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We present a combined theoretical and experimental study of lock-release inertial
gravity currents (GCs) propagating in a horizontal channel of circular cross-section
with open-top surface in the non-Boussinesq regime. A two-layer shallow-water
(SW) model is developed for a generic shape of the cross-section with open top,
and then implemented in a finite difference numerical code for the solution in a
circular-cross-section channel of the type used in the experiments. The model predicts
propagation with (almost) constant speed for a fairly long distance, accompanied by
a depression of the ambient free open-top surface behind the front of the current.
Sixteen experiments were conducted with a density ratio r= 0.587–0.939 in full-depth
and part-depth release conditions, measuring the front speed and the free-surface time
series at four cross-sections. The channel was a circular tube 409 cm long, with a
radius of 9.5 cm; the lengths of the locks were 52 and 103.5 cm. Density contrast
was obtained by adding sodium chloride and dipotassium phosphate to fresh water.
The theoretical values of the front speed and of the depression overestimate the
experimental values, but they predict correctly their trend for varying parameters and
provide reliable insights into the underlying mechanisms. In particular, we demonstrate
that the circular cross-section increases the speed of propagation as compared to the
standard rectangular cross-section case (for the same initial height and density ratio).
The discrepancies between the SW predictions and the present experiments are of
the same order of magnitude as those of previously published results for simpler
systems (Boussinesq, rectangular). In addition to the depression, which is a wave
bound to, and following the front of, the GC, the system also displays two kinds of
free-surface waves, namely the initial bump (its amplitude is of the same order as the
depression) and some short-length and low-amplitude waves in the tail of the bump.
These free waves propagate with a celerity well predicted by the ‘fast’ eigenvalues
of the mathematical model. Comparison is provided with the celerity of a solitary
wave. It is expected that discrepancies between theory and experiments can be partly
attributed to the presence of these waves. The reported insights and SW prediction
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method can be applied to a variety of cross-sections of practical interest (triangles,
trapezoids, etc.).

Key words: gravity currents, shallow water flows

1. Introduction
Lock-exchange flow at high Reynolds number has been widely analysed since it is

representative of several natural flows and also shows interesting features connected
to the mathematical aspects of the model. Gravity currents (GCs) are driven by
the gradient pressure due to the different density of the current and the ambient
fluid, and propagate in horizontal or inclined channels with regular or irregular
cross-section. In many cases the Boussinesq approximation is adopted, neglecting
the density variation in the inertial term, but in several other cases the difference in
density between the current and the ambient fluid is relevant and a more complete
model is required. In this respect, the classical top-lid configuration has interested
numerous researchers (Gröbelbauer, Fanneløp & Britter 1993; Lowe, Rottman &
Linden 2005; Jacobson & Testik 2013; Birman, Martin & Meiburg 2005; Étienne,
Hopfinger & Saramito 2005; Ungarish 2007; Bonometti, Balachandar & Magnaudet
2008; Ungarish 2011; Bonometti, Ungarish & Balachandar 2011; Rotunno et al. 2011;
Turnbull & McElwaine 2008; Dai 2014). Further model refinements included a density
stratification in the ambient fluid (Longo et al. 2016) and particulate GCs advancing
in a stratified ambient fluid (Zemach et al. 2017). In passing, we notice that most
of these experiments were conducted without a top lid, but the configuration was
such that the effects of the interface between the ambient fluid and the atmosphere
were negligible. Particle-laden flows occurring in submarine canyons, and dry snow
avalanches diffused in mountain areas are two examples of relevant natural GCs
where the Boussinesq approximation does not hold (Ancey et al. 2006). A second
aspect of interest in the study of GCs is the role of the ambient fluid. The depth
of the ambient fluid can be large enough to have negligible effects on the current
dynamics; in this case a one-layer model is sufficient. If the thickness is of the same
order as the intruding current, a two-layer model is required. In addition, the ambient
fluid can be confined at the top (GCs with a top lid) or not, with an interface at
atmospheric pressure. The correct modelling of GCs (i) with a high Reynolds number,
(ii) flowing in an ambient fluid of limited depth under the non-Boussinesq regime
and (iii) without a top lid requires further efforts.

Ungarish (2017) has developed a formal steady-state solution of the mathematical
problem for a GC advancing at high Reynolds number in a rectangular horizontal
channel with the upper surface of the ambient fluid open to the atmosphere. The front
condition adopted is an extension of the classical Benjamin solution (Benjamin 1968),
the flow is generally dissipative (as a consequence of the jumps and discontinuities)
and the results collapse to the classical results widely experimentally verified for
GCs with a top lid in the Boussinesq regime. Ungarish (2017) has clearly answered
the question as to whether the constraint of a top lid limiting the ambient fluid
is essential or not for the development of a mathematical solution following the
same path of Benjamin’s solution, a model followed by numerous researchers: it
is not essential, providing a reformulation of the problem. The model described
in Ungarish (2017) has been validated by physical experiments and with numerical

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.226


612 L. Chiapponi, M. Ungarish, D. Petrolo, V. Di Federico and S. Longo

computational fluid dynamics models (Longo et al. 2018), confirming within the usual
accuracy the theoretical predictions of front speed and amplitude and wavelength of
the free-surface depression. Experiments in similar conditions have been carefully
conducted and documented in Sciortino, Adduce & Lombardi (2018), obtaining
similar results.

A subsequent analysis by Ungarish (2019) has extended the theoretical model to a
channel with a cross-section of generic shape. The extension is far from trivial, since
while for a rectangular channel a two-dimensional model describes the kinematics of
fluid particles, for a channel of generic cross-section three-dimensional effects become
relevant.

The present study combines all three system characteristics introducing additional
complexity: (i) non-Boussinesq regime; (ii) non-rectangular cross-section of circular
shape and (iii) the presence of an open surface. This configuration is novel and
significantly different with respect to the pioneering configuration studied by Benjamin.
The main properties of the GC, like the front speed and the free-surface depression,
are still well predicted by the theory, which becomes more and more consolidated,
and there are several hints that further complexities can be confidently handled by
using the same analytical tools and the same experimental arrangements, with proper
adaptations, but without changing the approach and without loss of accuracy.

The experimental validation of a simple model that can describe a complex flow
field is a key element to assess the overall validity of the approach. We notice that
the mathematical model is as simple as possible and does not require calibration. As
a consequence, the perfect overlap between theory and experiments is not pursued
nor is achieved: the model neglects dissipation (except for discontinuities and jumps),
entrainment and higher order effects due to coupling between the current and free-
surface waves. All these effects generally determine a reduction in the front speed and
free-surface depression measured in the experiments with respect to the theory, but the
overall trends of the experimental results correctly follow the theoretical predictions.

In addition to the free-surface depression following the advancing current (this is
a wave bound to the front of the current), there are other (free) gravity waves which
develop and propagate forward and back in the channel due to reflection. The topic
is of interest since it elucidates the role of GCs which propagate on the bottom
in free-surface distortion, which, in turn, plays a role in chemical, heat and gas
transfer between atmosphere and water bodies. The free-surface patterns (capillary
and gravity waves, ripples, see Brocchini & Peregrine 2001; Longo 2010, for a
detailed description) are variegate and indicate an advective energy transfer within
the interior domain, mainly from the body of the current to the free surface. In
other situations, the free-surface waves strongly influence the GC dynamics (see, e.g.
Robinson, Eames & Simons 2013; Stancanelli, Musumeci & Foti 2018). The topic
has a strong environmental interest since the interaction between waves and GCs
(generated by heating and cooling, or due to the inlet of fresh water in estuarine
zones) is almost ubiquitous in shallow coastal areas.

The exact nature and source of the free waves detected in the present experiments
require attention. These free waves were already detected in a rectangular channel
(Longo et al. 2018), and the present experiments provide evidence that they are strictly
related to the process and are not due to interferences or spurious effects like, for
example, a gate lift. In fact, in the experiments described by Longo et al. (2018) the
gate was up-lifted, with some initial disturbances due to fluid adhering to the gate;
these disturbances were reduced with the insertion of two short horizontal lids on
both sides of the gate. On the contrary, in the present experiments the gate is lowered:
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with an accurate levelling of the free surface in the lock and in the channel before
starting the experiment, the disturbances are quite limited (as the downward speed of
the metallic plate is modest enough to prevent the inclusion of air bubbles in the fluid
and, at most, only some scars of the free surface can be observed triggered by surface
tension effects), and the free waves are still generated.

The paper is organized as follows. In § 2 the model is formulated and the numerical
code employed to solve the problem is described. The results of numerical integration
are reported and discussed. The experimental layout is described in § 3, while the
experiments are analysed in § 4. The last section contains a discussion and the
conclusions. Some details of the front condition computations and internal waves
(characteristics) are treated in appendix A.

2. Shallow-water formulation and method of solution
We consider a GC in a channel of circular cross-section open to the atmosphere (see

figure 1). Here we use subscripts 1 and 2 to denote dense and less dense fluids. The
density difference 1ρ = ρ1 − ρ2 is positive, but not necessarily small, which means
that we consider both Boussinesq and non-Boussinesq systems. The bottom is at z= 0
and the open surface is at z= Ĥ. Initially, at time t= 0, the open surface of the fluids
is horizontal at Ĥ =H = const.

The open surface implies that (i) the total height is a function of x, t and (ii) the
pressure at the top is a given constant, conveniently set to 0. We write

h1(x, t)+ h2(x, t)= Ĥ(x, t); p2(z= Ĥ)= 0, (2.1a,b)

where hi is the thickness of the layer and pi the pressure of fluid i. It is also
convenient to define the depression of the interface from the initial height

χ(x, t)=H − Ĥ(x, t). (2.2)

These conditions are in contrast to the fixed-top channel case, and the source of
the differences between the formulations. The open-surface case is in general more
difficult for analysis and interpretation. This will be elucidated below. However, there
are significant and useful similarities between the resulting GCs, and hence it makes
sense to follow the methodology used for the fixed-top analysis, with due modification
(Ungarish 2018).

We present briefly the formulation for a general cross-sectional area defined by
the width function f (z) (see figure 1). We keep in mind that the present work is an
implementation for the special case of a section of a circle, as specified later.

The pertinent areas are

A1 =

∫ h1

0
f (z) dz, A2 =

∫ Ĥ

h1

f (z) dz, AT = A1 + A2. (2.3a−c)

The total area AT is a function of x, t, and we denote by AT(0) the value at t = 0
when Ĥ =H. Note that, using Leibniz’s formula, we obtain

∂A1

∂t
= f (h1)

∂h1

∂x
;

∂A2

∂t
= f (Ĥ)

∂Ĥ
∂t
− f (h1)

∂h1

∂t
;

∂AT

∂t
= f (Ĥ)

∂Ĥ
∂t
, (2.4a−c)

and similarly for derivatives with respect to x.
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FIGURE 1. (Colour online) Gravity current with the top of the free surface open to a
constant pressure. (a) Side-view geometry before lock release and (b) after lock release,
with the dense current advancing in the channel. (c) Scheme for a cross-section of generic
shape and (d) for a semicircular cross-section.

The thin-layer or shallow-water (SW) approximation used here is an extension
of the derivation for the fixed-top (and free-slip) two-layer system with a general
cross-section; see Ungarish (2018). Briefly, because the layers are thin (h0� x0), the
x-motion and acceleration are dominant, and hence (i) the local pressure z-balance
is hydrostatic, with pressure continuity at the interface z = h1; and (ii) the motion
can be represented by the averaged (over the local Ai) velocities ūi(x, t), i = 1, 2.
Since the Reynolds number is large, the viscous terms are negligible (except for
some dissipation in jumps) and the x-momentum equations can be expressed by a
simplified balance between averaged inertial terms and hydrostatic pressure gradient
(x-component). The pressure-driving term is dominated by the 1ρ g effect, and is
also referred to as the buoyancy-driving effect. The result of this manipulation yields
a system for the variables h1, h2, ū1, ū2 as functions of x and t. Keeping in mind
that the areas A1, A2 are unique functions of h1, h2, it is sometimes convenient to
interchange between these variables in the formulation.

For simplicity of notation we drop the overbar that denotes the averaged velocity.
We obtain the following results.

The continuity equations, expressing the volume balance of incompressible
non-mixing streams of fluids, read

∂Ai

∂t
+
∂uiAi

∂x
= 0 (i= 1, 2). (2.5)

Both fluids are in z-hydrostatic balance ∂pi/∂z= ρig, and the pressure is continuous
at the interface z= h1 (except for the segments of vertical jumps). Subject to the open-
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surface condition p2(z= Ĥ)= 0, this yields

p1 = ρ2gh2 + ρ1g(h1 − z); p2 = ρ2g(Ĥ − z), (2.6a,b)

and hence the driving pressure effect is

∂p1

∂x
= ρ2g

∂Ĥ
∂x
+1ρ g

∂h1

∂x
;

∂p2

∂x
= ρ2g

∂Ĥ
∂x
. (2.7a,b)

In the basic x-momentum equations for fluid with constant densities ρ1 and ρ2
we replace the pressure terms with (2.7), neglect the viscous terms and integrate the
balance over the cross-sectional area of the corresponding fluid, taking into account
the continuity equation. We obtain the momentum equations for the averaged variables

∂u1

∂t
+ u1

∂u1

∂x
=−

ρ2

ρ1

(
g
∂Ĥ
∂x
+
1ρ

ρ2
g
∂h1

∂x

)
;

∂u2

∂t
+ u2

∂u2

∂x
=−g

∂Ĥ
∂x
. (2.8a,b)

Unlike the fixed-top case, the system (2.5) and (2.8) is not amenable to further
significant reduction. The firm connection A1u1 + A2u2 = 0 of the former case has
been replaced by the more flexible p2(z = Ĥ) = 0 condition in the present system.
A significant difficulty is that both g and g′ = (1ρ/ρ2)g appear in the present
momentum equations.

It is useful to cast the formulation in dimensionless standard form. Let ε=ρ1/ρ2−1,
and g′= εg is the reduced gravity. We introduce the dimensionless variables by scaling
x with x0 of the lock, while the vertical z and lateral y lengths are scaled with h0
of the lock. The velocity is scaled with U = (g′h0)

1/2, and the time with x0/U. The
subsequent variables are in dimensionless form, without any special notation, unless
stated otherwise. In particular, H is the height ratio of the unperturbed ambient to
the lock. We also introduce the formal Reynolds number Re0 = Uh0/ν, where ν is
the kinematic viscosity of the dense fluid (the current). After some manipulation
of continuity equations, we obtain a standard hyperbolic system for the variables
h1, u1, Ĥ, u2; see (A 6). Even for the simple dam-break problem the analytical solution
of this system is a formidable task, and hence we attempt numerical solutions.

For a numerical (finite difference) solution, it is convenient to cast the equations in
conservation form. We introduce the variables

q1 = A1u1; q2 = A2u2; φ = [A1 + A2 − AT(0)]/ε, (2.9a−c)

where AT(0) is the area of the unperturbed ambient. Starting with (2.5) and (2.7) (in
dimensionless form), and using (2.4), we obtain after some algebra

∂Ai

∂t
+
∂qi

∂x
= 0 (i= 1, 2), (2.10)

∂q1

∂t
+
∂

∂x

[
q2

1

A1
+

1
2(1+ ε)

A2
1

f (h1)

]
=−

1
(1+ ε)

A1

f (Ĥ)

∂φ

∂x
−

1
2(1+ ε)

f ′(h1)A2
1

[f (h1)]3

∂A1

∂x
,

(2.11)
∂q2

∂t
+
∂

∂x

(
q2

2

A2

)
=−

A2

f (Ĥ)

∂φ

∂x
. (2.12)
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The variable φ represents the pressure influence in the ambient fluid due to the
displacement of upper surface from the initial position; the scaling with ε renders
this variable of the order of unity for both small and non-small values of ε, and this
is advantageous for the accuracy of the numerical discretization error.

These equations are subject to initial and boundary conditions. At t= 0, fluids are
at rest (q1= q2= 0) with given values of h1, h2 (or A1, A2) in the lock x∈ [0, 1]. The
back wall at x= 0 prevents motion and hence q1 = q2 = 0 there for t > 0. The front
(or nose) x= xN(t) of the current is a discontinuity, denoted by subscript N. Here we
apply the jump conditions derived in Ungarish (2019):

dxN

dt
= u1N = h1/2

1N Fr; h1N + h2N =H − εh1N

(
1−

1
2

Fr2

)
. (2.13a,b)

Here Fr is of the order of unity, but the exact value depends on the geometry and
ε, and is subject to energy and critical-speed restrictions. Note that in the Boussinesq
limit ε → 0, equation (2.13) recovers the fixed-top case: there is no depression of
the interface. The details are given in Ungarish (2019), and briefly summarized in
appendix A for the convenience of the reader.

The free input parameters for this system are: the density ratio r = ρ2/ρ1 (or
ε = 1/r − 1); the height ratio of the current in the lock to the ambient, H; and the
geometry of the cross-section, expressed by the width function f (z). The aspect ratio
h0/x0 has been scaled out from the SW formulation.

Consider the rectangular cross-section case, f (z) = W = const. In this geometry,
A1= h1W,A2= h2W, φ=W(h1+ h2−H)/ε, and the last term on the right-hand side of
(2.11) vanishes. The present formulation then coincides with the problem investigated
in Longo et al. (2018). We therefore adopt for the present problem an extension of the
finite-difference MacCormack code which worked well for that problem. In particular:
(i) to facilitate the numerical solution, we introduce the coordinate transformation ξ =
x/xN(t) (see Ungarish 2009, § 2.3). Now the finite-difference solution is concerned
with the fixed domain ξ ∈ [0, 1], and we can use constant homogeneous intervals
δξ , typically 200, while the time step is typically 5–10 times smaller; (ii) to dampen
numerical spurious oscillations, we add artificial-diffusion terms of the form b(δξ)2vξξ ,
where v is the variable of the equation and b is a constant of order 1. The computer
memory and run time for a typical case of study are insignificant.

In the present investigation the cross-section is a circular profile of width
f (z) = [z(1 − βz/2)]1/2z ∈ [0, H]. Here β = H/R 6 2 is the ratio of the height of
the ambient to the radius of the circle. In our work, we consider the values of 1.5
and 1. Note that we can multiply f (z) by an arbitrary positive constant without
changing the problem and the results. Figures 2 and 3 display some typical SW
solutions for the full-depth release with r= 0.586 and for β = 1,H= 1, corresponding
to the laboratory experiment 5 (table 1), and the partial-depth release with r= 0.587
and for β = 1,H = 4/3, corresponding to the laboratory experiment 12.

As for the rectangular channel experiments (Longo et al. 2018), there is a good
correlation between χ and h1, with a more evident depression where the intruding
current is thicker. This is a consequence of the larger values of the return flow in
the ambient fluid where the denser fluid current is thicker, with a consequent large
reduction of pressure manifested by the stronger depression. Similar SW solutions
have been obtained also for the other systems listed in table 1. The salient results
are reported later, in the context of comparisons with experiments.
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FIGURE 2. (Colour online) Shallow-water results, simulation of experiment 5 (see table 1)
with r= 0.586, β = 1, H= 1, full depth. (a) Thickness of the current, (b) average velocity
of the current and (c) free-surface depression at t= 0.5, 1, . . . , 5 with a time step equal
to 0.5.
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FIGURE 3. (Colour online) Shallow-water results, simulation of experiment 12 (see
table 1) with r = 0.587, β = 1, H = 4/3, partial depth. (a) Thickness of the current,
(b) average velocity of the current and (c) free-surface depression at t = 0.5, 1, . . . , 5
with a time step equal to 0.5.

3. The experimental layout and procedures
For a realistic observation of the flow field, and for the acquisition of reliable data

for the validation of the theoretical models, we performed a series of experiments
at the Hydraulic Laboratory of the University of Parma. A circular channel with
internal radius of 9.5 cm and approximately 400 cm long, with walls in poly(methyl
methacrylate), was used. Two different locks were employed, with a length of 52
and 103.5 cm respectively (see figure 4a,b). The gate was a stainless steel plate in a
guillotine arrangement, 0.1 cm thick, lowered by hand. The opening of the gate took
approximately 0.4 s. A micro-switch closed by the gate was used to trigger the data
acquisition for the sensors and also switched on a light-emitting diode initially in
the field of view of the video camera used to record the position of the front of the
current. The video camera, a Canon Legria HF 20 full HD (1920 pixel× 1080 pixel)
at 25 frames per second, was used by an operator in order to follow the front of the
GC as reflected by a mirror. A grid was attached to the tube and could be observed
in the mirror in order to obtain the reference position of the advancing tip of the
current. The resolution was better than 0.005 cm pixel−1; the overall uncertainty due
to error in positioning the grid and to parallax distortion was less than 0.1 cm.

The measurement of the depression of the surface was a major challenge in our
experiments. Four ultrasound distance meters (US1, US2, US3, US4) (TurckBanner
Q45UR) were positioned on the top of the channel. Since the instruments have a
blind zone of 5 cm, it was necessary to insert a circular guide to increase their
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Expt H β x0 h0 r ε ν g′ U T Re0

(cm) (cm) (cm2 s−1) (cm s−2) (cm s−1) (s) (×103)

1 1 1.5 103.5 14.25 0.841 0.188 0.012 185 51.3 2.017 61 NaCl
2 1 1 103.5 9.5 0.846 0.182 0.012 179 41.2 2.511 33
5 1 1 52 9.5 0.586 0.705 0.174 692 81.1 0.641 4 K2HPO4

6 1 1 52 9.5 0.691 0.447 0.044 438 64.5 0.806 14
8 1 1.5 52 14.25 0.597 0.675 0.162 662 97.1 0.535 9
9 1 1.5 52 14.25 0.711 0.407 0.039 399 75.4 0.690 28
10 1 1.5 52 14.25 0.872 0.146 0.027 143 45.2 1.150 23
15 1 1.5 52 14.25 0.939 0.065 0.012 64 30.2 1.724 36
4 4/3 1 103.5 7.125 0.837 0.194 0.012 191 36.9 2.808 22 NaCl
7 4/3 1 52 7.125 0.691 0.447 0.044 438 55.9 0.931 9 K2HPO4

12 4/3 1 52 7.125 0.587 0.704 0.174 691 70.2 0.741 3
16 4/3 1.5 52 10.7 0.939 0.065 0.012 64 26.1 1.990 23
3 3/2 1.5 103.5 9.5 0.841 0.188 0.012 185 41.9 2.471 33 NaCl
11 3/2 1.5 52 9.5 0.872 0.146 0.027 143 36.9 1.409 13 K2HPO4

13 3/2 1.5 52 9.5 0.584 0.713 0.174 700 81.5 0.638 4
14 3/2 1.5 52 9.5 0.688 0.454 0.044 445 65.0 0.800 14

TABLE 1. Parameters of the experiments in a circular channel of radius R= 9.5 cm, for
H = H∗/h0, β = H∗/R (with the superscript ∗ indicating a dimensional variable), Re0 =

Uh0/ν, where ν is the kinematic viscosity of the current fluid. The last column indicates
the chemical formula of salt added to obtain the current fluid.

distance from the free surface of the ambient fluid. The instruments have an accuracy
of 0.03 cm and a data rate of 100 Hz. Occasionally, when the free surface breaks or
is distorted by the waves with a strong curvature, the echo is lost and some spikes
appear in the signal.

In a first series of experiments, sodium chloride (NaCl) was added to softened
tap water in order to obtain high-density fluid (ρ 6 1.200 g cm−3). To overcome
the density limit of sodium chloride, dipotassium phosphate (K2HPO4) was used,
reaching a maximum density ρ 6 1.710 g cm−3. Dipotassium phosphate is not toxic,
can be easily bought since it is used in the food industry and it is much cheaper than
other salts (e.g. sodium iodide) used to prepare high-density brines. We measured the
values of the viscosity of the brines with a Ubbelohde viscometer, obtaining values
one order of magnitude larger for high-density dipotassium phosphate-based brines
with respect to sodium chloride-based brines. The Reynolds number is significantly
reduced, but in all experiments it is high enough to ensure a non-viscous initial
regime. Aniline dye was added in order to make visible the intruding current.

3.1. The uncertainty in variables and parameters
The variables and the parameters of the experiments are affected by an uncertainty
which is estimated on the basis of the instrument characteristics and of the process
of measurement. Mass density was measured by a densitometer with an accuracy of
10−3 g cm−3, and hence the corresponding uncertainty for r= ρ2/ρ1 is 1r/r 6 0.2 %,
with an uncertainty in the reduced gravity g′ equal to 0.2 %. The level of the ambient
fluid and of the intruding fluid in the lock was fixed with an accuracy of 0.1 cm and
the relative uncertainty is 1H/H 6 1 % and 1h0/h0 6 1 %. The ratio H/h0 is affected
by an uncertainty at most equal to 2 %. The velocity scale had an uncertainty 1U/U6
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x0 = 52-103.5 cm 409 cm
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Micro switch

Mirror

11
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74 86.5 134

(a) (b)

(c)

US level
gauge

9.5 cm

x

Lock

FIGURE 4. (Colour online) The layout of the experimental set-up. (a) The channel with
the lock and four ultrasound distance meters; (b) the cross-section of the channel; (c) the
guillotine gate. Distances are in centimetres.

0.6 % and the time scale had an uncertainty equal to 1T/T 6 1.6 %. The Reynolds
number had an uncertainty equal to 1Re0/Re0 6 2.6 %, also based on the assumption
of an uncertainty of 1 % in estimating the kinematic viscosity. The free-surface level
of the ambient fluid measured by the ultrasonic distance meters had an uncertainty of
0.03 cm.

4. The experiments
Sixteen experiments were performed, four with a long lock and twelve with a short

lock. Note that x0/h0 was larger than 3.6 in all experiments in accord with the thin-
layer approximation of the SW model. Table 1 lists the main parameters for each
experiment and figure 5 shows, for experiment 5, the advancement of the current in
the domain near the lock through a series of snapshots; these show the formation
of the depression behind the current nose. For a clearer view of the effect of the
intruding current on the ambient fluid, figure 6 depicts the free-surface profiles for
some snapshots of the same experiment. Some parts of the profiles are missing due
to a limited contrast of the original frames.

The front position expressed in dimensionless variables is shown in figure 7
for all the experiments. For ease of visualization, the symbols related to a group
of experiments with similar parameters have been translated vertically and the
experimental data have been re-sampled with a uniform space step. The SW
simulations predict a slumping phase with almost constant uN until about xN = 10 (for
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t = 0.4 s t = 1.6 s

5 cm

t = 2.8 s

FIGURE 5. (Colour online) A sequence of snapshots showing the free-surface shape near
the lock, experiment 5. The dashed green horizontal line is the still water level. The time
step between two snapshots is 0.4 s.

a typical case, see figures 2b and 3b). In the experiments we detected a slight speed
reduction starting at about xN = 3–4, with the exception of the long-lock currents,
whose propagation was limited by the length of the channel. This deviation from
the SW prediction is attributed to viscous and perhaps entrainment effects which are
not included in the theoretical model. Indeed, when comparing experiments 7, 12
and 16 (the mid-group in figure 7 with H = 4/3), the strongest deceleration is for
experiment 12, which has the smallest value of Re0 (3 × 103), while experiment 16
with the largest Re0 (23× 103) displays fairly constant speed, and experiment 7, with
Re0 = 9× 103, is in between.

For experiments with low values of r=ρ2/ρ1, an initial acceleration can be detected
by observing the raw data (not shown), indicating that the inertia of the fluid initially
counteracts gravity. Figure 8 shows a comparison between the theoretical and the
experimental front speed uN , computed by fitting a line in the slumping phase. The
theory always overestimates the experiments, with a difference below 30 %. The
agreement is better for experiments with β = 1 (circular cross-section half filled with
ambient fluid) and with full-depth release. The experiments with β = 1.5 generally
show more disperse results. In particular, the full-depth release experiments show
a modest reduction for increasing r, a trend opposite to the theory. We notice that
the free-surface waves developing in these experiments can significantly couple with
the advancing GC, producing variable effects not included in the present model. In
particular, the oscillatory motion induced by these waves can favour dissipation and
generally modifies the return current in the ambient fluid; see also Stancanelli et al.
(2018) for details of these effects.

Figure 9 shows a comparison for the experiments in a rectangular cross-section
(Longo et al. 2018; Sciortino et al. 2018) and the present experiments, in both cases
for H = 1. Only experiments with β = 1 are considered, since they represent a
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0.8
t = 0.36 s

t = 1.32 s

0.4
0

-0.4
-0.8

z (
cm

)

52 58 64 70 76 82 88 94 100 106
x (cm)

FIGURE 6. (Colour online) Free-surface profiles determined from the snapshots shown in
figure 5. The red dashed line is the front position. The time step between two panels is
0.16 s.

clear-cut expanding profile with f ′(z) > 0 to contrast with the geometry with f ′(z)= 0
of the rectangular cross-section (the other experiments with β = 1.5 are characterized
by a change of sign of f ′(z), which significantly influences the free-surface wave
propagation – it is not a clear-cut comparison with the rectangular case). Both
theory and experiments show higher front speed for the circular-cross-section
channel. However, while for the rectangular case is evident a local maximum in
the experimental data, with a maximum front speed (and a minimum discrepancy
with theory) for r ≈ 0.7, for the circular case there is no clear evidence. Possibly
some tests with r < 0.6 could clarify the trend, but they are beyond the present
experimental capabilities since it is extremely difficult to prepare fluids with mass
density ρ � 1.700 g cm−3. Figure 10 shows a comparison between theory and
experiments for the dimensionless depression, with the experimental depression
computed as the average of the free-surface profile behind the nose of the current
during the slumping phase. According to theory, this depression is proportional to ε:
among the displayed points, the smallest depression is for experiment 16 (ε = 0.07)
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FIGURE 7. (Colour online) The propagation distance of the currents measured from the
back wall in the lock for experiments with H= 1, 4/3, 3/2 and β = 1, 1.5. Filled symbols
with black contour refer to long-lock experiments (1–4 with x0 = 103.5 cm); the other
symbols refer to short-lock experiments (5–16 with x0 = 52 cm). One point in two is
shown and data for experiments in partial depth have been translated in the vertical of
D= 5 units (H = 4/3) and D= 10 units (H = 3/2) for ease of visualization. The straight
lines indicate a constant speed of the front occurring during the slumping phase.
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FIGURE 8. (Colour online) The comparison between theoretical (lines) and experimental
(symbols) front speed. (a) Configuration with β=1 and H=1 (solid line and filled circles)
and H = 4/3 (dashed line and open circles); (b) configuration with β = 1.5 and H = 1
(solid line and filled circles), H = 4/3 (dashed line and open circles) and H = 3/2 (dash-
dotted line and open triangles). The error bars indicate plus/minus one standard deviation.

and the largest is for experiment 8 (ε= 0.68). As for the front speed, the experimental
depression is systematically lower than the theoretical one, and for some experiments
the difference is up to 40 %. A similar behaviour was also detected for experiments
in a rectangular cross-section. Amongst the possible explanations there are (i) the
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r
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FIGURE 9. (Colour online) The comparison between theoretical (lines) and experimental
(symbols) front speed for the present experiments, β = 1 and H= 1, and experiments with
a rectangular-cross-section channel described in Longo et al. (2018) and in Sciortino et al.
(2018), again with H = 1. The error bars indicate plus/minus one standard deviation.
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FIGURE 10. (Colour online) The comparison between theoretical and experimental
free-surface depression in correspondence with the nose of the advancing current.
(a) Theoretical versus experimental depression, where the line indicates perfect agreement;
(b) relative error in depression estimation. The error bars indicate plus/minus one standard
deviation.

presence of reflected free-surface waves which modulate the bound wave and limit the
accuracy of the estimation of χ ; (ii) the presence of billows which favour bursting,
with coherent structures hitting the free surface; and (iii) the lower experimental front
speed with respect to the theoretical one.
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FIGURE 11. (Colour online) The comparison between theoretical and experimental
free-surface depression for experiment 5, full-depth lock release, H = 1, β = 1, r= 0.586.
(a) Comparison at section where US1 is located, x= 11 cm from the gate; (b) comparison
at section where US2 is located, x = 85 cm from the gate. The continuous grey and
coloured curves are the measured and the filtered depressions, respectively; the dashed
curves are the numerical results; the vertical dashed lines correspond to the time of arrival
of the front of the current.

More details of the comparison between theory and experiments are given in
figure 11, where the time series of the simulated and measured free-surface depression
is shown at two different cross-sections. Figure 11(a) refers to the section at x=11 cm
from the gate. We first notice that a positive wave (bump) develops immediately after
opening the gate (opening the gate with our guillotine gate means lowering the
screen). Then a sequence of small-amplitude waves develop, and finally a dominant
depression appears. The grey curves are the measured free-surface elevation and
the coloured curves are the free-surface elevation low-pass filtered with a cut-off
dimensionless frequency equal to 1, in order to eliminate the small-amplitude
oscillations. A similar scenario is observed in figure 11(b), where the time series
refer to a section at x= 85 cm from the gate. The experimental depression lags the
front of the current, lasts longer and is overestimated by numerical simulations. The
different duration is due to the discrepancy of the front speed of the current between
theory and experiments (see figure 8), with experimental values always smaller than
the numerical ones.

Similar results can be observed for a partial-depth lock release; these are shown in
figure 12. The partial-depth case shows an experimental depression with a composite

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

22
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.226


Non-Boussinesq gravity currents 625

0 2 4 6 8 10
t

0.04

0.02

0

-0.02

-0.04

0.04

0.02

0

-0.02

-0.04

-ç

-ç

(a)

(b)

FIGURE 12. (Colour online) The comparison between the theoretical and experimental
free-surface depression for experiment 3, partial-depth lock release, H= 3/2, β = 1.5, r=
0.841. For description of the panels, see figure 11.

pattern of waves. We notice that the dimensional value of the depression is lower than
for the full-depth lock release; hence perturbations and free-surface waves are more
effective in modulating the depression.

4.1. Free waves
As for the rectangular cross-section, the depression of the free surface bound to the
front of the current is preceded and followed by several free waves much faster than
the current. A typical sequence of free-surface oscillations is shown in figure 13,
with an initial solitary wave followed by the smaller-amplitude free-surface waves.
The depression bound to the front of the current and recorded by the first ultrasound
distance meter US1 is modulated only by the small-amplitude waves until the reflected
solitary waves reach the section where the sensor US1 is located (x = 11 cm from
the gate), ≈10 s after the opening of the gate. The depression recorded by the
second sensor US2 is delayed with respect to that recorded by US1 and is erased
by the reflected waves after ≈8.7 s. Due to reflections, the signals from sensors
US3 and US4 are useless for measuring the bound wave, since they are affected by
reflection before the arrival of the front of the current; nevertheless, they are useful
for calculating the celerity of the free surface, for monitoring the channel performance
and for properly measuring the time interval unaffected by reflections.

In order to analyse the nature of these free-surface waves, let us consider (A 7)
which relates the eigenvalues of the hyperbolic system describing the flow motion. In
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FIGURE 13. (Colour online) Free-surface displacement recorded by the ultrasound distance
meters US1–US4 for experiment 2, H = 1, β = 1, r = 0.846. The vertical lines indicate
the time of arrival of the front of the current in the sections where the distance meters
are located, and the arrows indicate the initial peak (p1–4) and the reflected peak (rp1–4).
The vertical line for US4 is out of the diagram.
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FIGURE 14. (Colour online) Free-surface displacement recorded by the ultrasound distance
meters for experiment 9, H = 1, β = 1.5, r= 0.711. For description, see figure 13.

the domain where u1 = u2 = 0 the equation reads

ελ4
−

[
A2

f (Ĥ)
+ εr

A1

f (h1)
+ r

A1

f (Ĥ)

]
λ2
+ r

A1

f (h1)

A2

f (Ĥ)
= 0, (4.1)

which for small ε yields the following solutions:

λ1.2 ≈±

√
A1A2

f (h1)(A1 + A2)
, λ3,4 ≈±

√
A1 + A2

εf (Ĥ)
. (4.2a,b)
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The eigenvalues λ3,4 are ‘fast waves’ which in the unperturbed domain, where h1→ 0,
are equal to

λ=±

√
AT

εf (H)
, (4.3)

and, in dimensional form

λ∗ =±

√
g

A∗T
f ∗(H∗)

. (4.4)

Equation (4.4) represents also the celerity of perturbations (free-surface waves
of infinitesimal height) travelling downstream and upstream in a channel with
homogeneous fluid at rest, i.e. of long waves of infinitesimal amplitude (Lagrange
celerity equation, see Chow 1959). These perturbations are much faster than the
characteristics controlling the GC and the front speed of the GC, and are independent
of the density of the ambient fluid. The ratio A∗T/f

∗(H∗)≡ H∗ is also defined as the
hydraulic average depth, coincident with the local depth for a rectangular-cross-section
channel (see equation (15) in Longo et al. 2018).

For finite-amplitude perturbations, we can model the solitary wave in a homogeneous
fluid in a circular channel with the following celerity (Peregrine 1968; Teng & Wu
1992):

c∗2 = gH∗
[

1+
(

1−
1
3

k2bH∗
)
δ

H∗

]
, (4.5)

where δ is the dimensional amplitude of the crest, b = f ′(H∗)/f (H∗) and k is a
shape coefficient equal to 1.06 for a circular cross-section. Note that (4.4)–(4.5) are
monotonically increasing with H∗ (the latter if b < 0, equivalent to β > 1), hence
higher values of H∗ or increasing values of δ give faster propagating waves.

The experimental phase celerity can be estimated by observing the signal of the
ultrasound probes. For the initial bump in experiment 2 the time delay of the initial
peak (the peaks are indicated by arrows in figure 13 with symbols p1–4) between the
sensors US1–US2, US2–US3 and US3–US4, respectively, gives an average celerity of
72± 0.5, 80± 0.5 and 86± 0.5 cm s−1, compared to the theoretical celerity in (4.4)
equal to 85.5± 0.5 cm s−1, and to 88± 1 cm s−1 if it is computed according to the
solitary wave celerity in (4.5). The second high peak for US4, indicated by rp4, is
due to reflection at the end wall of the channel. The average celerity of the bump p4,
propagating downstream and then upstream (the reflected component of p4 is rp4) is
equal to 91± 0.5 cm s−1, again in good agreement with the theory. A similar analysis
for the other reflected peaks cannot be performed since the sections where the sensors
US1–US3 are located are reached by the intruding current before the arrival of the
reflection, hence the reflected wave partly propagates in a domain where the return
flow is present, and where the approximation giving (4.4) does not hold.

A similar analysis for experiment 9 gives 91± 1, 106± 1 and 112± 1 cm s−1, with
a theoretical celerity equal to 117.0 ± 0.8 cm s−1 according to (4.4), or to 124.4 ±
1.5 cm s−1 according to (4.5). Considering also p4 and rp4 (the peak due to reflection)
yields an average celerity of 113± 1 cm s−1.

In both experiments there is a progressive acceleration of the initial bump, which
far from the lock shows a celerity very close to the theoretical predictions. We also
notice an increment of the crest amplitude from US1 to US3, followed by a small
damping in the section of US4. In passing, the bump amplitude is of the same order
as the depression. The bump is a long wave which interacts with the entire water
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column, hence we expect that the reflected bumps also interfere with the advancing
dense current, reducing its front speed. In the present experiments we could not detect
the reduction, which is presumably of the same order as the experimental fluctuations
of the measurements.

A second family of free waves is represented by small-amplitude short-period waves
(wave height of a few millimetres) in the tail of the initial bump, clearly visible
when superimposed on the depression, indicated in figure 13 only for sensor US1.
Their celerity is estimated by evaluating the time delay of the peak of the cross-
correlation of the signals of two neighbour sensors. For experiment 2 the analysis
yields an average celerity of 74 ± 0.5, 79 ± 0.5 and 80 ± 0.5 cm s−1, quite similar
to the values obtained for the initial bump. For experiment 9, the results are 75± 0.5,
107± 0.5 and 113± 0.5 cm s−1, again similar to the celerity estimated for the bump.

We notice that there is a spatial evolution of these short waves, with a frequency
reduction from US1 to US2 for experiment 2 (the frequency is hardly detectable from
the signal of US3 and US4), and an increase for experiment 9. The frequency variation
can be related to the fact that these short waves propagate on an unsteady current
also with unsteady depths (see Haller & Tuba Özkan-Haller 2007); there is also the
dispersivity due to higher order effects, as evident in (4.5). The wavelength of the
waves is approximately 40 and 50 cm for the two different experiments. Since free
(linear) gravity waves affect a water column depth equal to half their wavelength, we
conclude that the short waves recorded in the present experiments propagate in the
intermediate regime (they ‘feel’ the bottom) and interact with the entire flow domain
underneath, including the dense fluid current advancing near the bottom of the channel.
However, the effects of the interaction are weak since the wave height is quite low.

On a final note, it is worth mentioning that specific efforts were made to limit
spurious disturbances caused by the experimental setting. First, the gate had a
downward movement, thus avoiding falling drops during opening; moreover, the
volume of the initial crest is less than 5 cm3, substantially smaller than the volume
of the lowered gate (nearly 13 cm3); furthermore, the very limited volume of fluid
dislocated by the lowered gate is not sufficient to transfer the energy contained in
the observed waves. Other distinctive features of the oscillations in the trailing edge,
like the period and the train evolution, exclude that the source of oscillation is the
disturbance due to the gate. Finally, the channel length allowed enough time to collect
data free from reflection effects.

5. Discussion and conclusions
We performed a combined theoretical and experimental study of lock-release inertial

GCs. The systems under investigation are novel in several respects: non-Boussinesq,
with open surface and in a long channel with semicircular cross-section (a prototype
for the non-rectangular case). We used a novel SW formulation (including a very
recent front condition, see Ungarish 2019), and focused attention on the acquisition
of data for the motion of the open-top surface (in addition to data for the motion of
the current). We demonstrated that the propagation of the GC on the bottom produces
a clear fingerprint on the upper surface, which can be evaluated by the simple SW
model. We think that this provides a useful addition to the body of knowledge on the
GC phenomena. We emphasize that the semicircular cross-section used here is just a
particular test case, and the theory can be easily adapted to other cross-sections of
interest like triangles and trapezoids.

The need to extend the available models for GCs to more complex situations than
the simple one analysed by Benjamin has suggested this new set of experiments
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validated through a new formulation of the fundamental equations. The open
top, the non-Boussinesq regime and the non-rectangular cross-section channel are
conditions which require a two-layer SW model with proper modifications to
include area-averaged variables. We demonstrated that the SW theory is able to
solve such systems within the same approximation error as for the simpler system
(Boussinesq, two-dimensional rectangular). The theory is self-contained (with no
adjustable empirical coefficients), and the numerical solution of the SW system can
be obtained in a short run time on simple computers. This is, in our opinion, of
practical importance, because the other alternative for theoretical predictions, by
Navier–Stokes numerical simulations, requires large memory and time resources for
such systems. We showed that the geometry of the cross-section plays an important
role; in particular, the propagation in a semicircle is faster than in a rectangle. This
result is of practical relevance for the design of fluid-transport systems and in the
interpretation of environmental flows.

The experiments were performed with r ranging from 0.587 to 0.939, with two
different lock lengths, measuring the front speed and the free-surface depression in
several sections. The analysis of the celerity of the free-surface waves indicates that
these waves are not experimental artifacts, but are consistent with the theoretical
model since they propagate according to the ‘fast’ eigenvalues of the hyperbolic
system of equations. We notice that a similar result was obtained for the depression
(a wave bound to the front of the current) measured in a rectangular channel (Longo
et al. 2018): if a top lid was present, the depression manifested itself as a pressure
reduction in the ambient fluid, hence the presence/absence of the top lid simply
changed the appearance of an intrinsic phenomenon. Specific conclusions of the
present work are the following.

(i) The lock release of GCs advancing in a circular horizontal channel, with the
top open to the atmosphere, shares many aspects with GCs propagating in
rectangular-cross-section channels in similar conditions, with a depression of
the interface between the ambient fluid and the atmosphere. The analytical
model in its extended formulation is adequate for predicting the front speed
of the intruding current and the surface depression, with the theoretical values
systematically overestimating experiments, but with a fairly good agreement in a
broad range of density ratios r (0.584–0.939).

(ii) In addition to the depression, there are free waves propagating faster than the
intruding current: an initial bump and short waves with small amplitude. Their
celerity is well predicted by the model and equals two of the four eigenvalues
(the ‘fast’ ones), at least in the part of the channel where the ambient fluid is still
at rest. They are coincident with the free-surface waves of infinitesimal amplitude
in an open channel flow. The analysis of the short waves suggests that they are
modulated by the underneath flow field and interact with the advancing GC, even
though the interaction is weak due to their low energy.

(iii) The overall agreement between theory and experiments is similar to that obtained
for other GCs simulated with the SW model. The discrepancies are due partly
to the accuracy limits of the experiments, and partly to the simplification of
the model which completely neglects several phenomena affecting the flow
motion, e.g. entrainment, dissipation, perturbations in the upstream ambient
fluid and viscous effects (more evident at non-large Reynolds number). Indeed,
the SW model is an averaged-velocity approximation of a very complicated
flow-field system, and it is supposed to reproduce only the global behaviour of
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realistic flows. The advantage of a model as simple as possible is the absence
of adjustable empirical parameters. We notice that a direct numerical simulation
cannot be performed for the considered three-dimensional time-dependent
non-Boussinesq GC, and that the available computational fluid dynamics codes
introduce anyway some parameters for modelling turbulence and are extremely
time consuming. In addition, their extensive application is not feasible even for
a regular geometry like a circular channel.

(iv) This is the first paper concerning this complex problem, with the inclusion of
numerous aspects in a holistic approach. Further investigations are required to
disentangle the complexities.

The present work can be extended in several directions. First, similar studies
for other geometries will be beneficial for enhancing confidence, and perhaps
providing additional insights. Second, Navier–Stokes simulations can provide
accurate diagnostic studies of the approximation errors of the SW model, and
indicate possible improvements. Third, modifications of the SW model are formally
possible by including friction and mixing/entrainment effects (La Rocca et al. 2008;
Adduce, Sciortino & Proietti 2011). The problem is that these effects depend on
empirical coefficients which are unavailable for non-Boussinesq non-rectangular
systems, and hence the theoretical work must be closely coupled with dedicated
experiments/simulation. We hope that the present paper will motivate, and guide, the
extensions in future work.

Appendix A. Calculation of Fr, characteristics and critical uN

The nose of the SW current is a discontinuity. We need a jump condition which
relates the heights h1,2 to speeds u1,2 at the position x= xN .

We enclose this discontinuity by a thin-x control volume and consider balances of
volume, momentum and energy. The balance equations turn out to be as for a steady-
state current, a case solved by Ungarish (2019). Suppose that h1 is known. We obtain

u1 = h1/2
1 Fr; h2 =H − h1 − χ; u2 =

(
1−

A0

A2

)
u1. (A 1a−c)

Parameters Fr and χ are calculated numerically from the following system:

χ = εh
(
1− 1

2 Fr2
)
, (A 2)

(
A0

A2
− 1+

A1 + A2

2A0

)
Fr2
=

A2

A0
+

1
εhA0

∫ H

H−χ
(H − z)f (z) dz+

1
hA0

∫ h

0
zf (z) dz, (A 3)

where h= h1 and

A1 =

∫ h1

0
f (z) dz; A2 =

∫ H−χ

h1

f (z) dz; A0 = AT(0)=
∫ H

0
f (z) dz. (A 4a−c)

The system is solved by iterations: guess Fr, calculate χ by (A 2), correct Fr by (A 3).
A convenient starting point is Fr= 1. As shown in Ungarish (2019), solutions exist for
f (z) of interest, including the circular cross-section considered in this paper. However,
the numerical evaluation of Fr and χ (and actually of the pertinent GC) must be
subjected to two constraints.
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First, the energy dissipation of the jump domain must be non-negative. Balancing
the in-flow and out-flow of the control volume, we can express this condition as

Fr 6
A2

A0

√
2. (A 5)

This gives an upper limit to h1N .

A.1. Critical conditions
The second constraint accounts for the possibility of the fluid released from the
lock staying attached to the jump. This can be expressed as a critical speed. The
propagation cannot be with a larger, or supercritical, value.

We recall that the SW equations are a hyperbolic system of partial differential
equations. The flow in the domain 0 6 x 6 xN(t) is dominated by characteristics, and
hence dxN/dt = u1 cannot exceed the speed of the corresponding characteristic; this
is referred to as the subcritical flow condition.

The SW system of (2.5) and (2.8) can be rewritten for the variables h1, u1, Ĥ, u2

as follows:


h1
u1

Ĥ
u2


,t

+



u1
A1

f (h1)
0 0

r u1
r
ε

0

(u1 − u2)
f (h1)

f (Ĥ)
A1

f (Ĥ)
u2

A2

f (Ĥ)

0 0
1
ε

u2




h1
u1

Ĥ
u2


,x

= 0, (A 6)

where the comma indicates the partial derivative. The rearrangement requires some
manipulation of the continuity equation for layer 2, and use of (2.4). Recall r= (1+
ε)−1, and h2 = Ĥ − h1.

The characteristics are the eigenvalues λi of the matrix of coefficients, given by

ε(u1 − λ)
2(u2 − λ)

2
− (u1 − λ)

2 A2

f (Ĥ)
− εr(u2 − λ)

2 A1

f (h1)

− r(u1 − λ)(u2 − λ)
A1

f (Ĥ)
+ r(u1 − u2)(u2 − λ)

A1

f (h1)

f (h1)

f (Ĥ)
+ r

A1

f (h1)

A2

f (Ĥ)
= 0.

(A 7)

In general, the solution of these fourth-order equations is not insightful, except for
the requirement that the roots are real. However, interestingly, the criterion for critical
Fr can be obtained. The condition u1 = λ reduces (A 7) to

(u2 − u1)
2
=

[
ε+

f (h1)

f (Ĥ)

]−1 A2

f (Ĥ)
. (A 8)

We apply this condition to the nose jump of the GC where u1 = Frh1/2
1 , Ĥ = H − χ

and u2 − u1 =−(A0/A2)u1.
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Then the critical condition yields

Fr2 h1

H
=

A3
2

A2
0Hf (H − χ)

[
ε+

f (h1)

f (H − χ)

]−1

. (A 9)

This gives an upper limit to h1 = h1N .
In all tested cases, the critical-flow restriction was slightly more severe than the

energy-dissipation limitation.
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