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It is well known that various characteristics in risk and queuing processes can be
formulated as Markov renewal functions,which are determined by Markov renewal
equations+ However, those functions have not been utilized as they are expected+ In
this article, we show that they are useful for studying asymptotic decay in risk and
queuing processes under a Markovian environment+ In particular, a matrix version
of the Cramér–Lundberg approximation is obtained for the risk process+ The cor-
responding result for the MAP0G01 queue is presented as well+ Emphasis is placed
on a straightforward derivation using the Markov renewal structure+

1. INTRODUCTION

In risk and queuing processes, it is interesting to consider them under Markovian
random environments; namely, processes of primary interest are perturbed using
continuous-time Markov chains with finite state spaces+ They are frequently re-
ferred to as Markov-modulated processes+ A Markovian arrival process, MAP in
short, originally introduced by Neuts, is a typical example ~see, e+g+, @11# !+ In those
processes, it is also frequently observed that characteristics of interests satisfy Mar-
kov renewal equations+ For instance, those renewal equations are obtained for the
ruin probability of a risk process with claims subject to MAP and the stationary
workload process in the MAP0G01 queue+ However, those renewal structures seem
to have not been fully utilized, because it seems hard to get closed-form results from
them, as is often remarked+
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We are particularly interested in the asymptotic decay of the ruin probability of
the risk processes with MAP claims when the loading factor r � 1 and of the tail
probability of the stationary workload in the MAP0G01 queue when the traffic in-
tensity r � 1+ For those probabilities, the decay rates have been obtained under
certain modeling assumptions in addition to light tail conditions+ Those asymptotic
decays are referred to as the Cramér-Lundberg approximations in the risk process
literature ~see, e+g+, @5,12# !+

The aim of this article is to obtain the Cramér–Lundberg approximations and
the asymptotics of the related queueing model under a Markovian environment,
using the Markov renewal structure+ For this, we use the general result on the as-
ymptotic decay of the Markov renewal function due to Asmussen @2# + We present
this result in a matrix form to make computations transparent+

In the literature, the Cramér–Lundberg approximation for a risk process under
a Markovian environment has been studied using different approaches+Among them,
the change of measure technique is most popular ~see @5,12# !+ The technique not
only verifies the Cramér–Lundberg approximation but also provides useful infor-
mation on bounds+However, this technique demands some analytic arguments based
on the martingale+ Furthermore, the Cramér–Lundberg approximation has not been
fully studied for a risk process with claims subject to MAP ~see @5,6,13# !+ Either the
Poisson rate modulations or the claim size distributions of the phase type have been
assumed, although it would be routine work to remove these restrictions+

The advantage of the present derivation is to make computations straightfor-
ward+ In this approach, a key step is to compute the moment-generating function of
the Markov renewal kernel in a closed form+ This not only addresses the decay rate
in the risk process but also gives an informative expression to the coefficient of the
exponential decay function+ This approach also clarifies the role of the Markov
renewal kernel for studying the decay rate problem under a Markovian environment,
which seems to have not been well recognized+

This article is composed of four sections+ In Section 2, the Markov renewal
theory for the decay rate problem is briefly introduced+ In Section 3, this result is
applied to the risk process+ In Section 4, the MAP0G01 queue is discussed as a dual
of the risk model+

2. ASYMPTOTICS OF A MARKOV RENEWAL FUNCTION

We basically follow Çinlar @7# for the notation on a Markov renewal process, but
some changes are made to reformulate it in a matrix form+ Let S be a finite set and let
P~x! be an S � S nonnegative matrix such that its ij th entry Pij~x! is a nondecreasing
function of x � 0 and satisfies

(
j�S

Pij ~x! � 1, x � 0, i � S+

The matrix P~x! is said to be a Markov renewal kernel, which uniquely determine a
Markov renewal process+ It should be noted that P~`!may not be a stochastic matrix
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~i+e+, their row sums may not be unity! in this article, namely, we admit P~x! to be a
defective kernel, which means that the Markov renewal process may be terminated
in a finite time+ In this section, we assume the following:

1+ P~x! has a single irreducible recurrent class that can be reached from any
state in S with probability one+

2+ The return time to each state in the irreducible class has a nonarithmetic
distribution+

Let A~x! and B~x! be an S � S nonnegative matrices such that A~x! is non-
decreasing in x and the ijth entry of B~x! is bounded and measurable in x for all
i, j � S+ Define the convolution A * B~x! for those matrices by

@A * B~x!# ij � (
k�S
�

0

x

Aik~dy!Bkj ~x � y!, x � 0, i, j � S+

Then, an S�S nonnegative matrix U~x! is said to satisfy a Markov renewal equation
in matrix form if

U~x! � A~x!� P * U~x!, x � 0+ (1)

In @7# , this equation is given for vector-valued functions+
As is well known, the matrix renewal equation has the minimal solution such

that

U~x! � (
n�0

`

~P ~n*! * A!~x!, x � 0, (2)

and U is a unique solution of ~1! if P~`! is strictly substochastic; that is, there is a
row of P~`! whose sum is less than unity, where P ~n*!~x! is inductively defined by
P ~n*!~x!� ~P ~~n�1!*! * P !~x! with P ~0*!~x!� I+

Let m be a column vector for the mean sojourn times of the Markov renewal
process ~i+e+,m � *0

` uP~du!e,where an integral is defined for a matrix component-
wise, and e is the S-column vector, all of whose entries are unity! +We assume that m
is finite+ If P~`! is stochastic,P~`! admits the stationary row vectorp ~i+e+,pP~`!�
p! +We normalizep so as to satisfype �1+ Throughout the article,we use boldface
greek letters for row vectors, and boldface Latin letters are used for column vectors+

We refer to the following Markov renewal theorem under our terminology+

Lemma 2.1 ~Proposition 4+9 in @7# !: If P~`! is stochastic and if each entry of A~x!
is directly Riemann integrable (see [7] or [8] for its definition), then

lim
xr`

U~x! �
1

pm
ep�

0

`

A~u! du+ (3)
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Let ZP~u! be the moment-generating function of P~x! for real number u; that is,

ZP~u! ��
0

`

euuP~du!+

Clearly, ZP~u! exists if u is not positive+We assume that P~x! has light tails; that is,
there is a u0 � 0 such that ZP~u! exists for u � u0, where u0 may be infinity+

From now on,we assume that P~`! is strictly substochastic+We briefly present
the asymptotic decay of U~x! due to Asmussen @2# + Since ZP~u! is nonnegative and
irreducible for real u, ZP~u! has unique positive eigenvalues, denoted by d~u!, as long
as ZP~u! exists, and the associated left and right eigenvectors are positive by the
Perron–Frobenius theorem ~see, e+g+, @14# !+ Denote these eigenvectors by n ~u! and
h ~u! , respectively+

We suppose that there exists an a � 0 such that d~a!� 1+ For instance, this is
the case when all of the row sums of ZP~u! go to infinity as u goes to u0 � 0, because
d~0! � 1 and d~u! is increasing in u+We define a Markov renewal kernel by

P †~x! � Dh ~a!
�1 �

0

x

eauP~du!Dh ~a! ,

where Da with vector a is the diagonal matrix whose ith entry is ai ~i+e+, the ith entry
of a!+ It is easy to check that P †~`! is stochastic and that n ~a!Dh ~a! is the stationary
probability vector of P †~`!+ Obviously, ~1! is obtained for P †~x! with

U †~x! � Dh ~a!
�1 eaxU~x!, A†~x!� Dh ~a!

�1 eaxA~x!+

Since Dh ~a! en ~a!�h ~a!n ~a! , Lemma 2+1 yields the following result ~see @2, pp+ 230–
231# for a complete proof !+

Lemma 2.2 ~Theorem 2+6 of Chapter X in @2# !: Under the above existence condi-
tions on a � 0 , if each entry of eaxA~x! is directly Riemann integrable and if
n~a! ZP~1!~a!h ~a! is finite, then

lim
xr`

eaxU~x! �
1

n ~a! ZP~1!~a!h ~a!
h ~a!n ~a!�

0

`

eauA~u! du, (4)

where ZP~1!~a!� ~d0du! ZP~u!6u�a.

Thus, to obtain the asymptotic decay, we must identify the matrix renewal ker-
nel and the matrix renewal equation and find the root of d~u!� 1 with associated
eigenvectors+ In applications, these are not so obvious, because the matrix renewal
kernel may be very complicated+ Nevertheless, there are easier cases+ These are the
cases for Markov modulations in risk and queuing processes+
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3. CRAMÉR–LUNDBERG APPROXIMATION

In this section,we apply Lemma 2+2 to risk and queuing processes under Markovian
environments+ Both are generated by the following Markov additive jump process+
Let C be an S � S matrix which has negative diagonal entries and nonnegative
off-diagonal entries, and let D~x! be an S � S matrix function whose entries are
nonnegative and nondecreasing functions of x � 0+ It is assumed that C � D~`! is a
rate matrix; that is,

~C � D~`!!e � 0+

Furthermore,we assume that C�D~`! is irreducible+Let M~t ! be the Markov chain
with rate matrix C � D~`!+ Since the state space is finite, this Markov chain always
has the stationary distribution, which is denoted by the vector p; that is,

p~C � D~`!! � 0 and pe � 1+

Transition instants of M~t ! include those that do not change the current state;
that is, when the state is in i � S, M~t ! has transitions with rate �Cii , and the state
changes to j � S with probability ~1~� j !Cij � Dij~`!!0~�Cii !+M~t ! is referred to as
a background process+At each transition instant from state i to state j, jumps occur
with probability Dij~`!0~�Cii !, and their sizes are independent of everything else
and are subject to the distribution function Dij~x!0Dij~`!+ Let Y~t ! be the sum of
those jumps up to time t � 0, starting from time 0; that is, Y~t ! is the additive process
of the jumps+M~t ! and Y~t ! are assumed to be right continuous+ Note that this type
of Markov modulation, say MAP modulation, is more general than the rate modu-
lation of the Poisson process depending on each background state+

A risk process R~t ! with unit premium rate is defined as

R~t ! � R~0!� t � Y~t !+

For R~0!� x, let

tx � inf $u � 0;R~u! � 0%+

tx is called the ruin time+We are interested in the ruin probability P~tx �`,M~tx !�
i 6R~0!� x!+ In the risk process literature, the above risk process has been studied
when D~x! has nonzero entries only at diagonals+ This means that the jumps arrive
according to the Poisson process with rate Dii~`! while M~t ! is in state i , but no
jump occurs at the transition instants+ So, the above model extends those risk pro-
cesses, but all of the arguments in the literature go through without essential changes+

According to Asmussen @5# , we describe jumps in the risk process by the op-
posite sign, namely define

B~t ! � Y~t !� t, t � 0+

Then, we have

tx � inf $u � 0;B~u! � x%, x � 0+
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Thus, the ruin time is the hitting time of the Markov additive process B~t ! at level x+
As in the risk process literature, we are only interested in the case when the loading
factor r is less than 1; that is,

r [ p�
0

`

uD~du!e � 1, (5)

where we assume that the integral is finite componentwise+ This condition implies
that P~tx � `6M~0!� i ! � 1 for any i � S, so its decay rate is meaningful+

Define an S � S matrix function U~x! by

Uij ~x! � P~M~tx !� j 6M~0!� i !, x � 0, i, j, � S,

where tx � ` is included in the event $M~tx !� j % + This convention will be used
throughout the article+We also define A~x! and P~x! as

Aij ~x! � P~M~t0 !� j,Y~t0 ! � x 6M~0!� i !,

Pij ~x! � P~M~t0 !� j,Y~t0 !� x 6M~0!� i !,

for x � 0, i, j,� S+ Since ~M~t !,Y~t !! constitutes a continuous-time Markov process
and t0 is a stopping time with respect to this Markov process, conditioning on
~M~t0!,Y~t0!! yields ~1!+ Thus, the ruin probabilities are indeed described by the
matrix renewal equation+

A hard part of the above analysis is to find either A~x! or P~x!, which simulta-
neously determine each other+We refer to Corollary 2+6 of @5# for this, and slightly
extend it in the following way, where a square matrix is said to be Metzler–Leontief
~ML! if it has nonnegative off-diagonal entries+

Lemma 3.1: There exists an S � S ML matrix K that is the minimal solution of the
equation

K � C ��
0

`

euKD~du! (6)

and A~x! is obtained as

A~x! ��
0

`

e yK�
x�y

`

D~dz! dy+ (7)

Furthermore, pK � 0; that is, the stationary vector p of C � D~`! is the left
eigenvector of K for eigenvalue 0 , and the corresponding right eigenvector k of K is
positive.

Remark 3.1:

~a! Corollary 2+6 of @5# assumes that Dij~x! � 0 for i � j+ As we mentioned
earlier, this restriction is not essential+
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~b! In the numerical evaluation, the matrix K is obtained as the limit of the
following iteration+ Let K0 � 0 and

Kn � C ��
0

`

euKn�1D~du!, n � 1,2, + + + +

Note that Kn monotonically converges as n goes to infinity+ It can be shown
that the limit of this sequence is indeed the minimal solution of ~6! ~see,
e+g+, @3# !+

~c! Let Q*� Dp
�1 K 'Dp , where K ' is the transpose of K+ Then, Q* satisfies

Q* � C * ��
0

`

D *~du!euQ*, (8)

where C *�Dp
�1 C 'Dp and D *~x!�Dp

�1 @D~x!# 'Dp + C * and D *~x! generate
the time-reversed processes of M~t ! and �Y~t !+ It is known that Q* is a rate
matrix if r � 1+ This implies that pK � 0, and the corresponding right
eigenvector k is nonnegative+ Furthermore, for u� 0, uI � K is nonsingular
since uI � Q* is nonsingular+

From ~7!, it is easy to see that conditions 1 and 2 of Section 2 are satisfied+ Since

P~x! � A~0!� A~x!��
0

`

e yK�
0

x

D~dz � y! dy (9)

and uI � K is nonsingular for u � 0 by Remark 3+1~c!, ~7! yields

ZP~u! ��
0

`

eux�
0

`

euKD~dx � u! du

��
0

`

eux�
0

x

eu~K�uI ! du D~dx!

� ~uI � K !�1�
0

`

~eux � exK !D~dx!

� ~uI � K !�1~�K � C � ZD~u!!

� I � ~uI � K !�1~�uI � C � ZD~u!!,

where the fourth equality is obtained using ~6!+To apply Lemma 2+2,we need to find
a u such that P~u! has a unit eigenvalue+ From the above computation, �uI � C �
ZD~u! must have a null eigenvalue for this+ Note that �uI � C � ZD~u! is an ML

matrix+ Hence, by the Perron–Frobenius theory ~e+g+, see @14# !, it has a real eigen-
value that dominates the real parts of all other eigenvalues, and the associated right
and left eigenvectors are positive+

Denote this eigenvalue by k~u! and the associated right and left eigenvectors by
m~u! and h ~u! , respectively+ Let k be the right eigenvector of K for eigenvalue 0,
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where k is positive by Remark 3+1~c!+We normalizem~u! and h ~u! so thatm~u!h ~u!�1
and m~u!k � 1+ Note that m~u! and h ~u! are also obtained as the eigenvectors of
C � ZD~u! for the eigenvalue that dominates the real parts of all other eigenvalues+ In
this case, the eigenvalue is k~u!� u+

We now look for a positive solution of the equation such that k~u!�0+Note that
k~0!� 0 and k~u! is a convex function ~see @9# !+ Thus, we need k '~0! � 0 to have
the positive solution+ Assume that ZD~u! exists for some u0 � 0, which is called a
light tail condition+ Then, this is, indeed, the case because k~u!�m~u!~�uI � C �
ZD~u!!h ~u! implies that

k '~0! � m~0! ~�I � C � ZD~1!~0!!h ~0!

� p~�I � C � ZD~1!~0!!e

� �1 � r � 0,

where we have used the fact that C � ZD~0! is a rate matrix with the stationary vector
p+ Hence, if k~u! becomes positive as u is increased, k~u!� 0 has a positive solu-
tion+ For instance, this is the case if each row sum of �uI � C � ZD~u! diverges as u
is increased ~see Corollary 1 of @14, Chap+ 1# !+

In what follows,we just assume that k~u!� 0 has a positive solution and denote
this solution by a+ Then,

ZP~a!h ~a! � h ~a!+

Let n ~a!�m~a!~aI � K !0a+Note that n ~a!k �1, sincem~a!k �1+ It is easy to see that
n ~a! is the left eigenvector of ZP~a! for eigenvalue 1+ Define the †-system as in
Section 3+Then, n ~a!Dh ~a! is the stationary vector of P †~`!, so n ~a! must be positive+
It remains to check that eauA~u! is directly Riemann integrable+ To this end, it is
sufficient to show that eauA~u! is integrable, since A~u! is decreasing function of u
~see, e+g+, Lemma 6+1+4 of @12# !:

�
0

`

eauA~u! du ��
0

`

eau du�
0

`

e yK�
u�y

`

D~dz! dy

��
0

`��
0

z�
0

z�y

eau du e yK dy�D~dz!

��
0

` 1

a ��0

z

~ea~z�y! � 1!e yK dy�D~dz!

�
1

a
�

0

`�~K � aI !�1~ezK � eaz !��
0

z

e yK dy�D~dz!

�
1

a
~K � aI !�1~K � C � ZD~a!!�

1

a
�

0

`�
0

z

e yK dy D~dz!,
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where ZD~a!� *0
` eauD~du!+We normalize the positive right eigenvector k of K for

eigenvalue 0 in such a way that pk � 1+ Since

~kp� K !k � k,

we have k � ~kp� K !�1k, where kp� K can be shown to be nonsingular+ Hence,
pK � 0 implies that

�
1

a
�

0

`�
0

z

e yK dy D~dz!

� �
1

a
~kp� K !�1�

0

`�
0

z

~kp� K !e yK dy D~dz!

� �
1

a
~kp� K !�1��

0

`

~1 � ezK !D~dz!� kp�
0

`

zD~dz!�
� �

1

a
~kp� K !�1~kp� K � kp~I � ZD~1!~0!!� C � D~`!!

�
1

a
~�I � kp~I � ZD~1!~0!!� ~kp� K !�1~C � D~`!!!+

Consequently, eauA~u! is integrable and we have

n ~a!�
0

`

eauA~u! du �
1

a
n ~a! ~kp~I � ZD~1!~0!!� ~kp� K !�1~C � D~`!!!,

since m~a!�an ~a!~aI � K !�1 is the left eigenvector of ~aI � C � ZD~a!! for eigen-
value 0+ Thus, using Lemma 2+2, we arrive at the following asymptotics+

Theorem 3.1: For the risk process with claims subject to MAP, if r� 1 and if the
maximal eigenvalue k~u! of uI � ~C � ZD~u!! admits a� 0 such that k~a!� 0 , then

lim
xr`

eaxP~M~tx ! � j 6M~0!� i !

�
1

r† � 1
@h ~a!n ~a! ~kp~I � ZD~1!~0!!� ~kp� K !�1~C � D~`!!!# ij ,

i, j � S, (10)

where r† �m~a! ZD~1!~a!h ~a! . In particular,

lim
xr`

eaxP~tx � `6M~0!� i !�
~1 � r!n ~a!k

r† � 1
hi
~a! + (11)

Proof: We only need to verify that

an ~a! ZP~1!~a!h ~a! � m~a! ZD~1!~a!h ~a! � 1+
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This is indeed obtained from the following computations:

ZP~1!~a! ��
0

`

ueau du�
0

`

euK�
0

`

D~dy � u! du

��
0

`

euK�
u

`

~ y � u!ea~ y�u!D~dy! du

��
0

`

eay�
0

x

~ y � u!eu~K�aI ! du D~dy!

� ~K � aI !�1�
0

`

eay�@~ y � u!eu~K�aI ! #0
y ��

0

x

eu~K�aI ! du�D~dy!

� ~K � aI !�1�
0

`

eay~�y � ~K � aI !�1~e y~K�aI ! � I !!D~dy!

� ~aI � K !�1~ ZD~1!~a!� I � ~aI � K !�1~aI � C � ZD~a!!!,

so we have

an ~a! ZP~1!~a!h ~a! � m~a! ~ ZD~1!~a!� I !h ~a!+ �

Remark 3.2: The matrix version of Cramér–Lundberg approximation ~10! seems to
be new with respect to the coefficient+ Similar results are obtained in Theorem 8+2 of
@6# , but its coefficient is more like those in Lemma 2+2 and less informative+ Fur-
thermore, the claim size distributions in @6# are limited to be of the phase type,
although this is not essential+ The asymptotic decay ~11! extends Theorem 3+7 of @5#
in the sense that the modeling assumption is relaxed to have jumps at the transition
instants of M~t !+

4. THE MAP/G/1 QUEUE

We next consider the MAP0G01 queue+ In this case, Y~t ! is the total work arriving up
to time t starting from time 0, so B~t !� Y~t !� t is the net flow up to time t+ We
assume the stability condition r � 1+ Under this condition, we are interested in the
stationary distribution of the workload and its decay rate+ Let V be the workload in
the steady state and let M be the associated background state; then, it is well known
that the time-reversed construction ~see, e+g+, Theorem 3+9 of @4# and @10# ! yields

P~V � x,M � i !� P�sup
u�0
~�B~�u!! � x,M~0!� i�

� pi P�sup
u�0
~�Y~�u!� u! � x�M~0!� i�+ (12)

The process ~�Y~�t !,M~�t !! is the time reversal of the process ~�Y~t !,M~t !!+ So,
~�Y~�t !, M~�t !! is generated by C * and D *~x!, which are introduced in Remark
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3+1~c!+ Hence, the computation of ~12! is reduced to the hitting probability
P~tx � `6M~0!� i ! for the dual system with C * and D *~x!+ Thus, converting all
characteristics to those in the dual systems, we have the following result+

Theorem 4.1: For the MAP0G01 queue, if r � 1 and if the maximal eigenvalue
k~u! of uI � ~C � ZD~u!! admits a � 0 such that k~a!� 0 , then

lim
xr`

eaxP~V � x,M � i !�
~1 � r!hh ~a!

m~a! ZD~1!~a!h ~a! � 1
µi
~a! , (13)

where h is the stationary probability vector of the rate matrix Q that is determined
as the minimal solution of the following equation:

Q � C ��
0

`

D~du!euQ+ (14)

Proof: If we replace C and D~x! in Theorem 3+1 by C * and D *~x!, then we get

lim
xr`

eaxP~V � x,M � i !�
~1 � r!n *k *

m* ZD~1!* ~a!h * � 1
pi hi

*, (15)

where m*, n*, h *, and k * correspond to m~a! , n ~a! , h ~a! , and k, respectively, in the
dual system+ Since m* and h * are the left and right eigenvectors of the following
matrix for eigenvalue 0,

aI � ~C * � D *~a!! � Dp
�1~aI � ~C � D~a!!!'Dp ,

we have m*� @h ~a! # 'Dp and h *�Dp
�1 @m~a! # ' + Since Q �Dp

�1~K * !'Dp , hQ � 0 and
K *k *� 0 imply that k *� Dp

�1h ' + Finally, we see that

an *k * � m*~aI � K * !k * � ahh ~a!+

Substituting these expressions into ~15! yields ~13!+ �

Remark 4.1: The asymptotics ~13! is exactly the same as obtained in @16# +However,
the current derivation in @16# needs to assume the existence of the limit in ~13! since
the Tauberian theorem of Feller @8# is used ~see, e+g+, @1# !+We have not presented a
direct application of Lemma 2+2 to the MAP0G01 queue+ Clearly, this can be done
using the dual system of the risk process+ For instance, from ~9!, the Markov renewal
kernel is obtained as

P~x! � Dp
�1��

0

`

e yK *�
0

x

D *~dz � y! dy�'Dp
��

0

`�
0

x

D~dz � y!e yQ dy+ (16)

This formula is originally due to Asmussen @3# , in which D~x! is a diagonal matrix+
Takine @15# differently derives it for the MAP arrivals using a last-come first-served
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preemptive resume ~LCFS-PR! queue+ In that literature, ~16! is obtained as the lad-
der height distribution rather than the Markov transition kernel+
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