j>i

1

|ViVj| ,

that is, the sum of the inverse distances between the vertices V1, . . . , Vm, where m ≥ 3. This
example was considered by Toth [19].

The minimal value of a kernel f is attained only at the vertices of a regular polygon and is
equal to

m

4

m−1∑
k=1

1

sin
(

πk
m

)
(see [19]). The second derivative of the function g is equal to

g′′(x) = 2 − sin2 x
2

8 sin3 x
2

,

so the elements of the matrix G defined by (5.2) have the following form:

gi,j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−2 − sin2(π |i−j|
m

)
8 sin3(π |i−j|

m

) if i �= j,

m−1∑
s=1

2 − sin2(πs
m

)
8 sin3(πs

m

) if i = j.

6. Proof of Theorem 3.1: part 1

We return to the proof of our general Theorem 3.1. It can be divided into two parts. The first
part takes the form of the following statement.

Theorem 6.1. Suppose that a kernel f and points V1, . . . , Vn satisfy conditions A and B from
Section 2. Let Mn be the U-max statistic constructed via a kernel f, that is,

Mn = max
1≤i1<...<im≤n

f (Vi1, . . . , Vim).
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Then the following two statements are true.

(i) There exist constants C > 0 and D > 0 such that, for any number ε, 0 < ε < C, if
f (V1, . . . , Vm) ≥ M − ε, then min1≤i≤k ‖Wi − β‖ ≤ D

√
ε, where β is defined by (2.2)

and (2.1), and Wi is defined by condition A4.

(ii) The following relation holds true:

lim
ε→0+ ε−(m−1)/2

P{f (V1, . . . , Vm) ≥ M − ε} = Km,

where

Km = (2π )(m−1)/2

�
(m+1

2

) k∑
i=1

(
1√

det(−Gi)

∫ 2π

0

(
p(x)

m−1∏
l=1

p
(
x + Wl

i

))
dx

)
.

Proof. It is clear that

P{f (V1, . . . , Vm) > z} = P{h(β1, . . . , βm−1) > z},
where βi are random angles defined by (2.1). Further, we deal with the function h only.

Let us define, for every ε > 0, the number

Ŝ(ε) = min{s ≥ 0 | ∀x ∈ [0, 2π ]m−1 : M − f (x) ≤ ε ⇒ ∃i : ‖x − Wi‖ ≤ s}. (6.1)

In other words Ŝ(ε) is the minimal radius of balls with centers in Wi, i = 1, . . . , k, such that if
the value of the function differs from the maximum value by less than ε, then the argument of
the function must lie in one of the balls. For any ε > 0, this minimal radius obviously exists.
Also, let us define for any ε > 0

S(ε) = max
(
Ŝ(ε), ε1/3). (6.2)

It is easy to show that
lim

ε→0+ S(ε) = 0. (6.3)

Indeed, (6.3) is equivalent to the limit relation limε→0+ Ŝ(ε) = 0. The function Ŝ(x) is non-
decreasing and non-negative, so the limit limε→0+ Ŝ(ε) exists and is non-negative. We denote
it by a and suppose that a > 0 (otherwise (6.3) is proved). Then for any ε > 0 there exists
xε ∈ [0, 2π ]m−1 such that min1≤i≤k ‖Wi − xε‖ ≥ a and |h(xε) − M| ≤ ε. Let εn = 1/n. Then
the infinite sequence xεn , which belongs to the compact set [0, 2π ]m−1, has a convergent sub-
sequence with some limit x∗. By construction, x∗ �= Wi for any i, and the continuity of h implies
that h(x∗) = M. This contradiction proves (6.3).

Equation (6.3) implies that, for sufficiently small ε, S(ε)-neighborhoods of points
V1, . . . , Vk have empty intersection. Hence, by definitions (6.1) and (6.2), for sufficiently small
ε the following equality is valid:

P{h(β) ≥ M − ε} =
k∑

i=1

P{h(β) ≥ M − ε, ‖Wi − β‖ ≤ S(ε)}. (6.4)

Let us fix some i ∈ {1, . . . , k}. Assume that the following event happens for some ε > 0:

h(β) = h(β1, . . . , βm−1) ≥ M − ε, ‖Wi − β‖ ≤ S(ε). (6.5)
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By (6.3) there exists ε0 > 0 such that S(ε0) < δ/2, where δ is the number from condition
A5. The function S(ε) is non-decreasing, so for any positive ε < ε0 we have

S(ε) <
δ

2
. (6.6)

Below we deal with ε < ε0 only. Since the function h is three-times continuously differentiable
in the δ-neighborhood of any maximal point, in this neighborhood we consider the Taylor
expansion of the function h at the point Wi with the third-order remainder. For this purpose we
introduce the notation

αj = βj − Wj
i and α = (α1, . . . , αm−1). (6.7)

It is clear that

‖α‖ = ‖β − Wi‖ <
δ

2
.

Here α is an element of Rm−1 which is considered as a difference of two elements of Rm−1

and not as the difference of two sets of angles. By (6.3) and condition A4 it is the same for
small ε.

We write the Taylor expansion of the function h at the point Wi. Then we have

h(β) = h(β1, . . . , βm−1)

= h
(
W1

i + α1, W2
i + α2, . . . , Wm−1

i + αm−1
)

= h(Wi) +
m−1∑
j=1

∂h(Wi)

∂xj
αj +

∑
1≤l,s≤m−1

1

2

∂2h(Wi)

∂xl∂xs
αlαs

+
∑

1≤l,s,t≤m−1

1

6

∂3h(Wi + r(l,s,t))

∂xl∂xs∂xt
αlαsαt, (6.8)

where r(l,s,t) = c(l,s,t) · (α1, . . . , αm−1), and c(l,s,t) ∈ (0, 1) are constants depending on indices
l, s, t and on the function h. According to condition A4, Wi does not lie on the boundary of the
definition domain of the continuous function h, so ∂h(Wi)/∂xj = 0 for all j ∈ {1, . . . , m − 1}.
Hence the linear term in expansion (6.8) is equal to 0.

Consider the matrix

Ai = 1

2
Gi, (6.9)

where the Gi are the same as in condition A6. It is clear that the coefficient before αlαs in (6.8)
is ai

l,s (the element of the matrix Ai). Thus

h(β) = M +
∑

1≤l,s≤m−1

ai
l,sαlαs + 1

6

∑
1≤l,s,t≤m−1

∂3h(Wi + r(l,s,t))

∂xl∂xs∂xt
αlαsαt.

Therefore condition (6.5) is equivalent to

−
∑

1≤l,s≤m−1

ai
l,sαlαs − 1

6

∑
1≤l,s,t≤m−1

∂3h(Wi + r(l,s,t))

∂xl∂xs∂xt
αlαsαt ≤ ε. (6.10)

Under conditions (6.5) and (6.6), we estimate the third-order terms in this formula. Since the
functions

∂3h(Wi + r)

∂xl∂xs∂xt
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are continuous for |r| ≤ δ/2, there exists L1 > 0 such that∣∣∣∣∂3h(Wi + r)

∂xl∂xs∂xt

∣∣∣∣
does not exceed L1 for all |r| ≤ δ/2. Therefore the following inequality holds true:∣∣∣∣1

6

∂3h(Wi + r(l,s,t))

∂xl∂xs∂xt
αlαsαt

∣∣∣∣ ≤ L1|αlαsαt| ≤ L1
|αl|3 + |αs|3 + |αt|3

3
≤ L1

α2
l + α2

s + α2
t

3
S(ε).

(6.11)

The last inequality follows from ‖α‖ < S(ε). Summing (6.11) over all triplets (l, s, t), we get
the inequality∣∣∣∣∣1

6

∑
1≤l,s,t≤m−1

∂3h(Wi + r(l,s,t))

∂xl∂xs∂xt
αlαsαt

∣∣∣∣∣ ≤ m2L1S(ε)
m−1∑
s=1

α2
s = L2S(ε)

m−1∑
s=1

α2
s .

Therefore the following estimate is valid for all ‖α‖ < S(ε):

L2S(ε)
m−1∑
s=1

α2
s −

∑
1≤l,s≤m−1

ai
l,s αlαs ≥ M − h(Wi + α)

≥ −L2S(ε)
m−1∑
s=1

α2
s −

∑
1≤l,s≤m−1

ai
l,s αlαs. (6.12)

Collecting the results of (6.5), (6.10), and (6.12), we obtain

P

{(
−

∑
1≤l,s≤m−1

ai
l,sαlαs − L2S(ε)

m−1∑
s=1

α2
s

)
≤ ε, ‖α‖ < S(ε)

}

≥ P{h(β) > M − ε, ‖Wi − β‖ ≤ S(ε)}

≥ P

{(
−

∑
1≤l,s≤m−1

ai
l,sαlαs + L2S(ε)

m−1∑
s=1

α2
s

)
≤ ε, ‖α‖ < S(ε)

}
. (6.13)

Denote

Ai(ε) =
{

Ai + L2S(ε)Im−1 for ε ≥ 0,

Ai − L2S(−ε)Im−1 for ε ≤ 0,

where Ai is the same as in (6.9), and Im−1 is the identity matrix of size (m − 1) × (m − 1). Then
inequality (6.13) may be rewritten using the scalar product 〈 · , · 〉 as

P{−〈Ai(ε)α, α〉 ≤ ε, ‖α‖ < S(ε) } ≥ P{h(β) ≥ M − ε, ‖Wi − β‖ ≤ S(ε)}
≥ P{−〈Ai(−ε)α, α〉 ≤ ε, ‖α‖ < S(ε)}. (6.14)

Next we need the following lemma.

Lemma 6.1. There exist constants ε1 > 0 and λ > 0 such that for any |ε| < ε1 the matrix Ai(ε)
is negative definite, and none of its eigenvalues exceed −λ.
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Proof. It is well known that a symmetric real-valued matrix B is negative definite if and
only if all the eigenvalues of the matrix B are negative (see e.g. [5, §4.1, p. 231, Th. 4.1.10]).
Therefore, to prove Lemma 6.1, it is enough to show that none of the eigenvalues of the matrix
Ai(ε) exceed some −γ < 0, for small ε. Let

λ1(B) ≤ . . . ≤ λs(B) (6.15)

denote the eigenvalues of the Hermitian matrix B of size s × s. The matrix Ai is negative
semidefinite (see e.g. [21, §4.5, p. 563]). By condition A6 and (6.9), det(Ai) �= 0, hence the
matrix Ai is negative definite. Using (6.15) it is equivalent to λm−1(Ai) < 0.

In what follows, we will need the Weyl theorem formulated below. It may be found in [5,
§4.3, p. 239, Th. 4.3.1], for example.

Theorem 6.2. (Weyl.) Let A, B be Hermitian matrices of size s × s. Then, using (6.15), we
have

λi(A + B) ≤ λi+j(A) + λs−j(B)

for all i ∈ {1, . . . , s}, j ∈ {0, . . . , s − i}.
Due to the Weyl theorem the eigenvalues of Ai(ε) do not exceed λm−1(Ai) + L2S(|ε|).

Therefore we can put

γ = |λm−1(Ai)|
2

and ε0 such that

S(ε0) <
|λm−1(Ai)|

2L2
.

By (6.3) such γ and ε0 satisfy the conditions of Lemma 6.1. �
Remark 6.1. Obviously,

lim
ε→0

det(Ai(ε)) = det(Ai) > 0.

Lemma 6.2. There exist constants C, D > 0 such that if, for some ε > 0 and β, the conditions

(i) h(β) > M − ε,

(ii) ‖α‖ = ‖Wi − β‖ < S(ε),

(iii) ε < C,

are satisfied, then ‖α‖ ≤ D
√

ε. The notation α and β are the same as above.

Proof. Let C = min(ε1, ε0), where ε1 is from Lemma 6.1 and ε0 is from (6.6). According to
the Rayleigh theorem (see e.g. [5, §4.2, p. 234, Th. 4.2.2]) the inequality 〈Bx, x〉 ≤ λs(B)‖x‖2,

where λs(B) is from (6.15), holds for every Hermitian matrix B of size s × s. Then for any
|ε| < C we have 〈Ai(ε)x, x〉 ≤ −γ ‖x‖2, where γ is also from Lemma 6.1. Note that by (6.12)
the following inequality is valid for positive ε:

M + 〈Ai(ε)α, α〉 ≥ h(Wi + α) > M − ε.

Therefore ε ≥ −〈Ai(ε)α, α〉 ≥ γ ‖α‖2. Hence ‖α‖ is less than
√

ε/
√

γ . �
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The next corollary follows from the proof of Lemma 6.2.

Corollary 6.1. If ε ≥ −〈Ai(ε)α, α〉 and 0 < ε < C, then ‖α‖ ≤ D
√

ε.

Lemma 6.2 completely proves assertion (i) of Theorem 6.1. It remains to prove the second
one. For this purpose we need to calculate

P{〈−Ai(± ε)α, α〉 ≤ ε, ‖α‖ < S(ε)}

for small ε. By Corollary 6.1 condition ‖α‖ < S(ε), where S(ε) is defined by (6.3), follows
from the inequality 〈−Ai(± ε)α, α〉 ≤ ε for sufficiently small ε. Therefore

P{〈−Ai(± ε)α, α〉 ≤ ε, ‖α‖ < S(ε)} = P{〈−Ai(± ε)α, α〉 ≤ ε}.

Below we assume that 0 < ε < C, where C is the same as in Lemma 6.2.

Lemma 6.3. For sufficiently small ε there exists x∗(ε) ∈ [0, 2π ]m−1 such that the following
equality holds:

P{〈−Ai(± ε)α, α〉 ≤ ε} = (πε)(m−1)/2

�
(m+1

2

)√
det(−Ai(ε))

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (ε)

)]
dy,

where ‖x∗(ε)‖ ≤ D
√

ε, and the constant D is introduced in Lemma 6.2.

Proof. In order to simplify the formulas, we put

B = −Ai(ε) = (bi,j)
m−1,m−1
i,j=1 .

We also introduce β0 =∠xOV1 to be the angle between the axis Ox and the vector OV1, taken
counterclockwise. We have

P{〈−Ai(± ε)α, α〉 ≤ ε} = P{〈Bα, α〉 ≤ ε} = P

{ ∑
1≤s,t≤m−1

bs,tαsαt ≤ ε

}

=
∫ 2π

0
p(y)

∫
Rm−1

1

{ ∑
1≤s,t≤m−1

bs,txsxt ≤ ε

}
m−1∏
l=1

ρl(xl | β0 = y) dx1 · · · dxm−1 dy, (6.16)

where ρl(xl | β0 = y) is the conditional density of αl = xl given β0 = y. Taking into account
that V1, . . . , Vm are independent random variables and using (6.7), we obtain ρl(xl | β0 = y) =
p
(
y + Wl

i + xl
)
.

Also note that in the general case the second integral is taken not over R
m−1 but over

quotient space R
m−1/∼, where x, y ∈R

m−1 and x ∼ y if, for any i ∈ {1, . . . , m − 1}, we have
xi − yi = 2πr for some r ∈Z. The reason is that the values of α which differ by 2πr corre-
spond to the same angle β. But by Corollary 6.1, inequality 〈Bα, α〉 ≤ ε implies ‖α‖ ≤ D

√
ε.

Therefore, for small ε, all the α ∈R
m−1 satisfying this inequality correspond to different β.
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Hence, for sufficiently small ε, we may indeed integrate over R
m−1. Using these facts, we

continue (6.16):

P{〈−Ai(± ε)α, α〉 ≤ ε}

=
∫ 2π

0
p(y)

∫
Rm−1

1

{ ∑
1≤s,t≤m−1

bs,txsxt ≤ ε

}
m−1∏
l=1

p
(
y + Wl

i + xl
)
dx1 · · · dxm−1 dy

=
∫
Rm−1

1

{ ∑
1≤s,t≤m−1

bs,txsxt ≤ ε

} ∫ 2π

0
p(y)

m−1∏
l=1

p
(
y + Wl

i + xl
)
dy dx1 · · · dxm−1. (6.17)

This formula is obtained just by switching the integration order. In order to calculate this
integral we define the set

T =
{

x ∈R
m−1 :

∑
1≤s,t≤m−1

bs,txsxt ≤ ε

}
= {x ∈R

m−1 : 〈x, Bx〉 ≤ ε}. (6.18)

The set T is an ellipsoid with center 0 and configuration matrix (1/ε · B)−1; see [8, p. 97]. It is
well known that the ellipsoid with center 0 and symmetric positive semidefinite configuration
matrix Q is defined by {x ∈R

p : 〈x, Q−1x〉 ≤ 1} and its volume is equal to

πp/2

�(p/2 + 1)
√

det Q
.

It is mentioned in [8, p. 103], for example. Therefore the Lebesgue measure of the set T satisfies
the equality

meas(T) = (επ )(m−1)/2

√
det(B)�

(m+1
2

) . (6.19)

In what follows, we will need a mean value theorem (see e.g. [12]). Using this theorem we
obtain the equality

∫
Rm−1

1

{ ∑
1≤s,t≤m−1

bs,txsxt ≤ ε

} ∫ 2π

0
p(y)

m−1∏
l=1

p
(
y + Wi

l + xl
)
dy dx1 · · · dxm−1

=
∫ 2π

0
p(y)

m−1∏
l=1

p
(
y + Wi

l + x∗
l (ε)

)
dy · meas(T), where x∗(ε) ∈ T . (6.20)

Recall that the set T is defined by (6.18). The condition x∗(ε) ∈ T together with (6.18) implies

∑
1≤s,t≤m−1

bs,tx
∗
s (ε)x∗

t (ε) ≤ ε.

Therefore Corollary 6.1 implies inequality ‖x∗(ε)‖ ≤ D
√

ε, where the constant D is introduced
in Lemma 6.2. Hence, collecting formulas (6.17), (6.19), (6.20), we finish the proof. �
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Substituting the result of Lemma 6.3 into inequality (6.14), for small ε we get the relation

(πε)(m−1)/2

�
(m+1

2

)√
det(−Ai(ε))

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (ε)

)]
dy

≥ P{h(β) ≥ M − ε, ‖Wi − β‖ ≤ S(ε)}

≥ (πε)(m−1)/2

�
(m+1

2

)√
det(−Ai(−ε))

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (−ε)

)]
dy.

Dividing both sides of this inequality by ε(m−1)/2 and tending ε to 0, we get

lim
ε→0+

π (m−1)/2

�
(m+1

2

)√
det(−Ai(ε))

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (ε)

)]
dy

≥ lim
ε→0+ ε−(m−1)/2

P{h(β) ≥ M − ε, ‖Wi − β‖ ≤ S(ε)}

≥ lim
ε→0+

π (m−1)/2

�
(m+1

2

)√
det(−Ai(−ε))

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (−ε)

)]
dβ0. (6.21)

Using

lim
ε→0

det(Ai(ε)) = det(Ai),

lim
ε→0

∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i + x∗
l (ε)

)]
dy =

∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i

)]
dy,

we pass to the limit in (6.21) and obtain

lim
ε→0+ ε−(m−1)/2

P{h(β) ≥ M − ε, ‖Wi − β‖ ≤ S(ε)}

= π (m−1)/2

�
(m+1

2

)√
det(−Ai)

·
∫ 2π

0

[
p(y)

m−1∏
l=1

p
(
y + Wl

i

)]
dy. (6.22)

From (6.9) we may conclude that

det(−Ai) = det(−Gi)

2m−1
. (6.23)

Now, using (6.4), (6.22), and (6.23), we obtain

lim
ε→0+ ε−(m−1)/2

P{h(β) ≥ M − ε} = π (m−1)/2

�
(m+1

2

) k∑
i=1

∫ 2π

0

[
p(y)

∏m−1
l=1 p

(
y + Wl

i

)]
dy√

det(−Ai)

= (2π )(m−1)/2

�
(m+1

2

) k∑
i=1

∫ 2π

0

[
p(y)

∏m−1
l=1 p

(
y + Wl

i

)]
dy√

det(−Gi)
,

and Theorem 6.1 is proved. �
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7. Proof of Theorem 3.1: part 2

In this section we prove the second part of Theorem 3.1.

Theorem 7.1. Suppose that a kernel f and points V1, . . . , Vn satisfy conditions A and B, which
are listed in Section 2. Let Mn be the U-max statistic constructed via kernel f, that is, Mn =
max1≤i1<...<im≤n f (Vi1, . . . , Vim). Then for every t > 0 the following relation holds true:

lim
n→∞ P

{
n2m/(m−1)(M − Mn) ≤ t)

} = 1 − exp

(
− t(m−1)/2Km

m!
)

,

where the constant Km is introduced in condition (ii) of Theorem 6.1. The rate of convergence
is O

(
n−1/(m−1)

)
.

Before proving Theorem 7.1, let us mention two theorems that play a key role in study-
ing the limit behavior of U-max statistics. The first theorem is taken from [10], where Lao
and Mayer applied the Poisson approximation from the monograph [2]. This is still the main
research method in this field.

Theorem 7.2. ([10].) Let ξ1, ξ2, . . . , ξn be a sequence of independent identically dis-
tributed random elements taking values in a measurable space (X,A), and let the func-
tion f (x1, . . . , xm) be a real-valued symmetric Borel function, f : Xm →R. Let Mn =
maxJ h(ξi1, . . . , ξim) be the U-max statistic introduced in (1.2), and define, for any z ∈R, the
following quantities:

pn,z = P{f (ξ1, . . . , ξm) > z}, λn,z =
(

n
m

)
pn,z,

τn,z(r) = P{f (ξ1, . . . , ξm) > z, f (ξ1+m−r, ξ2+m−r, . . . , ξ2m−r) > z}
pn,z

.

Then, for all n ≥ m and for each z ∈R, we have

|P(Mn ≤ z) − e−λn,z |

≤ (
1 − e−λn,z

) ·
[

pn,z

((
n
m

)
−

(
n − m

m

))
+

m−1∑
r=1

(
m
r

) (
n − m
m − r

)
τn,z(r)

]
. (7.1)

Remark 7.1. ([10].) If the sample size n tends to infinity, then the right-hand side of (7.1) is of
asymptotic order

O

(
pn,zn

m−1 +
m−1∑
r=1

τn,z(r)nm−r

)
,

where for m > 1 the first term is negligibly small with respect to the sum.

Silverman and Brown [16] have found the conditions for a general theorem used in [2]
yielding a non-trivial Weibull law in the limit.

Theorem 7.3. ([16].) Let the conditions of Theorem 7.2 be satisfied. If, for some sequence of
transformations zn : T →R, T ⊂R, the equalities

lim
n→∞ λn,zn(t) = λt > 0, (7.2)

lim
n→∞ n2m−1pn,zn(t)τn,zn(t)(m − 1) = 0 (7.3)
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hold, for each t ∈ T, then
lim

n→∞ P(Mn ≤ zn(t)) = e−λt (7.4)

for all t ∈ T .

Remark 7.2. ([10].) Condition (7.2) implies pn,z = O(n−m). Therefore, according to
Remark 7.1, the rate of convergence in (7.4) is

O

(
n−1 +

m−1∑
r=1

n2m−rpn,zτn,z(r)

)
.

Hence, for m ≥ 2, condition (7.3) can be replaced by

lim
n→∞ n2m−rpn,zτn,z(r) = 0 for any r ∈ {1, . . . , m − 1}. (7.5)

Now we will use the above assertions to prove Theorem 7.1.

Proof. For any t > 0 we define the transformation

zn(t) = M − tn−2m/(m−1).

Let us consider λn,zn(t) defined in Theorem 7.2. Then

λn,zn(t) = n!
m!(n − m)!P{f (V1, . . . , Vm) > zn(t)}.

We put ε = tn−2m/(m−1), then nmε(m−1)/2 = t(m−1)/2. Let us prove the fulfillment of condition
(7.2) of Theorem 7.3. We write

lim
n→∞ λn,zn(t) = lim

n→∞
n!

m!(n − m)!P{f (V1, . . . , Vm) > zn(t)}

= 1

m! lim
n→∞

n!
nm(n − m)!nmε(m−1)/2ε−(m−1)/2

P{f (V1, . . . , Vm) > M − ε}

= 1

m! t(m−1)/2 lim
n→∞

(
tn−2m/(m−1))−(m−1)/2

P
{
f (V1, . . . , Vm) > M − tn−2m/(m−1)}

= t(m−1)/2Km

m!
=: λt > 0.

In the last line we used statement (ii) of Theorem 6.1. Now we will prove condition (7.5)
of Remark 7.2. We formulate this statement as a separate lemma.

Lemma 7.1. For each r ∈ {1, . . . , m − 1} we have the following relation:

lim
n→∞ n2m−r

P{f (V1, . . . , Vm) > zn(t), f (V1+m−r, . . . , V2m−r) > zn(t)} = 0.

Proof. Let us introduce the following notation: βi =∠V1OVi+1 for i ∈ {1, . . . , 2m − r − 1},
γi =∠Vm−r+1OVi+1 for i ∈ {m − r, . . . , 2m − r − 1}. Such notation corresponds to (2.1) and
(2.2) for each i ∈ {1, . . . , m − 1}. It is clear that γi = (βi − βm−r) mod 2π for any i ≥ m. We
introduce the events

Qi,j =
{‖Wi − (β1, . . . , βm−1)‖ ≤ D

√
ε, ‖Wj − (γm−r, . . . , γ2m−r−1)‖ ≤ D

√
ε
}
,
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where Wi is the same as in condition A4 and the constant D is introduced in Theorem 6.1. It
follows from Lemma 6.2 that for small zn(t) the following equality holds true:

{f (V1, . . . , Vm) ≥ zn(t) ∩ f (V1+m−r, . . . , V2m−r) ≥ zn(t)}
= ∪1≤i,j≤k

(
[f (V1, . . . , Vm) ≥ zn(t) ∩ f (V1+m−r, . . . , V2m−r) ≥ zn(t)] ∩ Qi,j

)
. (7.6)

Next we estimate the probability

P{[f (V1, . . . , Vm) ≥ zn(t) ∩ f (V1+m−r, . . . , V2m−r) ≥ zn(t)] ∩ Qi,j}. (7.7)

By the definition for all elements Vi from Qi,j we have the following bounds for βi and γi:
‖βl − Wl

i‖ ≤ D
√

ε for each i < m, and ‖γl − Wl−m+r
j ‖ ≤ D

√
ε.

For l ≥ m we obtain∥∥βl − Wm−r
i − Wl−m+r

j

∥∥ ≤ ∥∥βl − βm−r − Wl−m+r
j

∥∥ + ∥∥βm−r − Wm−r
i

∥∥ ≤ 2D
√

ε.

Let Lp denote the maximal value of density p(x). Using the properties of distribution of βl, we
can estimate the upper bound of probability from (7.7) by(

2DLp
√

ε
)m−1(4DLp

√
ε
)m−r.

Using formula (7.6) and substituting ε = tn−2m/(m−1) in the estimate of (7.7), we obtain the
inequality

n2m−r
P{f (V1, . . . , Vm) ≥ zn(t), f (V1+m−r, . . . , V2m−r) ≥ zn(t)}

≤ n2m−rk2
(

2DLp

√
tn−2m/(m−1)

)m−1(
4DLp

√
tn−2m/(m−1)

)m−r

= O
(
n−(m−r)/(m−1))

= o(1). �

Let us return to the proof of Theorem 7.1. Now we may use Theorem 7.3, since all its
conditions are verified. Then according to (7.4) we obtain

lim
n→∞ P(Mn ≤ zn(t)) = e−λt

for any t ∈ T . Hence

lim
n→∞ P

(
Mn ≤ M − tn−2m/(m−1)) = exp

(
− t(m−1)/2Km

m!
)

.

Therefore, for any t > 0, the following relation is valid:

lim
n→∞ P

{
n2m/(m−1)(M − Mn) ≤ t)

} = 1 − exp

(
− t(m−1)/2Km

m!
)

.

According to Remark 7.2, the convergence rate is

O

(
n−1 +

m−1∑
r=1

pn,zn(t)τn,zn(t)(r)n2m−r

)
.
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From the proof of Lemma 7.1, it follows that

O
(
pn,zn(t)τn,zn(t)(r)n2m−r) = O

(
n−(m−r)/(m−1)),

therefore it is O
(
n−1/(m−1)

)
for m > 1. Hence Theorem 7.1 is proved. �

The combination of Theorems 6.1 and 7.1 implies Theorem 3.1.
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