Probability in the Engineering and Informational Sciences, 16, 2002, 139—150. Printed in the U.S.A.

A MARKOV RENEWAL APPROACH
TO THE ASYMPTOTIC DECAY
OF THE TAIL PROBABILITIES IN RISK
AND QUEUING PROCESSES

Masakiyo Mivyazawa

Science University of Tokyo
Noda, Chiba 278-8510, Japan
E-mail: miyazawa @ js.noda.sut.ac.jp

It is well known that various characteristics in risk and queuing processes can be
formulated as Markov renewal functions, which are determined by Markov renewal
equations. However, those functions have not been utilized as they are expected. In
this article, we show that they are useful for studying asymptotic decay in risk and
queuing processes under a Markovian environment. In particular, a matrix version
of the Cramér—Lundberg approximation is obtained for the risk process. The cor-
responding result for the MAP/G/1 queue is presented as well. Emphasis is placed
on a straightforward derivation using the Markov renewal structure.

1. INTRODUCTION

In risk and queuing processes, it is interesting to consider them under Markovian
random environments; namely, processes of primary interest are perturbed using
continuous-time Markov chains with finite state spaces. They are frequently re-
ferred to as Markov-modulated processes. A Markovian arrival process, MAP in
short, originally introduced by Neuts, is a typical example (see, e.g., [11]). In those
processes, it is also frequently observed that characteristics of interests satisfy Mar-
kov renewal equations. For instance, those renewal equations are obtained for the
ruin probability of a risk process with claims subject to MAP and the stationary
workload process in the MAP/G/1 queue. However, those renewal structures seem
to have not been fully utilized, because it seems hard to get closed-form results from
them, as is often remarked.
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We are particularly interested in the asymptotic decay of the ruin probability of
the risk processes with MAP claims when the loading factor p < 1 and of the tail
probability of the stationary workload in the MAP/G/1 queue when the traffic in-
tensity p < 1. For those probabilities, the decay rates have been obtained under
certain modeling assumptions in addition to light tail conditions. Those asymptotic
decays are referred to as the Cramér-Lundberg approximations in the risk process
literature (see, e.g., [5,12]).

The aim of this article is to obtain the Cramér—Lundberg approximations and
the asymptotics of the related queueing model under a Markovian environment,
using the Markov renewal structure. For this, we use the general result on the as-
ymptotic decay of the Markov renewal function due to Asmussen [2]. We present
this result in a matrix form to make computations transparent.

In the literature, the Cramér—Lundberg approximation for a risk process under
a Markovian environment has been studied using different approaches. Among them,
the change of measure technique is most popular (see [5,12]). The technique not
only verifies the Cramér—Lundberg approximation but also provides useful infor-
mation on bounds. However, this technique demands some analytic arguments based
on the martingale. Furthermore, the Cramér—Lundberg approximation has not been
fully studied for a risk process with claims subject to MAP (see [5,6,13]). Either the
Poisson rate modulations or the claim size distributions of the phase type have been
assumed, although it would be routine work to remove these restrictions.

The advantage of the present derivation is to make computations straightfor-
ward. In this approach, a key step is to compute the moment-generating function of
the Markov renewal kernel in a closed form. This not only addresses the decay rate
in the risk process but also gives an informative expression to the coefficient of the
exponential decay function. This approach also clarifies the role of the Markov
renewal kernel for studying the decay rate problem under a Markovian environment,
which seems to have not been well recognized.

This article is composed of four sections. In Section 2, the Markov renewal
theory for the decay rate problem is briefly introduced. In Section 3, this result is
applied to the risk process. In Section 4, the MAP/G/1 queue is discussed as a dual
of the risk model.

2. ASYMPTOTICS OF A MARKOV RENEWAL FUNCTION

We basically follow Cinlar [7] for the notation on a Markov renewal process, but
some changes are made to reformulate it in a matrix form. Let S be a finite set and let
P(x) be an § X S nonnegative matrix such that its ij th entry P;(x) is a nondecreasing
function of x = 0 and satisfies

DPi(x)=1, x=0,i€S.

JES

The matrix P(x) is said to be a Markov renewal kernel, which uniquely determine a
Markov renewal process. It should be noted that P(co) may not be a stochastic matrix
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(i.e., their row sums may not be unity) in this article, namely, we admit P(x) to be a
defective kernel, which means that the Markov renewal process may be terminated
in a finite time. In this section, we assume the following:

1. P(x) has a single irreducible recurrent class that can be reached from any
state in S with probability one.

2. The return time to each state in the irreducible class has a nonarithmetic
distribution.

Let A(x) and B(x) be an S X S nonnegative matrices such that A(x) is non-
decreasing in x and the ijth entry of B(x) is bounded and measurable in x for all
i,j € S. Define the convolution A * B(x) for those matrices by

[A * B(x)]lj = 2 Aik(dy)Bkj(x - y)5 X = 09 l’] e S.

kes <0

Then, an S X § nonnegative matrix U(x) is said to satisfy a Markov renewal equation
in matrix form if

U(x) =A(x) +P*xU(x), x=0. (§))

In [7], this equation is given for vector-valued functions.
As is well known, the matrix renewal equation has the minimal solution such
that

U = S (P« A)(x),  x=0, @
n=0

and U is a unique solution of (1) if P (o) is strictly substochastic; that is, there is a
row of P(co) whose sum is less than unity, where P"*)(x) is inductively defined by
P (x) = (P=D% % P)(x) with PO (x) = I.

Let m be a column vector for the mean sojourn times of the Markov renewal
process (i.e.,m = [ uP(du)e, where an integral is defined for a matrix component-
wise, and e is the S-column vector, all of whose entries are unity). We assume that m
is finite. If P(o0) is stochastic, P(co) admits the stationary row vector 7 (i.e., P (c0) =
7). We normalize 7 so as to satisfy e = 1. Throughout the article, we use boldface
greek letters for row vectors, and boldface Latin letters are used for column vectors.

We refer to the following Markov renewal theorem under our terminology.

LEMMA 2.1 (Proposition 4.9 in [7]): If P(c0) is stochastic and if each entry of A(x)
is directly Riemann integrable (see [7] or [8] for its definition), then

lim U(x) = L e'n'fooA(u) du. 3)
0

x—00 mwm
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Let P(0) be the moment-generating function of P(x) for real number 6 that is,

P(9) = J:oeg”P(du).

Clearly, P(6) exists if 6 is not positive. We assume that P(x) has light tails; that is,
there is a 6, > 0 such that P(8) exists for 6§ < 6, where 6, may be infinity.

From now on, we assume that P (o) is strictly substochastic. We briefly present
the asymptotic decay of U(x) due to Asmussen [2]. Since P(6) is nonnegative and
irreducible for real 8, P() has unique positive eigenvalues, denoted by 8(6), as long
as P(0) exists, and the associated left and right eigenvectors are positive by the
Perron—Frobenius theorem (see, e.g., [14]). Denote these eigenvectors by »(?) and
h9 | respectively.

We suppose that there exists an @ > 0 such that §(«) = 1. For instance, this is
the case when all of the row sums of P(6) go to infinity as 6 goes to 6, > 0, because
8(0) < 1 and 8(0) is increasing in . We define a Markov renewal kernel by

X

PH(x) = Al f e™P(du) A ),

0

where A, with vector a is the diagonal matrix whose ith entry is a; (i.e., the ith entry
of @). It is easy to check that P (o) is stochastic and that »(*)A, ) is the stationary
probability vector of P7(c0). Obviously, (1) is obtained for P'(x) with

U'(x) = A;(la)ew‘U(x), Al (x) = A;(IMeMA(x).

Since A, ev @ =h @y @ Lemma2.1 yields the following result (see [2, pp. 230
231] for a complete proof).

LEMMA 2.2 (Theorem 2.6 of Chapter X in [2]): Under the above existence condi-
tions on a > 0, if each entry of e**A(x) is directly Riemann integrable and if
v P (a)h'® is finite, then

1
lim e U(x) =

———p@ <a>f A (u) du, 4
i V@B (@ Ve A du @

where Pyy(e) = (d/d6)P(6)]y— g

Thus, to obtain the asymptotic decay, we must identify the matrix renewal ker-
nel and the matrix renewal equation and find the root of 5(6) = 1 with associated
eigenvectors. In applications, these are not so obvious, because the matrix renewal
kernel may be very complicated. Nevertheless, there are easier cases. These are the
cases for Markov modulations in risk and queuing processes.
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3. CRAMER-LUNDBERG APPROXIMATION

In this section, we apply Lemma 2.2 to risk and queuing processes under Markovian
environments. Both are generated by the following Markov additive jump process.
Let C be an S X S matrix which has negative diagonal entries and nonnegative
off-diagonal entries, and let D(x) be an S X S matrix function whose entries are
nonnegative and nondecreasing functions of x = 0. It is assumed that C + D(c0) is a
rate matrix; that is,

(C+ D())e = 0.

Furthermore, we assume that C + D(c0) is irreducible. Let M (¢) be the Markov chain
with rate matrix C + D(c0). Since the state space is finite, this Markov chain always
has the stationary distribution, which is denoted by the vector 7r; that is,

7(C+ D(0)) =0 and me=1.

Transition instants of M(t) include those that do not change the current state;
that is, when the state is in i € S, M(¢) has transitions with rate —C;;, and the state
changes to j € S with probability (1(# j)C; + D;;(0))/(—C;;). M(t) is referred to as
a background process. At each transition instant from state i to state j, jumps occur
with probability D;;(o0)/(—C;), and their sizes are independent of everything else
and are subject to the distribution function D;;(x)/D;;(o0). Let Y(¢) be the sum of
those jumps up to time # > 0, starting from time O; that is, ¥(¢) is the additive process
of the jumps. M(¢) and Y(¢) are assumed to be right continuous. Note that this type
of Markov modulation, say MAP modulation, is more general than the rate modu-
lation of the Poisson process depending on each background state.

A risk process R(¢) with unit premium rate is defined as

R(t) = R(0) + 1t — Y(1).
For R(0) = x, let
7, = inf{u > 0;R(u) < O}

7, is called the ruin time. We are interested in the ruin probability P(7, < oo, M(7,) =
i|R(0) = x). In the risk process literature, the above risk process has been studied
when D(x) has nonzero entries only at diagonals. This means that the jumps arrive
according to the Poisson process with rate D;;(co) while M(¢) is in state i, but no
jump occurs at the transition instants. So, the above model extends those risk pro-
cesses, but all of the arguments in the literature go through without essential changes.

According to Asmussen [5], we describe jumps in the risk process by the op-
posite sign, namely define

B(t) =Y(t) —1, t=0.
Then, we have

7. = inf{u > 0; B(u) > x}, x=0.
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Thus, the ruin time is the hitting time of the Markov additive process B(¢) at level x.
As in the risk process literature, we are only interested in the case when the loading
factor p is less than 1; that is,

p= 'n'foo uD(du)e < 1, Q)
0

where we assume that the integral is finite componentwise. This condition implies
that P(7, < co|M(0) = i) < 1 for any i € S, so its decay rate is meaningful.
Define an S X S matrix function U(x) by

l]l/(-x):P(M(Tx) :J|M(O):l)’ .XEO, i’j’ES’

where 7, < oo is included in the event {M(7,) = j}. This convention will be used
throughout the article. We also define A(x) and P(x) as

Azjj(x) = P(M(7o) :j,Y(T<)) > X|M(O) =1i),
Py(x) = P(M(7o) = j,Y(7o) = x|M(0) = i),

forx=0,i,j, € S. Since (M(z),Y(r)) constitutes a continuous-time Markov process
and 7, is a stopping time with respect to this Markov process, conditioning on
(M(7y),Y(79)) yields (1). Thus, the ruin probabilities are indeed described by the
matrix renewal equation.

A hard part of the above analysis is to find either A(x) or P(x), which simulta-
neously determine each other. We refer to Corollary 2.6 of [5] for this, and slightly
extend it in the following way, where a square matrix is said to be Metzler—Leontief
(ML) if it has nonnegative off-diagonal entries.

LeEmMA 3.1: There exists an S X S ML matrix K that is the minimal solution of the

equation
K= C+fooe”KD(du) (6)
0
and A(x) is obtained as
A(x) = fooey’(foo D(dz) dy. 7
0 Xty

Furthermore, wK = 0, that is, the stationary vector @ of C + D(co) is the left
eigenvector of K for eigenvalue 0, and the corresponding right eigenvector k of K is
positive.

Remark 3.1:

(a) Corollary 2.6 of [5] assumes that D;(x) = 0 for i # j. As we mentioned
earlier, this restriction is not essential.
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(b) In the numerical evaluation, the matrix K is obtained as the limit of the
following iteration. Let K, = 0 and

K,=C +f e“®—1D(du), n=12,....
0

Note that K,, monotonically converges as n goes to infinity. It can be shown
that the limit of this sequence is indeed the minimal solution of (6) (see,

e.g., [3]).
(c) Let Q* = A,'K’A,,, where K’ is the transpose of K. Then, Q* satisfies

Q*=C* +f D*(du)e"?, (8)
0

where C* = A.'C'A, and D*(x) = A,'[D(x)]'A,.. C* and D*(x) generate
the time-reversed processes of M (¢) and —Y(¢). It is known that Q* is a rate
matrix if p < 1. This implies that #K = 0, and the corresponding right
eigenvector k is nonnegative. Furthermore, for # > 0, 6 — K is nonsingular
since 01 — Q* is nonsingular.

From (7), itis easy to see that conditions 1 and 2 of Section 2 are satisfied. Since

P(x) =A(0)—A(x)=f e-’"KJ:) D(dz +vy)dy 9)

and A — K is nonsingular for # > 0 by Remark 3.1(c), (7) yields

ﬁwyifeﬁf "D (dx + u) du
0 0

:f eexf eu(l(*f)l) duD(dx)
0 0

=(0l—K)! fw (e? — e**)D(dx)

= (01— K)"'(—K + C + D(8))
=1+ (01— K)"' (=0 + C + D(0)),

where the fourth equality is obtained using (6). To apply Lemma 2.2, we need to find
a 0 such that P(0) has a unit eigenvalue. From the above computation, —6I + C +
D(6) must have a null eigenvalue for this. Note that —0I + C + D(6) is an ML
matrix. Hence, by the Perron—Frobenius theory (e.g., see [14]), it has a real eigen-
value that dominates the real parts of all other eigenvalues, and the associated right
and left eigenvectors are positive.

Denote this eigenvalue by « (6) and the associated right and left eigenvectors by
u'? and k9| respectively. Let k be the right eigenvector of K for eigenvalue 0,
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where k is positive by Remark 3.1(c). We normalize u'? and & ¥ so that w@h (9 =1
and p”k = 1. Note that u? and h‘? are also obtained as the eigenvectors of
C+ D(0) for the eigenvalue that dominates the real parts of all other eigenvalues. In
this case, the eigenvalue is x(6) + 6.

We now look for a positive solution of the equation such that x () = 0. Note that
k(0) = 0 and k(0) is a convex function (see [9]). Thus, we need «'(0) < 0 to have
the positive solution. Assume that ﬁ(@) exists for some 6, > 0, which is called a
light tail condition. Then, this is, indeed, the case because «(0) = u'? (=01 + C +
D(6))h® implies that

k'(0) = pO(—=I+ C+ D)(0)R©®

=—-1+p<0,

where we have used the fact that C + f)(O) is a rate matrix with the stationary vector
7. Hence, if x(6) becomes positive as 6 is increased, x (#) = 0 has a positive solu-
tion. For instance, this is the case if each row sum of —6/ + C + 15(0) diverges as 6
is increased (see Corollary 1 of [14, Chap. 1]).

In what follows, we just assume that « (6) = 0 has a positive solution and denote
this solution by «. Then,

P(a)h'@ = @,

Letv@ = u'@(al — K)/a. Note that » @k = 1, since u®k = 1. It is easy to see that
»(@ is the left eigenvector of P(a) for eigenvalue 1. Define the -system as in
Section 3. Then, »‘“)A,, is the stationary vector of P (c0), so »® must be positive.
It remains to check that e**A(u) is directly Riemann integrable. To this end, it is
sufficient to show that e““A(u) is integrable, since A(u) is decreasing function of u
(see, e.g., Lemma 6.1.4 of [12]):

f e““A(u)du=f e””‘duf eny D(dz) dy
0 0 0 uty
) z (z—y
:f <J f e dueyKdy>D(dz)
0 o Jo
o) 1 z
f - (f (e*=™ —1)eX dy)D(dz)
0o @ 0
1 [~ <
—J <(K—a[)_'(ez’(—e"‘z) —f e”Kdy>D(dz)
a Jo 0

i (K—al) (K- C—D(a)) - i foojzeyKdyD(dz),
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where D(a) = |, o e“D(du). We normalize the positive right eigenvector k of K for
eigenvalue O in such a way that 7k = 1. Since

(km — K)k =k,

we have k = (kw — K) 'k, where k& — K can be shown to be nonsingular. Hence,
K = 0 implies that

1 (= (*
——J f e’® dy D(dz)
a Jo Jo

—i (km — K)™! J‘wfz (km — K)e X dy D(dz)

[e’e}

—é (kw — K)™! (foo (1—e*)D(dz) + k'n'f zD(dZ))

—i (kmw — K) "k — K — kaw (I — ﬁ(l)(O)) + C+ D(c0))

1 R
— (=1 +kmw(I—D)(0) — (kwm — K)"'(C + D(0))).
e
Consequently, e““A(u) is integrable and we have
« 1 .
v(“)f e™A(u)du = — v (kar (I — D)(0)) — (kw — K)™'(C + D(0))),
0 o

since u'® = av (@ (al — K)! is the left eigenvector of (al — C — D(a)) for eigen-
value 0. Thus, using Lemma 2.2, we arrive at the following asymptotics.

THEOREM 3.1: For the risk process with claims subject to MAP, if p < 1 and if the
maximal eigenvalue k(0) of 01 — (C + D(0)) admits a > 0 such that k (a) = 0, then

lim e P(M(r,) = j|M(0) = i)

= @y @ (1~ Dy (0)) — (ke — K) 1 (C + D(oo))]

ijo

pi—1
LjES, (10)
where pt = p(a)ﬁ(l)(a)h(“). In particular,
1—p)v @k
lim e P(7, < 00| M(0) = i) = % hi. (11)

xX—00 p - 1
PrOOF: We only need to verify that

av("‘)f’(l)(a)h("‘) = ﬂ(“)ﬁ(l)(a)h(“) - 1.
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This is indeed obtained from the following computations:
ﬁ(,)(a) =f ue™" duf e”Kf D(dy + u) du
0 0 0
=f e“KJ (y — u)e*“"D(dy) du
0 u
:J e“yj (y — w)e" =D dy D(dy)
0 0

=(K— al)’lf e <[(y —y)e K=aD ]y +f e(K=al) du)D(dy)
0

= (K- al)_'f e (—y+ (K—al) " (eXX=D — ))D(dy)

= (al — K)"'(Dyy(@) — I+ (el — K) ' (al — C — D(a))),
so we have

av(“)ﬁ(l)(a)h(“) = u(“)(f)(l)(a) - I)h(a). ||

Remark 3.2: The matrix version of Cramér—Lundberg approximation (10) seems to
be new with respect to the coefficient. Similar results are obtained in Theorem 8.2 of
[6], but its coefficient is more like those in Lemma 2.2 and less informative. Fur-
thermore, the claim size distributions in [6] are limited to be of the phase type,
although this is not essential. The asymptotic decay (11) extends Theorem 3.7 of [5]
in the sense that the modeling assumption is relaxed to have jumps at the transition
instants of M(t).

4. THE MAP/G/1 QUEUE

We next consider the MAP/G/1 queue. In this case, Y(7) is the total work arriving up
to time ¢ starting from time 0, so B(z) = Y(¢z) — ¢ is the net flow up to time 7. We
assume the stability condition p < 1. Under this condition, we are interested in the
stationary distribution of the workload and its decay rate. Let V be the workload in
the steady state and let M be the associated background state; then, it is well known
that the time-reversed construction (see, e.g., Theorem 3.9 of [4] and [10]) yields

P(V>x,M=i)= P(sup(—B(—u)) > x,M(0) = i>

u=0

= 77',-P<sup(—Y(—u) —u)>x

u=0

M(0) = i). (12)

The process (—Y(—t), M(—1)) is the time reversal of the process (—Y(r), M(t)). So,
(=Y(=t), M(—1)) is generated by C* and D*(x), which are introduced in Remark
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3.1(c). Hence, the computation of (12) is reduced to the hitting probability
P(7, < oo|M(0) = i) for the dual system with C* and D*(x). Thus, converting all
characteristics to those in the dual systems, we have the following result.

THEOREM 4.1: For the MAP/G/1 queue, if p < 1 and if the maximal eigenvalue
k(0) of 01 — (C + D(0)) admits a > 0 such that k(a) = 0, then
(1—p)gh'®

lim e™P(V>x,M =i)= — = e, (13)
xX—>00 ;.L(“)D(l)(a)h(“) - 1

where m is the stationary probability vector of the rate matrix Q that is determined
as the minimal solution of the following equation:

0= C+f D(du)e"C. (14)
0
Proor: If we replace C and D(x) in Theorem 3.1 by C* and D*(x), then we get
| ) S
lim e“P(V>x,M=i)= —(F—————— mh, 15)
xX—00 M D<,)(a)h _1

where w*, »*, h*, and k* correspond to p'®, »(®) h® and k, respectively, in the
dual system. Since u* and k™ are the left and right eigenvectors of the following
matrix for eigenvalue 0,

al — (C* + D*(a)) = A (al — (C+ D(a)))'A,,

wehave " =[h @A andh* = A,'[n®]". Since Q = A, (K*)'A,,nQ =0 and
K*k* = 0 imply that k* = A" n’. Finally, we see that

av'k* = p*(al — K*)k* = anh®.
Substituting these expressions into (15) yields (13). |

Remark4.1: The asymptotics (13) is exactly the same as obtained in [ 16]. However,
the current derivation in [ 16] needs to assume the existence of the limit in (13) since
the Tauberian theorem of Feller [8] is used (see, e.g., [1]). We have not presented a
direct application of Lemma 2.2 to the MAP/G/1 queue. Clearly, this can be done
using the dual system of the risk process. For instance, from (9), the Markov renewal
kernel is obtained as

:f fxD(dz+y)edey. (16)
o Jo

This formula is originally due to Asmussen [3], in which D (x) is a diagonal matrix.
Takine [15] differently derives it for the MAP arrivals using a last-come first-served
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preemptive resume (LCFS-PR) queue. In that literature, (16) is obtained as the lad-
der height distribution rather than the Markov transition kernel.
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