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Shock focusing in a planar convergent geometry:
experiment and simulation
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The behaviour of an initially planar shock wave propagating into a linearly convergent
wedge is investigated experimentally and numerically. In the experiment, a 25◦ internal
wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves
with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in
nitrogen and carbon dioxide. During each run, the full pressure history is recorded
at fourteen locations along the wedge faces and schlieren images are produced.
Numerical simulations performed based on the compressible Euler equations are
validated against the experiment. The simulations are then used as an additional tool
in the investigation.

The linearly convergent geometry strengthens the incoming shock repeatedly, as
waves reflected from the wedge faces cross the interior of the wedge. This investigation
shows that aspects of this structure persist through multiple reflections and influence
the nature of the shock-wave focusing. The shock focusing resulting from the
distributed reflected waves of the Mach 1.5 case is distinctly different from the
stepwise focusing at the higher incoming shock Mach number. Further experiments
using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the
presence or absence of a weak leading shock on the distributed reflections is not a
controlling factor for focusing.

Key words: flow structure interactions, gas dynamics, shock waves

1. Introduction
A shock travelling into a converging geometry experiences strengthening as the

walls force focusing. Setchell, Storm & Sturtevant (1972) performed such experiments
in a conical converging geometry. For straight converging walls, this focusing can
be compared with the ideal cases of cylindrical (two-dimensional) and spherical
(three-dimensional) converging shock waves. While exact solutions do not exist,
Guderley (1942) produced asymptotic similarity solutions (in the strong-shock limit)
for converging cylindrical and spherical waves that exhibited a power-law increase
in the shock Mach number. Whitham’s shock dynamics (Whitham 1957) provide an
accurate approximation to the converging shocks that is valid even well below the
strong-shock limit.

Because the expected intense pressure at the centre of a converging cylindrical or
spherical shock could be considerably reduced by imperfect focusing, the study of
the stability of such configurations has attracted both theoretical and experimental
attention. The approximate stability theory (Whitham 1957) indicates that converging
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symmetrical shocks are weakly unstable and predicts the development of triple
points. Experimental attempts to create convergent shocks (Takayama, Kleine &
Gronig 1987; Watanabe & Takayama 1992) generally result in converging polygonal
structures similar to those investigated in the context of shock dynamics theory
(Schwendeman & Whitham 1987). Since this instability is generally triggered by
upstream disturbances, the nature of these polygonal waves can often be traced to
imperfections in the original axisymmetry of the experiment.

There is interest in the generation of initially smooth converging shocks and their
interaction with other flow structures in many contexts (Dimotakis & Samtaney
2006) as well as an aid to understanding processes such as sonoluminescence (Evans
1996) and the Richtmyer–Meshkov instability in a convergent geometry (Hosseini &
Takayama 2005). The production of cylindrical waves has been addressed in practice
with an annular or obstructed shock tube (Perry & Kantrowitz 1951) and theoretically
for the case of a gas lens that can focus a planar shock into a segment of a circular
cylinder (Dimotakis & Samtaney 2006).

Another method to produce a smoothly focused wave is a log-spiral channel (Inoue,
Takahashi & Takayama 1993; Inoue et al. 1995), which converts a planar shock into
a 90 degree arc of a cylindrical shock so gradually that no Mach reflections are
produced at the walls. In this approach, slower but smoother acoustic reflections
replace the Mach reflections in communicating the higher pressure to the shock front.
However, since a linearly convergent channel of similar dimensions would focus in an
angular segment with one-third to one-fourth the angle, this method produces weaker
shocks for any given radius.

The experimentally confirmed instabilities of cylindrical waves led to the
investigation of polygonal shock waves (Apazidis et al. 2002; Eliasson et al. 2006).
These studies showed that the nature of the focusing depends, in part, on the nature
of the reflected waves at the vertices of the polygons. For the triangular (three-sided)
case, the reflections are regular, and the incoming shocks maintain a nearly constant
strength until reaching the centre. For a larger number of sides, the reflections are
Mach reflections, with the waves consuming the initial polygonal sides, replacing
them in an alternating fashion with higher strength shocks. This results in increased
shock strengths as the waves approach the centre, producing a stepwise focusing that
mimics that of an ideal circular wave.

Shock focusing in a linearly convergent channel will resemble alternating polygonal
waves and the incoming shock will be alternately strengthened by the repeated crossing
of the Mach reflections across the channel height. The experiments of Setchell et al.
(1972) with a conical geometry show that shock strength along the centreline increases
stepwise and the focusing of the planar shock is caused by the interactions of the
reflections off the sidewalls. However, such a geometry also produces additional
focusing as the reflected waves strengthen as they converge radially on the axis. The
two-dimensional case should show similar stepwise shock strengthening, but will not
have the added focusing.

As shock strengthening is attributable to reflections of the incident wave from
the converging walls, the nature of those reflections is of interest. If the flow
produces simple Mach reflections in which the compression is contained entirely
in a single reflected shock, the results would not merit new attention as the reflection
of triple points from walls are well understood. However, at lower wedge angles
and Mach numbers, the reflection structure is not characterized by this simple
reflection regime. In particular, significant Mach stem curvature is observed that
produces a distributed region of compression in the reflected wave. The current

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

14
92

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991492


Shock focusing in convergent geometry 299

investigation compares shock focusing in flows with compact and distributed
reflections; since weak reflections are subject to ongoing investigation and are less
familiar than compact reflections, it is useful to review the literature on weak Mach
reflections.

Ben-Dor (2006) provides an overview of the pseudo-steady Mach reflections, even
though his characterization of relatively weak Mach reflections is limited. Colella &
Henderson (1990) considered some relatively weak Mach reflections and observed a
distributed reflection, with no leading shock, in both experiment and computation,
which they termed a von Neumann Reflection (vNR). They suggested a criterion for
this type of reflection that involved the structure of the solution of the three-shock
problem at the flow conditions. Others (Olim & Dewey 1992; Sasoh & Takayama
1994) also reported on this weak-reflection regime, but suggest that the triple-point-
based criterion of Colella & Henderson (1990) was too broad. Sasoh & Takayama
(1994) suggest a different criterion based on a shock dynamics analysis that is more
restrictive and better matches observed reflection structures.

Recent research (Sandeman 2000; Skews & Ashworth 2005) has concentrated more
on the behaviour of very weak incident shocks, and the structure very close to regions
typically described as triple points is very interesting, but not in the scope of the
present investigation. Additionally, Vasilev, Elperin & Ben-Dor (2008) have recently
provided a detailed analysis of three- and four-wave solutions at the triple point,
given the triple-point trajectory and the incident shock Mach number. The four-
wave solution structures typically consist of a leading reflected shock followed by an
attached expansion fan; this might be expected to result in a lower pressure rise (and
a Mach stem/an incident shock kink angle) than a simple reflected shock of the same
Mach number. However, those studies are limited to the triple point and provide
insufficient insight into the nature of distributed weak reflections. It is notable that
this analysis used the term vNR to describe the triple-point structure, while Colella &
Henderson (1990) used the term to refer to a fully distributed reflection without a
leading shock. This is unfortunate as some conditions that meet the criterion originally
suggested by Colella & Henderson (1990) may have weak leading shocks (instead
of just acoustic waves) whose triple-point structure may fall into what is defined by
Vasilev et al. (2008) as non-vNR wave patterns.

Because of the potential for confusion from the use of the term vNR, the current
work accepts single Mach reflections as on a continuum between fully distributed
(which is the structure Colella & Henderson 1990 described) and fully compact (which
would be a pure 3-shock structure with a completely straight Mach stem, which in
practice is approached but not reached.)

The preceding studies assume an ideal-gas behaviour but the inclusion of real-gas
effects on the triple-point structure is relatively straightforward for moderate and high
shock Mach numbers (Ben-Dor 2007). These conditions have a common behaviour,
typical of shocks in real gases: the shocks consist of a strong initial jump with a
non-equilibrium relaxation zone following. However, this behaviour is not universal
and low Mach number shocks may be more complicated. For example, Griffith &
Kenney (1957) found that in CO2 the shock jump becomes a dispersed supersonic
compression wave for Mach numbers below ≈1.04.

This paper studies the behaviour of a planar shock in a two-dimensional linearly
convergent geometry to assess focusing and to better understand how the nature
of the reflected waves affects the results. Specifically, this paper investigates how
focusing associated with distributed reflections deviates from the idealized stepwise
focusing expected from the compact strong Mach reflections. Experimental results
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are presented first, using N2 gas, with planar shocks sent into a converging geometry
consisting of an asymmetric wedge, and later with CO2 gas to investigate the influence
of real-gas effects.

The incident shock strengths chosen were at two conditions, within and outside
of the distributed reflection regime seen by Colella & Henderson (1990), so that the
effect of the initial reflection structure on shock focusing could be elucidated. The
CO2 runs were made at conditions similar to those of the N2 runs; real-gas effects
were not expected to provide qualitative changes at the conditions in the M ≈ 2.5
runs, but at the lower Mach number could produce a fully distributed reflected wave
by replacing any weak leading shock with a fully dispersed supersonic compression
wave. These two Mach number conditions are also, by comparison with the work of
Henderson et al. (2003), known to exhibit differing behaviour of the slipline at the
wall; the higher Mach number case will have the slipline roll up at the wall, while the
lower Mach number case will not.

The numerical simulations carefully match the experimental conditions, with flow
and geometric parameters such as temperature, incident Mach number and wedge
angles providing the initial and boundary conditions for the simulations. A low-
dissipation, high-resolution shock-capturing scheme (Hill & Pullin 2004; Pantano
et al. 2007) was used to compute the evolution of the flow. This is a hybrid method
that uses a WENO flux interpolation at shocks and physical boundaries, but centred
differences in a skew-symmetric form to compute fluxes in the remainder of the
flow. Computational diagnostics are included in the simulations to record pressure
histories at locations where the pressure transducers were located and enable a direct
comparison with experiment.

Validated numerical simulations allowed a more detailed investigation of the flow.
While experimental results were limited to wall pressures and single-time photographs,
the computations provide the full flow information, allowing further interpretation of
the experimental results. In particular, full flow pressure fields clarified the relation
between the reflected wave structure and the observed wall-pressure traces.

The current investigation finds that the structure of the initial reflected waves
persists even after those waves have reflected from the opposite walls; that the
signature of that structure is readily discernible in the pressure traces measured;
and that the smoother, distributed compression of the distributed reflections produce
shock focusing closer to that of a cylindrical converging shock than the flow formed
from an initial compact Mach reflection.

2. Description of the experiment
The discussion of the experimental results falls into two distinct parts. The first

is an examination of the initial shock reflection and refraction process prior to any
interaction between the shocks reflected off the upper and lower wedge plates. During
this stage, the upper and lower Mach reflections can be viewed as independent events
that share the same incoming shock speed but differ in the encountered wedge angle.
The second part of the discussion follows the development of the shock structures
as a whole. Of interest is shock focusing in the convergent geometry as can be seen
by the full shock history in the experiment. This focusing is driven by the mutual
interactions of the two primary reflections.

The conditions for the experiments were selected to investigate focusing associated
with the initial reflection structure in a regime characterized by deviations from
idealized three-shock structures, as described by Colella & Henderson (1990). Care
was taken to ensure that the magnified pressures obtained in the later stages of the
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Driver gases Ambient pressure (kPa) Incident Mach: Mi

N1.5 N2 12 1.5
N2.5 He/5% air 2.7 2.5
C1.5 He/20% air 19.7 1.5
C2.5 He/5% air 2.4 2.5

Table 1. Nominal conditions for the different runs.

experiment due to the convergent focusing were still well within the design parameters
of the facility. The wedge angles and the Mach numbers are also of interest in the
context of lensed circular shock focusing (Dimotakis & Samtaney 2006).

The choice of the converging wedge geometry provides, within a single experiment,
both a significant shock interaction and a range of shock strengths. Reflected shock
waves interact with each other and flow non-uniformities such as sliplines and
distributed compression regions (as seen in the weak Mach reflections). While the
incoming shock pressure jump is of the order of 20 kPa, the pressure rise from shock
focusing can exceed 700 kPa, corresponding to a compression ratio of 35.

The total wedge angle of 25◦ provides a good compromise between the initial stages
of shock reflection and later requirements for shock focusing. For the experiments
presented here, an asymmetric configuration of the wedge was chosen to provide
a stronger test for comparisons with simulations. Wedge angles of (approximately)
+ 10◦ and −15◦ from the horizontal were chosen, respectively.

Table 1 describes the nominal flow conditions for this study. The main experiments
used N2 as the test gas that was selected for its nearly ideal-gas behaviour under
the conditions of the study. Further experiments were performed with CO2 as the
test gas to assess the real-gas effects on shock focusing. The selection of the two
Mach number ranges, 1.4–1.6 and 2.4–2.6, allowed an investigation of both weak
Mach reflections where the reflection is substantially an extended compression zone
involving curvature of the Mach stem (with, at best, a very weak leading reflected
shock), and a stronger reflection where the compression is substantially associated
with the reflected shock and the resultant kink at the triple point. In the latter case,
the reflection would be close to the simple three-shock model of a Mach reflection
and the focusing would be expected to occur in a stepwise fashion.

The experiments using CO2 are described in § 7. It is noted that for the lower
incident Mach number, the leading reflected wave will be below the Ms ≈ 1.04 cutoff
for a fully dispersed supersonic compression wave (Griffith & Kenney 1957) and no
shock front is expected to form on the reflected wave.

In a standard shock tube, the incident shock is followed by an expansion wave that
has reflected from the end of the driver section. The GALCIT 17-inch Shock Tube
was originally optimized for shock Mach numbers significantly larger than those
used in this study. For conditions similar to ones in the present investigation, Kumar,
Hornung & Sturtevant (2003) noted that an expansion wave immediately followed
the incident shock in their experiments in this facility. They used a pure He driver
gas to minimize the pressure ratio needed for a given shock Mach number and to
allow a maximum test section pressure for a given diaphragm.

In the current study, the presence of the expansion wave in the test section was
an undesirable complication to the interpretation of experimental results and the
comparison with numerical simulation. For these experiments, either the use of N2

as the driver gas or the introduction of air into the driver section before finishing
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3.8 m
(12.5′)

Gas in
Gas in Pressure transducers Cookie cutter

Diaphragm

To pumps

Driver section Driven section Test section

To pumps

20.4 m
(66.8′)

0.6 m
(2′)

a clamp

Figure 1. The GALCIT 17 inch Shock Tube.

the fill with He provided a simple method to delay the expansion wave arrival while
retaining a relatively high test section pressure.

3. Experimental apparatus and diagnostic system
The GALCIT 17 inch Shock Tube is described by Liepmann et al. (1962). For

this investigation, a rectangular test section designed and fabricated for the purpose
was mounted at the end of the driven section of the main tube (figure 1). The main
tube consists of a 43.2 cm diameter stainless steel tube, with a driver section of 3.8 m
length and a driven section of 20.4 m. The driver and driven sections are initially
separated by a 0.25 mm thick aluminium diaphragm and consistent bursting (with
typical repeatability to ≈ 1 % in Mi) is ensured by a cruciform knife edge mounted
in the tube on the driven side of the diaphragm. The discussion below documents
the experimental and diagnostic details needed to assess the experimental data, with
a particular emphasis on aspects that prove important in the successful comparison
between experiment and simulation.

3.1. Test section and apparatus

The test section housing box was constructed specifically for these experiments with
internal dimensions of 26.0 cm × 15.2 cm × 55.9 cm. The sides of the box mount a pair
of optical quality BK7 windows with dimensions 36.2 cm × 15.9 cm. The box itself
is attached to the end of the shock tube with a flange that mounts a 30.5 cm long
cookie cutter that separates a rectangular shock from the circular shock generated
by the shock tube. Two pairs of pressure-transducer ports at the entrance of the test
section allow for the measurement of arrival times and inference of the incoming
shock speed. These transducer pairs are precision-located on opposing walls so that
any tilt (i.e. deviation from vertical) of the incoming shock may be estimated.

The apparatus used in these experiments, shown in figure 2, is an internal wedge
that forces the incoming shock to propagate into a converging geometry. The two
plates, each of length of 30.5 cm, are adjusted to approximately + 10◦ and −15◦ from
the horizontal, with the actual angles then measured to some precision, as discussed
below. The apex of this wedge is terminated with the 6.4 mm radius hinge on the axis.
This regularization was chosen in view of the accompanying numerical simulations
and to limit the maximal pressures achieved. The wedge construction consists of a
frame that holds the wedge axis and wedge supports in a fixed position relative to the
test section. Two wedge plates are held by forks that are hinged at a fixed point in
the test section. The tips of the plates have an included angle of 6◦. Turnbuckles and
screws are used to adjust the angle of the wedge plates with respect to the incoming
shock. Wedge angles were set outside of the test section and measured against each
other and the bottom support of the wedge using a digital level. The measurements
were then compared with measurement of the distance between the wedge tips. In
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55.88

Test section/tube end-plate intersection

Cookie cutter/tube end-plate intersection

T4 (Trigger) Location
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Tip of cookie cutter

0.635 Radius

Pressure transducers

Figure 2. The geometry of the test section, including timing transducer locations. Wedge
transducer widths and locations are shown to scale, with the locations indicated in table 2.
The centres of the timing transducers (T3 and T4) are marked, while an additional timing
transducer opposite T4 on the upper wall is omitted. All dimensions are in centimetres.

practice, the setting of the angles is less precise than the measurement; as the wedge
was sometimes adjusted between runs, the wedge angles are not the same for all of
the runs in this study.

The metal wedge is 14.7 cm wide, while the test section is 5 mm wider. The 2.5 mm
space between the wedge and each of the optical windows is sealed with a 3 mm
gasket. The thickness of the gasket made sealing at the wedge plate tips impractical;
the gasket was typically terminated 2.5 cm short of the tips. Additionally, gasket
compression tended to push the gasket into the field of view; to avoid this the gasket
was trimmed, but the resulting gasket surface was no longer smooth. A second issue
was that the wedge plates were butted up against the hinge at the apex with no
provision for complete sealing.

The wedge itself is instrumented with fourteen pressure transducers, seven on each
plate. These are mounted on the plate with Delrin inserts. Direct mounting of the
transducers in the metal plate initially resulted in a high vibrational coupling between
the plates and the transducer measurements that allowed the pressure field from the
waves propagating through the steel plates to be registered, in part. The location of
the pressure transducers on the plates and the test section is shown in figure 2, and
the transducer locations on the wedge are tabulated in table 2.

3.2. Pressure measurements

The pressure measurements were made with piezoelectronic pressure transducers with
integrated electronics manufactured by PCB Piezotronics. The pressure transducers
were of two types: the basic Model 112A miniature high-sensitivity probes and the
Model 113A frequency-tailored miniature probes. These probes shared a common
form factor, with a 5.5 mm diameter sensing surface. The typical rise time for these
transducers is 1–2 μs. The calibration of the transducers was performed by PCB
Piezotronics.
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Transducer Distance from apex in cm Transducer Distance from apex in cm

L1 24.3 U1 24.3
L2 18.4 U2 21.0
L3 11.4 U3 15.9
L4 7.62 U4 9.52
L5 4.45 U5 5.71
L6 2.16 U6 2.54
L7 1.27 U7 1.91

Table 2. Pressure transducer locations on the wedge, as measured from the apex of the wedge.
The inner radius of the wedge is at 6.4 mm from the apex, and the transducers are 5.5 mm in
diameter. The L (lower) transducers are on the lower plate of the wedge, and the U (upper)
transducers are on the upper plate of the wedge.

Driver Test section Measured parameters

Run Gas p (kPa) p (kPa) Mi δt (μs) tpicture (μs) T (◦C)

68 N2 97 11.81 1.49 248.4 177.0 24.6
69 N2 92 11.67 1.48 250.9 1053.0 24.2
71 He + 5% air 92 2.40 2.46 150.4 751.4 24.3
72 He + 5% air 87 2.40 2.43 152.4 151.1 23.9

Table 3. Run conditions for individual N2 (test gas) runs.

These transducers have some inherent characteristics that affect the measurements.
The transducers are high-pass with a cutoff frequency around 1 Hz, requiring that
pre-shock pressures must be measured separately before each run. Even after the
improved transducer mounting noted above, there is still some coupling between
wedge vibration and transducer signals. This coupling can most easily be seen in the
experimental pressure traces before the first arrival of the shock. While the coupling is
small, it is stronger towards the wedge tips. The transducers have resonant frequencies
in the range of 300–500 kHz that can result in minor signal ringing after the passage
of a shock (greater in the 112A probes than in the 113A probes).

The pressure before the run is measured by a Druck DPI 260 pressure indicator
with a built-in pressure transducer. This measurement is made shortly before the
experiment and the gauge is isolated from the test section for the shot. This
transducer/indicator pair was calibrated by Druck.

3.3. Data acquisition

The experimental data presented in this paper are of two types: pressure measurements
and schlieren images. Pressure measurements from upstream were also used to trigger
the data acquisition system and the schlieren spark timing.

The pressure measurements required high-speed data acquisition, which was done
with both PC-based data acquisition boards and a digital oscilloscope. The digital
oscilloscope was a LeCroy waveSurfer 424 used to acquire four channels digitised
at 8 bits at 50 MHz for 2 ms. Three channels recorded the output of the shock
timing pressure transducers; two marked as T3 and T4 in the test section diagram,
figure 2, and the third, which is opposite T4 on the upper wall of the test section.
The fourth channel was used to record the output of a high-speed photodiode (aimed
at the schlieren spark source) to mark the actual time of the spark in the data-
recording sequence. The PC-based data acquisition system consists of three National
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Instruments high-speed DAQ boards, with the data acquisition controlled within the
NI LabView environment. Two separate NI 6110 boards were used and each of
these provided four channels of 12 bit digitisation at 5 MHz. The third board, a NI
PCI-6133, provided additional eight channels of 14 bit digitisation but at the lower
rate of 2.5 MHz. All of the National Instruments boards use simultaneous sample
and hold.

3.4. Triggering

The triggering of the pressure measurements and images originated from one of
the inputs to the digital oscilloscope—that from the pressure transducer marked T4
(trigger) in figure 2. The oscilloscope trigger was also sent to a Berkeley Nucleonics
Corporation Model 555 Pulse/Delay generator that directly triggered the PC DAQ
boards while providing a delayed pulse to trigger the spark.

3.5. Schlieren

Images were recorded using the schlieren technique. The light source was a Xenon
Corporation Nanopulser 437B, with a spark of roughly 20 ns duration. The optics
were mounted in a folded Z-fold configuration on optical tables mounted at the test
section height. The 45◦ mirrors were of 25.4 cm diameter and folding was along the
length of the test section so that the field of view was limited to a roughly 17 cm
width while covering the entire height of the test section. Further details are discussed
in Appendix B.

4. Experimental results
The experimental data consist of schlieren images centred on the entrance of the

wedge taken as the shock enters, and pressure measurements on the wedge surfaces
were continuously recorded throughout the run. The shock reflects separately from
each wedge plate, initially producing two independent pseudo-steady Mach reflections.
These pseudo-steady flows have two parts: the bow shock, which turns the previously
shocked flow to accommodate the wedge plate, and the incident shock with a Mach
stem that processes the quiescent gas.

The reflected waves subsequently interact with each other and reflect from the two
wedge plates. The interaction of the reflected waves with the incoming shock results
in a stepwise strengthening of the leading shock. When the incoming shock finally
reflects off the small radius at the wedge apex, the shock is strengthened considerably,
as expected. The returning shock then sweeps out of the wedge, consuming the
previously reflected shocks and exiting the wedge as a nearly cylindrical divergent
wave.

4.1. Inflow photographs

The location of the schlieren field of view at the entrance of the wedge is exploited
with two distinct timings of images: that of incoming and outgoing shocks. The
outgoing shock images are recorded after the converging experiment is complete.
This later flow is discussed further in Appendix A. In the incident phase, the flow
consists of two independent pseudo-steady Mach reflections.

Figure 3 shows the incident shock from Run 68, Mach 1.49 in N2 gas. The bow
shocks stand clear of the wedge tips. Two Mach reflections are evident, with the
slipline of the reflection off of the lower wedge (9.8◦) barely visible. (The sliplines are
more pronounced in figure 5, an oversaturated version of figure 3 included only for
the purpose of exposing this feature.) Both sliplines are slightly curved towards the
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Figure 3. Run 68, Mi = 1.49 shock in N2 travelling from left to right. Wedge angles are 9.8◦

(lower) and 14.6◦ (upper). Brackets mark the right edge of the close-ups in figure 4.

(a) Upper reflection (b) Lower reflection

Figure 4. Run 68, close-ups of the triple-point regions in both reflections.

wedge plates. Also, barely visible are a set of very weak waves that are reflections
off some roughness at the test section/cookie cutter interface. The Mach stem just
below the leading edge of the reflected wave appears to have finite curvature as well,
indicating that the reflection is not a simple Mach reflection, but instead a distributed
reflection.

Figure 4 shows magnifications of the two triple-point regions. The flow appears to
be a distributed compression, much as described by Colella & Henderson (1990). The
Mach stems are not straight, but rather curve as they approach the incident shock,
but do not show a clear kink that would indicate a shock at the leading edge of the
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Figure 5. Run 68, brightened and contrast enhanced to emphasize the sliplines (at the expense
of reflected wave details seen in figure 3). Also, more visible are the weak waves originating at
the interfaces between the test section and the cookie cutter.

compression. The curvature of the Mach stems does not produce a simple contact
surface, but instead a distributed region of non-uniform entropy. The reflection from
the upper wedge is stronger with a better-defined leading edge; however, the image
cannot distinguish between a steepening compression with or without a very weak
leading shock.

Figure 6 shows the incident shock of Run 72, Mach 2.43 in N2 gas. There are notable
differences between this and the lower Mach number Run 68. Towards the wedge tips,
the bow shocks are nearly attached to the tips. The sliplines are now almost straight,
curving back towards the Mach stem, and roll up where they meet the wall. The angle
between the reflected waves and the incident shock is notably larger, resulting in a
slower relative penetration of the reflected waves into the undisturbed area behind
the incident shock. Here the Mach stems appear straight at the scale of the image,
producing the appearance of a kink at the triple point.

In the traditional use of three-shock theory in the validation of Mach-reflection
behaviour, a local reflected wave geometry such as wave angles and slipline angles
is computed from given incident Mach numbers and triple-point trajectories (χ + θw

in figure 7) and these results are compared with experiments. For the purpose of
understanding the structure of the triple point this is excellent, but for looking at
the total compression of the reflection this has the distinct disadvantage of ignoring
the remaining compression along the Mach stem. Here, to provide a reference that
suggests the importance of compression along the Mach stem, rather than fix the
triple-point trajectory, the Mach stem is modelled to be straight and perpendicular
to the wedge face and the triple-point trajectory is computed using the predictions of
three-shock theory. Observed differences from this model are then attributed either to
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Figure 6. Run 72, Mi = 2.43 shock in N2 travelling from left to right. Wedge angles are 9.8◦

(lower) and 14.7◦ (upper). Weak waves appearing to originate from the wedge surface may be
due to the limitations and roughness of the gaskets between the wedge and the windows.

ωis

ωir

i

r

m

s

θw

χ

T

Figure 7. The geometry of the triple points. Here, i is the incident shock, r is the reflected
shock, m is the Mach stem, s is the slipline, T is the triple-point trajectory and w is the wedge
surface. Both ωir and ωis were measured from the incident shock as its straightness minimized
measurement uncertainty.
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the physical curvature of the Mach stem (which indicates a distributed compression),
or to the significant internal structure that is not captured by the three-shock model
(e.g. a Guderley reflection), or to both. The model indicates what a fully compact
reflection would look like, which a highly compact reflection would approximate. At
the other extreme, a distributed reflection (where the majority of the compression
occurs away from the triple point) would agree quite poorly with the model.

Note that the model system admits two branches in Mi , θw space: on the one
branch, the reflected wave is backward tilted and the trajectory angle increases with
increasing Mi . However, on the other branch, the modelled reflection is forward
tilted and the trajectory angle increases with decreasing Mi . In the context of Mach
reflections, the increase of the trajectory angle with decrease in the incident Mach
number is unphysical. This suggests that conditions in the parameter range of the
second branch produce reflections not captured by the model.

The geometry of the triple point is shown in figure 7, where the measured (also
modelled) angles are shown: ωir , the angle between the incident shock, i , and the
(tangent to the) reflected wave, r; ωis , the angle between the (extension of the) incident
shock and the (tangent to the) slipline, s; and χ , the angle between the trajectory of
the triple point, T , and the wedge surface, w. Model results are calculated by selecting
θw and Mi and iterating to find a value of χ that produces a valid solution. These
model results do include conditions that may violate the Colella & Henderson (1990)
vNR conditions that require that ωis + ωir > 90◦, which, as noted previously, is an
unphysical solution branch.

The incident shock was measured over many experiments at multiple conditions
and was consistently found to be at 0.2◦ away from vertical, with the shock at the
top of the test section slightly leading the shock at the bottom; this was consistent
with timing measurements at the inlet of the test section. While the direction of
gravity is, of course, irrelevant to the study at hand, an accurate orientation of the
coordinate system is important for the comparison of the results of experiment and
simulation. The triple-point trajectory is measured for this study as the trajectory of
the intersection of the very first part of the reflected wave with the incident shock.
Tangents to the reflected wave and the slipline must be constructed, and this is further
complicated by the diffuse nature of the slipline. These tangents are again taken from
the leading edge of the reflected wave and from the edge of the slipline associated
with that leading edge. All angles were measured on the corrected images within the
image manipulation program Photoshop CS2. (Details of image processing are given
in Appendix B.)

The results for the N1.5 case are shown in table 4. There are fairly large deviations
of the experimental results from the model predictions, but this is to be expected, since
the model results in a forward-tilted reflection (ωis + ωir < 90◦) that is expected to be
unphysical. Furthermore, the experimental image (figure 3) results show distributed
reflected waves, which are at odds with the simple three-shock description. Note that
ωsl + ωir ≈ 90◦, within uncertainty, in the experiment; whether the observed reflection
is forward- or backward-tilting is unresolved.

While the images do not give a clear resolution to the question of the absence or
presence of a shock leading the distributed reflection, an upper bound on the possible
strength of such a shock can be given by the Mach number of the triple point relative
to the flow behind the incident shock. In this case, that Mach number is calculated as
≈ 1.025 for both the upper and lower reflections. However, a simple reflected shock
at that Mach number would yield a 2.8◦ difference in the incident shock and Mach
stem angles at the triple point that is not seen. Either the leading-reflected wave is
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Lower wedge Upper wedge

9.8 ± 0.1 14.6 ± 0.1

θw Measured Model Measured Model

χ + θw 29.8 ± 0.2 33.5 29.8 ± 0.2 34.3
ωir 45.1 ± 0.7 – 44.6 ± 0.7 –
ωis 44.2 ± 0.7 – 44.6 ± 0.7 –
Mtp 1.025 ± 0.003 – 1.025 ± 0.003 –

Table 4. Measured reflection properties for Run 68, Mi = 1.49 shock in N2, compared with a
straight Mach stem model using the three-shock theory. The disagreement is expected, as the
model has for a forward-tilted reflected shock. Mtp is the Mach number of the triple point
relative to the flow behind the incident shock. No model results are listed for triple-point
structure, as the model is only used to clearly indicate how far the observed flow is from a
straight Mach stem flow.

Lower wedge Upper wedge

9.8 ± 0.1 14.7 ± 0.1

θw Measured Model Measured Model

χ + θw 28.3 ± 0.2 29.1 29.9 ± 0.2 30.7
ωir 66.2 ± 0.7 66.4 72.9 ± 0.7 75.2
ωis 31.9 ± 0.7 29.5 32.1 ± 0.7 29.5
Mtp 1.048 ± 0.003 - 1.102 ± 0.003 -

Table 5. Measured reflection properties for Run 72, Mi = 2.43 shock in N2, compared with a
straight Mach stem model using the three-shock theory.

significantly weaker than that or there is a more complicated structure at the triple
point that significantly reduces the pressure rise; notably, for the measured trajectory
angle the triple-point configuration would be, according to Vasilev et al. (2008), a
Guderley reflection.

The N2.5 case results are shown in table 5. The agreement with (a straight Mach
stem) model is much better, as would be expected from the nearly straight Mach
stems. The measured triple-point trajectories, although very low for a fully straight
Mach stem, still produce shock polars consistent with a standard Mach reflection.
(However, for the lower wedge angle, a forward-tilting solution to the three-shock
equations is possible for triple-point trajectories within measurement uncertainty.)
The upper limit of the reflected shock Mach numbers is the Mach number of the
triple point relative to the flow behind the incident shock; for the lower and upper
reflections, those Mach numbers are calculated as ≈ 1.05 and ≈ 1.10, respectively.

4.2. Pressure traces

A typical pressure trace from the N1.5 case is shown in figure 8(a). The transducer
(L4) is located on the lower plate at a distance of 7.6 cm from the apex of the
wedge. The major features are annotated and they consist of the pressure rise from
the incident wave structure (initially a Mach stem) followed by the three separate
reflections of the reflected waves, and finally by the returning shock. The width of the
pressure rise of the incident shock is a function of the finite size of the pressure-sensing
element and the time required by the shock to cross the element.

Since pressure-rise profiles depend both upon the geometry of the wave/transducer
interaction and the internal pressure profile of the wave, some understanding of the
internal structures of the reflected waves and how they give rise to the pressure
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(a) Run 68, Mi = 1.49 (b) Run 72, Mi = 2.43
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Figure 8. Annotated pressure traces from transducer L4 located 7.6 cm from the apex.

(a) ~~ 475 μs (a) ~~ 650 μs

Figure 9. Sketches of wave structures (abstracted from the computation of Run 68) relevant
to the typical pressure traces. The location and relative width of the L4 transducer is indicated
by a small rectangle, the dark grey line is the wave initially reflected from the upper (14.8◦)
wedge and the light grey line corresponds to the wave initially reflected wave from the lower
(9.8◦) wedge. Arrows show the direction of wave movement. Triple points cross (for the second
time) in (a) and the returning shock can be seen as the rightmost feature in (b).

trace seen in figure 8 may be achieved simply by abstracting the leading edges of
the reflections from computations (these computations are described in detail in § 5).
figure 9(a) shows the flow at a time ∼475μs after the trigger; after the initial Mach
stem has crossed transducer L4, but before the first reflected wave. The pressure
rise seen in the trace at ∼ 500 μs is due to the reflected wave initially associated
with the lower wedge. Note that this wave impacts the transducer at a nearly
normal incidence; thus the gradual form of the pressure rise is not because of the
transducer’s finite size. Figure 9(b) shows the reflections 175μs later, just after the
second reflected wave hits the transducer. In this figure, the stronger wave, initially
reflected from the upper wedge, has just passed the transducer and will be followed
by the lower wedge reflection and the returning shock. The difference in pressure
profiles is not attributable to the geometry of the wave/transducer interaction, but is
instead indicative of a structural difference between the waves reflected off the upper
and lower wedge walls.

A typical pressure trace for a N2.5 case (Run 72) is shown in figure 8(b). Again,
the general pattern of Mach-stem/reflected-waves/primary-shock-return is found on
this trace. As a result of the lower penetration of the reflected waves into the area
behind the incident shock, only two reflected waves are visible on the trace.
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Figure 10. Cross condition timing comparison: N1.5 (Run 69, open symbols) vs. N2.5 (Run
71, closed symbols). Triangles correspond to upper plate data and inverted triangles correspond
to lower plate data. Only by the sixth transducer is there any visible distinction.

The most precise measurements that the pressure transducers provide are the arrival
times of the Mach stem of the incident shock and the return of the incident shock.
The typical experimental uncertainty for the arrival times is ≈ 1–2μs. The arrival
times can be used to create an (r, t) diagram of the leading shock position as the flow
evolves. Figure 10 shows the incoming normalized shock arrival times for two different
runs. Note that the Mach numbers of the incident shocks for the flows shown here
are Mi = 1.48 and Mi = 2.46, yet the collapse of the incoming shock arrival times is
fairly good. The N2.5 case does accelerate slightly faster, but the similarity is striking.
Time and distance are normalized by the shock speed and the wedge dimensions in
such a way that, if there were no wedge, the incident shock would reach the location
of the wedge axis at (normalized) t = 0, following a straight line from the lower left
corner of the figure to the upper right corner. In this way, the acceleration that results
from shock focusing can be readily seen. We shall return to shock arrival times as a
metric for shock focusing in § 6.

5. Computational methodology
The numerical simulations utilize a dynamically adaptive second-order Eulerian

Cartesian finite-volume upwind scheme that allows for geometrically complex
boundaries using a volume-of-fluid approach. The boundary geometry is exposed
onto a Cartesian mesh by employing a scalar level-set function that stores the signed
distance to the boundary surface. Multiple distinct numerical integration schemes for
the Euler equations have been incorporated into a parallel block structured mesh-
refinement algorithm that provides very high local spatial and temporal resolutions at
runtime. The overall method is tailored for high-resolution simulation of compressible-
flow phenomena in evolving geometries undergoing arbitrary topology changes
(Deiterding et al. 2006).
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5.1. Numerical method

For the purpose of simulation, the two-dimensional compressible Euler equations are
integrated numerically. This excludes the effects of viscosity (e.g. boundary layers
on the wedge plates and viewing windows). Written in a conservative form, the
two-dimensional Euler equations are

∂q
∂t

+
∂ F
∂x

+
∂G
∂y

= 0, (5.1)

in which q = (ρ, ρu, ρv, E)T and the flux vectors are given by

F =

⎛
⎜⎜⎝

ρu

ρu2 + p

ρuv

u(E + p)

⎞
⎟⎟⎠ , G =

⎛
⎜⎜⎝

ρv

ρuv

ρv2 + p

v(E + p)

⎞
⎟⎟⎠ , (5.2)

where ρ is the density, p is the pressure and u, v are the velocities in the x and y

directions, respectively. The total energy E is related to internal energy per unit mass,
e, and the velocities by

E = ρe +
1

2
ρ(u2 + v2). (5.3)

For all the simulations of shocks in nitrogen reported, the ideal equation of state,
p = ρRT , is assumed and the internal energy is given by e = cvT . The gas properties
used for N2 are summarized as follows: R =296.8 J (kg K)−1, cv = cp − R and γ ≡
cp/cv = 1.4.

A hybrid scheme is used to represent the spatial derivatives of the flux vectors F
and G. In this approach, as with all finite-volume methods, a derivative is computed
as the difference of interpolated flux values on ‘cell walls’ located half-way between
grid points:

df

dx
=

1

�x
(fj+1/2 − fj−1/2). (5.4)

As described by Pantano et al. (2007), the scheme is a high-resolution approach
specially constructed to have a very low numerical dissipation. It computes these
interpolated values either by a WENO method at the shocks or by a centre-difference
method consistent with a skew-symmetric formulation in smooth regions of the
flow. The time integration is performed by the use of a third-order strong stability
preserving (SSP) Runge–Kutta scheme (Gottlieb, Shu & Tadmor 2001). For additional
verification, a simple HLL finite-volume scheme incorporated in the same adaptive
framework was also used. In all verification cases, the results were found to be in
good agreement.

Mathematically, the boundary condition for the Euler equations at rigid boundaries
is simply n · u = 0, where n is the normal vector at the boundary. Numerically, this
is enforced by an implementation of the ‘Ghost Fluid Method’. Mirroring of the
flow is applied between time steps, which allows the fluid solver to integrate each
time step over the entire domain (fluid region and ghost-fluid region). This approach
has the advantage that the boundary conditions are applied in a manner that is
separated from the actual mechanics of the solver in question and can be applied to
complicated evolving geometries. While the normal-velocity condition is only satisfied
to first order, the simulation produces excellent agreement with experiment, both
qualitatively and quantitatively.
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(a) Pressure contours for lower reflection (b) Pressure at L5 transducer location

Figure 11. Self-convergence of the pressure field. In (a) resolutions of �x =0.03125 mm
(solid line) and �x = 0.125 mm (dash-dotted line) are shown, while in (b) resolutions of
�x = 0.03125 mm (solid line), �x = 0.0625 mm (squares) and �x = 0.125 mm (circles) are
shown.

5.2. Simulation methodology and comparison with experiment

To allow for a comparison with experiments, the experimental diagnostics were
modelled within the numerical framework. Synthetic transducers recorded the pressure
history at locations corresponding to the centres of the physical transducers, with a
sampling rate of approximately 1 MHz. Additionally, the full state vector is recorded at
predetermined times that correspond to the schlieren images; from the instantaneous
density field, artificial schlieren images are calculated. The additional computed
quantities, such as the velocity and pressure fields, allow for a more comprehensive
investigation of the shock physics than provided by experiment alone.

Although the Euler equations are scale invariant, the simulations were performed
directly in MKS units for simplicity of set-up and ease of interpretation and
comparison with experiment.

Initial conditions were defined by the state of the undisturbed gas and the measured
speed of the shock at the timing transducer 33.02 cm (13 in) from the wedge apex.
This information is summarized in table 3. The boundary conditions comprise the
measured wedge angles in the experiment combined with a zero-gradient condition
on the open end of the computational domain. We note that the interior of the
computational wedge matches the experiment down to the 0.25 in hinge radius but
no attempt was made to match the exterior wedge with the complicated geometry
and support structures in the experiment as these features are essentially irrelevant to
the flow in the wedge interior during the experiment.

While there is an inherent experimental uncertainty in the measured conditions
such as wedge angle and Mach number, no attempt was made to exploit this in
maximizing agreement between experiment and simulation. For the sake of brevity,
only some representative comparisons between the simulation and experiment are
presented.

To ensure that the flow features were well captured, the simulations were
performed at several resolutions and self-convergence of the solutions was monitored.
Figure 11(a) shows the pressure contours of the lower Mach reflection in Run 68
computed at two different resolutions and presented at t = 248.4 μs to correspond
with the schlieren figure 3. As can be seen, results at the two resolutions are in good
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Figure 12. Incoming shock location vs. time for a Mi =1.43 shock travelling in N2. Open
symbols represent experimental data and solid symbols correspond to simulation data. The
error bars with wide crosses denote the experimental uncertainty and the narrow error bars
result from the computational sampling frequency.

agreement. Examining the flow history much closer to the apex of the wedge provides
a more demanding metric of convergence. Here, the effective resolution, defined as
the number of grid points spanning the wedge, is significantly reduced. Figure 11(b)
presents the pressure history as recorded from simulations at three different resolutions
at a point that corresponds to the centre of the L5 transducer, approximately 1/7th of
the total wedge distance from the apex. Here, one can see more clearly the first-order
convergence typical of all shock capturing methods in the region of shocks. We found
the resolution of �x = 0.0625 mm to be acceptable and it was used for comparison
with the experiments. Such a spacing places approximately 40 grid points across the
exposed 25◦ of the hinge at the apex. Results at this resolution were not shown in
figure 11(a) as they are virtually indistinguishable from those at the higher resolution.

As stated earlier, the most precise experimental measurements are the times at which
the Mach stem crosses each transducer. Figure 12 compares simulation and experiment
for these arrival times. In all cases, the data are within both measured and computed
uncertainty. We also examine the full pressure history as recorded by the transducers
located in the inner half of the wedge. In the experiments, these transducers were
found to be the least sensitive to the solid vibration of the wedge itself. An examination
of figure 13 shows agreement between the transducer data and the simulation. The
agreement is particularly good prior to the arrival of the returning shock. We note
that after the focusing experiment is completed and the main shock returns outward,
the pressure spikes that indicate the passage of the returning shock consistently
occur sooner in the simulation. A brief description of the returning shock and
complications in comparison are presented in Appendix A.

6. Interpretation and discussion
The combined experimental and computational results will be discussed in three

parts: first, the initial phase that produces two independent pseudo-steady Mach
reflections; second, the persistent effects of the initial reflected wave structure on
the subsequent re-reflections off the wedge; and finally, the overall character of the
shock-wave focusing generated by this process.
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Figure 13. Mi = 1.48 shock in N2: A comparison of the simulated pressure traces (circles)
with the experiment (lines) for the fifth and sixth transducers on the top and bottom plates.
The large spike with gradual decay corresponds to the outgoing passage of the primary shock
after reflection from the wedge apex.

6.1. Initial reflection of incident shock

As discussed in § 4, the initial phase of the shock focusing is a pair of pseudo-steady
Mach reflections. While the reflected waves in experiments N1.5 and N2.5 appear to
be similar, they are characterized by significant differences as to be expected from the
difference in the incident Mach number. These waves range from a weak reflection
with a substantial distributed compression wave (the N1.5 case on the 10◦ wedge)
to shocks with some small distributed waves following (the N2.5 case, both wedges).
The structure of these waves will continue to be important in the discussions of the
later stages of the flow. Additional differences can be seen in the shape and form of
the slipline, as mentioned earlier. The simulation data aid in understanding of these
features.

Figures 14(a) and 14(b) reproduce the schlieren images in figures 3 and 6, with
overlaid pressure contours from the numerical simulations. Pressure is, of course,
continuous across a contact surface (slipline). The small local numerical errors that
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(a) Run 68, Mi = 1.49

(a) Run 72, Mi = 2.43

Figure 14. Schlieren data overlaid with simulated pressure contours.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

14
92

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991492


318 C. Bond, D. J. Hill, D. I. Meiron and P. E. Dimotakis

(a) Experiment (b) Simulation

Figure 15. Comparison of the slipline roll up in Run 72 shows minor differences due to
viscous effects. Density contours are shown in the image from the simulation. The apparent
object in the schlieren, to the right of the roll up, is the shadow of a mirror clip.

are inconsequential in the estimation of the pressure field serendipitously mark the
contact surface, permitting a precise comparison of its location between experiment
and simulation (cf. figure 14b). The contours for Run 68 (Mach 1.49) show that there
are two competing high-pressure regions: the first at the tip of the wedge, which turns
the upstream flow to accommodate the wedge, and the second that accelerates the
downstream flow at the base of the Mach stem. As neither dominates, the result is
a pressure along the wall that falls after the initial jump as the Mach stem passes
and continues to decrease until after the slipline passes. As the flow in this region is
accelerating away from the Mach stem, the slipline is curved towards the wedge tips.
This curvature opposes the tendency of the vorticity in the slipline to roll up.

In contrast, the Run 72 (Mi = 2.43) overlay shows a different outcome. At the higher
incident Mach shock number, the turning flow dominates the Mach stem over much
of the flow. The region of decreasing pressure behind the Mach stem does not extend
to where the slipline reaches the wall. The slipline is accelerated towards the Mach
stem as it approaches the wall, helping the vorticity in the slipline roll up. Limitations
in the simulation can be seen in the actual shape of the roll-up as shown in figure 15.
The simulations assume an inviscid flow and use the equivalent of free-slip boundary
conditions, whereas in the physical experiment viscosity and the attendant boundary
layer and the no-slip condition cause the front of roll-up structure to separate from
the wedge plate and produce a more compact spiral. The lifting of the vortex away
from the wall (and movement back towards the slipline) has some similarity to the
behaviour of the wall jet with increasing Reynolds number in the Navier–Stokes
simulations of Vasilev et al. (2004), although there are substantial differences in Mach
numbers, Reynolds numbers and wedge angles.

6.2. Full shock evolution

Notable in both experimental and computational results is that the different nature
of the reflections off the 10◦ and 15◦ wedge plates is evident in the pressure traces.
At Mi = 1.5, the reflected wave initially associated with the lower wedge plate has a
more smoothly distributed form at early times, as can be seen in figure 14(a). But an
examination of the experimental and numerical simulation pressure traces indicates
that this persists well into the wedge. As an example, the reflected waves are visible
in both the upper and lower traces of figure 13 as the pressure increases, with the
pressure jumps that are alternately somewhat sharp and somewhat smoother. This is
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also seen in the simulations, perhaps most clearly in figure 16(b), where the incoming
shock has just passed transducer L5. Here, the difference between the two reflected
shocks is notable; the pressure gradients associated with the upper wedge wave (now
reflecting off the upper wedge) are significantly greater than those associated with the
lower wedge generated wave.

Computational images from a simulation corresponding to Run 69 (a N1.5 case)
are shown in figure 16. These images are colour-coded by density and have pressure
contours as black lines. The first image shows the flow as the Mach stem passes the
U2 transducer. This is shortly after the reflected waves have first interacted, but before
the triple points meet. Notable is the difference in the strength of the two shocks,
and that the reflection from the upper wedge is much more clearly defined than
the lower wedge reflection. As the flow progresses into the wedge, the high-pressure
region where the reflections overlap will reach the incident shock front and strengthen
it.

The second image in figure 16 shows the flow as the shocks reach L5, nearly 300 μs
later. In this case, the reflection that was originally formed by the upper wedge has
just reflected from the upper wedge again, after reflecting from the lower wedge in
the intervening time. The triple-point region, however, is still approaching the upper
wedge, and the reflection had just recently passed transducer U5. Figure 17 shows the
pressure traces from selected wedge transducers; notably, the U5 transducer shows
signs of the reflection slightly before L5 sees the incoming shock.

The third image in figure 16 shows the flow as the incident shock hits transducer
L6, 32 μs after the previous image. The two reflected waves are about to hit L5 and
U5 transducers, and the steepness of the two waves is significantly different, with the
wave originally from the lower wedge significantly distributed. An examination of the
L5 and U5 traces in figure 17(a) reveals evidence of the reflections on the L5 and U5
pressure traces near the time of the incident shock at L6. Notably, however, the U5
transducer, which registers the reflection of the lower wedge originated wave, has a
smaller and much smoother pressure jump. In contrast, L5 shows a fairly steep initial
jump, with some smoother following pressure rise.

Figure 18 shows density fields and pressure contours for three times during the
computation corresponding to Run 71 (a N2.5 case). While both reflected waves are
sharper than those in the N1.5 case, the reflection originally from the lower wedge is
less clearly defined. In the first of these images, the incoming shock reaches transducer
L4. At this point, the reflected waves have bounced off the opposite plates but have
not yet met again. The central shock has been once strengthened by the crossing of
the reflected waves.

The second image in figure 18 is 28 μs later, as the first shock passes transducer L5.
The triple points have crossed since the last image and the central shock has been
strengthened a second time. Note that the reflected wave originally from the lower
wedge is approaching L4; on the right in figure 17 some of the experimental pressure
measurements from Run 71 are shown. Shortly after the shock hits transducer L5,
the L4 trace shows a weak and smooth pressure increase, corresponding to this wave
reflection.

The final image in this series is recorded 25 μs later, as the incident wave hits
transducer L7. Note the reflecting wave approaching the U4 transducer originated
from the upper plate. Again, the pressure traces in figure 17 show transducer U4
registering a reflection shortly after the incident wave hits transducer L7. This
pressure jump is stronger than the lower wedge reflection referred to in the preceding
paragraph.
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(a) t = 237 μs

(b) t = 520 μs

(c) t = 552 μs

Figure 16. Numerical visualizations of Run 69, Mi =1.48, as incident shocks hit transducers
U2 (t = 237 μs), L5 (t = 520 μs) and L6 (t = 552 μs).

6.3. Shock focusing

Figure 19 illustrates the strengthening processes responsible for shock focusing: the
reflected waves meet and cross in (a), producing a region of increased pressure that is
higher than that behind the incident shock. As the triple points approach each other,
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Figure 17. Pressure traces corresponding to the times in figures 16 and 18. On the left, upper
wall transducer traces are dashed and lower wall transducers are solid. On the right, upper
wall transducers are dotted and lower wall transducers are solid or dashed. Oscillations in
the pressure traces are seen at the resonant frequency of the physical transducers. Pre-shock
signals are caused by structure-transducer coupling.

this region increases in size and approaches the incident shock. After the triple points
cross, the configuration appears as shown in figure 19(b), with a new, stronger shock
in place of the original incident shock. This process repeats as the triple points (and
associated reflected shocks) bounce from the wedge plates and again approach one
another to again interact.

This description is simplified by idealizing the reflected waves as simple shocks
separating uniform states. However, in the N1.5 case, these waves are not compact
and take the form of a distributed compression wave (possibly led by a weak shock).
A comparison of figure 19(a) with the first image of figure 16(a) is illustrative. While
the general geometry is the same, the actual flow has a more smoothly varying
pressure field. Specifically, while the idealized flow has shock strengths that are
stepwise varying, the actual flow, with distributed reflected waves, will have a shock
strength that increases more smoothly.

When considering shock focusing, it is natural to compare the observed shock
positions with the position of both a cylindrical converging shock (as an ideal-
focusing case) and a planar shock without reflections (as a non-focusing case).

An accurate measure of the Mach history for converging cylindrical shock is given
by the shock dynamics theory (Whitham 1957). Here the area A of the shock is
related to the Mach number M by,

A

A0

=
f (M)

f (M0)
, f (M) = exp

(
−

∫
Mλ(M)

M2 − 1
dM

)
, (6.1)

where,

λ(M) =

(
1 +

2

γ + 1

1 − μ2

μ

)(
1 + 2μ +

1

M2

)
, (6.2)

μ2 =
(γ − 1)M2 + 2

2γM2 − (γ − 1)
(6.3)
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(a) t = 273 μs

(b) t = 301 μs

(c) t = 326 μs

Figure 18. Numerical visualization of Run 71, Mi = 2.46, as incident shocks hit transducers
L4 (t = 273 μs), L5 (t =301 μs) and L7. (t = 326 μs).

and γ is the ratio of specific heats. The area of the cylindrical shock is given by
A= 2πr , so, given the initial Mach number M0 and the radius A0 = 2πr0, (6.1) gives
the radius as a function of Mach number as the shock converges.
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(a) Reflected shocks overlap (b) Shock strengthened

Figure 19. Diagrams showing the local flow conditions just prior and after the triple-point
crossing. Here, I is the incident shock, R labels the individual Mach Reflections and S indicates
the individual Mach stems.
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Figure 20. The shock location as a function of time. The solid line represents the shock
dynamics theory for a circular shock and the dashed line is a simple planar shock. The
triangles and inverted triangles correspond to the data taken from the upper plate and lower
plate transducers, respectively.

Figure 20 shows the results of a comparison of the planar and convergent cases
with experimental results from both cases N1.5 (left) and N2.5 (right). The dashed
line indicates the timing of a planar shock with the same initial strength as the wave
entering the wedge. The solid line indicates the excellent agreement between the shock
dynamics solution for a cylindrically converging shock.

Interestingly, the N1.5 case experimental results fall almost on top of the cylindrical
wave. The N2.5 case, however, deviates from the cylindrical case, with focusing that
lags the cylindrical shock in arrival time.

To obtain insight into the differences in focusing, the computations of the two cases
were compared with the shock dynamics solution. The instantaneous Mach number
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Figure 21. The shock Mach number measured on the horizontal as a function of distance.
The solid line represents the computed instantaneous Mach number and the dashed line is
given by the shock dynamics theory.

of the incoming shock was recorded as a function of position on the horizontal
(emanating from the wedge apex) and is plotted in figure 21. There is an obvious
distinction between the two cases; the N1.5 case has a number of distinct, but smooth,
increases in shock Mach number, while in the N2.5 case, the increase in shock Mach
number is made in a stepwise fashion. This difference in behaviour is consistent
with the previous discussion of both the triple points and the reflected wave pressure
traces; the distributed nature of the N1.5 reflections results in much smoother focusing,
while the steeper and less distributed N2.5 reflections result in the stepwise focusing
at the higher incoming shock Mach number.

7. Real-gas effects in carbon dioxide flows
It has been demonstrated in the preceding sections that the lower incident Mach

number (Mi =1.5) experiment produced smoother focusing, and this is attributed to
the nature of the reflected shocks. Additional converging planar shock experiments
were performed utilizing the same Mach numbers, experimental apparatus and
diagnostic system, but with CO2 in place of N2 (see table 1). In contrast to N2,
which may be treated as an ideal gas for the experiments, CO2 exhibits a real-gas
behaviour in the form of relatively slow vibrational relaxation under pressures and
temperatures similar to those in the N2 experiments. The introduction of significant
relaxation effects places this experiment in a regime beyond the immediate scope of
the local triple-point theory, but these same real-gas effects ensure that the reflected
waves will include an enhanced distributed region. Table 6 summarizes the flow
conditions for these experiments.

The results reported here constitute a brief investigation into focusing with real-gas
effects in the form of vibrational relaxation. As will be seen, the results are very
similar to those seen in the preceding sections, although the reflected waves produce
somewhat smoother transducer pressure rises and overall focusing.
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Driver Test section Measured parameters

Run Gas p (kPa) p (kPa) Mi δt (μs) tpicture (μs) T (◦C)

73 He + 20 % air 100 19.7 1.51 319.0 199.5 24.0
74 He + 20 % air 103 19.7 1.52 316.5 1400 24.3
75 He + 5% air 85 2.40 2.55 189.0 151.2 24.3
77 He + 5% air 83 2.41 2.50 192.7 1150 24.1

Table 6. Run conditions for individual CO2 runs.

7.1. Simulation of CO2 experiments

As expected, assuming a constant ratio of specific heats, γ for CO2, or using a
temperature-dependent γ (T ) in the simulations, failed to produce good agreement
with experiment. It was found necessary to model the effect of the additional degrees
of freedom (i.e. molecular vibrational modes) by modifying the form of internal
energy density e and the related equation of state. When discussing departure from
the ideal-gas behaviour, it is simplest to represent e as the sum of the translation and
rotation energy density et + r with vibrational energy density evib to be modelled. This
vibrational energy density is in turn modelled for CO2 by a decomposition into the
four basic vibrational modes

e = et+r +

4∑
m=1

evib
m . (7.1)

Here, as CO2 is a linear molecule, the translation and rotation energy may be written
as et + r =5RT/2, where R is the gas constant for CO2 and T is the translational-
rotational temperature related to the pressure by p = ρRT . The vibrational modes
are taken to be the m =1 symmetric stretching mode, the m = 2 and m =3 bending
modes, and the m =4 asymmetric stretching mode. The quantum harmonic oscillator
theory predicts (Vincenti & Kruger 1965; Zel’dovich & Raizer 2002) that each of
the vibrational modes, when in equilibrium at a temperature T , will have an energy
density given by

e∗
m(T ) = R

θm

exp(θm/T ) − 1
, (7.2)

with, for CO2, the characteristic temperatures θ1 = 1920 K , θ2 = θ3 = 960 K and
θ4 = 3380 K.

To model the relaxation of the different vibrational modes, the standard Euler
equations are augmented by the addition of four rate equations in the advection form

∂ρevib
m

∂t
+

∂ρevib
m uj

∂xj

= ρ
e∗
m(T ) − evib

m

τm (T , p)
, (7.3)

where the characteristic times, τm, are given by the Teller–Landau theory (for details,
see Zel’dovich & Raizer 2002),

ln

(
τmp

Cm

)
=

(
To

T

)1/3

, (7.4)

with the dimensional constants C1 = C4 = 2.2 × 10−7 sec · atm, C2 = C3 = C1/10 and
To = (37)3K.
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(a) Run 73, Mi = 1.5, schlieren (b) Run 73 pressure contours

(c) Run 75, Mi  = 2.55, schlieren (d) Run 75 pressure contours

Figure 22. Comparison of schlieren and the simulation of shocks in CO2. The evidence of
the relaxation zones is clear in both the schlieren and the pressure contours. Weak waves
apparently originating on the wedge surfaces may be due to the roughness and limitations of
the gaskets between the windows and the wedge.

7.2. Results and discussion of CO2 experiments and simulations

Figure 22(a) shows a C1.5 case (Run 73), with a shock Mach number of 1.51 in
CO2 and figure 22(b) includes the computed pressure contours. While the overall
flow configuration looks similar to the N1.5 case (figure 3), the real-gas effects are
noticeable. The incoming shock (in the centre of the picture, between the two Mach
reflections) has a clear relaxation zone behind the leading jump, as expected for a
shock in CO2 (Johannesen et al. 1962). Relaxation zones are also evident behind the
Mach stems and the reflected waves. Although the relaxing flow makes for a more
difficult diagnosis, the curvature of the shock intersection region indicates that this is
also a distributed reflection. The image suggests that the flow is largely similar to that
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(a) Mi = 1.51 (b) Mi = 2.55

Figure 23. Mi = 1.51 and Mi =2.55 in CO2: A comparison of the simulated pressure traces
(circle) with the experiment (line) for the fourth transducer on the bottom plate. As with the
N2 experiments, leakage at the hinge produces a significant offset in the time of the returning
shock.

of the N1.5 case, although slightly modified by relaxation, and this in turn suggests
that the distributed nature of the reflection is not particularly sensitive to the presence
of a weak shock leading the reflection, since any such weak shock would be fully
dispersed at such a low shock Mach number. A comparison of the pressure contours
from the Mach 1.5 shock in CO2 with the corresponding contours for the N2 case
shows that the introduction of real-gas effects does little to alter the structures of
the reflected shocks, although the pressure rise in the following reflected wavefront is
smoother in the CO2 case. One can also see that the distribution of pressure between
the slipline and wedge plates differs; in the N2 simulation, a pressure maximum can
be found at the Mach stem, but the relaxation effects move that pressure maximum
away from the Mach stem in CO2.

Figures 22(c) and 22(d ) may be compared with figures 6 and 14(b), respectively.
Again, the flows are similar, but the relaxation zones at the leading shocks are evident
in the CO2 image and this results in a smoother pressure rise following the shocks.
The pressure contours within the reflected wave in the area near the triple point
are largely parallel to the reflected wavefront in figure 22(d ) in contrast to those in
the N2 case in figure 14(b), where the contours appear to terminate in the reflected
wavefront.

In figure 23, one sees that the agreement with computation prior to the returning
shock is quite good. One will notice that the pressure rises are much smoother in the
CO2 experiments than that in the corresponding N2 pressure histories (figure 8). This
is probably a function of the relaxation zones at the front of the reflected waves.

While the authors are not aware of a simple formula for the strength of a
converging cylindrical shock in the presence of real-gas effects, the results of the
Mach number along the horizontal from the simulation of the CO2 experiments may
still be compared with a shock dynamics prediction for a cylindrical shock using
an ideal-gas approximation to CO2 by assuming a constant γ = 1.29. As seen in
the N2 investigation (figure 21), the lower incident Mach number shock results in a
smoother focusing (figure 24). It is interesting that the instantaneous Mach number
in figure 24(a) oscillates about the cylindrical shock prediction. This is a rather subtle
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(a) Mi = 1.51 (b) Mi = 2.55

Figure 24. The shock Mach number measured on the horizontal as a function of distance.
The solid line represents the computed instantaneous Mach number and the dashed line is
given by the shock dynamics theory for an ideal gas with γ = 1.29.

difference from the N2 case (figure 21) but consistent with the idea that the enhanced
smoothness of the reflected waves owing to relaxation effects results in a shock closer
to an arc of a cylindrical shock. A more important consequence of the real-gas
effects for this flow is the significant difference between the behaviour of the reflected
outgoing wave structures between N2 and CO2. This is discussed in Appendix A, as
it is not part of the shock focusing that precedes it.

8. Conclusions
Focusing of a planar shock in a two-dimensional linearly converging geometry

was investigated with experiments and numerical simulations. The simulations were
validated by a comparison with experimental results and subsequently used to
augment and facilitate a detailed examination of the physics of these flows. Two
incoming shock strengths were selected: one where the initial Mach reflections are
within the distributed Mach reflection regime, where most of the compression is
associated with the curved Mach stem and not with a leading shock, and the
other within the compact Mach reflection regime where most of the compression
is associated with the shock leading the reflection. The current investigation is an
attempt to understand focusing in the flows where distributed reflections arise, and
how they differ from flows with compact reflections, where the focusing, dominated
by repeated reflections of triple points off the wedge walls, is better understood.

The structure of the initial reflections (before the interaction between the two
reflections) corresponds well to previous investigations. The flows in the N1.5 case
behave as one would expect from the Colella & Henderson (1990) results, with a
significant portion of the reflected wave in the compression fan following the leading
edge. The N2.5 case shows nearly straight Mach stems with the reflected wave
primarily consisting of a leading shock, quite close to a canonical Mach reflection.

A surprising result is that the extended structure of the reflected waves persists even
after multiple interactions with the opposing wedge plates and attendant increases in
the pressure. While the distributed reflected waves might be expected to steepen to
shocks after the self-similar regime is broken, pressure traces from both experiment
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and simulation indicate that the reflected wave structures remain distributed and
that differences in the initial reflection structure remain clearly visible in the images
produced by simulation, even for the later stages of the experiments.

The timing of the incoming shocks was compared with both unfocused planar
shocks and theoretical predictions for converging cylindrical shocks. The N1.5 case
is found to match the corresponding cylindrical shock well, while the N2.5 case lags
its cylindrical counterpart. The differences between these cases are illuminated by
comparisons of the shock Mach number along the horizontal axis. The numerical
simulations show that the N1.5 case is a closer match with its well-distributed smooth
increases of the shock Mach number, while the N2.5 case consists of stepwise increases
of Mach number caused by the compact reflected waves.

The nature of the focusing in a two-dimensional converging geometry is then
found to depend on the structure of the reflected waves early in the flow; distributed
reflections produce much smoother focusing that better approximates a circular
cylindrical shock, while the sharper waves from compact reflections outside that
regime yield a poorer approximation to smooth focusing.

Subtle changes in the flow fields were observed when using CO2 in place of N2. The
form of the initial triple-point regions is quite similar in both gases at comparable
Mach numbers. This may be understood by observing that near the front of
the shock, and hence the triple points and Mach stem, the vibrational modes in
CO2 are not excited and the gas behaves locally as an ideal gas with γ = 1.4, as in
N2. The relaxation zone is most prominent in the reflected waves, where the transfer
of energy to the vibrational modes produces a dispersed reflected wave in the C1.5
case. This can be clearly seen in pressure overlays for the early stages of the flow and
in the pressure traces for the entire experiment. (This difference is more pronounced
in the post-focusing outgoing wave system discussed in Appendix A.)

We would like to acknowledge the code development and contributions undertaken
as part of the Caltech DOE ASC Alliance Program by R. Deiterding, documented
above, on which the numerical simulations relied, the early exploratory discussions and
investigations in collaboration with R. Samtaney, the preliminary experimental work
by A. Lam, and the mechanical engineering and design assistance of G. Kaztenstein
and B. Valiferdowsi. This work was supported by the Advanced Simulation and
Computing (ASC) Program under subcontract no. B341492 of DOE contract W-
7405-ENG-48.

Appendix A. Returning shock propagation into subsonic flow
While the main text of the paper concentrates on shock focusing, pressure data

and schlieren images were also taken for the flow after the shock reached the apex
of the wedge. This appendix discusses these results and the differences between the
experiments and computations in the flow behind the returning shock.

After the outgoing shock passes a transducer, no further sign of the reflected
waves is seen. In both the experimental and numerically simulated pressure traces,
the outgoing shock appears as a strong spike followed by a long period of smooth
decay. The schlieren images recorded as the shock nears the wedge exit illustrate
this.

Figure 25(a) shows the outbound shock of Run 69, initially a Mach 1.48 shock.
To the left, the reflected shocks that have bounced off both wedge plates are drifting
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(a) Run 69, Mi = 1.48 (b) Run 71, Mi = 2.46

Figure 25. Outgoing shock in N2 develops as an expanding cylindrical shock.

upstream towards the shock tube. The reflected shock has coalesced into a nearly
cylindrical expanding shock and is about to exit the wedge.

Figure 25(b) shows the outbound shock of Run 71, initially a Mach 2.46 shock.
To the left, the reflected waves have built up into a single wave standing just off
the wedge tips. The reflected shock here shows a significantly larger amount of
three-dimensionality than in the N1.5 case.

Unlike the agreement found between experiment and simulation in the incident
phase of the runs, the returning-shock location predicted by the simulation always
leads the actual shock in the experiment, as mentioned in the discussion of the
pressure traces. While not shown here, during the outgoing phase, the locations of
the waves reflected from the wedge plates are well predicted by the computation. For
example, the pressure trace comparisons in figures 13 and 23 show good agreement (in
both N2 and CO2) until the returning shock arrives. This suggests that the difference
between the simulation and the experiment is concentrated at the apex of the wedge,
and more specifically at the time when the shock focuses in the neighbourhood of the
apex.

Figure 26(a) shows both experimental and computational results in an (r, t) diagram
of the returning shock. As indicated, the computed shock leads the experimental shock.
Figure 26(b) shows the differential timing of the shock arrivals. In this figure, the
differences can be seen to grow while the shock is deep in the wedge, but as the shock
exits (and the pressure behind the shock drops) the difference reaches a steady state.

The experimental apparatus was designed to allow easily adjustable wedge plate
angles with a precision hinge. However, the implementation does not safeguard against
small leakage effects after reflection, especially during the short time interval when
the hinge assembly is exposed to the high pressure shortly behind the reflected wave.
This would also explain why the lag ceases to grow as the shock exits; the pressure
differential decreases as the shock leaves the apex.

Figure 27 shows the schlieren images from outgoing flows in CO2; these roughly
correspond to the N2 flows in figure 25. The major difference is that the shocks in the
CO2 cases show significant real-gas effects. Waves reflected from the wedges in the
lower Mach number case are fully dispersed, as expected for shock Mach numbers
below ≈1.04.
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(a) Shock arrival times (b) Differential timing

Figure 26. Comparison of Run 69 outgoing shock timings; experimental vs. simulated. In
(a) the open symbols are simulation data and the closed symbols are from the experiment,
triangles correspond to transducers on the upper plate and inverted triangles indicate the data
from the lower plate. In (b) the symbols indicate the difference in shock arrival times for each
transducer.

(a) Run 74, Mi = 1.52 (b) Run 77, Mi = 2.50

Figure 27. Outgoing shock in CO2. Reflected shocks in the lower Mach number case are
fully dispersed.

Appendix B. Schlieren system and image processing
This discussion again places some emphasis on the details that proved important

in the comparison between the experiment and the simulation. The images presented
in this paper were produced using a compact, Z-fold schlieren system configured with
folding in the horizontal plane. The 25 cm diameter spherical mirrors with a 1.38 m
focal length were used as the focusing mirrors. Folding the light path, two 25 cm
diameter flat mirrors were mounted at 45◦ between the focusing mirrors while the
camera and light source were mounted 10◦ off-axis from the focusing mirrors. The
folding mirrors limited the horizontal field of view, while the test section windows
limited the vertical field of view.

The light source for the schlieren system was a Model 437B Nanopulser from
Xenon Corporation. This source produces a short duration (20 ns) spark and allows
time-resolved imaging of the flow. The spark itself was oriented vertically to maximize

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

14
92

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009991492


332 C. Bond, D. J. Hill, D. I. Meiron and P. E. Dimotakis

sensitivity in the horizontal direction, and was used as the image light source, without
condensers or masks.

On the imaging side of the system, the knife edge was oriented at the vertical focus
of the system so that, for small deflections, the signal indicates the horizontal gradient
of the index of refraction (i.e. of density). To provide a consistent large deflection
cutoff, the knife edge was surrounded by a 10 mm diameter circular mask centred on
the spark image and the knife edge was followed by two 75 mm diameter achromat
lenses (300 mm and 200 mm focal lengths). Images were recorded using a Nikon D70s
digital SLR with a Nikon AF-S DX Zoon-Nikor ED 18–70 mm f/3.5–4.5G lens, set
at a 70 mm focal length for all images. The images were recorded using the Nikon
D70s RAW format and converted to 16 bit TIFF images before further processing;
notably the acquired images have a more dynamic range that can be captured with
an 8 bit image format.

Optical distortions in the schlieren images were corrected using images of an
optical-calibration assembly. The assembly is made from acrylic plastic and consists
of a 41 cm × 22 cm grid plate with a base plate used to position the grid on the test
section mid-span plane. The grid plate has a precision machined pattern of 0.5 mm
wide grooves located at 1.27 mm intervals to a tolerance of ±25.4 μm. To correct the
images for optical distortion, an uncorrected grid picture was loaded into MATLAB.
The image of the grid and a mathematically constructed uniform grid were used
to create a set of control point pairs (i.e. grid intersections) that were then used to
create a third-order polynomial transform with bi-cubic interpolation to convert the
distorted image into a corrected image. Finally, the 16 bit images were converted to
8 bit images for viewing, with the choice of brightness and contrast dependent upon
the features of interest.
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