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TAMENESS AND FRAMES REVISITED

WILL BONEY AND SEBASTIEN VASEY

Abstract. We study the problem of extending an abstract independence notion for types of singletons
(what Shelah calls a good frame) to longer types. Working in the framework of tame abstract elementary
classes, we show that good frames can always be extended to types of independent sequences. As an
application, we show that tameness and a good frame imply Shelah’s notion of dimension is well-behaved,
complementing previouswork of Jarden and Sitton.We also improve a result of the first author on extending
a frame to larger models.

§1. Introduction. Good �-frames are an axiomatic notion of independence in
abstract elementary classes (AECs) introduced by Shelah [24, Chapter II]. They are
one of the main tools in the classification theory of AECs. They describe a relation
“p does not fork overM” for certain types of singletons over models of size �. The
frame’s nonforking relation is required to satisfy properties akin to those of forking
in a first-order superstable theory. The definition can be generalized to that of a
good (< α, [�, �))-frame, where instead of types of singletons one allows types of
sequences of less than α-many elements, and instead of the models being of size �,
one allows their size to lie in the interval [�, �).
There are at least two questions one can ask about frames: first, under what
hypotheses do they exist? Second, can we extend them? That is, assuming there is a
frame can we extend it to give a nonforking definition for larger models or longer1

types?
Shelah tackles these problems in [24, Chapters II and III], but the answers use
strongmodel-theoretic hypotheses (typically categoricity in two successive cardinals
� and �+ together with few models in �++), as well as set-theoretic hypotheses (like
the weak generalized continuum hypothesis, 2� < 2�

+
).2

Recently, the two questions above have been studied in the framework of
tame AECs. Tameness is a locality property of AECs isolated by Grossberg and
VanDieren [13] from an argument in [23]. Grossberg and VanDieren have shown
[12,14] that Shelah’s eventual categoricity conjecture from a successor holds in tame
AECs, and the first author [5] (building on work ofMakkai-Shelah [21]) has shown

Received February 3, 2016.
AMS 2010Mathematics Subject Classification. Primary 03C48, Secondary 03C47, 03C52, 03C55.
Key words and phrases. abstract elementary classes, good frames, symmetry.
1The length of a type is the length or indexing set of a tuple that satisfies it. See Section 2.2 for a

definition.
2Shelah also looks at the existence problem in a more global setup and in ZFC in [24, Chapter IV]

but does not study the extension problem there.
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that tameness follows from a large cardinal axiom. Many examples of interest are
also known to be tame.
Under tameness, the second author has shown that frames exist in ZFC assuming
a reasonable categoricity hypothesis [26], and the first author has shown [4] that
frames can be extended to largermodels under the assumption of tameness for types
of length two. In this paper, we further study the frame extension question in tame
AECs. We look at the problem of elongating the frame: extending it to longer types.
Let us discuss a natural approach to the problem and its shortcomings. In stable
first-order theories, we have that ab�

A
B if and only if a�

A
B and b�

Aa
Ba. One

might think that this allows us to define forking for types of all lengths if we have a
definition of forking for singleton types (as in [11]). However, this turns out not to
work in full generality, as good frames only define forking over models.3 We might
want to say that ab�

M
N if and only if there areM ≺ M ′ ≺ N ′ with N ≺ N ′ and

a ∈ M ′ such that a�
M
N and b �

M ′
N ′. This means that a choice must be made for

the modelsN ′ and, especially,M ′ and this choice can cause problems. In particular,
if M ′ is too big, then uniqueness of nonforking extensions can fail. This does not
cause issues in the first-order context essentially because there is a prime/minimal
set containing A and a (namely Aa).
There are two options to work around this issue. The first option is to assume
the existence of a unique prime/minimal extension of Ma; Shelah says that the
frame is weakly successful [24, Definition III.1.1] if this is the case. Shelah proved
[24, Section II.6] that weakly successful frames can be elongated as desired without
any assumption of tameness. Shelah has also shown [24, II.5] that a good �-frame
is weakly successful when the underlying AEC has few models in �++ and certain
set-theoretic hypotheses hold. It is not known whether being weakly successful
follows from tameness.4

The secondoption is to strengthen the condition onnonforking, essentially setting
ab�

A
B if and only if a�

A
B and b�

A
Ba (the noncanonical choice of a cover for

Ba is less important). This loses some information about nonforking, so only works
for certain kinds of types: types of independent sequences. As we show, this has
the advantage of working in a larger class of AECs, i.e., those with frames that
are not weakly successful, although we do assume tameness to prove the symmetry
property.
This brings us to the precise statement of the main result of this paper.

Theorem 1.1. Let K be an AEC with amalgamation andF = [�, �) be an interval
of cardinals.

(1) Assume s satisfies the axioms of a good F -frame, except possibly symmetry.
Then s can be extended to a certain frame s<� which satisfies the axioms of a
good (< �,F)-frame, except possibly for symmetry.

(2) If K is �-tame, then both s and s<� also satisfy symmetry.

3Note that an example of Shelah (see [16, Section 4]) shows that there exists a superstable
homogeneous diagram where extension (over sets) fails for any reasonable independence notion.
4After the initial submission of this paper, it has been shown that being weakly successful follows

from a stronger locality property: full tameness and shortness [25, Section 11].
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The following two questions are open.

Question 1.2.

• If s is a good frame in a tame AEC, must s be weakly successful?
• Is there an example of a good �-frame (necessarily not weakly successful ) that
has no better extension to longer types than independent sequences?

As has already been alluded to, in Theorem 1.1 the frame s is elongated by use of
independent sequences (see Definition 4.1 here, or Shelah [24, Definition III.5.2]).
Independent sequences in that context have been previously studied by Shelah
[24, III.5] and Jarden and Sitton [19]. Throughout these studies, several additional
assumptions have appeared–such as s being weakly successful or having continuity
of serial independence5–that we are able to eliminate or replace with the hypothesis
of tameness.
We present two applications of Theorem 1.1. The first involves a natural notion
of dimension that Shelah introduced with the goal of building a theory of regular
types for AECs [24, Definition III.5.12]: Let us define the dimension of a type p
in an ambient model N , dim(p,N) to be the size of a maximal independent set
of realizations of p in N . In the first-order case, Shelah [22, III.4.21(2)] shows
that, under stability, every infinite maximal independent set of realizations of p has
the same size. In the AEC framework, Shelah [24, III.5.14] first showed that this
held when the frame is weakly successful, and Jarden and Sitton [19] have refined
these hypotheses. The analysis of this paper allows us to show that the dimension
is well-behaved in any tame AEC with a good frame (see Corollary 6.1 and the
surrounding discussion). This gives a natural nonelementary framework in which a
theory of regular types could be studied.
The second application involves the project of extending a frame to largermodels
using tameness.Asmentioned above, the first author has shown that this is possible if
one assumes tameness for types of length two. Analyzing the elongations of frames
allows us to give an aesthetic improvement: we remove this strange assumption
and replace it with only tameness for types of length one (see Corollary 6.9 and the
preceding discussions).While no example of anAEC that is tame for types of length
one and not for length two is known, thinking about this statement led us to the
main theorem of this paper. Further, we are told that Rami Grossberg conjectured
Corollary 6.9 already in 2006 (he told it to Adi Jarden and John Baldwin); our result
proves Grossberg’s original conjecture.
Since this paper was first circulated (June 2014), several applications of Corollary
6.9 have been found. They include Shelah’s eventual categoricity conjecture for
universal classes [29, 30], as well as a downward categoricity transfer for tame
AECs [27] (the latter actually uses the theory of independent sequences in good
frames devoloped in Section 4). In [8], the authors show that a natural good frame
appearing in the Hart–Shelah example is not weakly successful, and in [28] the
second author studies an example of Shelah where a good frame cannot be extended
to all types. These examples show that this paper strictly generalizes Shelah’s study
of independent sequences in [24, Section III.5].

5This and other variations on continuity are defined and explored in Section 5.1.
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The paper is structured as follows. In Section 2, we review background in the
theory of AECs. In Section 3, we give the definition of good frames and prove
some easy general facts. In Section 4, we define independent sequences and show
how to use them to extend a frame for types of singletons to a frame for longer
types.We show all properties are preserved in the process, except perhaps symmetry.
In Section 5, we give conditions under which symmetry also transfers and show how
to use it to define a well-behaved notion of dimension. In Section 6, we prove the
promised applications to dimension and tameness.
This paper was written while the authors were working on Ph.D. theses under
the direction of Rami Grossberg at Carnegie Mellon University and they would
like to thank Professor Grossberg for his guidance and assistance in our research
in general and in this work specifically. The authors would also like to thank the
referee for their helpful report that greatly assisted the clarity and presentation of
this paper.

§2. Preliminaries.
2.1. Abstract elementary classes. We assume the reader is familiar with the
definition of an abstract elementary class (AEC) and the basic related concepts.
See Grossberg’s [9] or Baldwin’s [1] for an introduction to AECs. A more advanced
introduction to frames can be found in [24, Chapter II].
For the rest of this section, fix an AEC K . We denote the partial ordering on K
by ≺, and writeM � N ifM ≺ N andM �= N .
For K an abstract elementary class and F an interval6 of cardinals of the form
[�, �), where � > � ≥ LS(K) is either a cardinal or ∞, let KF := {M ∈ K |
‖M‖ ∈ F}. We writeK� instead ofK{�}, K≥� instead ofK[�,∞) andK≤� instead of
K[LS(K),�].

The following properties of AECs are classical:

Definition 2.1. Let F be an interval of cardinals as above.
(1) KF has amalgamation if for any M0 ≺ M� ∈ KF , � = 1, 2 there exists
N ∈ KF and f� :M� −−→

M0
N , � = 1, 2.

(2) KF has joint embedding if for anyM� ∈ KF , � = 1, 2 there exists N ∈ KF
and f� :M� → N , � = 1, 2.

(3) KF has no maximal models if for any M ∈ KF there exists N � M
in KF .

2.2. Galois types, stability, and tameness. We assume familiarity with Galois
types (see [9, Section 6]). ForM ∈ K and α an ordinal, we write Sα(M ) for the set
of Galois types of sequences of lengthα overM .WewriteS<α(M ) for

⋃
�<α S

� (M )
and S<∞(M ) for

⋃
�∈OR S

� (M ). We write S(M ) for S1(M ) and Sna(M ) for the
set of nonalgebraic 1-types overM , that is:

Sna(M ) := {gtp(a/M ;N) | a ∈ N\M,M ≺ N ∈ K}.
6The definitions that follow make sense for an arbitrary set of cardinals F , but the proofs of most of

the facts below require that F is an interval.
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From now on, we will write tp(a/M ;N) for gtp(a/M ;N). If p ∈ Sα(M ), we
define �(p) := α and dom(p) :=M . Note that α is an invariant of the Galois type
and is referred to as its length.
Say p = tp(ā/M ;N) ∈ Sα(M ), where ā = 〈ai : i < α〉. For X ⊆ α and
M0 ≺ M , write pX � M0 for tp(āX /M0;N), where āX := 〈ai : i ∈ X 〉. We say
p ∈ Sα,na(M ) if ai /∈ M for all i < α, and similarly define S<α,na(M ) (it is easy to
check these definitions do not depend on the choice of ā and N).
We briefly review the notion of tameness. Although it appears implicitly (for sat-
urated models) in Shelah [23], tameness as a property of AECs was first introduced
in Grossberg and VanDieren [13] and used to prove a stability spectrum theorem
there.

Definition 2.2 (Tameness). Let � > � ≥ LS(K) and let G ⊆ ⋃
M∈K S

<∞(M )
be a family of types. We say that K is (�, �)-tame for G if for any M ∈ K≤� and
any p, q ∈ G ∩ S<∞(M ), if p �= q, then there exists M0 ≺ M of size ≤ � such
that p �M0 �= q �M0. We define similarly (�,< �)-tame, (< �, �)-tame, etc. When
� = ∞, we omit it. (�, �)-tame for α-types means (�, �)-tame for ⋃M∈K S

α(M ),
and similarly for < α-types. When α = 1, we omit it and simply say (�, �)-tame.

We also recall that we can define a notion of stability:

Definition 2.3 (Stability). Let � ≥ LS(K) and α be cardinals. We say that K is
α-stable in � if for anyM ∈ K�, |Sα(M )| ≤ �.
We say thatK is stable in � if it is 1-stable in �.
We say that K is α-stable if it is α-stable in � for some � ≥ LS(K). We say that
K is stable if it is 1-stable in � for some � ≥ LS(K). We write “unstable” instead of
“not stable”.
We define similarly stability for KF , e.g., KF is stable if and only if K is stable in
� for some � ∈ F .
Remark 2.4. If α < � , and K is �-stable in �, then K is α-stable in �.

The following follows from [3, Theorem 3.1].
Fact 2.5. Let � ≥ LS(K). Let α be a cardinal. Assume K is stable in � and
�α = �. Then K is α-stable in �.

2.3. Commutative diagrams. Since a picture is worth a thousand words, we make
extensive use of commutative diagrams to illustrate the proofs.Most of the notation
is standard. When we write

M0 [a]

f �� M1
[b̄]

g �� M2.

The functions f and g, typically written above arrows, are always K-embeddings;
that is, f :M0 ∼= f[M0] ≺M1. Writing no functions means that the K-embedding
is the identity. The elements in square brackets a and b̄, typically written below
arrows, are elements that exist in the target model, but not the source model; that
is, a ∈ M1 − f[M0]. Writing no element simply means that there are no elements
that we wish to draw the reader’s attention to in the difference. In particular, it does
not mean that the two models are isomorphic. We sometimes make a distinction
between embeddings appearing in the hypothesis of a statement (denoted by solid
lines), and those appearing in the conclusion (denoted by dotted lines).
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§3. Good frames. Good frames were first defined in [24, Chapter II]. The idea is
to provide a localized (i.e., only for base models of a given size �) axiomatization of
a forking-like notion for a “nice enough” set of 1-types. These axioms are similar
to the properties of first-order forking in a superstable theory. Jarden and Shelah
(in [18]) later gave a slightly more general definition, not assuming the existence of
a superlimit model and dropping some of the redundant clauses. We give a slightly
more general variation here: following [26], we assume the models come from KF ,
for F an interval, instead of just K�. We also assume that the types could be longer
than just types of singletons. We first adapt the definition of a pre-�-frame from
[24, Definition III.0.2.1]:

Definition 3.1 (Pre-frame). Let α be an ordinal and let F be an interval of the
form [�, �), where � is a cardinal, and � > � is either a cardinal or∞.
A pre-(< α,F)-frame is a triple s = (K,�,Sbs), where:
(1) K is an abstract elementary class with � ≥ LS(K), K� �= ∅.
(2) Sbs ⊆ ⋃

M∈KF S
<α,na(M ). ForM ∈ KF and � an ordinal, we write S�,bs(M )

for Sbs ∩ S�,na(M ) and similarly for S<�,bs(M ).
(3) � is a relation on quadruples of the form (M0,M1, ā, N), whereM0 ≺M1 ≺
N , ā ∈ <αN , andM0, M1, N are all in KF . We write �(M0,M1, ā, N) or

ā
N

�
M0

M1 instead of (M0,M1, a,N) ∈�.
(4) The following properties hold:

(a) Invariance: If f : N ∼= N ′ and ā
N

�
M0

M1, then f(ā)
N ′

�
f[M0]

f[M1]. If

tp(ā/M1;N) ∈ Sbs(M1), then tp(f(ā)/f[M1];N ′) ∈ Sbs(f[M1]).
(b) Monotonicity: If ā

N

�
M0

M1, ā′ is a subsequence of ā,M0 ≺ M ′
0 ≺ M ′

1 ≺

M1 ≺ N ′ ≺ N ≺ N ′′ with ā′ ∈ N ′, and N ′′ ∈ KF , then ā′
N ′

�
M ′
0

M ′
1 and

ā′
N ′′

�
M ′
0

M ′
1. If tp(ā/M1;N) ∈ Sbs(M1) and ā′ is a subsequence of ā, then

tp(ā′/M1;N) ∈ Sbs(M1).
(c) Nonforking types are basic: If ā

N

�
M
M , then tp(ā/M ;N) ∈ Sbs(M ).

A pre-(≤ α,F)-frame is a pre-(< (α + 1),F)-frame. When α = 1, we drop it.
We write pre-(< α, �)-frame instead of pre-(< α, {�})-frame or pre-(< α, [�, �+))-
frame; andpre-(<α, (≥ �))-frame instead of pre-(<α, [�,∞))-frame.We sometimes
drop the (< α,F) when it is clear from context.
For s a pre-(< α,F)-frame, � ≤ α, and F ′ ⊆ F an interval, we let s<�F ′ denote
the pre-(< �,F ′)-frame defined in the obvious way by restricting the basic types
and� to models in KF ′ and elements of length < � . If F ′ = F or � = α, we omit
it. For �′ ∈ F , we write s<��′ instead of s<�{�′}.
Remark 3.2. Note that, following Shelah’s original definition, we have defined
nonforking (in the sense of frames) only for nonalgebraic types. However, this
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restriction is inessential: We could expand the definition of nonforking to algebraic
types by saying that an algebraic p ∈ S(M ) does not fork over M0 if and only if
p � M0 is algebraic. This change would not affect whether or not a frame satisfies
the properties given.7

Remark 3.3. The reader might wonder about the reasons for having a special
class of basic types. Following Shelah [24, Definition III.9.2], let us call a pre-frame
type-full if the basic types are all the nonalgebraic types. It can be shown
[24, III.9.6] that any weakly successful good frame can be extended to a type-full
one. Furthermore, there are no known examples of a good �-frame which cannot be
extended to a type-full one. However Shelah’s initial construction [24, II.3] builds a
non type-full good frame and it is not clear that it can be extended to a type-full one
until after Shelah shows that the frame is weakly successful. Thus it can be easier
to build a good frame than to build a type-full one, and most results about frame
already hold in the non-type-full context. In this paper, we will set the basic types
to be the independent sequences, hence getting another natural example of a non
type-full good frame.

Notation 3.4. If s = (K,�,Sbs) is a pre-(< α,F)-frame, thenαs := α,Fs := F ,
Ks := K ,�

s
:=�, and Sbss := S

bs. If F = [�, �), then let �s := �, �s := �.
By the invariance and monotonicity properties, � is really a relation on types.
This justifies the next definition.

Definition 3.5. If s = (K,�,Sbs) is a pre-(< α,F)-frame, p ∈ S<α(M1) is a
type, we say p does not fork overM0 if ā

N

�
M0

M1 for some (equivalently any) ā and

N such that p = tp(ā/M1;N). If s is not clear from context, we add “with respect
to s”.

Remark 3.6. We could have started from (K,�) and defined the basic types as
those that do not fork over their own domain. Since we are sometimes interested in
studying frames that only satisfy existence over a certain class of models (like the
saturated models), we will not adopt this approach.

Remark 3.7. We could also have specified only KF or even only K� instead of
the full AEC K . This is completely equivalent since, by [24, Section II.2], K� fully
determines K .

Definition 3.8 (Good frame). Let α, F be as above.
A good (< α,F)-frame is a pre-(< α,F)-frame (K,�,Sbs) satisfying in addition:
(1) KF has amalgamation, joint embedding, and no maximal models.
(2) bs-Stability: |S1,bs(M )| ≤ ‖M‖ for allM ∈ KF .
(3) Density of basic types: If M � N are in KF , then there is a ∈ N such that
tp(a/M ;N) ∈ Sbs(M ).

7In the statement of the extension property, we would need to require that the nonforking extension
of a nonalgebraic type is nonalgebraic.
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(4) Existence of nonforking extension: If p ∈ Sbs(M ), N � M is in KF , and
� < α is such that �(p) ≤ � , then there is some q ∈ S�,bs(N) that does not
fork overM and extends p, i.e., q� �M = p.

(5) Uniqueness: If p, q ∈ S<α(N) do not fork overM and p �M = q �M , then
p = q.

(6) Symmetry: If ā1
N

�
M0

M2, ā2 ∈ <αM2, and tp(ā2/M0;N) ∈ Sbs(M0), then there

isM1 containing ā1 and N ′ � N such that ā2
N ′

�
M0

M1.

(7) Local character: If � is a regular cardinal, 〈Mi ∈ KF : i ≤ �〉 is increasing
continuous, and p ∈ Sbs(M�) is such that �(p) < �, then there exists i < �
such that p does not fork overMi .

(8) Continuity: If � is a limit ordinal, 〈Mi ∈ KF : i ≤ �〉 and 〈αi < α : i ≤ �〉
are increasing and continuous, and pi ∈ Sαi ,bs(Mi ) for i < � are such that
j < i < � implies pj = p

αj
i � Mj , then there is some p ∈ Sα�,bs(M�) such

that for all i < �, pi = pαi �Mi . Moreover, if each pi does not fork overM0,
then neither does p.

(9) Transitivity: If M0 ≺ M1 ≺ M2, p ∈ S(M2) does not fork over M1 and
p �M1 does not fork overM0, then p does not fork overM0.

We will sometimes refer to “existence of nonforking extension” as simply
“existence”.
For L a list of properties,8 a good−L (< α,F)-frame is a pre-(< α,F)-frame
that satisfies all the properties of good frames except possibly the ones in L. In this
paper, L will only contain symmetry and/or bs-stability. We abbreviate symmetry
by S, bs-stability by St, and write good− for good−(S,St).
We say thatK has a good (< α,F)-frame if there is a good (< α,F)-frame where
K is the underlying AEC (and similarly for good−).

Remark 3.9. Transitivity follows directly from existence and uniqueness by
[24, Claim II.2.18].

Remark 3.10. Theobviousmonotonicity properties hold: If s is a good (< α,F)-
frame, � ≤ α, andF ′ is a subinterval of F , then s<�F ′ is a good (< �,F ′) frame (and
similarly for good−).

Remark 3.11. If T is a superstable first-order theory, then forking induces a
good (≥ |T |)-frame on the class of models of T ordered by elementary submodel.
In the non-elementary context, Shelah showed in [24, Theorem II.3.7] how to build
a good frame from local categoricity hypotheses and GCH-like assumptions, while
the second author [26] showed how to build a good frame in ZFC from categoricity,
tameness, and a monster model. Note that a family of examples due to Hart and
Shelah [15] demonstrates that, in the absence of tameness, an AEC could have a
good �-frame but no good (≥ �)-frame (see [4, Section 10] for a detailed writeup).
Note that for types of finite length, local character implies that nonforking is
witnessed by a model of small size:

8This notation was already used in [26, Definition 2.21].
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Proposition 3.12. Let α ≤ 	. Assume s = (K,�,Sbs) is a pre-(< α,F)-frame
satisfying local character and transitivity. If M ∈ KF and p ∈ Sbs(M ), then there
existsM ′ ∈ K� such that p does not fork overM ′.
Proof. Same proof as [26, Proposition 2.23] (there α = 1 but this does not
change the proof). �
We conclude this section with an easy variation on the existence property that
will be used later.

Lemma 3.13. Assume s = (K,�,Sbs) is a pre-(< α,F)-framewith amalgamation,
existence, and transitivity. SupposeM ≺ M0 ≺ M1 are in KF and f : M0 → M2 is
given withM2 ∈ KF . Assume also that we have ā ∈M1 such that ā

M1

�
M
M0.

There isN �M2 and g :M1 → N extendingf such that g(ā)
N

�
g[M ]
M2. A diagram

is below.

M1 g
�� N

M0

[ā]

��

f
�� M2

��

M

���������

Proof. Extend f to an L(K)-isomorphism f̂ with rangeM2. By existence, there
is some q ∈ Sbs(f̂−1[M2]) that extends tp(ā/M0;M1) and does not fork overM0.
Realize q as tp(b̄/f̂−1[M2];N+). Since tp(ā/M0;M1) = tp(b̄/M0;N+), there is
N++ � N+ and h : M1 −−→

M0
N++ such that h(ā) = b̄. Then, since N++ extends

f̂−1[M2], we can find an L(K)-isomorphism f̂+ that extends f̂ such that N++ is
the domain of f̂+. Set N := f̂+[N++] and g := f̂+ ◦ h. Some nonforking calculus
shows that this works. �
§4. Independent sequences form a good− frame. In this section, we show how
to make a good−S F -frame longer (i.e., extend the nonforking relation to longer
sequences). This is done by using independent sequences, introduced by Shelah
[24, Definition III.5.2] and also studied by Jarden and Sitton [19], to define basic
types and nonforking. Preservation of the symmetry property will be studied in
Section 5, and in Section 6 we will review how to make the frame larger (i.e., extend
the nonforking relation to larger models).
Note that Shelah already claims many of the results of this section (for finite
tuples) in [24, Exercise III.9.4.1] but the proofs have never appeared anywhere.

Definition 4.1 (Independent sequence). Let α be an ordinal and let s be a
pre-F -frame.
(1) 〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent in (M,M ′, N) when:
(a) (Mi )i≤α is increasing continuous in KF .
(b) M ≺M ′ ≺M0 andM,M ′ ∈ KF .
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(c) Mα ≺ N is in KF .

(d) For every i < α , ai
Mi+1

�
M
Mi .

〈ai : i < α〉, 〈Mi : i ≤ α〉 is said to be independent over M when it is
independent in (M,M0,Mα).

(2) ā := 〈ai : i < α〉 is said to be independent in (M,M ′, N) when for some
〈Mi : i ≤ α〉 we have that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is independent in
(M,M ′, N).

(3) We say that 〈ai : i < α〉, 〈Mi : i ≤ α〉 is independent fromM ′ overM in N
if it is independent in (M,M ′, N). We similarly define ā is independent from
M ′ overM in N . When N is clear from context, we drop it.

Remark 4.2. If α = 1, then ā := 〈a0〉 is independent fromM ′ overM in N if
and only if tp(a0/M ′;N) does not fork overM .

This motivates the next definition:

Definition 4.3. Let s := (K,�,Sbs) be a pre-F -frame, where F = [�, �). Let
α ≤ �. Define s<α := (K,

<α

�,S
<α,bs) as follows:

• ForM0 ≺M1 ≺ N inKF and ā := (ai)i<� inN with � < α,
<α

�(M0,M1, ā, N)
if and only if ā is independent fromM1 overM0 in N .

• For M ∈ KF and p ∈ S<α(M ), p ∈ S<α,bs(M ) if and only if there exists
N �M and ā ∈ N such that p = tp(ā/M ;N) and

<α

�(M,M, ā,N).

Lemma 4.4 (Invariance). Let s := (K,�,Sbs) be a pre-F -frame, where F =
[�, �). Let α ≤ �. AssumeKF has amalgamation.Given ā = 〈ai : i < α〉 independent
from M0 over M in M1 and M2 � M0 containing b̄ such that tp(ā/M0;M1) =
tp(b̄/M0;M2), we have that b̄ is independent fromM0 overM inM2.
Proof. Straightforward. �
Remark 4.5. When dealing with types rather than sequences, the N+ in the
definition can be avoided. That is, given p ∈ S�,bs(N) that does not fork overM ,
there is some 〈ai : i < �〉, 〈Ni : i ≤ �〉 such that p = tp(〈ai : i < �〉/N ;N� ) that
witnesses that 〈ai : i < �〉 is independent from N overM in N� .
Lemma 4.6. Let s := (K,�,Sbs) be a pre-F -frame, where F = [�, �). Let α ≤ �.
If KF has amalgamation, then s<α is a pre-(< α,F)-frame.
Proof. Invariance is Lemma 4.4. For monotonicity, one can also use invariance
to see that if ā is independent from M1 over M0 in N and N ′ � N , then ā is
independent fromM1 overM0 in N ′. The rest is straightforward. �
The next result shows that local character and existence are preserved when
elongating a frame:

Theorem 4.7. Assume s := (K,�,Sbs) is a good
− F -frame, where F = [�, �).

Then:
(1) s<� has local character.Moreover, if p ∈ Sα,bs(N) with α < �, then there exists
M ≺ N in K≤�+|α| such that p does not fork overM .

(2) s<� has existence.

https://doi.org/10.1017/jsl.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.1


TAMENESS AND FRAMES REVISITED 1005

Proof.

(1) Assume p ∈ Sα,bs(N) and N = ⋃
i<� Ni with α < � < �, � a regular

cardinal. Then, there is some ā = 〈ai : i < α〉 and increasing, continuous
〈Ni : i ≤ α〉 such thatα < �, p = tp(ā/N ;Nα), and, for all i < α, ai

Ni+1

�
N
Ni .

By Monotonicity for s, tp(ai/N ;Ni+1) ∈ Sbs(N). By Local Character for s,
for all i < α there is some ji < � such that ai

Ni+1

�
Nji

N . By Transitivity for s,

ai
Ni+1

�
Nji

N i . Set j∗ := supi<α ji ; since � = cf(�) > α, we have that j∗ < α.

By Monotonicity for s, ai
Ni+1

�
Nj∗
Ni for all i < α. This is exactly what we

need to conclude that ā is independent from N over Nj∗ in N
α . Thus p =

tp(ā/N ;Nα) does not fork over Nj∗ .
The moreover part is proved similarly: By Proposition 3.12, for each i < α

there existsMi ≺ N in K� such that N
Nα

�
Mi
ai . By Transitivity, Ni

Nα

�
Mi
ai . Now

by the Löwenheim–Skolem axiom, there existsM ≺ N in K≤�+|α| such that⋃
i<α M

i ≺M . By Monotonicity,Ni
Nα

�
M
ai , so ā is independent fromN over

M in Nα , so p does not fork overM , as needed.
(2) We prove two extension results separately: extending the domain and
extending the length. Combining these two results shows that s<� has
existence.
For extending the domain, let p ∈ S<�,bs(M ) and N � M . By definition
of this frame, there is some ā = 〈ai : i < �〉 and increasing, continuous
〈Mi : i ≤ �〉 such that ai

Mi+1

�
M
Mi for all i < � . We wish to construct

increasing and continuous 〈Ni : i ≤ �〉 and 〈fi : Mi → Ni : i ≤ �〉 such
that
(a) f0 �M = id; and

(b) fi(ai)
Ni+1

�
M
Ni .

This is done by induction by taking unions at limits and by using Lemma 3.13
at all successor steps. Since � < �, Ni is in KF at all steps and the induction
can continue. Then tp(ā/M ;M� ) = tp(f(ā)/M ;N� ) as witnessed byf and
f(ā) is independent in (M,N,N� ). Thus, q = tp(f(ā)/N,N� ) is as desired.

N �� Ni �� Ni+1 �� N�

M

��

�� Mi ��

fi

��

Mi+1 ��

fi+1

��

M�

f�

��

To extend the length, suppose that � < α < � and p ∈ S�,bs(N) does
not fork over M . This means that there is 〈ai : i < �〉, 〈Ni : i ≤ �〉
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independent in (M,N,N� ) such that p = tp(〈ai : i < �〉/N ;N� ). We will
extend this sequence to be of length α by induction. At limit steps, simply
taking the union of the extensions works. If we have � ≤ 
 < α and have
already extended to 
 (i.e., 〈ai : i < 
〉, 〈Ni : i ≤ 
〉 is defined), then let
r ∈ Sbs(M ) be arbitrary (use nomaximal models and density of basic types).
Let r+ ∈ Sbs(N
) be its nonforking extension. Thus, there is a
 ∈ N
+1 that
realizes r+ such that a


N
+1

�
M
N
 . Then 〈ai : i < 
 + 1〉, 〈Ni : i ≤ 
 + 1〉 is

independent from N overM in N
+1, as desired. �
Thenext technical lemma is key in showing that uniqueness and continuity arepre-
served when making a frame longer. This allows us to put together two independent
sequences into one.

Lemma 4.8 (Amalgamation of independent sequences). Let s be a good−

F -frame, and � < �s. Suppose that p, q ∈ S�,bs(N) do not fork over M , that
p � M = q � M , and that there are witnessing sequences ā� = 〈ai� : i < �〉,
〈Ni� : i ≤ �〉 independent from N overM in N�� for � = 0, 1 with ā0 � p and ā1 � q.
Then, there are coherent, continuous, increasing (Ni ,fj,i)j<i≤� and gi� : N

i
� → Ni

such that, for all j < i < � ,

Nj1

gj1 ��

�� Ni1

gi1 ��

�� N�1

g�1 ��
M �� N

����������

���
��

��
��

� Nj
fj,i

�� Ni
fi,�

�� N�

Nj0

gj0

��

�� Ni0

gi0

��

�� N�0

g�0

��

commutes, gi+10 (a
i
0) = g

i+1
1 (a

i
1), and

9 gi+10 (a
i
0)

Ni+1

�
gi+10 [M ]

fi,i+1[Ni ].

Proof. We will build:

(1) models {Ni,Mi� : i ≤ �, � = 0, 1};
(2) embeddings {hi� : Ni� →Mi� , ri� :Mi� → Ni : i ≤ �, � = 0, 1}; and
(3) coherent embeddings {fj,i : Nj → Ni , r̂j,i� :Mj� →Mi� : i ≤ �, � = 0, 1}
such that, for i < � :

(1)

Mi+10
ri+10

�� Ni+1

Ni

��

�� Mi+11

ri+11

��

commutes;

9Note that gi0[M ] = g
i
1[M ] by commutativity of the diagram.
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(2)

Ni+1�
hi+1�

�� Mi+1�

N i�

��

hi�

�� Mi�
ri�

�� Ni

��

commutes;
(3) M 0� = N0, r

0
� = idN0 for � = 0, 1, and

N 00
h00

�� N0

N

��

�� N 01

h01

��

commutes;

(4) hi+1� (a
i
�)

Mi+1�

�
hi+1� [N

i
� ]
Ni ;

(5) ri+10 ◦ hi+10 (ai0) = ri+11 ◦ hi+11 (ai1); and
(6) (Ni,fj,i)j<i≤� and (Mi� , r̂

j,i
� )j<i≤� are continuous, coherent systems gener-

ated by r̂i,i+1� = ri� and fi,i+1 = r
i
0 � Ni = ri1 � Ni .

Once these objects have been constructed we will have the following commutative
diagram for j < i ≤ � :

Ni

Mi0

ri0

����������
Mi1

ri1

		��������

Ni0

hi0

����������
Nj

fj,i

��

����������

		��������
Ni1

hi1

		��������

Mj0

r̂j,i0

��

rj0

��							
Mj1

r̂j,i1

��

rj1

		








Nj0

��

hj0

��								
Nj1

hj1

		









��

We can then take gi� := r
i
� ◦ hi� . This gives the desired diagram by removing the

Mi� ’s. The function equality is given by (4) and the nonforking is given by applying
fi,i+1 to (4).
The construction proceeds by induction. At stage i , we will construct hi� , r

i
� ,M

i
� ,

and Ni for � = 0, 1. Also, at each stage, we implicitly extend the coherent system
by the rule given in (4) above (at successor steps) or by taking direct limits (at limit
steps).
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i = 0: AmalgamateN 00 , N
0
1 overN to getN0. Also setM

0
� := N0 and r

0
� := idN0 for

� = 0, 1.
i limit: Take direct limits and use continuity to see everything is preserved.
i = j +1: Use Lemma 3.13 –replace (M,M0,M1, ā, f,M2) there with
(M,Nj� ,N

j+1
� , aj� , r

j
� ◦hj� ,Nj) here–to get (hj+1� ,Mj+1� ) here, written as (g,N) there;

this gives (4):

hj+1� (a
j
� )

Mj+1�

�
hj+1� [M ]

Nj.

By the commutative diagrams, hj+10 � M = hj+11 � M , so, since aj0 and a
j
1 have

the same type overM , we have that:

tp(hj+10 (a
j
0 )/h

j+1
0 [M ];M

j+1
0 ) = tp(hj+11 (a

j
1 )/h

j+1
1 [M ];M

j+1
1 ).

By Uniqueness for s, these imply that:

tp(hj+10 (a
j
0 )/Nj ;M

j+1
0 ) = tp(hj+11 (a

j
1 )/Nj ;M

j+1
1 ).

We can witness this with rj+1� : Mj+1� → Nj+1 for � = 0, 1; that is, r
j+1
0 � Nj =

rj+11 � Nj and rj+10 ◦ hj+10 (aj0 ) = rj+11 ◦ hj+11 (aj1 ). �
Corollary 4.9. Let s = (K,�,Sbs) be a good

−F -frame. SupposeM0 ≺M ≺ N
are inKF andα ≤ � < �s are such that there arep ∈ Sα,bs(M ) and q ∈ S�,bs(N) such
that qα � M = p and p, q do not fork overM0. If āp = 〈aip : i < α〉, 〈Nip : i ≤ α〉
is independent from M over M0 in Nαp such that āp � p and āq = 〈aiq : i < �〉,
〈Niq : i ≤ �〉 is independent from N over M0 in N�q such that āq � q, then there is
〈Miq : i ≤ �〉 and hi : Nip →Miq for i ≤ α such that:
(1) āq , 〈Miq : i ≤ �〉 is independent from N overM0 inM�q ;
(2) Niq ≺Miq for all i ≤ � ; and
(3) hi+1(aip) = a

i
q and idM ⊆ hi ⊆ hi+1.

Proof. First, extend the p-sequence to 〈aip : i < �〉, 〈Nip : i ≤ �〉 independent
fromM overM0 inN

�
p (use that s<�s has existence). We can then amalgamate these

sequences overM using Lemma 4.8: there is (Ni,fj,i)j<i≤� and gix : Nix → Ni for
x = p, q and i ≤ � as above. Since we have g�q : N�q ∼= g�q [N�q ] ≺ N� , we can extend
g�q to an L(K)-isomorphism h with N� in its range. SetMiq := h

−1[Ni ] for i ≤ � .
Note that hi := h−1 ◦ giq : Niq →Miq is the identity. �
Corollary 4.10. Assume s := (K,�,Sbs) is a good

− F -frame, whereF = [�, �).
Then:

(1) s<� has uniqueness.
(2) s<� has continuity.

Proof.

(1) This follows directly from Lemma 4.8.
(2) We prove the moreover clause in the definition of continuity. For the main
clause, the M0’s appearing in this proof can be replaced by Mi or M� as
appropriate.
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For all i < �, there is some āi = 〈aki : k < αi〉, 〈Nki : k ≤ αi〉 independent
fromMi overM0 in N

αi
i such that pi = tp(āi/Mi ;N

αi
i ).

We will construct 〈Mki : i < �, k ≤ αi〉 and {fkj,i : Mkj → Mki : k ≤
αj, j < i < α�} such that
(a) Nki ≺ Mki and āi , 〈Mki : k < αi〉 is independent from Mi over M0 in
Mαii ;

(b) for each k ≤ αj , (Mki , fkl,i)j≤l≤i<α� is a coherent, direct system such that

Mi2 �� Mk0i2
�� Mk1i2

Mi1
��

��

Mk0i1
��

f
k0
i1 ,i2

��

Mk1i1

f
k1
i1 ,i2

��

Mi0
��

��

Mk0i0
��

f
k0
i0 ,i1

��

Mk1i0

f
k1
i0 ,i1

��
f
k1
i0 ,i2





commutes; and
(c) fkj,i(a

k
j ) = a

k
i .

This is possible: just apply Corollary 4.9 at successors and take direct limits
at limits.
This is enough. For each k < α� , set (Mk� ,f

k
i,�)i<�,k≤αi = lim−→(M

k
i , f

k
j,i).

Then 〈Mk� : k < α�〉 is increasing and continuous because each 〈Mki :
k < αi〉 is. SetMα�� := ∪k<α�Mk� . For k < αi , αj , we have that fk+1i,� (aki ) =
fk+1j,� (a

k
j ). Thus, there is no confusion in setting a

k
� = f

k+1
i,� (a

k
i ) for some/any

k < αi . Set p = tp(ā�/M�,M
α�
� ).

Note thatM� ≺M 0� ; indeed fki,� �Mi is the identity for all k ≤ αi . Thus,
we have that

pi = tp(āi /Mi ;M
αi
i ) = tp(〈ak� : k < αi〉/Mi ;Mα�� ) = pαi �Mi.

Claim. For all k < α� , ak�
Mk+1�

�
M0

Mk� .

Proof of Claim: Given i < � and k < αi , we have by construction that

aki

Mk+1i

�
M0

Mki . Applying f
k
i,� to this, we get a

k
�

fk+1i,� (M
k+1
i )

�
M0

fki,�(M
k
i ). By construction,

Mk� =
⋃
i<�

fki,�(M
k
i ) andM

k+1
� =

⋃
i<�

fk+1i,� (M
k+1
i ).

Thus, by Continuity for s, we have, for all i < �, ak�
Mk+1�

�
M0

Mk� .

Thus, ā� , 〈Mk� : k ≤ α�〉 is independent from M� over M0 in Mα�� . So p ∈
Sα� ,bs(M�) and extends each pi as desired. �
Remark 4.11. Note that a special case (whenF = [�, �+]) of the continuity prop-
erty above is Jarden’s �+-continuity of serial independence (see [17, Definition 5.3]).
This allows Jarden’s proof that symmetry transfers up ([17, Theorem 5.4]) to go
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through without any extra hypotheses. Another corollary of continuity is what
Jarden and Sitton call the finite continuity property (see [19, Definition 8.2]). This is
discussed in detail in Section 5.1.

Putting everything together, we obtain that all the property of a good− frame
transfer to the elongation; recall that good− frames are good frames except they
might fail stability and/or symmetry. We will later see that symmetry transfers to
finite sequences and give conditions under which it transfers to all sequences.
Corollary 4.12. Assume s is a good− F -frame. Then s<�s is a good− (< �s,F)-
frame.
Proof. Set � := �s. s<�s is a pre-(< �,F)-frame by Lemma 4.6. Amalgamation,
joint-embedding, no maximal models, and density of basic types hold since they
hold in s. Existence and local character hold by Theorem 4.7, uniqueness and
continuity hold by Corollary 4.10. Finally, transitivity follows from Remark 3.9. �
Note that bs-stability only mentions basic 1-types, so it transfers immediately.
Thus, the only property left is symmetry, which is discussed in the next two sections.
We conclude by proving a concatenation lemma for independent sequences. This
is already proved for good frames in [19, Proposition 4.1], but the proof relies on
[19, Proposition 2.6], which is proved as [18, Proposition 3.1.8] and uses symmetry
in an essential way. Here, we improve this to just requiring that s is a pre-frame that
also satisfies amalgamation, existence, continuity, and transitivity. In particular,
we avoid any use of symmetry or nonforking amalgamation. This shows that the
situation is somewhat similar to the first-order context, where concatenation holds
in any theory (see, e.g., [10, Lemma 1.6]).
Theorem 4.13 (Concatenation). Assume s is a pre-F -frame with amalgamation,
existence, transitivity, and continuity. Let M ≺ M0 ≺ M1 ≺ M2 be such that
ā = 〈ai : i < α〉 is independent from M0 over M in M1 and b̄ = 〈bi : i < �〉 is
independent fromM1 overM inM2. Then āb̄ is independent fromM0 overM inM2.
Proof. From the independence of ā fromM0 overM inM1, there is a continuous,
increasing 〈Mi0 : i ≤ α〉 and N+0 such that
• M0 ≺Mi0 ≺ N+0 ;
• M1 ≺ N+0 ; and

• ai
Mi+10

�
M
Mi0 .

From the independence of b̄ from M1 over M in M2, there is a continuous,
increasing 〈Mi1 : i ≤ �〉 and N+1 such that
• M1 ≺Mi1 ≺ N+1 ;
• M2 ≺ N+1 ; and

• bi
Mi+11

�
M
Mi1 .

Define increasing and continuous 〈Ni1 : i ≤ �〉 and 〈gi :Mi1 → Ni : i ≤ �〉 such
that:
• N+0 ≺ N 01 and g0 �M1 = idM1 ; and

• For all i < � , gi+1(bi)
Ni+11

�
M
Ni1 .
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This can easily be constructed by inductions: amalgamateM 01 and N
+
0 overM1

to get N 01 and g0. At successor steps, apply Lemma 3.13 and take unions at limit
stages.
After this construction, amalgamate N+1 and N

�
1 overM

�
1 to get N

++ and g so
the following diagram commutes for j < � :

N+0
�� N 01 �� Nj1 �� Nj+11 �� N++

M 00
�� Mα0

����������
M 01

g0

��

�� Mj1

gj

��

�� Mj+11

gj+1

��

�� N+1

g

��

M �� M0

��

��M1

��

����������
�� M2

��

Define the sequence 〈Ni : i ≤ α + �〉 by

Ni :=

{
Mi0 if i < α,
Nj1 if i = α + j ∈ [α, �].

Claim. This sequences witnesses that c̄ := ā�g(b̄) is independent fromM0 over
M in N++.

Proof of Claim. It is easy to see that this sequence is of the proper type, i.e., it is
increasing and continuous andM0 ≺ Ni ≺ N++ for all i ≤ α + � .

If i < α, then we need to show that ci
Ni+1

�
M
Ni , which is the same as ai

Mi+10

�
M
Mi0 .

This just follows from independence of ā.

If i = α + j ≥ α, then we need to show that ci
Ni+1

�
M
Ni , which is the same as

gj+1(bj)
Nj+11

�
M
Nj1 . This holds directly by the construction. �Claim

Notice that themap g shows that tp(āg(b̄)/M0;N
�
1 ) = tp(āb̄/M0;M2). Thus, by

Invariance (Lemma 4.4), we have that āb̄ is independent fromM0 overM InM2. �

§5. Symmetry in long frames. In this section,we discusswhen symmetry transfers
from a good frame to its elongation. We do so by studying the following unordered
version of independence:

Definition 5.1. A set I is said to be independent in (M,M0, N) if some enu-
meration of I is independent in (M,M0, N). As usual, we say instead that I is
independent fromM0 overM in N .

5.1. Several versions of continuity. The notion of a set being independent gives
rise to several notions of continuity. We gave a definition of continuity for a
pre-frame s, as well as continuity for the corresponding frame of independent
sequences s<�s (what Jarden calls the continuity of serial independence
[17, Definition 5.3], see Remark 4.11). We can now study the corresponding
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continuity properties for sets rather than sequences: for s a pre-F -frame, let us
say that s<�s has the unordered continuity property if for every increasing chain
〈Mα : α < �〉 every N containing

⋃
α<� Mα and every I ⊆ |N |, I is indepen-

dent from
⋃
α<� Mα over M0 if I is independent from Mα over M0 for all α < �

(so the enumeration witnessing the independence is allowed to change each time).
Confusingly, Jarden and Sitton [19, Definition 5.5] call this the continuity property.
Another notion of continuity was also introduced by Jarden and Sitton. Let us
say that a set I is finitely independent (fromM0 overM in N) if every finite subset
of I is. Jarden and Sitton [19, Definition 8.2] say that the finite continuity property
holds when unordered continuity holds for the notion of finite independence. We
will refer to this as unordered finite continuity.
Jarden and Sitton show [19, Proposition 8.4] that unordered finite continuity
holds in good−St frames which satisfy the additional assumption of the con-
jugation property and being weakly successful. Using the (ordered) continuity
property for independent sequences (Corollary 4.10), together with Fact 5.2 below,
we immediately obtain that the unordered finite continuity holds in any good−St

frame.

Fact 5.2 (Theorem 4.2(a) in [19]). Let s be a good−St F -frame. If ā is a finite
tuple independent from M ′ over M in N , then any permutation of ā is independent
fromM ′ overM in N .
Implicit in this notion is a notion of independence being finitely witnessed
[19, Definition 3.4] which says that a set I is independent if and only if all its
finite subsets are. We give a more general parametrized definition here:

Definition 5.3. Let s be a pre-F -frame and � ≤ �s be a cardinal. We say that
�-independence in s is finitely witnessed if for any M0 ≺ M ≺ N in KF and any
I ⊆ N with |I | < �, I is independent fromM over M0 in N if and only if all its
finite subsets are independent fromM overM0 in N .
If � = �s, we omit it.

Remark 5.4. In [19, Theorem 9.3] shows that independence is finitely witnessed
in a good �-frame assuming the conjugation property, categoricity in �, and density
of uniqueness triples. Earlier, Shelah had proven the same result under stronger
hypotheses [24, Theorem III.5.4].

Remark 5.5. It is straightforward to see that if independence is finitely witnessed
and the finite unordered continuity property holds, then the unordered continuity
property holds. Recall from the discussion above that the finite unordered continuity
property holds in any good−St-frame.

Our next goal is to show that if s<� has symmetry then �-independence is finitely
witnessed (Theorem 5.9). Together with Lemma 5.11 deducing symmetry from the
frame being sufficiently global, this will show (Corollary 6.10) that tameness implies
independence is finitely witnessed.

5.2. Symmetry implies being finitely witnessed. First we show that symmetry is
equivalent to showing that the order of enumeration does not matter. The finite
case is essentially Fact 5.2. To state the infinite case precisely, we introduce new
terminology:
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Definition 5.6. Let s be a pre-F -frame and � ≤ �s be a cardinal. We say that s
has�-symmetry of independence if for anyM0 ≺M ≺ N inKF and any I ⊆ N with
|I | < �, I is independent fromM overM0 in N if and only if every enumeration of
I is independent fromM overM0 in N .
If � = �s, we omit it.
Thus a restatement of Fact 5.2 is that any good−St frame has ℵ0-symmetry of
independence.Thenext theorem says that�-symmetry of independence is equivalent
to s<� having symmetry.
Theorem 5.7. Let s be a good− F -frame and let � ≤ �s be a cardinal. The
following are equivalent:
(1) s<� has symmetry.
(2) For any M0 ≺ M ≺ N in KF and āb̄ ∈ N such that �(āb̄) < �, āb̄ is
independent fromM overM0 in N if and only if b̄ā is independent in fromM
overM0 in N .

(3) s has �-symmetry of independence.
Proof. We first show (1) is equivalent to (2). Assume s<� has symmetry, and
let M0 ≺ M ≺ N in KF and āb̄ ∈ N be such that �(āb̄) < � and āb̄ is inde-
pendent fromM overM0 in N . Then there exists 〈Mi : i ≤ �(āb̄)〉 and N+ � N
witnessing it. Say α := �(ā). Then ā ∈ Mα , tp(ā/M ;Mα) ∈ Sα,bs(M0), and b̄ is
independent fromMα overM in N+, i.e., b̄

N+

�
M
Mα . By Symmetry, there must exist

a model M ′ containing b̄ and N++ � N+ such that ā
N++

�
M
M ′. By Monotonicity,

ā
N++

�
M0

M , so by Transitivity, ā
N++

�
M0

M ′. By Monotonicity, b̄
M ′

�
M0

M . By concatenation

(Theorem 4.13), b̄ā
N++

�
M0

M and so by Monotonicity, b̄ā
N

�
M0

M , as needed. Con-

versely, assume (2). Assume ā1
N

�
M0

M2 with ā1 ∈ <�N , and ā2 ∈ <�M2 is such that

tp(ā2/M0;N) ∈ S<�,bs(M0). By existence, ā2
M2

�
M0

M0. By concatenation, ā1ā2
N

�
M0

M0.

By (2), ā2ā1
N

�
M0

M0. By definition of independent, there existsM1 containing ā1 and

N ′ � N such that ā2
N ′

�
M0

M1, as needed.

Next, we show that (2) is equivalent to (3). It is clear that (3) implies (2), so
we assume (2) and we prove (3) as follows: we prove the following by induction
on α < �:
(∗)α Let M0 ≺ M ≺ N be in KF and let I ⊆ |N | have size less than �. If I is
independent fromM overM0 in N , then every enumeration of I of order type
α is independent fromM overM0 in N .

So let α < � and assume (∗)� holds for all � < α. Suppose I as above is
independent fromM overM0 in N and let 〈ai : i < α〉 be an enumeration of I of
type α.
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First, suppose α is finite. Then I is finite so Fact 5.2 gives the result.
Second, suppose α = � + 1 is an infinite successor. Then 〈a�〉�〈ai : i < �〉
has order type � and so (by (∗)�) is independent fromM overM0 in N . Since (2)
implies (1), the original sequence must also be independent.
Finally, suppose thatα is limit. By monotonicity, every subset of I is independent
from M over M0 in N . In particular, for each � < α {ai : i < �} is independent
fromM overM0 in N , and so by (∗)� 〈ai : i < �〉 is also independent fromM over
M0 in N . Thus by continuity (Corollary 4.10) 〈ai : i < α〉 is independent fromM
overM0 in N . �
As a corollary, we manage to solve Exercise III.9.4.1 in [24]:

Corollary 5.8. Let s be a good [good−St ]F -frame. Then s<	 is a good [good−St ]
F -frame.
Proof. By Corollary 4.12, s<	 is a good− F -frame. By Fact 5.2, s has

ℵ0-symmetry of independence. By Theorem 5.7, s<	 has symmetry, as needed.
Since bs-stability only refers to basic 1-types, s satisfies it if and only if s<	 does. �
Unfortunately, we do not know whether in general 	 above can be replaced by a
larger ordinal. To give a criteria on when this is possible, we show that independence
being finitely witnessed (see Definition 5.3) follows from symmetry.

Theorem 5.9. Let s be a good−St F -frame and let � ≤ �s be a cardinal. If s<� has
symmetry, then �-independence in s is finitely witnessed.

Proof. By Theorem 5.7 s has �-symmetry of independence, and by Corollary
4.10 s<� has continuity. Let M0 ≺ M ≺ N be in KF and let I ⊆ N be such that
|I | < �. Assume that every finite subset of I is independent in from M over M0
in N . Assume inductively that �0-independence is finitely witnessed for all �0 < �.
Let �0 := |I | and write {ai : i < �0}. Let Ii := {ai : j < i}. By the induction
hypothesis, Ii is independent fromM overM0 in N for all i < �0. By �-symmetry
of independence, the ordered sequence 〈aj : j < i〉 is independent from M over
M0 in N . By continuity of s<�, 〈ai : i < �0〉 is independent fromM overM0 in N .
Thus I is independent fromM overM0 in N , as desired. �

Remark 5.10. A similar proof shows that the ordered version of �-independence
being finitely witnessed (that is, a sequence is independent if and only if all of its
finite subsequences are) is equivalent to symmetry in s<�.

Next, we show symmetry indeed holds in the elongation if the original frame is
“sufficiently global” (this does not even use that s has symmetry):

Lemma 5.11. Assume s is a good− F -frame and F = [�, �). If � ≥ �(2�)+ , then

s<�
+

� has symmetry.

Proof. Using uniqueness and local character, it is straightforward to see thatKF
is stable in 2� (for 1-types), see e.g., [26, Proposition 6.4]. By Fact 2.5 this meansKF
is stable in 2� for �-types. Then the same nonstructure proof as [26, Corollary 6.11]
generalizes: if s does not have symmetry, then the same proof as [7, Theorem 5.14]
shows that KF has an order property, and this order property is enough to deduce
instability in 2� for �-types (see [23, Section 4] or [7, Fact 5.13] for a sketch). �
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Note, by uniqueness and local character, if 
 := tb1� := supM∈K� |S(M )|, and s is
a good− [�, 
]-frame, then s
 will satisfy bs-stability (andhence be a good

−S -frame);
see [26, Proposition 6.4].
We now apply the lemma to the maximal elongation of a (≥ �)-frame s, namely

s<∞ := ∪α∈ONs<α .
Corollary 5.12. Assume s is a good− (≥ �)-frame. Then s<∞ has symmetry.
Proof. Use Lemma 5.11 with each �′ ∈ [�,∞). �
Corollary 5.13. Assume s is a good−S [good−] (≥ �)-frame. Then s<∞ is a good
[good−St ] (<∞,≥ �)-frame.
Proof. Combine Corollary 4.12 and Corollary 5.12. �

§6. Applications. This section gives some applications of these results.
6.1. Dimension. In [24, Definition III.5.12], Shelah introduced a notion of
dimension based on a frame. In [24, Conclusion III.5.14], he shows that this notion
is well-behaved (in the sense of Corollary 6.1) from an assumption that is a little
stronger than s being weakly successful and Jarden and Sitton [19, Theorem 1.1]
reduce this assumption to just assuming the good−St �-frame has the unordered
continuity property. A corollary of our results on symmetry and independence being
finitely witnessed is that we can remove any extra hypothesis.

Corollary 6.1. Let s be a good−St �-frame and assume s<�
+
has symmetry. Let

M ≺M0 ≺ N be in K�. If:
(1) P ⊆ Sbs(M0)
(2) I1, I2 are each ⊆-maximal sets in

{I : I is independent fromM0 overM in N and a ∈ I ⇒ tp(a/M0;N) ∈ P}
(3) One of I1, I2 is infinite.

Then I1 and I2 are both infinite and |I1| = |I2|.
Proof. Since Symmetry holds, independence in s is finitely witnessed byTheorem
5.9. Recalling Remark 5.5, the hypotheses of [19, Theorem 1.1] hold, and the
conclusion is this result. �
This dimension—defining dim(P,N) to be the single infinite size of a I1 from
Corollary 6.1—is used to develop the theory of regular types in [24, Section III.10].
As it stands, there is no known example showing that symmetry is necessary to
develop a dimension theory (or a theory of regular types). In fact, there is no
known example of a good−-frame which fails to have symmetry (i.e., it is not
known whether symmetry follows from the other axioms of a good frame, although
we suspect it does not). However, the fact that this definition compares independent
sets rather than sequences implicitly assumes the symmetry of independence (see
Theorem 5.7).

6.2. Tameness and extending frames revisited. Recall the definition of tameness
from Definition 2.2. The first author [4] first studied the connection between tame-
ness and frames. As in [4, Theorem 3.2], having a frame that spansmultiple cardinals
already gives some tameness.
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Proposition 6.2. Assume s := (K,�,Sbs) is a good
− F -frame. Let F := [�, �).

For each α < �, K is (�+ |α|, < �)-tame for the basic types of s<� of length ≤ α.
Proof. Let α < �, and let p, q ∈ S≤α,bs(M ) be distinct. By the moreover part of
Theorem 4.7.(4.7), one can findM0 ≺M inK≤�+|α| such that both p and q do not
fork overM0. By uniqueness, we must have p �M0 �= q �M0, as needed. �
In [4], the main concern was using �-tameness to extend a �-frame to a (≥ �)-
frame. The definition of the extension and the preservation of several properties
were already done by Shelah.

Definition 6.3 (Going up, Definitions II.2.4 and II.2.5 of [24]). Let s :=
(K,�,Sbs) be a pre-(< α, �)-frame, and let F = [�, �) be an interval of cardinals
as usual. Define sF := (K,�

F
, SbsF ) as follows:

• ForM0 ≺M1 ≺ N in KF and ā ∈ <αN ,�
F
(M0,M1, ā, N) if and only if there

existsM ′
0 ≺M0 in K� such that for allM ′

0 ≺M ′
1 ≺ N ′ ≺ N with ā ∈ N ′, and

M ′
1, N

′ in K�, we have ā
N ′

�
M ′
0

M ′
1.

• ForM ∈ KF and p ∈ S<α(M ), p ∈ SbsF (M ) if and only if there existsN �M
and ā ∈ N such that p = tp(ā/M ;N) and�

F
(M,M, ā,N).

Fact 6.4. Let s be a good− �-frame, and letF = [�, �) be an interval of cardinals as
usual. Then sF satisfies all the properties of a goodF-frame except perhaps bs-stability,
existence, uniqueness, and symmetry.

Proof. See [24, Section II.2]. �
Transferring the rest of the properties from a good �-frame to a good [�, �+]-
frame was the project of the rest of [24, Section II] and involved combinatorial
set-theoretic hypotheses and shrinking the AEC under consideration. [4] replaced
these assumptions with tameness.

Fact 6.5 (Theorem 8.1 in [4]). Let s be a good− [good−S ] �-frame, and let
F = [�, �) be an interval of cardinals where � > � can be∞. IfKF has amalgamation
and no maximal models, the following are equivalent:

(1) K is �-tame for the basic types of sF .
(2) sF is a good− [good−S ] F -frame.
Moreover, if s has symmetry and K is (�, �)-tame for 2-length types, then sF has
symmetry. In this case, the no maximal models hypothesis is not needed.

A surprising feature of this result is that, although the frames involved only
1-types, the proof required tameness for longer types. This is connected to an
emerging divide in the literature on tameness: although Grossberg and VanDieren’s
initial definition for tameness [13] included the length of types, their categoricity
transfer [12,14] and several subsequent works (e.g., [2, 20]) required only tameness
for 1-types. However, later works, beginning with Boney and Grossberg [6] and
Vasey [25] (begun after the initial submission of this paper), began to use tameness
for longer types (and stronger locality properties like type shortness) in essential
ways. It remains to be seen which version of tameness is the “proper one” for
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developing classification theory (or indeed if they are the same under some reason-
able hypothesis). However, Fact 6.5 seemed to straddle this divide: it used more
than tameness for 1-types, but not much more and it was unclear if the use was
essential.
By using the results of this paper, we are able to remove the assumption of tame-
ness for 2-types in the proof of symmetry and show that the use was unnecessary.We
know that the tameness for 1-types gives uniqueness for the extension sF , and that
this uniqueness transfers to uniqueness for the elongation of sF . Thus, it suffices to
show that the 2-types considered in the proof of symmetry are basic in this sense,
which we do in Theorem 6.8. Before we do this, we must be careful that the order
does not matter, i.e., that extending and then elongating a frame gives you the same
result as elongating and then extending it. One direction is easy.

Proposition 6.6. Let s := (K,�,Sbs) be a pre-�-frame, and let F := [�, �) be an
interval of cardinals as usual. Assume KF has amalgamation. Then:

(sF)
<�+ ⊆

(
s<�

+
)
F
.

Where ⊆ is taken componentwise.
Proof. Assume we know that �

(sF )<�
+
(M0,M, ā,N). We show that

�
(s<�+ )F

(M0,M, ā,N). The proof of inclusion of the basic types is completely similar.

Let ā := 〈ai : i < �〉, for � < �+. By assumption, ā is independent (with
respect to �

F
) from M over M0 in N . Fix 〈Mi : i ≤ �〉 and N+ witnessing the

independence. In particular, for every i < � ,�
F
(M0,Mi , ai ,N+). By definition of

�
F
, this implies in particular that for each i < � , there existsM 0i ≺ M0 in K� such
that �

F
(M 0i ,M

i , ai ,N
+). Using the Löwenheim–Skolem axiom and the fact that

|� | ≤ �, we can chooseM∗ ≺M0 in K� such that for all i < � , we haveM 0i ≺M∗.
Thus,�

F
(M 0,Mi , ai ,N+) for all i < � . In particular, ā is independent (with respect

to�
F
) fromM overM∗ in N .

Now fix anyM ′
0, N

′ ∈ K� such that ā ∈ N ′,M∗ ≺M ′
0 ≺M , andM ′

0 ≺ N ′ ≺ N .
We claim that ā is independent (with respect to �) from M ′

0 over M
∗ in N ′, i.e.,

<�+

� (M∗,M ′
0, ā, N

′). To see this, construct 〈M ′
i ∈ K� : i ≤ �〉 increasing continuous

such that for all i ≤ � ,M∗ ≺ M ′
i ≺ Mi and ai ∈ M ′

i+1. Finally, pick (N
+)′ ∈ K�

such thatM ′
� ,N

′ ≺ (N+)′ ≺ N+. Then 〈M ′
i : i ≤ �〉 and (N+)′ witness our claim.

By definition, this means exactly that �
(s<α)F

(M0,M, ā,N), as needed. �

The converse needs more hypotheses and relies on Corollary 4.12:

Theorem 6.7. Let s := (K,�,Sbs) be a good
− �-frame, and let F := [�, �) be an

interval of cardinals as usual. Assume that sF is a good− F -frame. Then:

(sF)
<�+ =

(
s<�

+
)
F
.

https://doi.org/10.1017/jsl.2017.1 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.1


1018 WILL BONEY AND SEBASTIEN VASEY

Proof. By Proposition 6.6 and existence, it is enough to show �
(s<�+ )F

⊆ �
(sF )<�+

.

Assume �
(s<�+ )F

(M,N, ā , N̂ ). By definition of �
(s<α)F

andmonotonicity,we can assume

without loss of generality thatM ∈ K�. We know that for all N ′ ≺ N and N̂ ′ ≺ N̂
in K� withM ≺ N ≺ N̂ ′ and ā ∈ N̂ ′, ā is independent (with respect to�) from
N ′ overM in N̂ ′. We want to see that ā is independent (with respect to�

F
) fromN

OverM in N̂ .
Let � ≥ � be such that N, N̂ ∈ K≤�. Work by induction on �. We already have
what we want if � = �, so assume � > �. Let (Ni)i≤� be an increasing continuous
resolution of N such that N� = N , N0 =M , ‖Ni‖ = �+ |i |.
By the induction hypothesis and monotonicity, ā is independent (with respect to
�
F
) from Ni overM in N̂ for all i < �. In other words, for any i < �, tp(ā/Ni ; N̂ )

does not fork (in the sense of (sF )
<�+) over M . By Corollary 4.12, we know that

(sF)
<�+ has continuity. Thus tp(ā/N ; N̂ ) also does not fork (in the sense of (sF)

<�+)
overM . This is exactly what we needed to prove. �
We can nowprove an abstract symmetry transfer that does notmention tameness.

Theorem 6.8. Assume s is a good− F -frame. Let F := [�, �).
Then s has symmetry if and only if s� has symmetry.

Proof. Of course, symmetry for s implies in particular symmetry for s�. Now
assume symmetry for s�.
First note that s = (s�)F . This is because by the methods of [24, Section II.2]
(see especially Claim 2.14 and the remark preceding it), there is at most one good−

F -frame extending s�, and it is given by (s�)F if it exists.
Let t := s� := (K,�,Sbs). Thus s = tF . Recall that [4, Theorem 6.1] proves
symmetry for s assuming (�,< �)-tameness for 2-types. We revisit this proof and
use the same notation.
Suppose�

F
(M0,M2, a1,M3), a2 ∈M2 with tp(a2/M0;M3) ∈ SbsF (M0). LetM0 ≺

M1 ≺ M3 be a model containing a1. By existence, there isM ′
3 � M3 and a′ ∈ M ′

3
such that�

F
(M0,M1, a′,M ′

3) and tp(a
′/M0;M ′

3) = tp(a2/M0;M3). Boney argues

it is enough to see that p := tp(a1a2/M0;M3) = tp(a1a′/M0;M ′
3) =: p

′, shows that
this equality holds for all restrictions to models of size �, and then uses tameness
for 2-types. This is not part of our hypotheses, but by Proposition 6.2, it is enough
to see that p, p′ are basic types of s≤2.
First, let us see that a1a2 is independent (with respect to �

F
) from M0 over M0

inM3. The increasing chain (M0,M2,M3) witnesses that a2a1 is independent (with
respect to�

F
again) fromM0 overM0 inM3. Thus tp(a2a1/M0;M3) ∈ Sbss≤2 (M0),

and s≤2 = (tF)
≤2 =

(
t≤2

)
F by Theorem 6.7. Thus there exists M

′
0 ≺ M0 in K�

such that for allM ′′
0 � M ′

0 in K� withM
′′
0 ≺ M3, tp(a2a1/M ′′

0 ;M3) does not fork
(in the sense of t≤2) overM ′

0. Since we have symmetry in t, we have (by Fact 5.2)
that also tp(a1a2/M ′′

0 ;M3) does not fork overM
′
0 for allM

′′
0 � M ′

0,M
′′
0 ≺ M3 in

K�. Thus by definition and Theorem 6.7 again, a1a2 is independent (with respect
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to�
F
) fromM0 overM0 in M3, as needed. Similarly, (M0,M1,M ′

3) witnesses that

a1a
′ is independent fromM0 overM0 inM ′

3. Thus p and p
′ are basic types of s≤2,

as needed. �
We can now prove the desired improvement.

Corollary 6.9. Let s := (K,�,Sbs) be a good �-frame, and let F := [�, �)
be an interval of cardinals, where � > � is either a cardinal or ∞. Assume KF has
amalgamation and K is (�,< �)-tame. Then sF is a good F -frame.
Proof. By the proof of Fact 6.5, sF has all the properties of a good frame, except
perhaps no maximal models and symmetry. Symmetry follows from the previous
theorem and [4, Theorem 7.1] now gives us no maximal models. �
While we were writing up this paper, Adi Jarden [17] independently gave this
improvement, with the additional hypothesis that the frame was weakly successful
(which he used to get the �+-continuity of serial independence property; see
Remark 4.11).

6.3. Conclusion. We conclude by summarizing what our results give from a good
frame, amalgamation, and tameness:

Corollary 6.10. Let s := (K,�,Sbs) be a good �-frame. If K≥� has
amalgamation and is �-tame, then:

(1) s≥� is a good (≥ �)-frame, and in fact even t := (s≥�)<∞ is a good (< ∞,
≥ �)-frame.

(2) For all α, K is (�+ |α|)-tame for the basic types of t of length ≤ α.
(3)

(
s<�

+
)
≥�
= (s≥�)

<�+ .

(4) t has symmetry of independence and independence in s≥� is finitely witnessed.
(5) We have a well-behaved notion of dimension: ForM ≺M0 ≺ N in K�, if:
(a) P ⊆ Sbs(M0)
(b) I1, I2 are ⊆-maximal sets in

{I : I is independent fromM0 overM inN and a ∈ I ⇒ tp(a/M0;N) ∈ P}
(c) One of I1, I2 is infinite.
Then I1 and I2 are both infinite and |I1| = |I2|.

Proof.

(1) s≥� is a good (≥ �)-frame by Corollary 6.9. t is a good (<∞,≥ �)-frame by
Corollary 5.13.

(2) By Proposition 6.2.
(3) By Theorem 6.7.
(4) By Theorem 5.7, Proposition 5.9, and Corollary 5.12.
(5) By Corollary 6.1. �
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