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Let Φ be a random k-SAT formula in which every variable occurs precisely d times positively and
d times negatively. Assuming that k is sufficiently large and that d is slightly below the critical
degree where the formula becomes unsatisfiable with high probability, we determine the limiting
distribution of the number of satisfying assignments.
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1. Introduction

In order to study random instances of constraint satisfaction problems, it is key to get a handle
on the number of solutions. In fact, in many examples such as k-colourability in random graphs
the best current estimates of the threshold for the existence of solutions derive from calculating
the second moment of the number of solutions [3, 11]. Furthermore, if the number of solutions is
sufficiently concentrated, then typical properties of random solutions as well as the geometry of
the set of solutions can be studied by way of the ‘planted model’, an easily accessible distribution
[1]. However, prior to this work the limiting distribution of the number of solutions has not been
determined precisely in any of the standard examples of random constraint satisfaction problems.

In this paper we show how the limiting distribution of the number of solutions can be obtained
by combining the second moment method with a subtle application of the ‘small subgraph
conditioning’ technique. The concrete problem that we deal with is the random regular k-SAT
problem. In this model there are n Boolean variables x1, . . . ,xn and m = 2dn/k Boolean clauses
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of length k. We always assume that k divides 2dn. The random formula Φn(d,k) is obtained by
choosing without replacement for each variable xi precisely d out of the km available literal slots
where xi appears positively and another d slots where xi appears negatively. Let Z be the number
of satisfying assignments of Φ = Φn(d,k).

For k exceeding a certain constant k0 an explicit literal degree dk-SAT is known such that [9]

liminf
n→∞

P[Φ is satisfiable] > 0 if d < dk-SAT,

lim
n→∞

P[Φ is satisfiable] = 0 if d > dk-SAT.
(1.1)

While the precise formula is cumbersome, in the limit of large k we have

2dk-SAT/k = 2k ln2− k ln2/2− (1+ ln2)/2+ εk, where lim
k→∞

εk = 0. (1.2)

Our main result determines the limiting distribution of Z for degrees d almost (but not quite)
matching dk-SAT.

Theorem 1.1. There exists a constant k0 such that for all k � k0 and d > 0 such that

2d/k � 2k ln2− k ln2/2−4, (1.3)

the following is true. Let q = q(k) ∈ (0,1) be the unique solution to the equation

2q = 1− (1−q)k (1.4)

Moreover, for l � 1 and 0 � t � l let

λl,t =
1
2l

(
l
t

)(
(k−1)(d −1)

2

)l( d
d −1

)t

δl,t = (−1)t(2q−1)l (1.5)

and let (Λl,t)l,t be a family of independent Poisson variables with E[Λl,t ] = λl,t . Then the random
variable

W = ∏
l�1

∏
t�l

(1+δl,t)Λl,t exp(−λl,tδl,t) (1.6)

satisfies E[W 2] < ∞, and with Z the number of satisfying assignments of the random formula
Φn(d,k) we have

Z · (4q(1−q))dn
√

2+2(k−1)q− k

2n(2q)m

n → ∞−→ W in distribution. (1.7)

It is not difficult to verify that

n ln2+m ln(2q)− (dn) ln(4q(1−q)) = Ω(n) (1.8)

for d satisfying (1.3), and additionally that E | lnW |< ∞. Hence, (1.7) and (1.8) imply that lnZ =
Ω(n) w.h.p. for such d. The particular event Z � 1 is of particular interest.

Corollary 1.2. For k � k0 and d satisfying (1.3) we have

lim
n→∞

P[Φ is satisfiable] = 1.
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The constant 4 in (1.3) is not optimal. In fact, a truncated second moment argument as in
[12] in combination with an argument similar to [5] might extend the above results up to the
exact ‘condensation threshold’ of the regular k-SAT problem, although both steps would require
substantial technical work. For an in-depth explanation of the condensation phenomenon we refer
to [5].

Related work
Random regular k-SAT instances were first studied by Rathi, Aurell, Rasmussen and Skoglund
[22] via the second moment method. They proved that

liminf
n→∞

P[Φ is satisfiable] > 0

for degrees d close to dk-SAT. The latter was determined by Coja-Oghlan and Panagiotou [9] by
a second moment argument that incorporates ‘Survey Propagation’, a technique from statistical
physics [19]. A closely related paper by Ding, Sly and Sun [14] studies the regular k-NAESAT
problem, which asks for a satisfying assignment whose inverse is satisfying as well. In fact, Ding,
Sly and Sun have an argument based on Fourier analysis that shows that the NAE-satisfiability
probability is not just bounded away from 0 but actually converges to 1 (in contrast to (1.1)).
Recently Sly, Sun and Zhang [24] extended this argument to calculate the expectation of the nth
root of the number of NAE-solutions. This is quite a difficult problem due to a phenomenon
known as ‘replica symmetry breaking’ in physics [19]. However, [24] does not determine the
limiting distribution.

Conceptually the regular k-SAT model is simpler than the better known uniform model where
a specific number of clauses are drawn uniformly and independently. This is because the local
structure of regular formulas fluctuates less as each variable has precisely d positive and d
negative occurrences and the total number of cycles of a fixed length is bounded w.h.p. In the
case of uniformly random k-SAT formulas Frieze and Wormald [16] used the second moment
method to determine the k-SAT threshold in the case that k = k(n) → ∞ as n → ∞. Moreover, for
clause lengths k that remain fixed as n → ∞, Achlioptas and Moore [2] significantly improved
the previous lower bound on the satisfiability threshold by applying the second moment method
to the number of NAE-solutions. Working with ‘balanced’ assignments instead, Achlioptas and
Peres [4] improved the NAE-lower bound by a factor of two. This left an additive gap of Θ(k)
between the lower bound and an upper bound of Kirousis, Kranakis, Krizanc and Stamatiou [18].
Coja-Oghlan and Panagiotou [9, 10] narrowed the gap to a function that tends to 0 in the limit
of large k by a second moment argument inspired by Survey Propagation. Finally, Ding, Sly
and Sun [15] determined the precise satisfiability threshold in uniformly random formulas for
sufficiently large k via a second moment argument that fully rigorizes the Survey Propagation
calculations.

We prove Theorem 1.1 by combining the second moment argument from [10] with small
subgraph conditioning. This method was originally developed to prove that random regular
graphs of degree at least three are Hamiltonian w.h.p. [23]. Using Skorokhod’s representation
theorem, Janson [17] showed that small subgraph conditioning can be used to obtain limiting
distributions. However, Janson’s result does not seem to apply directly in our context. Instead,
we perform a variance analysis along the lines of [23] for a family of random variables that count
satisfying assignments with certain peculiar properties.
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Based on an early version of the present paper, the technique explained in Section 2 was used
by Rassmann [21] to analyse the number of 2-colourings of random k-uniform hypergraphs.

Notation and preliminaries
Throughout the paper we tacitly assume that n is sufficiently large, that k exceeds a sufficiently
large constant k0 and that d satisfies (1.3). We encode the Boolean values ‘true’ and ‘false’ by 1
and −1, respectively. Moreover, we extend truth assignments σ : {x1, . . . ,xn} → {±1} to the set
of literals by letting σ(¬xi) = −σ(xi). We use O-notation with respect to both n and k, with the
convention that O(1), o(1) etc. always refer to the limit as n → ∞. For a number l and an integer
h � 0 we write

lh = ∏
0�i<h

(l − i)

for the falling factorial; in particular, l0 = 1. Further, with the convention ln0 = −∞, 0 ln0 =
0ln 0

0 = 0, we recall that the Kullback–Leibler divergence of two probability distributions p =
(px)x∈X ,q = (qx)x∈X on a finite set X is

DKL(q‖p) = ∑
x∈X

qx ln
qx

px
∈ [0,∞]. (1.9)

Further, viewing p = (px)x∈X ,q = (qx)x∈X as vectors in R
X , we let

‖p−q‖2 =
√

∑
x∈X

(px −qx)2.

Finally, we denote the scalar product of vectors ξ ,η by 〈ξ ,η〉 and we write 1 for the vector with
all entries equal to one (in any dimension).

2. Overview

The basic insight behind small subgraph conditioning is that the fluctuations of lnZ can be
attributed to the number of certain small sub-structures of the random formula Φ. To elaborate,
we rephrase the definition of Φ by modifying what is essentially a bijection model due to
Békéssy, Békéssy and Komlós [7] in the context of matrices with given line sums. With the
incorporation of signs, it becomes the following: we view Φ as a uniformly random bijection

[m]× [k] →{x1, . . . ,xn}× [d]×{±1}, (i, j) �→ Φ[i, j]. (2.1)

Thus, (2.1) maps each clause index i ∈ [m] and each position j ∈ [k] in that clause to a Boolean
variable x ∈ {x1, . . . ,xn}, an index h ∈ [d] (denoting which of the d copies of the literal is used),
and a sign s ∈ {±1} indicating whether the variable appears as a positive or as a negative literal.
In terms of propositional formulas, the triple Φ[i, j] corresponds to the literal x if s = 1 and
¬x if s = −1. Let us write ∂ (i, j) = ∂Φ(i, j) for the first and sign(i, j) = signΦ(i, j) for the last
component of Φ[i, j]. Then an assignment σ : {x1, . . . ,xn} → {±1} satisfies Φ if and only if
mini∈[m] max j∈[k] sign(i, j)σ(∂ (i, j)) = 1. Thus, we can write

Z = ∑
σ :{x1,...,xn}→{±1}

m

∏
i=1

[
1−

k

∏
j=1

1− sign(i, j)σ(∂ (i, j))
2

]
.
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j7,s7

Figure 1. The indices along a cycle with l = 3 clauses in the factor graph. The squares represent clauses and the circles
variables.

Because (2.1) is a bijection each variable appears precisely 2d times in total in the corresponding
propositional formula, namely d times positively and d times negatively. Further, for a literal l
and an index h ∈ [d] we let ∂ (l,h) = ∂Φ(l,h) denote the pair (i, j) ∈ [m]× [k] such that Φ[i, j] =
(x,h,1) if l = x and Φ[i, j] = (x,h,−1) if l = ¬x.

It is natural to represent Φ by a bipartite multigraph, the factor graph G(Φ). It has vertices
[m] corresponding to the clauses and vertices {x1, . . . ,xn} representing the Boolean variables.
For each pair (i, j) ∈ [m]× [k] we insert an edge between i and the variable x such that Φ[i, j] ∈
{x}× [d]×{±1}. Additionally, we annotate the edge by sign(i, j)∈ {±1}. Of course, G(Φ) may
well have multiple edges.

Because the factor graph is sparse and random, standard arguments show that it is unlikely to
contain many short cycles. Hence, if we explore the factor graph from a randomly chosen root
clause for some bounded number 2l of steps, then we will typically see a ‘deterministic’ tree in
which each clause has degree k and every variable has d positive and d negative occurrences.
However, a bounded number of clauses will take part in any cycles of length at most 2l. As
it will be important to keep track of the literal signs traversed along the cycle, for a given s =
(s2, . . . ,s2l+1)∈{±1}2l we let Cs =Cs(Φ) be the number of cycles of length 2l in which the initial
literal has sign s2, the second one has sign s3, etc. (The starting index is chosen for convenient
index arithmetic.) We call s the sign pattern of the cycle. Moreover, to avoid overcounting we
always deem the clause with the smallest index the starting point of the cycle, and the cycle is
oriented towards the slot of that clause with the smaller index. Formally, given l � 1 and a sign
pattern s = (s2, . . . ,s2l+1)∈ {±1}2l , let Cs be the number of sequences (i2, j2), . . . ,(i2l+1, j2l+1)∈
[m]× [k] such that

CY1 i2 = i2l+1 = min{i2, . . . , i2l} and i2, . . . , i2l are pairwise distinct,
CY2 it+1 = it if t is odd,
CY3 ∂ (it , jt) = ∂ (it+1, jt+1) if t is even but ∂ (i2, j2), . . . ,∂ (i2l , j2l) are pairwise distinct,
CY4 we have j2 < j2l+1,
CY5 sign(it , jt) = st for all t.

See Figure 1 for an illustration. Moreover, for �� 1 let F� =F�,n(d,k) be the σ -algebra generated
by the random variables Cs with s ∈ ⋃

l��{±1}2l .
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By the standard decomposition of the variance, we can write for any � � 1

E[Z2]−E[Z]2 = E[E[Z|F�]2 −E[Z]2]+E[E[Z2|F�]−E[Z|F�]2]. (2.2)

The term E[E[Z|F�]2 −E[Z]2] accounts for the amount of variance induced by the fluctuations
of the number of cycles of length at most 2�. Given the number of cycles of length at most 2�,
the conditional variance Var[Z|F�] = E[E[Z2|F�]−E[Z|F�]2] remains. Generally, small subgraph
conditioning is based on showing that

lim
�→∞

limsup
n→∞

E

[
E[Z2|F�]−E[Z2]

E[Z]2

]
= 0. (2.3)

In other words, in the limit of large � and n, with n growing much faster than �, the second
summand in (2.2) is negligible. Thus, once we condition on the number of short cycles the
variance is tiny. If so, then the limiting distribution of lnZ is just the limit of lnE[Z|F�] as
n, �→ ∞, which is determined by the joint distribution of the number of short cycles.

Due to the combinatorial nature of the regular k-SAT problem a direct attempt at proving (2.3)
leads to fairly unpleasant calculations. Indeed, the inherent asymmetry of the Boolean values
‘true’ and ‘false’ causes the formula for the second moment of Z to involve implicit parameters
that we find tedious to track directly (although it might be possible). Similar issues arise in other
random constraint satisfaction problems as well. Further, they also appear in the formula for the
k-SAT threshold in the regular k-SAT problem [9].

In this case, we are able to develop a version of the small subgraph conditioning argument
that does not require such extensive calculations. To this end, we decompose Z into a sum
of contributions that are tractable by fairly simple combinatorial considerations. Specifically,
let Σ = {±1}k \ {(−1, . . . ,−1)} be the set of all 2k − 1 truth value combinations that satisfy a
Boolean clause (i.e. everything but ‘all-false’). Also, let M(d,k,n) be the set of all probability
distributions μ = (μ(σ))σ∈Σ on Σ such that mμ(σ) is an integer for all σ ∈ Σ and

∑
σ∈Σ

μ(σ)〈σ ,1〉 = 0. (2.4)

(The relevance of this constraint will be made clear.) In addition, define Zμ = Zμ(Φ) as the
number of truth assignments τ : {x1, . . . ,xn}→ {±1} such that

μ(σ) =
1
m

m

∑
i=1

k

∏
j=1

1{sign(i, j)τ(∂ (i, j)) = σ j} for all σ ∈ Σ.

In words, Zμ is the number of satisfying assignments of Φ such that for each σ ∈ Σ precisely
mμ(σ) clauses are satisfied according to the ‘truth value pattern’ σ . Since the total number
of true literals and false literals are equal, all possible distributions on Σ satisfy (2.4) and are
included in M(d,k,n), and thus

Z = ∑
μ∈M(d,k,n)

Zμ . (2.5)

Crucially, (2.5) decomposes the random variable Z, whose value is typically exponential in n
for the regime of d,k that we deal with, into a polynomial number |M(d,k,n)| � O(n|Σ|) of
summands.
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We are going to apply small subgraph conditioning to the individual random variables Zμ
rather than Z. The key advantage is that we will be able to evaluate the second moment of Zμ
almost mechanically by way of the central limit theorem for random permutations [8].

This approach is facilitated by the observation that only a fairly small subset of M(d,k,n)
contributes to (2.5) significantly. In fact, recalling q from (1.4), define a probability distribution
μ̄ on Σ by letting

μ̄(σ) =
(q(1−q))k/2

1− (1−q)k

(
q

1−q

) 1
2 ∑k

j=1 σ j

. (2.6)

Further, let Mω = Mω(d,k,n) be the set of all μ ∈M(d,k,n) such that ‖μ − μ̄‖2 � ωm−1/2.
Then our strategy is to show that for any fixed number ω > 0 the double limit (2.3) with Z
replaced by Zμ vanishes uniformly for μ ∈Mω . In Section 3 we calculate the first moments of
the random variables Zμ .

Proposition 2.1. The first moments satisfy

E[Z] ∼ 2n(2q)m(4q(1−q))−dn√
2+2(k−1)q− k

= exp(Ω(n)) and (2.7)

lim
ω→∞

liminf
n→∞ ∑

μ∈Mω

E[Zμ ]
E[Z]

= 1. (2.8)

Furthermore, for any ω > 0 we have

limsup
n→∞

max
μ∈Mω

|lnE[Zμ ]+ ln |Mω |− lnE[Z]|< ∞. (2.9)

In addition, we need to work out the covariance of Zμ and the cycle counts Cs. As a first
step, we study the unconditional distribution of the random variables Cs. For l � 1 and s =
(s2, . . . ,s2l+1) ∈ {±1}2l define

λs =
1
2l

(
k−1

2

)l

(d(d −1))l/2

(
d −1

d

) 1
2 ∑l

i=1 s2is2i+1

. (2.10)

Proposition 2.2. Let S ⊂ ⋃
l�1{±1}l be a fixed finite set of sign patterns. Moreover, let (cs)s∈S

be a fixed family of non-negative integers. Then

lim
n→∞

P[∀s ∈ S : Cs = cs] = ∏
s∈S

P[Po(λs) = cs]. (2.11)

Further, for l � 1 and s = (s2, . . . ,s2l+1) ∈ {±1}2l let

M1 =
(

q 1−q
1−q q

)
, M−1 =

(
1−q q

q 1−q

)
, δs = −1+ tr

l

∏
i=1

Ms2is2i+1 . (2.12)

Since

M1

(
1
1

)
= M−1

(
1
1

)
=

(
1
1

)
, M1

(
−1
1

)
= −M−1

(
−1
1

)
= (2q−1)

(
−1
1

)
, (2.13)
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we obtain

δs = (−1)∑l
i=1(1−s2is2i+1)/2(2q−1)l . (2.14)

Proposition 2.3. Let S ⊂ ⋃
l�1{±1}l be a finite set, let (cs)s∈S be a family of non-negative

integers and let ω > 0. Then

lim
n→∞

max
μ∈Mω

∣∣∣∣E[Zμ 1{∀s ∈ S : Cs = cs}]
E[Zμ ]

−∏
s∈S

P[Po((1+δs)λs) = cs]
∣∣∣∣ = 0. (2.15)

Moreover, δs >−1 for all s, (2d −1)(k−1)(1−4q(1−q)) < 1 and

∑
l�1

∑
s∈{±1}l

λsδ 2
s = −1

2
ln(1− (2d −1)(k−1)(1−4q(1−q))). (2.16)

The proofs of Propositions 2.2 and 2.3 can be found in Section 4. Finally, in Section 5 we
establish the following bound on the second moments of the Zμ .

Proposition 2.4. For any ω > 0 we have

limsup
n→∞

max
μ∈Mω

E[Z2
μ ]/E[Zμ ]2 � (1− (2d −1)(k−1)(1−4q(1−q)))−1/2.

We now derive Theorem 1.1 from Propositions 2.1–2.4. Basically, we are going to argue
that the variance of the random variables Zμ comes almost entirely from the variation in their
expected values conditional upon Cs, as described at (2.2). Although we do not use any technical
statements from those papers directly, the argument is an adaptation of conditioning from [17,
20, 23] to the present context, which has one critical twist: instead of working with a single
random variable Z, we need to control all the random variables Zμ with μ ∈ Mω for a fixed
ω > 0 simultaneously. In fact, ultimately we are going to have to take the limit ω → ∞ as well.
Recalling that F� is the σ -algebra generated by the random variables Cs with s ∈ ⋃

l��{±1}2l ,
we begin with the following bound.

Lemma 2.5. For any ω > 0 we have

lim
�→∞

limsup
n→∞

max
μ∈Mω

E

[
E[Z2

μ |F�]−E[Zμ |F�]2

E[Zμ ]2

]
= 0.

Proof. Spelled out in detail, we aim to prove that

∀ε > 0∃�0 = �0(ε) > 0∀� > �0∃n0 = n0(ε , �) > 0∀n > n0,μ ∈Mω :

E[E[Z2
μ |F�]−E[Zμ |F�]2] < ε E[Zμ ]2.

For �� 1 and B > 0 let Γ(�,B) be the set of all families c = (cs)s∈⋃
l��{±1}2l of integers 0 � cs � B.

By Propositions 2.2 and 2.3 for any ε > 0 we can choose B = B(ε) > 0, �0(ε) > 0 sufficiently
large that, for any �� �0(ε) for sufficiently large n � n0(ε , �,B), all μ ∈Mω satisfy the following
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(the first is by definition):

E[E[Zμ |F�]2] � ∑
c∈Γ(�,B)

�

∏
l=1

∏
s∈{±1}2l

E[Zμ 1{∀l � �,s ∈ {±1}2l : Cs = cs}]2
P[∀l � �,s ∈ {±1}2l : Cs = cs]

� exp(−ε2)E[Zμ ]2 ∑
c∈Γ(�,B)

�

∏
l=1

∏
s∈{±1}2l

P[Po((1+δs)λs) = cs]2

P[Po(λs) = cs]

= exp(−ε2)E[Zμ ]2 ∑
c∈Γ(�,B)

�

∏
l=1

∏
s∈{±1}2l

((1+δs)λs)2cs

cs!λ cs
s exp(2(1+δs)λs −λs)

= exp(−ε2)E[Zμ ]2
�

∏
l=1

∏
s∈{±1}2l

exp(−2(1+δs)λs +λs)
B

∑
j=0

(1+δs)2 jλ j
s

j!

� E[Zμ ]2 exp

[
−2ε2 + ∑

l�1
∑

s∈{±1}2l

δ 2
s λs

]
. (2.17)

The last step here uses the fact that the number of possible λs, as defined in (2.10), is bounded
for fixed k, d and l. Since

E[Z2
μ ] = E[E[Z2

μ |F�]] = E[E[Z2
μ |F�]−E[Zμ |F�]2]+E[E[Zμ |F�]2],

Proposition 2.4 and (2.17) imply that for sufficiently large �,n and all μ ∈Mω we have

E[E[Z2
μ |F�,n]−E[Zμ |F�,n]2] � ε E[Zμ ]2,

as desired.

Corollary 2.6. For any α > 0 we have

lim
�→∞

limsup
n→∞

P[|Z −E[Z|F�]|> α E[Z]] = 0.

Proof. Proposition 2.1 shows that for any α > 0 there is ω > 0 such that

liminf
n→∞ ∑

μ∈Mω

E[Zμ ]
E[Z]

> 1−α2. (2.18)

Pick a small ε = ε(α,ω). By Lemma 2.5 we can choose � = �(α,ε ,ω) sufficiently large that for
large n all μ ∈Mω satisfy

E[E[Z2
μ |F�]−E[Zμ |F�]2] < εE[Zμ ]2. (2.19)

Now define

Xμ = |Zμ −E[Zμ |F�]|1{|Zμ −E[Zμ |F�]|> α E[Zμ ]}, X = ∑
μ∈Mω

Xμ .

Then

X < α ∑
μ∈Mω

E[Zμ ] ⇒
∣∣∣∣ ∑
μ∈Mω

Zμ −E[Zμ |F�]
∣∣∣∣ � 2α ∑

μ∈Mω

E[Zμ ]. (2.20)
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Furthermore, using Chebyshev’s inequality at the step introducing the variance,

E[Xμ |F�] � ∑
j�0

2 j+1α E[Zμ ]P[Xμ > 2 jα E[Zμ ]]

� ∑
j�0

2 j+1α E[Zμ ]P[|Zμ −E[Zμ |F�]|> 2 jα E[Zμ ]]

� ∑
j�0

Var[Zμ |F�]
2 j−1α E[Zμ ]

� 4Var[Zμ |F�]
α E[Zμ ]

.

Hence,

E[X |F�] �
4
α ∑

μ∈Mω

Var[Zμ |F�]
E[Zμ ]

=
4
α

E[Z] ∑
μ∈Mω

Var[Zμ |F�]
E[Zμ ]2

E[Zμ ]
E[Z]

. (2.21)

Further, by Proposition 2.1 there is a number γ = γ(ω) such that E[Zμ ]/E[Z] � γ/|Mω | for all
μ ∈Mω . Therefore, (2.21) yields

E[X |F�] � 4γ E[Z]
α|Mω | ∑

μ∈Mω

Var[Zμ |F�]
E[Zμ ]2

.

Choosing ε sufficiently small, we obtain from (2.19) and the tower rule that

E[X ] = E[E[X |F�]] �
4γ E[Z]
α|Mω | ∑

μ∈Mω

E[Var[Zμ |F�]]
E[Zμ ]2

� 4εγ E[Z]
α

� α2
E[Z]. (2.22)

Combining with (2.18) and (2.20), for n sufficiently large we obtain

P

[∣∣∣∣ ∑
μ∈Mω

Zμ −E[Zμ |F�]
∣∣∣∣ � 2α ∑

μ∈Mω

E[Zμ ]
]

� P

[
X < α ∑

μ∈Mω

E[Zμ ]
]

� P[X < α(1−2α2)E[Z]]

� 1−2α

for α sufficiently small (using Markov’s inequality and noting that X is non-negative), as desired.

Lemma 2.7. Let

U� =
�

∑
l=1

∑
s∈{±1}2l

Cs ln(1+δs)−λsδs. (2.23)

Then

limsup
�→∞

limsup
n→∞

P[| lnE[Z|F�]− lnE[Z]−U�|> ε] = 0 for any ε > 0. (2.24)

Proof. Let B > 0, let CB be the event that Cs � B for all l � � and s ∈ {±1}2l and define
U�,B = U�1{Φ ∈ CB}. Proposition 2.2 ensures that for any �,ε > 0 there is B > 0 such that

P[CB] > 1− ε . (2.25)

Additionally, choose ω > 0 sufficiently large that for a sufficiently small α = α(ε , �,B) we have
for n sufficiently large, using (2.18), that ∑μ∈Mω E[Zμ ] � (1−α)E[Z]. Then, noting λs � 0 and
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using (2.5), Propositions 2.2 and 2.3 imply that for any assignment of values to cs, s ∈ {±1}2l ,
with cs � B for all s we have for large n

E[Z|∀l � �,s ∈ {±1}2l : Cs = cs] � ∑
μ∈Mω

E[Zμ |∀l � �,s ∈ {±1}2l : Cs = cs]

� exp(−ε)E[Zμ ]∏
l��

∏
s∈{±1}2l

P[Po((1+δs)λs) = cs]
P[Po(λs) = cs]

= exp(−ε)E[Zμ ] ∏
l��,s

(1+δs)cs exp(−δsλs). (2.26)

Similarly, assuming that α is chosen sufficiently small, for sufficiently large n we have (bounding
E[Z|W ] by E[Z]/P[W ] in the first step)

E[Z|∀l � �,s ∈ {±1}2l : Cs = cs] � 2α E[Z]
∏l��,s P[Po(λs) = cs]

+ ∑
μ∈Mω

E[Zμ |∀l � �,s ∈ {±1}2l : Cs = cs]

� exp(ε)E[Zμ ] ∏
l��,s

(1+δs)cs exp(−δsλs). (2.27)

Combining (2.25), (2.26) and (2.27) and taking logarithms completes the proof of (2.24).

Proof of Theorem 1.1. Let (Λs)l,s be a family of independent Poisson variables with EΛs = λs.
For � � 1 we define

W� =
�

∏
l=1

∏
s∈{±1}2l

(1+δs)Λs exp(−λsδs).

Then Proposition 2.2 shows that for each � the random variables U� from Lemma 2.7 converge
in distribution to lnW� as n → ∞. Moreover, comparing (2.10) and (2.14) with (1.5), we see that
the distribution of W� coincides with the distribution of

∏
l��

∏
0�t�l

(1+δs)Λl,t exp(−λl,tδl,t).

Furthermore, following [17, Section 5] we note that the sequence (W�)� is a martingale because
E[(1+δs)Λs exp(−λsδs)] = 1 for all sign patterns s and is in fact L2-bounded as

E[((1+δs)Λs exp(−λsδs))2] = exp(δ 2
s λs)

and ∑s δ 2
s λs < ∞. Hence, the L2 version of the martingale convergence theorem implies that W

is well-defined and that the W� converge to W almost surely and in L2 as �→ ∞. Therefore, the
assertion follows from Proposition 2.1, Corollary 2.6 and Lemma 2.7.

3. The first moment

We continue to assume that k � k0 and that d satisfies (1.3).
In this section we prove Proposition 2.1. We begin by calculating E[Z]. By linearity of expecta-

tion this comes down to calculating the probability that a fixed truth assignment τ : {x1, . . . ,xn}→

https://doi.org/10.1017/S0963548318000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548318000263


The Number of Satisfying Assignments of Random Regular k-SAT Formulas 507

{±1} is satisfying. With the notation introduced in Section 2, we thus aim to calculate the
probability that

min
i∈[m]

max
j∈[k]

sign(i, j)τ(∂ (i, j)) = 1.

Hence, we need to get a handle on the random ±1-sequence

(sign(i, j)τ(∂ (i, j)))i∈[m], j∈[k].

Clearly, because every literal has an equal number of positive and negative occurrences, for every
assignment τ we have

∑
i∈[m], j∈[k]

sign(i, j)τ(∂ (i, j)) = 0. (3.1)

To compute E[Z] we merely specialize the first moment computation that was done in [10]
in greater generality to the regular k-SAT model.1 Thus, following [10] we study the sequence
(sign(i, j)τ(∂ (i, j)))i, j by means of another random ±1-vector χ = (χi j)i∈[m], j∈[k]. With q from
(1.4) the entries χi j are mutually independent such that P[χi j = 1] = q and P[χi j = −1] = 1−q.
Consider the event B = {∑i∈[m], j∈[k] χi j = 0}. Then the following is immediate from (3.1) and the
definition of the random formula Φ.

Fact 3.1. Let τ : {x1, . . . ,xn} → {±1} be a truth assignment. Then the conditional distribution
of χ given B coincides with the distribution of (sign(i, j)τ(∂ (i, j)))i, j.

Hence, to calculate E[Z] we need to figure out the probability of

S = {mini∈[m] max j∈[k] χi j = 1}

given B.

Lemma 3.2. We have

P[S|B] ∼ (1− (1−q)k)m(4q(1−q))−dn√
2+2(k−1)q− k

.

We prove Lemma 3.2 by calculating P[S],P[B] and P[B|S] and applying Bayes’ rule.

Claim 3.3. We have P[S] = (1− (1−q)k)m.

Proof. The probability that for some i ∈ [m] we have max j∈[k] χi j = −1 equals (1−q)k. Hence,
the claim is immediate from the independence of the entries of χ .

1 Although it is not included in [10] explicitly, Konstantinos Panagiotou and the first author actually had the proof of
Lemma 3.2 on the blackboard. The formula given for the first moment in [22] is equivalent but of a slightly different
form.
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Claim 3.4. We have

P[B] =
(

km
dn

)
qdn(1−q)dn.

Proof. As 2dn = km the assertion follows from the independence of the entries of χ .

Claim 3.5. We have P[B|S] ∼ (πkm(1− k/2+(k−1)q))−1/2.

Proof. Let X = ∑m
i=1 ∑k

j=1 1{χi j = 1}. Then B = {X = dn}. Moreover, the choice (1.4) of q
ensures that

E[X |S] =
kmq

1− (1−q)k
= dn. (3.2)

Further, given S , X is merely the sum of the independent random variables Xi = ∑k
j=1 1{χi j = 1}

and

Var[Xi|S] = Var(Bin�1(k,q)) =
kq(1−q)+(kq)2

1− (1−q)k
−

(
kq

1− (1−q)k

)2

=
k
2
(1−q− k/2+ kq).

Consequently, Var(X |S) = km(1−q− k/2+ kq)/2. Thus, the assertion follows from (3.2) and
the local limit theorem for sums of independent random variables [13].

Proof of Lemma 3.2. By Bayes’ rule, Claims 3.3–3.5 and Stirling’s formula,

P[S|B] ∼ P[B|S]P[S]
P[B]

=
(1− (1−q)k)m√

πkm(1−q− k/2+ kq) ·
( km

km/2

)
(q(1−q))km/2

∼ (1− (1−q)k)m(4q(1−q))−dn√
2+2(k−1)q− k

,

as claimed.

Proceeding to the expectation of Zμ , we let M(σ) be the number of indices i∈ [m] such that the
random vector χ satisfies χi j = σ j for all j ∈ [k] for σ ∈ Σ = {±1}k \ {(−1, . . . ,−1)}. Further,
for μ ∈M let

Sμ = {M(σ) = mμ(σ) for all σ ∈ Σ}. (3.3)

Claim 3.6. For any μ ∈M we have

P[Sμ |B∩S] =
(

m
mμ

)
(q(1−q))dn/P[B∩S].

Proof. The definition of the set M ensures that Sμ ⊂S∩B. Therefore, the lemma follows from
the independence of the entries χi j.
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Proof of Proposition 2.1. Combining Fact 3.1, Lemma 3.2 and multiplying by the total
number of truth assignments, we obtain

E[Z] ∼ 2n · (1− (1−q)k)m(4q(1−q))−dn√
2+2(k−1)q− k

. (3.4)

Further, expanding (1.4), we see that the unique solution q ∈ (0,1) satisfies

q =
1
2
−2−1−k +O(k/4k). (3.5)

Hence, recalling (1.3), we obtain

lnE[Z] = n[ln2+2k−1d ln(1− (1−q)k)−d ln(4q(1−q))]+O(1)

= 4n(2−k +O(k24−k)) = Ω(n). (3.6)

Finally, (2.7) follows from (3.4) and (3.6).
To complete the proof of Proposition 2.1, fix a number ω > 0. The definition vectors μ ∈Mω

must satisfy the two conditions ∑σ∈Σ μ(σ) = 1 and ∑σ∈Σ μ(σ)〈1,σ〉 = 0. Therefore,

|Mω | = Θ(m−1+|Σ|/2), (3.7)

with the number hidden in the Θ(·) dependent on ω , of course. Further, Claims 3.3, 3.5 and
Claim 3.6 and Stirling’s formula imply that uniformly for all μ ∈Mω ,

P[Sμ |B∩S] = Θ(
√

m)
(

m
mμ

)
(q(1−q))dn

(1− (1−q)k)m

= Θ(m1−|Σ|/2)
(q(1−q))dn

(1− (1−q)k)m ∏
σ∈Σ

μ(σ)−mμ(σ).

Rewriting the last expression in terms of the distribution μ̄ from (2.6), we obtain

P[Sμ |B∩S] = Θ(m1−|Σ|/2)exp(−mDKL(μ‖μ̄)) uniformly for μ ∈Mω . (3.8)

Since the Kullback–Leibler divergence, whose definition we recall from (1.9), attains its global
minimum at the point μ = μ̄ and because its second and third derivative are bounded at this
point, (2.9) follows from (3.7), (3.8) and Fact 3.1. Finally, (2.8) follows from (3.8) because the
Kullback–Leibler divergence is strictly convex.

4. Counting cycles

4.1. Proof of Proposition 2.2
Similar results were proved for bipartite graphs in the second author’s PhD thesis [25]. (See
Proposition 3.5 for example, and Theorem 3.12 more explicitly for biregular bipartite graphs of
large girth.) The (minor) difference here is that the sign patterns of the cycles are specified. The
key step of the proof is to establish the following lemma.

Lemma 4.1. Let S ⊂⋃
l�1{±1}2l be a finite set and let (cs)s∈S be a non-negative integer vector.

Then

lim
n→∞

E∏
s∈S

C
cs
s = ∏

s∈S

λ cs
s .
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Proposition 2.2 is immediate from Lemma 4.1 and standard results on convergence to the
Poisson distribution (e.g. [6, Theorem 1.23]). To prove Lemma 4.1 we recall that the random
factor graph G(Φ) is obtained by linking clones of clauses and literals according to the random
bijection (2.1).

Claim 4.2. Fix an integer b > 1. The expected number of sets of at most b vertices that span
more than b edges in G(Φ) is O(1/n).

Proof. Suppose that b1,b2 > 0 are integers such that b1 +b2 = b and let b3 > b. Let Y (b1,b2,b3)
be the number of pairs (A,B) such that A ⊂ {x1, . . . ,xn}, |A| = b1, B ⊂ [m] such that A∪B spans
at least b3 edges in G(Φ). Then

Y (b1,b2,b3) �
(

n
b1

)(
m
b2

)(
2db1

b3

)(
kb2

b3

)
b3!(2dn−b3)!/(2dn)!; (4.1)

indeed, the binomial coefficients count the number of ways of choosing b1 variables, b2 clauses
and b3 ‘clones’ of the chosen variables and clauses. Then there are b! ways of matching these
chosen clones up and (2dn−b3)! ways of joining the remaining clones. By comparison, the total
number of bijections (2.1) equals (2dn)!. The right-hand side of (4.1) is O(1/n) because b3 > b.
Finally, the assertion follows by summing over all b1,b2 such that b1 + b2 = b and all b3 such
that b < b3 � min{2db1,kb2}.

Let l � 1 and let s ∈ {±1}2l . As a warm-up we calculate E[Cs]; in the process we introduce a
bit of notation that will prove useful in Section 4.2 as well. Each cycle with sign pattern s arises
as follows. We start from some clause vertex i of G(Φ). Then we alternate between variable
nodes and clause nodes such that the signs decorating the edges that we walk through are as
prescribed by s. Finally, the lth variable loops back to the original clause that we started from.
Of course, given the starting clause i, each such walk can be encoded by specifying the clones
of the clause/literal clones that we follow at each step. Thus, we let I(s) be the set of all families
( jh,gh)h=2,...,2l+1 with jh ∈ [k], gh ∈ [d] such that

• j2 �= j2l+1 and j2h+1 �= j2h+2 for all h < l,
• g2h �= g2h+1 for all h ∈ [l] such that s2hs2h+1 = 1.

See Figure 2 for an illustration. Then

|I(s)| = (k(k−1))2ldl
l

∏
h=1

(d −1)(1+s2hs2h+1)/2d(1−s2hs2h+1)/2. (4.2)

Further, for i ∈ [m] let CΦ(s, i, j,g) be the event that the cycle prescribed by ( j,g)∈ I(s) material-
izes from the starting clause i. That is, if we define i2 = i and i2t−1 = i2t = ∂ (∂ (i2t−2, j2t−2),g2t−1)
for t � 2, then (i, j) satisfies the conditions CY1–CY5 and

Φ[it , jt ] ∈ {x1, . . . ,xn}×{gt}×{±1} for all t = 2, . . . ,2l +1.

We claim that

E[Cs] =
m

∑
i=1

∑
( j,g)∈I(s)

P[CΦ(s, i, j,g)] ∼ |I(s)|
2l

(2kd)−l = λs. (4.3)
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j2,g2,s2

j3,g3,s3

j4,g4,s4j5,g5,s5

j6,g6,s6

j7,g7,s7

Figure 2. The indices jh,gh along a cycle with l = 3 clauses, with squares representing clauses and circles variables.

Indeed, because Φ comes from the random bijection (2.1), the probability that for h ∈ [2l] the
j2hth clone of clause i2h is connected to the g2hth clone with sign s2h of some variable is (2d)−1 +
o(1). Further, the probability that the g2hth clone with sign s2h+1 of this variable is connected to
the j2h+1th clone of some clause is k−1 + o(1). Ultimately, the probability that the g2l th clone
of sign s2l+1 of the last variable visited is connected to the j1th clone of the starting clause is
(1 + o(1))(km)−1. Finally, the factor 1/2l in (4.3) comes from CY4 and the convention that we
consider the clauses with the least index the starting point of the cycle.

Proof of Lemma 4.1. It is straightforward to extend the argument from the previous paragraph
to the joint factorial moments of the random variables Cs. Hence, let S ⊂ ⋃

l{±1}2l be finite and
let c = (cs)s∈S be an integer vector with cs > 0 for all s. Then ∏s∈S C

cs
s is the number of families

that contain precisely cs distinct cycles of type s for each s ∈ S. By Fact 4.2 we just need to count
families of vertex-disjoint cycles. To this end, we choose distinct starting clauses (i(s,g))s∈S,g∈[cs].
Because ∑s∈S cs remains fixed as n → ∞, the number of choices is (1+O(1/m))m∑s∈S cs . Further,
for each s ∈ S and g ∈ [cs] we pick ( jh(s,g),gh(s,g))h ∈ I(s). By the same reasoning as in the
calculation of E[Cs], for each s ∈ S, g ∈ [cs] the probability that the desired cycle materializes
is (1 + o(1))(2kd)−lm−1. In fact, these events are asymptotically independent because we only
consider vertex-disjoint cycles and ∑s∈S cs = O(1) as n → ∞. Hence Lemma 4.1 follows.

4.2. Proof of Proposition 2.3
With respect to Proposition 2.3, we use the random vector χ and the other notation from Sec-
tion 3. Consider the following experiment for constructing a formula Φ̂ together with an assign-
ment σ̂ , which we call the planted distribution; similar constructions have been used previously
[5, 9, 10].

PL1 Choose a truth assignment σ̂ : {x1, . . . ,xn}→ {±1} uniformly at random.
PL2 Choose χ independently of σ̂ given that χ ∈ S ∩B.
PL3 Choose bijection Φ̂ : [m]× [k]→{x1, . . . ,xn}× [d]×{±1} uniformly subject to the condition

signΦ̂(i, j)σ̂(∂Φ̂(i, j)) = χi j for all (i, j) ∈ [m]× [k].

In words, we first choose a truth assignment σ̂ uniformly at random. Then, we prescribe a
random sequence χ of km truth values subject to the condition that for each clause index i ∈ [m]
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there exists j ∈ [k] such that χi j = 1 and such that ∑i, j χi j = 0. Finally, we randomly match those
literal occurrences that the assignment σ̂ renders true to the precisely dn clause slots (i, j) such
that χi j = 1 and the ones that σ̂ sets to false to the dn remaining positions. As an immediate
consequence of Fact 3.1 we obtain the following.

Fact 4.3. Let A be a set of pairs (Φ,σ) of formulas and assignments. Moreover, let ZA(Φ) be
the number of satisfying assignments σ of Φ such that (Φ,σ) ∈ A. Then

E[ZA(Φ)] = E[Z(Φ)] ·P[(Φ̂, σ̂) ∈ A].

We are going to use Lemma 4.6 to prove the following statement. Let I(s) be as in the previous
section. As before we are going to be interested in the event CΦ̂(i, j,g,s) that, for a clause index i
and ( j,g) ∈ I(s), a cycle as described by i, j,g,s occurs in the formula Φ̂. Further, for i ∈ [m] let
CΦ̂(i,s) be the event that there exists ( j,g) ∈ I(s) such that CΦ̂(i, j,g,s) occurs.

Lemma 4.4. Let S ⊂ ⋃
l�1{±1}2l be finite and let c = (cs)s∈S be a non-negative integer vector.

Let i = (i(s,a))s∈S,a∈[cs] be a random vector whose entries i(s,a) ∈ [m] are independent and
uniformly distributed. Then

P

[ ⋂
s∈S,a∈[cs]

CΦ̂(i(s,a),s)
]
∼ ∏

s∈S

(
(1+δs)λs

m

)cs

.

The proof of Lemma 4.4 is based on the following elementary observation.

Claim 4.5. Let I ⊂ [m] be a set of size |I| � n1/3 and let τ = (τi)i∈I ∈ ΣI . Further, let E(I,τ)
be the event that for each i ∈ I we have (σ̂(Φ̂[i, j])) j∈[k] = τi. Then

P[E(I,τ)] ∼ ∏
i∈I

((1−q)q)k/2 ∏k
j=1(q/(1−q))τi j/2

2q
. (4.4)

Proof. Since 1− (1− q)k = 2q by the definition of q, the right-hand side of (4.4) is just the
probability that χ i j = τi j for all i ∈ I, j ∈ [k] given the event S . Moreover, because |I| � n1/3, a
similar application of the local limit theorem as in the proof of Claim 3.5 shows that P[B|S] ∼
P[B|S,E(I,τ)]. Therefore, the assertion follows from Bayes’ rule.

Proof of Lemma 4.4. A similar calculation as in the proof of Claim 4.2 shows that we
only need to consider families of vertex-disjoint cycles. Further, because the total number of
vertices involved in the cycles remains bounded as n→∞, the events C(i(s,a)) are asymptotically
independent. Therefore, we are just going to calculate the probability of a single event C(i,s) for
a random i ∈ [m].

We can write C(i,s) as a disjoint union of sub-events in which we specify the truth values
that σ̂ assigns to the literals in the order in which they appear along the cycle. Thus, let ξ =
(ξ2, . . . ,ξ2l+1) ∈ {±1}2l be a sequence such that ξ2hξ2h+1 = s2hs2h+1 for all h. Further, set ξ1 =
ξ2l+1, j1 = j2l+1. Moreover, let i = (i1, . . . , il) ∈ [m]l be a sequence of pairwise distinct clause
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ξ2h ξ2h+1 ξ2h+2

s2h s2h+1

ih

Figure 3. The transition from ξ2h to ξ2h+2 along clause ih.

indices and let ( j,g) ∈ I(s). Thus, ( jh,gh)h=2,...,2l+1 are families of indices jh ∈ [k], gh ∈ [d] such
that j2 �= j2l+1 and j2h+1 �= j2h+2 for all h< l, and g2h �= g2h+1 for all h∈ [l] such that s2hs2h+1 = 1.
Let Dh(i, j,g,ξ ,s) be (just) the event that χ ih, j2h−1

= ξ2h+1 and χ ih, j2h
= ξ2h+2 and let

D(i, j,g,ξ ,s) =
l⋂

h=1

Dh(i, j,g,ξ ,s).

Then the probability

M′
s2hs2h+1

(ξ2h,ξ2(h+1)) = P[Dh(i, j,g,ξ ,s)]

depends on s2hs2h+1 and ξ2h,ξ2(h+1) only. In fact, using Claim 4.5 with I = {i1, . . . , il} we can
work out the probabilities of the eight possible cases easily. See Figure 3 for an illustration.

Case 1. s2hs2h+1 = 1. There are four sub-cases depending on the truth values ξ2h,ξ2(h+1).
Case 1a. ξ2h = ξ2(h+1) = 1. Clause ih is satisfied because ξ2h = 1. Therefore, the probability that

ξ2(h+1) = ξ2h+1 = 1 comes to

M′
1(1,1) ∼ q2/(2q) = q/2.

Case 1b. ξ2h = −ξ2(h+1) = 1. Clause ih is satisfied due to ξ2h = 1. Hence,

M′
1(1,−1) ∼ (1−q)/2.

Case 1c. ξ2h = −ξ2(h+1) = −1. Clause ih is satisfied as ξ2h+1 = 1. Hence,

M′
1(−1,1) ∼ (1−q)/2.

Case 1d. ξ2h = ξ2(h+1) =−1. One of the k−2 remaining literals of clause ih has to take the value
1 to satisfy the clause. Since (1−q)k = 1−2q and thus (1−q)k−2 = (1−2q)/(1−q)2, we
get

M′
1(−1,−1) ∼ (1−q)2(1− (1−q)k−2)/(2q) = q/2.

Case 2. s2hs2h+1 = −1. Once more there are four sub-cases.
Case 2a. ξ2h = ξ2(h+1) = 1]. Clause ih is satisfied because ξ2h+2 = 1. Therefore,

M′
−1(1,1) ∼ q(1−q)/(2q) = (1−q)/2.

Case 2b. ξ2h = −ξ2(h+1) = 1. For clause ih to be satisfied one of the k− 2 literals in the clause
that do not belong to the cycle has to be true. Thus,

M′
−1(−1,1) ∼ (1−q)2(1− (1−q)k−2)

2q
=

q((1−q)2 − (1−q)k)
2q(1−q)

=
q
2
.

Case 2c. ξ2h = −ξ2(h+1) = −1. Clause ih is satisfied due to ξ2h+1 = 1. Hence,

M′
−1(1,−1) ∼ q/2.
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Case 2d. ξ2h = ξ2(h+1) = −1. Clause ih is satisfied as ξ2h+1 = 1. Therefore,

M′
−1(−1,−1) ∼ q(1−q)/(2q) = (1−q)/2.

Taking the union over all possible truth values ξ , we obtain (following similar arguments in [17,
Section 4])

P

[⋃
ξ

D(i, j,g,ξ ,s)
]
∼ ∑

ξ

l

∏
h=1

M′
s2hs2h+1

(ξ2h,ξ2(h+1)) = tr
l

∏
i=1

M′
s2is2i+1

. (4.5)

Additionally, we claim that

P[CΦ̂(s, i, j,g) | D(i, j,g,ξ ,s)] = 2l
P[CΦ(s, i, j,g)]. (4.6)

Indeed, in the probability term on the right-hand side the literals that are matched to the clauses
i1, . . . , il are chosen uniformly at random from the set of all 2n literals. By contrast, in the
experiment on the left-hand side we condition on the truth values of the literals on the cycle,
which are prescribed by the vector ξ , and thus they are chosen from the n literals with the correct
truth value under σ̂ .

Finally, with M±1 the matrices from (2.12), we see that M′
±1 ∼ 1

2 M±1. Hence, (4.5) and (4.6)
yield

P[CΦ̂(i,s)] ∼ 2l
P[CΦ(i,s)] tr

l

∏
i=1

M′
s2is2i+1

= P[CΦ(i,s)] tr
l

∏
i=1

Ms2is2i+1 .

Thus, the assertion follows from Lemma 4.1.

While Lemma 4.4 puts us in a position to calculate the covariance of Z and the cycle counts Cs,
Proposition 2.3 deals with the covariance of Zμ and the Cs. Hence, we need to consider a variant
of the planted distribution that fixes the clause marginal μ . We recall the event Sμ from (3.3).

Lemma 4.6. For any ω > 0 the following is true. Let S ⊂ ⋃
l�1{±1}2l be finite and let c =

(cs)s∈S be a non-negative integer vector. Let i = (i(s,a))s∈S,a∈[cs] be a random vector whose entries
i(s,a) ∈ [m] are independent and uniformly distributed. Further, let

C =
⋂

s∈S,a∈[cs]

CΦ̂(i(s,a),s).

Then

P[Sμ |S ∩C] ∼ P[Sμ |S] uniformly for all μ ∈Mω .

Proof. Suppose that the event S ∩C occurs. Let J ⊂ [m] be the set of all indices of clauses that
participate in the cycles corresponding to C. Then m′ = |J| = m−O(1). Further, for each σ ∈ Σ
let mμ ′′(σ) be the number of clauses i∈ [m]\J that are satisfied according to σ ∈ Σ. Additionally,
let mμ ′(σ) be such that m(μ ′(σ)+μ ′′(σ)) = μ(σ). Finally, let S′

μ be the event that the empirical
distribution of patterns on the clauses J̄ = [m]\ J works out to be precisely μ ′. Then given C the
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event Sμ occurs if and only if S′
μ occurs. Hence, in analogy to Claim 3.6 we have

P[Sμ |S ∩C] =
(

m′

m′μ ′

)
(q(1−q))dn

P[S]

∼ (2πm)1−2k−1

[
∏
σ∈Σ

μ ′(σ)
]−1/2

exp[−|J̄|DKL(μ ′‖μ̄)]

∼ (2πm)1−2k−1

∏σ∈Σ
√

μ̄(σ)
exp[−(m−O(1))DKL(μ ′‖μ̄)] uniformly for μ ∈Mω . (4.7)

Further, since |J| = O(1) we have ‖μ −μ ′‖2 = O(1/m), whence

DKL(μ ′‖μ̄)−DKL(μ‖μ̄) = o(m−1).

Moreover, as ‖μ − μ̄‖2 = O(m−1/2), we have DKL(μ‖μ̄) = O(1/m). Therefore, (4.7) implies
that uniformly for μ ∈Mω ,

P[Sμ |S ∩C] ∼ (2πm)1−2k−1

∏σ∈Σ
√

μ̄(σ)
exp[−mDKL(μ‖μ̄)] ∼ P[Sμ |S],

as claimed.

Combining Lemmas 4.4 and 4.6 gives the following.

Corollary 4.7. Let ω > 0. With the notation from Lemma 4.4 we have

P

[ ⋂
s∈S,a∈[cs]

CΦ̂(i(s,a),s)
∣∣∣∣Sμ

]
∼ ∏

s∈S

(
(1+δs)λs

m

)cs

uniformly for all μ ∈Mω .

Now, (2.15) follows from Fact 4.3, Corollary 4.7 and the standard result on convergence to
the Poisson distribution (e.g. [6, Theorem 1.23]). Hence, the following completes the proof of
Proposition 2.3.

Lemma 4.8. The series ∑l,s δ 2
s λs converges and satisfies (2.16).

Proof. Being the solution to (1.4), q satisfies q = 1/2 + O(2−k). Hence, our assumption that
d � k2k ensures that

|(2d −1)(k−1)(1−4q(1−q))|< 1.

Therefore, merely substituting in the expressions from (2.10) and (2.14), we obtain

∑
l�1

∑
s∈{±1}2l

δ 2
s λs = ∑

l�1

1
2l

[(2d −1)(k−1)(1−4q(1−q))]l

= −1
2

ln(1− (2d −1)(k−1)(1−4q(1−q))) < ∞,

as claimed.
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5. The second moment

5.1. Outline
In this section we prove Proposition 2.4. Let Z⊗

α,μ be the number of pairs (τ1,τ2) of satisfying
assignments such that μ = μ(Φ,τ1) = μ(Φ,τ2) and such that ∑n

i=1 1{τ1(xi) = τ2(xi)} = α . Then
by the linearity of expectation

E[Z2
μ ] =

n

∑
α=0

E[Z⊗
μ,α ]. (5.1)

We will evaluate the sum on the right-hand side of (5.1) in two steps. The main step is to calculate
the contribution of α close to n/2.

Lemma 5.1. Uniformly for μ ∈Mω we have

lim
a→∞

lim
n→∞ ∑

α:|α−n/2|�a
√

n

E[Z⊗
μ,α ]

E[Zμ ]2
= (1− (2d −1)(k−1)(1−4q(1−q)))−1/2.

The proof of Lemma 5.1 is based on the following lemma, which we derive from the central
limit theorem for random permutations [8] in Section 5.2. The motivation for the definition of y⊗

in this lemma will become clear very soon, in the proof of Lemma 5.1.

Lemma 5.2. The following holds uniformly for all μ ∈Mω . Let

y⊗ = (y(1)
i j ,y

(2)
i j )(i, j)∈[m]×[k]

be chosen uniformly at random from the set of all m× k {±1}2-arrays. Let S⊗
μ be the event that

m

∑
i=1

k

∏
j=1

1{y(1)
i j = σ j} =

m

∑
i=1

k

∏
j=1

1{y(2)
i j = σ j} = mμ(σ) for all σ ∈ Σ. (5.2)

Further, let

A =
m

∑
i=1

k

∑
j=1

1{y(1)
i j = y(2)

i j = 1}, ν2 =
k

16
(k−4(k−1)q(1−q)).

Then uniformly for all reals a < b we have

P[m−1/2(A−dn/2) ∈ (a,b)|S⊗
μ ] =

1√
2πν

∫ b

a
exp(−z2/(2ν2))dz+o(1).

Proof of Lemma 5.1. Fix ω > 0 and let μ ∈ Mω . There are 2n
(n

α
)

pairs (τ1,τ2) of truth
assignments with overlap ∑n

i=1 1{τ1(xi) = τ2(xi)} = α; to see this, start by choosing a truth
assignment τ1 out of the set of all 2n possible assignments, then obtain τ2 by selecting α variables
on which both assignments agree. Suppose we fix one such pair (τ1,τ2). What is the probability
that μ(Φ,τ1) = μ(Φ,τ2) = μ? To determine this we need information on the distribution of the
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string

ỹ⊗ = (ỹ(1)
i j , ỹ

(2)
i j )(i, j)∈[m]×[k] ∈ {(−1,−1),(−1,1),(1,−1),(1,1)}km where

ỹ(t)
i j = sign(i, j)τ (t)(∂ (i, j)) (i ∈ [m], j ∈ [k], t ∈ {1,2}).

Recalling that ∂ (i, j) is the variable that occurs in the jth position of the ith clause, and that
sign(i, j) is the sign with which the variable occurs, we see that ỹ⊗ comprises the truth value
combinations that emerge if we assign the variables of the random formula Φ according to
τ (1),τ (2). Thus, with S⊗

μ the event from Lemma 5.2 we obtain

E[Z⊗
μ,α ] = 2n

(
n
α

)
P[μ(Φ,τ1) = μ(Φ,τ2) = μ] = 2n

(
n
α

)
P[ỹ⊗ ∈ S⊗

μ ]. (5.3)

We study the distribution of ỹ⊗ by way of the uniformly random string

y⊗ ∈ {(−1,−1),(−1,1),(1,−1),(1,1)}km

from Lemma 5.2. To this end, with the notation of Lemma 5.2 define the two events

Aα = {A = dα}, B⊗ =
{ m

∑
i=1

k

∑
j=1

y(1)
i j =

m

∑
i=1

k

∑
j=1

y(2)
i j = 0

}
.

Then the distribution of ỹ⊗ coincides with the distribution of y⊗ given Aα ∩B⊗. Indeed, we have
ỹ⊗ ∈ Aα because τ1,τ2 have overlap α , and ỹ⊗ ∈ B⊗ because there are precise dn true and dn
false literals occurrences. In particular,

P[ỹ⊗ ∈ S⊗
μ ] = P[y⊗ ∈ S⊗

μ | Aα ∩B⊗]. (5.4)

As a next step we will prove that, uniformly for all α such that |α − n/2| � n0.6 and all
μ ∈Mω ,

P[y⊗ ∈ S⊗
μ | Aα ∩B⊗] ∼

√
πdnE[Zμ ]2

22n+1
exp

(
4dn

(
α
n
− 1

2

)2)
P[y⊗ ∈ Aα |S⊗

μ ]. (5.5)

Indeed, since S⊗
μ ⊂ B⊗, Bayes’ rule gives

P[y⊗ ∈ S⊗
μ |Aα ∩B⊗] =

P[y⊗ ∈ S⊗
μ |B⊗]

P[y⊗ ∈ Aα |B⊗]
·P[y⊗ ∈ Aα |S⊗

μ ]. (5.6)

Hence, we need to calculate P[y⊗ ∈ S⊗
μ |B⊗] and P[y⊗ ∈ Aα |B⊗]. With respect to the latter, there

are
(2dn

dn

)
strings in {±1}km with as many +1s as −1s. Therefore,

|B⊗| =
(

2dn
dn

)2

. (5.7)

Furthermore, we have

|Aα ∩B⊗| =
(

2dn
αd,(n−α)d,(n−α)d,αd

)
; (5.8)

for any string in Aα ∩B⊗ contains exactly α many (1,1) entries and (n−α)d many entries
(−1,1) and (1,−1) entries. Hence, combining (5.7) and (5.8) and applying Stirling’s formula,
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we obtain, uniformly for all α such that |α −n/2| � n0.6 and all μ ∈Mω ,

P[y⊗ ∈ Aα |B⊗] =
(

2dn
αd,(n−α)d,(n−α)d,αd

)(
2dn
dn

)−2

=
(

dn
dα

)2

/

(
2dn
dn

)

∼ 2√
πdn

exp

(
−4dn

(
α
n
− 1

2

)2)
. (5.9)

Additionally, we claim that

P[y⊗ ∈ S⊗
μ |B⊗] = 4−n

E[Zμ ]2. (5.10)

Indeed, if we fix a truth assignment τ , then the random matching Φ of literals to clause slots
induces a uniformly random string of length km comprising dn many +1 entries and dn many
−1 entries. The probability that the resulting empirical distribution of truth value patterns on the
m clauses matches μ is precisely equal to 2−n

E[Zμ ] (because we fixed the truth assignment τ
upfront). Furthermore, given B⊗ the two components (y(1)

i j )i, j, (y(2)
i j )i, j are independent, whence

we obtain (5.10). Finally, combining (5.6), (5.9) and (5.10), we obtain (5.5).
Combining (5.3), (5.4) and (5.5), we get

E[Z⊗
μ,α ]

E[Zμ ]2
∼ 2n

(
n
α

)√
πdn

22n+1
exp

(
4dn

(
α
n
− 1

2

)2)
P[y⊗ ∈ Aα |S⊗

μ ], (5.11)

uniformly for all α such that |α − n/2| � n0.6 and all μ ∈ Mω . Moreover, uniformly for all α
such that |α −n/2| � n0.6,

2−n

(
n

αn

)
∼

√
2

πn
exp

[
−2n

(
α
n
− 1

2

)2]
. (5.12)

Hence, combining (5.11) and (5.12) with Lemma 5.2, we find

∑
α:|α−n/2|�a

E[Z⊗
μ,α ]

E[Zμ ]2
= o(1)+

√
d
2 ∑

α:|α−n/2|�a
√

n

exp

(
(4d −2)

(
α
n
− 1

2

)2

n

)
P[y⊗ ∈ Aα |S⊗

μ ]

= o(1)+

√
dn

4πν2m

∫ ∞

−∞
exp

[(
4d −2− dk

4ν2

)
z2

]
dz.

Taking a → ∞, we thus obtain

lim
a→∞

lim
n→∞ ∑

α:|α−n/2|�a

E[Z⊗
μ,α ]

E[Zμ ]2
=

√
k

8πν2

∫ ∞

−∞
exp

[(
4d −2− dk

4ν2

)
z2

]
dz

=

√
k

2dk−16(2d −1)ν2
.

Substituting in the expression for ν2 and simplifying completes the proof.

Building upon ideas from [10], in Section 5.3 we prove the following bound on the contribution
of α far from n/2.
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Lemma 5.3. Uniformly for μ ∈Mω we have

lim
a→∞

lim
n→∞ ∑

α:|α−(n/2)|>a
√

n

E[Z⊗
μ,α ]

E[Zμ ]2
= 0.

Finally, Proposition 2.4 is immediate from Lemmas 5.3 and 5.1.

5.2. Proof of Lemma 5.2
We begin by calculating the expectation and the variance of A given S⊗

μ as defined in (5.2). This
is the number of 1s in common between the arrays y(1) and y(2), conditional on both arrays having
row frequencies specified by μ . To simplify the notation we let

ŷ = (ŷ(1)
i j , ŷ

(2)
i j )i, j

denote the random vector y⊗ given that S⊗
μ occurs.

Lemma 5.4. We have E[A(ŷ)] = dn/2+O(1) and Var(A(ŷ)) ∼ ν2m, where

ν2 =
k

16
(k−4(k−1)q(1−q)).

The proof will show that ν2 is Var(A(ŷ)) in the case that μ = μ̄ .

Proof. Let Ai j = 1{ŷ(1)
i j = ŷ(2)

i j = 1} so that A = ∑i, j Ai j. To calculate the expectation, set

Aj = ∑
i∈[m]

1{ŷ(1)
i j = ŷ(2)

i j = 1},

a j = ∑
σ∈Σ

1{σ j = 1}μ(σ) =
1
m ∑

i∈[m]
1{ŷ(1)

i j = 1} =
1
m ∑

i∈[m]
1{ŷ(2)

i j = 1}.

Thus, a j is the fraction of clauses whose jth literal is ‘true’ in a truth assignment that contributes
to Zμ . Then it is clear that E[A] = ∑k

j=1 E[Aj] and E[Aj] = ma2
j . Furthermore, because μ ∈Mω

we have

a j −
1
2

= a j − ∑
σ∈Σ

1{σ j = 1}μ̄(σ) (by (1.4) and (2.6))

= ∑
σ∈Σ

1{σ j = 1}(μ(σ)− μ̄(σ)) � 2k‖μ − μ̄‖2 � 2kωm−1/2.

Finally, since ∑ j a j = 1/2 by (2.4), for any fixed ω > 0 we have

E[A]− dn
2

= m
k

∑
j=1

(
a2

j −
1
4

)
= m

k

∑
j=1

(
a j −

1
2

)2

� 4kω2 = O(1).
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Moving on to the variance, we expand E[A2] to obtain

E[A2] =
m

∑
i,s=1

k

∑
j,t=1

E[Ai jAst ]

= E[A]+ ∑
i, j,s,t:i=s,t �= j

E[Ai jAst ]+ ∑
i, j,s,t:i�=s, j=t

E[Ai jAst ]+ ∑
i, j,s,t:i�=s, j �=t

E[Ai jAst ]

= E[A]+ ∑
i, j,t:t �= j

E[Ai jAit ]+ ∑
i, j,s,t:i�=s

E[Ai jAst ].E[Xi jXst ].

Further, for σ ,τ ∈ Σ and j ∈ [k] let

ζ j(σ ,τ) = 1{σ j = τ j = 1} and ζ (σ ,τ) = ∑
j∈[k]

ζ j(σ ,τ) = (k + 〈σ ,τ〉)/2.

Then

∑
i, j,t:t �= j

E[Ai jAit ] = m−1 ∑
σ ,τ

μ(σ)μ(τ)∑
j �=t

ζ j(σ ,τ)ζt(σ ,τ)

= m−1 ∑
σ ,τ

μ(σ)μ(τ)(ζ (σ ,τ)2 −ζ (σ ,τ))

= −E[A]+m−1 ∑
σ ,τ

μ(σ)μ(τ)ζ (σ ,τ)2.

Additionally,

∑
i, j,s,t:i�=s

E[Ai jAst ] = ∑
σ ,τ

∑
σ ′,τ ′

μ(σ)μ(τ)(μ(σ ′)−1{σ = σ ′})(μ(τ ′)−1{τ = τ ′})
m(m−1)

ζ (σ ,τ)ζ (σ ′,τ ′)

=
[∑σ ,τ μ(σ)μ(τ)ζ (σ ,τ)]2

m(m−1)
−2

∑σ ,τ,σ ′ μ(σ)μ(τ)μ(σ ′)ζ (σ ,τ)ζ (σ ,σ ′)
m(m−1)

+
∑σ ,τ μ(σ)μ(τ)ζ (σ ,τ)2

m(m−1)

=
mE[A]2

m−1
− 2

m(m−1) ∑
σ ,τ,σ ′

μ(σ)μ(τ)μ(σ ′)ζ (σ ,τ)ζ (σ ,σ ′)

+
1

m(m−1) ∑
σ ,τ

μ(σ)μ(τ)ζ (σ ,τ)2.

Combining the above, we see that uniformly for μ ∈Mω

Var(A) ∼ 1
m ∑

σ ,τ
μ̄(σ)μ̄(τ)ζ (σ ,τ)2 − 2

m2 ∑
σ ,τ,σ ′

μ̄(σ)μ̄(τ)μ̄(σ ′)ζ (σ ,τ)ζ (σ ,σ ′)

+
1
m

[
∑
σ ,τ

μ̄(σ)μ̄(τ)ζ (σ ,τ)
]2

.
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Substituting in the definition of μ̄ and using (1.4), we obtain

m−2 ∑
σ ,τ

μ̄(σ)μ̄(τ)ζ (σ ,τ) = (1− (1−q)k)−2
E[Bin(k,q2)] = k/4,

m−2 ∑
σ ,τ

μ̄(σ)μ̄(τ)ζ (σ ,τ)2 = (1− (1−q)k)−2
E[Bin(k,q2)2]

=
kq2((k−1)q2 +1)

(1− (1−q)k)2
=

k
4
((k−1)q2 +1),

m−3 ∑
σ ,τ,τ ′

μ(σ)μ(τ)μ(τ ′)ζ (σ ,τ)ζ (σ ,τ ′) = (1− (1−q)k)−3

×
k

∑
j=1

(
k
j

)
q j(1−q) j

( j

∑
l=1

lql(1−q) j−l

)2

=
kq3((k−1)q+1)
(1− (1−q)k)3

=
k
8
((k−1)q+1).

Hence,

m−1Var(A) ∼ k
16

[k−4((k−1)q+1)+4((k−1)q2 +1)]

=
k

16
(k−4(k−1)q(1−q)),

as claimed.

Finally, Lemma 5.2 follows from Lemma 5.4 and Bolthausen’s central limit theorem for
random permutations from [8]; this result can be viewed as an extension of the Berry–Esseen
inequality to certain dependent random variables, and as such provides a uniform estimate for
our purposes. To be precise, due to our conditioning on the event S⊗

μ the distribution of the

random vector ŷ = (ŷ(1)
i j , ŷ

(2)
i j )i, j can be described as follows. Fix any vector ũ = (ũi j)i, j ∈ {±1}km

such that
m

∑
i=1

1{(ui1, . . . ,uik) = σ} = mμ(σ) for every σ ∈ Σ.

Moreover, let π(1),π(2) : [m] → [m] be two independent uniformly random permutations and let
ũ(t) = (uπ(t)(i), j)i, j for t = 1,2. In words, ũ(t) is obtained from ũ by permuting the m blocks of
length k that represent the individual clauses randomly. Then ŷ has the same distribution as
(uπ(1)(i), j,uπ(2)(i), j)i, j. Hence, A is distributed as

m

∑
i=1

k

∑
j=1

1{uπ(1)(i), j = uπ(2)(i), j = 1} =
m

∑
i=1

k

∑
j=1

1{ui, j = uπ(2)−1◦π(1)(i), j = 1},

which is precisely the type of random sum for which [8] establishes convergence to the normal
distribution.

5.3. Proof of Lemma 5.3
We build upon the following result on the total number of satisfying assignments, which is
implicit in prior work [10]; for the sake of completeness we give a self-contained proof in
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Appendix 5.3. Let Z⊗
α be the number of pairs (σ ,τ) of satisfying assignments of Φ such that

∑n
i=1 1{τ1(xi) = τ2(xi)} = α .

Lemma 5.5. There exists a number t0 = t0(k) such that for every t > t0 we have

limsup
n→∞

∑
α:|α−n/2|>tn1/2

E[Z⊗
α ]/E[Z]2 � exp(−t2/17).

Moreover,

∑
ρ:|α−n/2|>n1/2 lnn

E[Z⊗
α ] � O(n− ln lnn)E[Z]2.

In the following it will be convenient to replace the parameter α by another overlap parameter
to represent the four possible truth value combinations. Define ρ = (ρs,t)s,t=±1 such that

ρ1,1 +ρ1,−1 = ρ1,1 +ρ−1,1 =
1
2
, ρ1,1 +ρ1,−1 +ρ−1,1 +ρ−1,−1 = 1. (5.13)

In particular, ρ is a probability distribution on {±1}2 such that ρ1,1 = ρ−1,−1 and ρ1,−1 = ρ−1,1.
Hence, (5.13) demonstrates that we can view ρ1,−1,ρ−1,1,ρ−1,−1 as affine functions of ρ1,1. The
relationship between ρ and α is going to be 2dα = km(ρ1,1 + ρ−1,−1) = 2kmρ1,1. Indeed, let us
introduce the symbols

Z⊗
ρ = Z⊗

kmρ11/d , Z⊗
μ,ρ = Z⊗

μ,kmρ11/d . (5.14)

We need to obtain a result similar to Lemma 5.5 for Z⊗
μ,ρ rather than Z⊗

α . Slightly extending
the argument from [10], we tackle the second moment computation by way of an auxiliary
probability space as in Section 3. To unclutter the notation we write f (k) = Õ(g(k)) if there
exists c > 0 such that | f (k)| � kcg(k) for all k > c.

Lemma 5.6. For any ρ there exists a unique probability distribution (qz1,z2)z1,z2∈{±1} on {±1}2

such that

q1,1

1−2(q−1,−1 +q−1,1)k +qk
−1,−1

= ρ1,1,
q1,−1(1− (q−1,−1 +q1,−1)k−1)
1−2(q−1,−1 +q−1,1)k +qk

−1,−1

= ρ1,−1, (5.15)

q−1,1 = q1,−1.

The derivatives satisfy

∂q1,1

∂ρ1,1
= 1+ Õ(2−k),

∂q1,−1

∂ρ1,1
= −1+ Õ(2−k),

∂ 2q1,1

∂ρ2
1,1

= Õ(2−k),
∂ 2q1,−1

∂ρ2
1,1

= Õ(2−k).
(5.16)
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Proof. Let Q be the set of all probability distributions (q±1±1) such that q1,−1 = q−1,1. Further,
set

s = 1−2(q−1,−1 +q1,−1)k +qk
−1,−1, Q1,1 =

q1,1

s
,

Q1,−1 =
q1,−1(1− (q−1,−1 +q1,−1)k−1)

s
.

Then we aim to study the function q �→ (Q1,1,Q1,−1) on the two-dimensional compact convex set
Q. Since q1,−1 = q−1,1 we have q1,−1 � 1/2 on Q. Similarly, q1,1 � 1/2 and q1,1 + q1,−1 � 1/2.
Consequently, s = 1−O(2−k) and Q1,1,Q1,−1 are well-defined. The derivatives of s work out
to be

∂ s
∂q1,1

= 2k(q−1,−1 +q1,−1)k−1 − kqk−1
−1,−1,

∂ s
∂q1,−1

= 2k(q−1,−1 +q1,−1)k−1 −2kqk−1
−1,−1.

Further,

∂Q1,1

∂q1,1
=

1
s
− q1,1

s2

∂ s
∂q1,1

,
∂Q1,1

∂q1,−1
=

q11

s2

∂ s
∂q1,−1

,

∂Q1,−1

∂q1,1
=

(k−1)q1,−1(q−1,−1 +q1,−1)k−2

s
− Q1,−1

s2

∂ s
∂q1,1

,

∂Q1,−1

∂q1,−1
=

1− (q−1,−1 +q1,−1)k−1 +(k−1)q1,−1(q−1,−1 +q1,−1)k−2

s
− Q1,−1

s2

∂ s
∂q1,−1

.

Since q1,−1 � 1/2,q1,1 � 1/2,q1,1 +q1,−1 � 1/2 on Q, we see that

∂Q1,1

∂q1,1
= 1+O(k2−k),

∂Q1,1

∂q1,−1
= O(k2−k),

∂Q1,−1

∂q1,1
= O(k2−k),

∂Q1,−1

∂q1,−1
= 1+O(k2−k).

Consequently, the Jacobi matrix is invertible on Q. Further, for any value q1,−1 ∈ [0,1/2] we have
limq1,1→0 Q1,1 = 0 and limq1,1→1/2 Q1,1 > 1/2. Similarly, for q1,1 ∈ [0,1/2], limq1,−1→0 Q1,−1 = 0
and limq1,−1→1/2 Q1,−1 > 1/2. Therefore, the assertion follows from the inverse function
theorem.

Define a random vector

χ⊗ = χ⊗(q) = (χ (1)
i j ,χ (2)

i j )i∈[m], j∈[k]

such that

P[(χ (1)
i j ,χ (2)

i j ) = (z1,z2)] = qz1,z2 (z1,z2 ∈ {±1})

independently for all i ∈ [m], j ∈ [k]. Let

bz1,z2 =
1

km ∑
i, j

1{χ (1)
i j = z1,χ

(2)
i j = z2)} for all z1,z2 ∈ {±1}.

Further, let B⊗(ρ) be the event that b = ρ . The following is analogous to Fact 3.1.
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Fact 5.7. Let τ1,τ2 : {x1, . . . ,xn} → {±1} be truth assignments with overlap ρ . Then the con-
ditional distribution of χ⊗ given B⊗(ρ) coincides with the distribution of the vector

(sign(i, j)τ1(∂ (i, j)),sign(i, j)τ2(∂ (i, j)))i∈[m], j∈[k].

Fact 5.7 as well as the following three claims already appear in [10]; we include the short
proofs for the sake of completeness.

Claim 5.8. Uniformly for all ρ ,q such that ρs,t ,qs,t ∈ [1/8,3/8] for all s, t ∈ {±1} we have

lnP[B⊗(ρ)] = −3
2

lnn− kmDKL(ρ‖q)+O(1).

Furthermore, uniformly for all ρ we have

lnP[B⊗(ρ)] � −kmDKL(ρ‖q)+O(1).

Proof. We have

P[B⊗(ρ)] =
(

km
ρkm

)
∏

z1,z2∈{±1}
q

kmρz1 ,z2
z1,z2 .

The claim follows by applying Stirling’s formula.

Further, consider the event

S⊗ = {∀i ∈ [m]∃ j, j′ ∈ [k] : χ (1)
i j = χ (1)

i j′ = 1}.

If we think of the k-tuples (χ (1)
i j ) j∈[k],(χ (2)

i j ) j∈[k] as the truth value combinations induced on a
clause by a pair (τ1,τ2) of Boolean assignments, then S⊗ corresponds to the event that both
τ1,τ2 are satisfying.

Claim 5.9. We have P[S⊗] = (1−2(q−1,−1 +q−1,1)k +qk
−1,−1)

m.

Proof. By inclusion–exclusion, for any i ∈ [m] we have

P[∃h ∈ {1,2} : ∀ j ∈ [k] : χ (h)
i j = −1] = (q−1,−1 +q−1,1)k +(q−1,−1 +q1,−1)k −qk

−1,−1

= 2(q−1,−1 −q−1,1)k +qk
−1,−1.

The assertion follows from the independence of the entries of χ⊗.

Claim 5.10. Uniformly for all ρ ,q such that ρs,t ,qs,t ∈ [1/8,3/8] for all s, t ∈ {±1} we have

lnP[B⊗(ρ)|S⊗] = −3
2

lnn+O(1).

Proof. This follows from the local limit theorem for sums of independent bounded random
variables (e.g. [13]).
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Departing from the argument in [10], we are now going to accommodate the additional con-
straint that the clause marginals follow some specific distribution μ on Σ. Hence, let Mm(ρ) be
the set of all probability distributions ν = (ν(σ ,τ))σ ,τ∈Σ such that mν(σ ,τ) is an integer for all
σ ,τ ∈ Σ and

k

∑
i=1

∑
σ ,τ∈Σ

ν(σ ,τ)1{σi = s,τi = t} = ρs,t for all s, t ∈ {±1}.

Additionally, for a given probability distribution μ = (μ(σ))σ∈Σ let Mm(ρ ,μ) be the set of all
ν ∈Mm(ρ) such that

∑
τ∈Σ

ν(σ ,τ) = ∑
τ∈Σ

ν(τ ,σ) = μ(σ) for all σ ∈ Σ.

Clearly, the vector χ⊗ induces a distribution νχ⊗ by

νχ⊗(σ ,τ) =
1
m

m

∑
i=1

k

∏
j=1

1{χ (1)
i j = σi,χ

(2)
i j = τi}.

Letting p(ν) = P[νχ⊗ = ν |B⊗(ρ)∩S⊗] for ν ∈Mm(ρ), recalling (5.14) and using Fact 5.7, we
find

E[Z⊗
μ,ρ ] = E[Z⊗

ρ ] ∑
ν∈Mm(ρ,μ)

p(ν).

Let ν̄(ρ) = (ν̄σ ,τ(ρ))σ ,τ∈Σ with

ν̄σ ,τ(ρ) =
1
s

k

∏
i=1

qσ(i),τ(i). (5.17)

Then Fact 5.7 shows that ν̄(ρ) describes the expected statistics of the ‘clause overlaps’ given
overlap ρ . More precisely, if we fix two truth assignments with overlap ρ and then generate a
random formula subject to the condition that both assignments are satisfying, then we expect
to see ν̄σ ,τ(ρ)m clauses that are satisfied according to the truth value pattern σ under the first
assignment and according to the truth value pattern τ under the second one. By Stirling’s formula,

p(ν) =
1

P[B⊗(ρ)|S⊗]

(
m

mν

)
∏

s,t∈{±1}
q

kmρs,t
s,t =

r(ν)
P[B⊗(ρ)|S⊗]

exp(−mDKL(ν‖ν̄(ρ))), (5.18)

where

r(ν) ∼ (2πm)(1−|Σ|2)/2 ∏
σ ,τ∈Σ

ν̄σ ,τ(ρ)−1/2 (5.19)

uniformly for ν such that |νσ ,τ − ν̄σ ,τ | � m/ lnm for all σ ,τ and r(ν) = O(1) for all ν .

Claim 5.11. If |ρ1,1 −1/4| � lnn/
√

n, then |ν̄σ ,τ(ρ̄)−νσ ,τ(ρ)| � ln2 n/
√

n.

Proof. This follows from (5.17) and the fact that the derivatives of the implicit parameter q are
bounded.
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Claim 5.12. Uniformly for ρ such that |ρ1,1 −1/4| � lnn/
√

n we have

E[Z⊗
μ,ρ ] ∼ E[Z⊗

μ,ρ ] ∑
ν∈Mm(ρ):‖ν−ν̄(ρ)‖∞�m−1/3

p(ν).

Proof. This follows from (5.18) and the fact that the Kullback–Leibler divergence is strictly
convex.

Proof of Lemma 5.3. Let a > 0. By (3.8) we have

E[Zμ ]/E[Z] = Θ(m1−|Σ|/2) (5.20)

uniformly for all μ ∈MΩ. Therefore, letting

S = ∑
ρ:a<|ρ1,1−1/4|�n−1/2 lnn

E[Z⊗
μ,ρ ],

we obtain from Lemma 5.5 and Claim 5.12 that

S ∼ S′ = ∑
ρ:a<|ρ1,1−1/4|�n−1/2 lnn

E[Z⊗
ρ ] ∑

ν∈Mm(ρ,μ):‖ν−ν̄(ρ)‖∞�m−1/3

p(ν).

Hence, (5.18) and (5.19) yield

S′ ∼ S′′ =
(2πm)(1−|Σ|2)/2

∏σ ,τ∈Σ ν̄σ ,τ(ρ̄)1/2 ∑
ρ:a<|ρ1,1−1/4|�n−1/2 lnn

E[Z⊗
ρ ]

P[B⊗|S⊗]
·

∑
ν∈Mm(ρ,μ):‖ν−ν̄(ρ)‖∞�m−1/3

exp[−mDKL(ν‖ν̄(ρ))].

Estimating the last sum via the Laplace method and using Claim 5.11 once more, we see that
uniformly for all ρ ,μ (again using convexity of the Kullback–Leibler divergence)

∑
ν∈Mm(ρ,μ):‖ν−ν̄(ρ)‖∞�m−1/3

exp[−mDKL(ν‖ν̄(ρ))] � O(m(|Σ|2−2|Σ|)/2).

Consequently, Claim 5.10 yields

S′′ � O(m2−|Σ|)E[Z]2 exp(−a2/16),

provided that a is sufficiently large. Therefore, the assertion follows from (5.20).

Appendix: Proof of Lemma 5.5

We continue to use the notation from Section 5.3.

Claim A.1. There exists a number t0 = t0(k) such that for every t > t0 we have

∑
ρ:t0n−1/2<|ρ11−1/4|<2−0.49k

E[Z⊗
ρ (Φ)] � exp(−t2/4)E[Z]2.
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Proof. The proof is based on the Laplace method. Specifically, let q = q(ρ) be the vector from
Lemma 5.6. Then at the point ρ = ρ̄ = 1

4 1 we can express the vector (q±1,±1) in terms of the
solution q to (1.4). Indeed, letting q1 = q, q−1 = 1−q, we verify that the probability distribution
(qsqt)s,t=±1 satisfies (5.15). Hence, Lemma 5.6 implies that qs,t = qsqt for s, t = ±1 at the point
ρ = ρ̄ . Substituting this distribution in and using Fact 5.7, Claim 5.9, Claim 5.10, Stirling’s
formula and Bayes’ rule, we find

E[Z⊗
ρ (Φ)]

E[Z2]
� O(n−1/2)exp[n(H(ρ)−2ln2)+m( f (ρ)− f (ρ̄))], where (A.1)

f (ρ) = ln(1−2(q−1,−1 +q−1,1)k +qk
−1,−1)+ kDKL(ρ‖q).

We are going to prove that

D f (ρ̄) = 0, (A.2)

D2 f (ρ) � n
km

id for all ρ such that |ρ11 −1/4| � 2−0.49k. (A.3)

Since the entropy satisfies DH(ρ̄) = 0 and D2H(ρ) �−id if |ρ11 −1/4| � 2−0.49k, the assertion
follows from (A.1)–(A.3) and a Gaussian summation.

To prove (A.2)2 we set

f1(ρ) = ln(1−2(q−1,−1 +q−1,1)k +qk
−1,−1), f2(ρ) = kDKL(ρ‖q).

Further, let s = 1−2(q−1,−1 +q−1,1)k +qk
−1,−1. Then

∂ f1

∂q1,1
=

2k(q−1,−1 +q−1,1)k−1 − kqk−1
−1,−1

s
,

∂ f1

∂q1,−1
=

2k(q−1,−1 +q−1,1)k−1 −qk−1
−1,−1

s
. (A.4)

Moreover, the partial derivatives of the generic term z ln(z/y) of the Kullback–Leibler divergence
work out to be

∂
∂ z

z ln
z
y

= ln
z
y
,

∂
∂y

z ln
z
y

= − z
y

= −1− z− y
y

. (A.5)

Hence,

∂
∂q1,1

DKL(ρ‖q) = −ρ1,1

q1,1
+

ρ−1,−1

q−1,−1
,

∂
∂q1,−1

DKL(ρ‖q) = −2ρ1,−1

q1,−1
+

2ρ−1,−1

q−1,−1
. (A.6)

Using the relations qs,t = qsqt and (1−q)k = 1−2q, at the point ρ = ρ̄ we obtain s = 4q2 and

2k(q−1,−1 +q−1,1)k−1 − kqk−1
−1,−1

s
=

k(1−2q)
4q2(1−q)2

, (A.7)

2k(q−1,−1 +q−1,1)k−1 −qk−1
−1,−1

s
=

k(1−2q)
2q(1−q)2

,

−ρ1,1

q1,1
+

ρ−1,−1

q−1,−1
=

1
4(1−q)2

− 1
4q2

,

−2ρ1,−1

q1,−1
+

2ρ−1,−1

q−1,−1
=

1
2(1−q)2

− 1
2q(1−q)

. (A.8)

2 The following fairly simple way of calculating D f (ρ̄) was pointed out to the first author by Victor Bapst.
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Substituting (A.7)–(A.8) into (A.4) and (A.6) and simplifying, we obtain

∂
∂q1,1

f (ρ) =
∂

∂q1,−1
f (ρ) = 0. (A.9)

Further, combining (A.5) and (A.9) and using the chain rule, we get

∂
∂ρ1,1

f2(ρ) =
∂ f (ρ)
∂q1,1

∂q1,1

∂ρ1,1
+

∂ f (ρ)
∂q1,−1

∂q1,−1

∂ρ1,1
+ ln

1
4q2

−2ln
1

4q(1−q)
+ ln

1
4(1−q)2

= 0.

(A.10)

Thus, (A.2) follows from (A.9), (A.10) and the chain rule.
With respect to the second derivative, letting

u =
2k(k−1)(q−1,−1 +q−1,1)k−2s−4k2(q−1,−1 +q−1,1)2

s2
,

we find

∂ f1

∂q1,1
,

∂ f1

∂q1,−1
= Õ(2−k),

∂ 2 f1

∂q1,±1∂q1,±1
= u+ Õ(4−k). (A.11)

Combining (A.11) with (5.16) and using the chain rule, we obtain

∂ 2 f1

∂ρ2
11

= Õk(4−k). (A.12)

Proceeding to f2, we recall that the second differentials of the generic term z ln(z/y) of the
Kullback–Leibler divergence read

∂ 2

∂ z2
z ln

z
y

=
1
z
,

∂ 2

∂y2
z ln

z
y

=
z
y2
,

∂ 2

∂y∂ z
z ln

z
y

= −1
y
. (A.13)

We verify that in the case |ρ11 −1/4| � 2−0.49k the implicit parameters satisfy q±1,±1 −ρ±1,±1 =
Õk(2−k). Moreover, q−1,1 = q1,−1 and q−1,−1 = 1−q−1,1 −q1,−1 −q1,1. Therefore, (A.5) yields

∂ f2

∂q1,1
,

∂ f2

∂q1,−1
= Õk(2−k).

Hence, by (5.16) and the chain rule,

∂ f2

∂q1,1

∂ 2q1,1

∂ρ2
11

+
∂ f2

∂q1,−1

∂ 2q1,−1

∂ρ2
11

= Õk(4−k). (A.14)

Further, using (A.13) and (5.16) and recalling that q±1,±1 = 1/4 + O(2−0.49k) if |ρ11 − 1/4| �
2−0.49k, we obtain

∂ 2 f2

∂ 2q1,1

(
∂q1,1

∂ρ1,1

)2

+
∂ 2 f2

∂ 2q1,−1

(
∂q1,−1

∂ρ1,1

)2

+2
∂ 2 f2

∂q1,1∂q1,−1

∂q1,1

∂ρ1,1

∂q1,−1

∂ρ1,1
= Õk(4−k). (A.15)

Combining (A.14) and (A.15), we get

∂ 2 f2

∂ρ2
1,1

= Õk(4−k). (A.16)

Finally, since m/n = Õk(2−k), (A.3) follows from (A.12) and (A.16).
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Claim A.2. We have

∑
ρ:|ρ11−1/4|>2−0.49k

E[Z⊗
ρ (Φ)] � exp(−Ω(n))E[Z]2.

Proof. We observe that Fact 5.7 holds for any choice of the auxiliary variables (q±1,±1) that
define the random vector χ⊗. Hence, choosing q = ρ and applying Bayes’ rule, we find

E[Z⊗
ρ ] � exp

[
n

(
H(ρ)+

2d
k

ln(1−21−k +ρk
11)

)
+o(n)

]
.

We claim that

g(ρ1,1) = H(ρ)+
2d
k

ln(1−21−k +ρk
1,1)

attains its maximum at the boundary point ρ11 = 1/4+2−0.49k. Indeed, we read off that g(ρ1,1)>
g(1/2−ρ1,1) if ρ11 > 1/4. Hence, the maximum occurs in the interval ρ1,1 ∈ [1/4+2−0.49k,1/2).
Further, since g(ρ) is a sum of the concave ρ11 �→ H(ρ) and a multiple of the convex ρ11 �→
ln(1 − 21−k + ρk

11), it suffices to prove this claim for the maximum value of 2d/k that (1.3)
allows. Hence, for this d we need to study the zeros of

∂
∂ρ11

g(ρ) = 2ln
1−2ρ11

2ρ11
+

2dρk−1
11

1−21−k +ρk
11

.

Setting

x =
1−2ρ11

2ρ11
∈ (0,1)

and taking exponentials, we transform this problem into finding the solutions to

x = exp

(
− 2d(1+ x)

(2k −2)(1+ x)k +1

)

for x ∈ (0,1/2− 2−0.49k). A bit of elementary calculus shows that there are just two solutions,
namely

x1 = (1+O(k−1))2−k and x2 = Θ(lnk/k).

The first solution x1 is indeed a local maximum, but a direct calculation yields g((1 + x1)/2) <
g(1/4+2−0.49k). Moreover, x2 is a local minimum. Finally, the assertion follows from the obser-
vation that g(1/4+2−0.49k) < f (ρ̄).
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