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Abstract

Answer Set Programming (ASP) is a well-known declarative formalism in logic programming.
Efficient implementations made it possible to apply ASP in many scenarios, ranging from de-
ductive databases applications to the solution of hard combinatorial problems. State-of-the-art
ASP systems are based on the traditional ground&solve approach and are general-purpose im-
plementations, i.e., they are essentially built once for any kind of input program. In this paper,
we propose an extended architecture for ASP systems, in which parts of the input program
are compiled into an ad-hoc evaluation algorithm (i.e., we obtain a specific binary for a given
program), and might not be subject to the grounding step. To this end, we identify a condition
that allows the compilation of a sub-program, and present the related partial compilation tech-
nique. Importantly, we have implemented the new approach on top of a well-known ASP solver
and conducted an experimental analysis on publicly-available benchmarks. Results show that
our compilation-based approach improves on the state of the art in various scenarios, including
cases in which the input program is stratified or the grounding blow-up makes the evaluation
unpractical with traditional ASP systems.

KEYWORDS: Answer set programming, Grounding bottleneck, Compilation

1 Introduction

Answer Set Programming (ASP) is a powerful formalism that has roots in Knowl-
edge Representation and Reasoning and is based on the stable model semantics
(Gelfond and Lifschitz 1991; Brewka et al. 2011). ASP is a viable solution for repre-
senting and solving many classes of problems thanks to its high expressive power and the
availability of efficient systems (Gebser et al. 2018). Indeed, ASP has been successfully
applied to several academic and industrial applications, such as data integration and
consistent query answering in databases (Marileo and Bertossi 2010; Manna et al. 2015),
ontological reasoning (Ianni et al. 2009; Leone et al. 2019), explanation of biomedical
queries (Erdem and Öztok 2015), game theory (Amendola et al. 2016), product con-
figuration (Kojo et al. 2003; Dodaro et al. 2016), decision support systems for space
shuttle flight controllers (Nogueira et al. 2001), construction of phylogenetic supertrees
(Koponen et al. 2015), reconfiguration systems (Aschinger et al. 2011), natural language
understanding (Cuteri et al. 2019), and more (Erdem et al. 2016). A key feature of ASP
consists of the capability to model hard combinatorial problems in a declarative and
compact way. Albeit ASP is supported by efficient systems, the improvement of their
performance is still an interesting research topic (Lierler et al. 2016).
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The state-of-the-art approach for solving ASP programs has two steps: initially, vari-
ables are replaced with constants by the grounder, and the resulting equivalent variable-
free program is evaluated by a propositional search-based solver computing the answer
sets. This approach is usually referred to as the ground&solve approach (Gebser et al.
2018). Moreover, ASP implementations are general-purpose, i.e., they are essentially built
once for any kind of input program.

In this paper, we propose an extended architecture for ASP systems, which allows
for obtaining specific implementations for a given program and relaxes the traditional
two-steps architecture by avoiding that the whole program has to be grounded upfront.

Specific implementations are obtained by introducing a technique that allows for com-
piling (parts of) ASP programs into dedicated implementations. As usual in computer
science, by compilation we mean the translation of a program written in a high-level
language into another programming language (usually a lower level language nearer to
the machine code) to create an executable program. To this end, we identified a condition
that allows the compilation of a non-ground ASP sub-program into a C++ procedure,
which simulates the behavior of that subprogram during the evaluation. Since, in gen-
eral, only parts of the input program are transformed into dedicated implementations, we
name our technique partial compilation of ASP programs. To the best of our knowledge,
this is the first attempt of compiling ASP programs in the literature.

Whenever an entire program can be compiled an ad-hoc specialized binary is gener-
ated (this is the case for the relevant fragment of stratified normal programs); otherwise
a compilable subprogram P is packaged into a dynamic library that extends an exist-
ing ASP solver with an ad-hoc lazy propagator (Cuteri et al. 2017) that simulates the
behavior of P during the computation of answer sets. Note that, as it will be clearer
later, compiled sub-programs are never grounded. One of the weak spots of the pure
ground&solve approach is that the grounding might generate a propositional program
that is too big for solvers to tackle (this problem is often referred to as the grounding
bottleneck) of ASP; our architecture alleviates this problem whenever the rules that are
causing the bottleneck are compiled.

An important feature of our partial compilation approach is that it can be imple-
mented by extending in a natural way existing ASP systems that support external prop-
agators (Gebser et al. 2016; Dodaro and Ricca 2018). This allows for keeping the benefits
of existing implementations and extend their applicability and overall performance. In
particular, our partial compilation approach has been developed by extending the state-
of-the-art ASP solver wasp (Alviano et al. 2015) to include propagators from dynamic
libraries, and a compiler that processes a compilable sub-program and generates the cor-
responding source code in C++, which is finally transformed in executable code by a
C++ compiler.

To assess the efficacy of our approach, we conducted an experimental analysis on
publicly-available benchmarks. Results show that our compilation-based approach im-
proves on the state of the art in various scenarios, including cases in which the input
program is stratified or the grounding makes the evaluation less efficient with traditional
ASP systems.

2 Preliminaries

We recall some preliminary notions that are used in the remainder of the paper.
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2.1 Answer set programming

An ASP program π is a finite set of rules of the form h1| . . . |hn :- b1, . . . , bm. where
n,m ≥ 0, n+m �=0, h1, . . . , hn are atoms and represent the head of the rule, while
b1, . . . , bm are literals and represent the body of the rule. In particular, an atom is an
expression of the form p(t1, . . . , tk), where p is a predicate of arity k and t1, . . . , tk are
terms. Terms are alphanumeric strings and are either variables or constants. According
to Prolog conventions, only variables start with uppercase letters. A literal is an atom a

or its negation ∼a, where ∼ denotes the negation as failure. A literal is said to be positive
if it is an atom and negative if it is the negation of an atom. For an atom a, a = ∼a, for
a negated atom ∼a, ∼a = a. A rule is called a constraint if n = 0, and a fact if n = 1

and m = 0.
An object (atom, rule, etc.) is called ground or propositional, if it contains no variables.

Given a program π, let the Herbrand Universe Uπ be the set of all constants appearing
in π and the Herbrand Base Bπ be the set of all possible ground atoms which can be
constructed from the predicate symbols appearing in π with the constants of Uπ. Given a
rule r, Ground(r) denotes the set of rules obtained by applying all possible substitutions
σ from the variables in r to elements of Uπ. For a program π, the ground instantiation
Ground(π) of π is the set

⋃
r∈π Ground(r). Stable models of a program π are defined

using its ground instantiation Ground(π). An interpretation I for π is a set of literals
s.t. ∀a ∈ Bπ, either a ∈ I or ∼a ∈ I and l ∈ I =⇒ l /∈ I. Given an interpretation I, I+

denotes the set of positive literals in I and I− denotes the set of negative literals in I.
A ground literal l is true w.r.t. I if l ∈ I, otherwise it is false. An interpretation I is a
model for π if, for every r ∈ Ground(π), at least one atom in the head of r is true w.r.t.
I whenever all literals in the body of r are true w.r.t. I. The reduct of a ground program
π w.r.t. a model I is the ground program πI , obtained from π by (i) deleting all rules
r ∈ π whose negative body is false w.r.t. I and (ii) deleting the negative body from the
remaining rules. An interpretation I is a stable model of a program π if I is a model of
π, and there is no J such that J is a model of πI and J+ ⊂ I+ . A program π is coherent
if it admits at least one stable model, incoherent otherwise.

A sub-program of π is a set of rules λ ⊆ π. In what follows, we denote by P(X) the set
of predicate names appearing in X where X is an ASP expression (rule, rule head, literal,
program, etc.) and we denote by L(X) the set of literals appearing in X, where X is again
an ASP expression. In the following, headr and bodyr denote the head and the body of
a rule r, respectively, while body+r and body−r denote the positive and the negative body
of r, respectively. Moreover, given a set of rules λ, let heads(λ) = {a | a ∈ headr, r ∈ λ}.

2.2 Loop unrolling and dead code elimination

In our work, we will mention two well-known optimizations used by compilers: loop
unrolling and dead code elimination (Muchnick 1997). Loop unrolling is a loop transfor-
mation technique that, in the simplest formulation, removes the loop control instructions
and replicates the loop body a number of times equal to the number of iterations, adjust-
ing variables accordingly so to obtain an equivalent code. Dead code elimination is the
removal of instructions that would never be executed, such as the body of conditional
statements that are known to be false. Such techniques are typically implemented by
exploiting information that is know at compile time.
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Fig. 1: Exemplification of loop unrolling and dead code elimination. The statements outlined in
blue (i.e. lines 2–4) on the snippet on the left-hand side are transformed resulting in the code
reported on the right-hand side.

We exemplify the effect of applying loop unrolling on the snippet of C++ code reported
in Figure 1. Looking at the inner for statement (outlined in blue in Figure 1), we note
that the number of iterations is fixed (to 3) and is known at compile time; thus, this loop
can be unrolled by a compiler by writing three instantiations of the inner block of code,
one for each of the three possible values of the loop controlling variable i, i.e., 0,1, and
2. In the resulting code, the three instances of the inner if statement (outlined in blue
in Figure 1) contain conditions that can be evaluated at compile time (since variable i
is replaced by its actual value by loop unrolling); thus, we apply dead code elimination
removing the if statement and the code in the branch that will be never activated.
The result of applying both loop unrolling and dead code elimination to our example
is reported on the right-hand side of Figure 1. Note that the number of iterations of
the outermost for statement depends on a variable n, thus it cannot be subject to loop
unrolling at compile time because the value of n will be known only at execution time.

The potential benefits of applying these techniques become clear by observing that, in
the original code, for each iteration of the outermost for statement one has to perform
three increments of variable i and three evaluations of the if statement that are not
present in the equivalent transformed code. Loop unrolling might not always be beneficial
because the program size (generally) increases, leading to potential issues such as cache
misses. Nonetheless, as it will be clearer in the following, the loops that are subject to
unrolling in our technique typically require very few iterations (since they are limited to
the number of predicates in the program or the number of literals in rules bodies). We
refer to (Muchnick 1997) for more details about compilation techniques.

3 Conditions for splitting and compiling

In this section, we describe the conditions under which we allow the partial compilation.
The conditions for a sub-program to be compilable under our compilation-based ap-

proach are based on the concept of labeled dependency graph of an ASP program.

Definition 1
Given an ASP program π, the dependency graph of π, denoted DGπ, is a labeled graph
(V,E) where V is the set of predicate names appearing in some head of π, and E is the
smallest subset of V × V × {+,−} such that (i) (V1, V2,+) ∈ E if ∃r | V1 ∈ P(body+r ) ∧
V2 ∈ P(headr); (ii) (V1, V2,−) ∈ E if ∃r | V1 ∈ P(body−r ) ∧ V2 ∈ P(headr); and (iii)

(V1, V2,−) ∈ E if ∃r | V1, V2 ∈ P(headr).

Intuitively, the dependency graph contains positive (resp., negative) arcs from positive
(resp., negative) body literals to head atoms, and negative arcs between atoms in a
disjunctive head.
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Definition 2
An ASP program π is stratified iff DGπ has no loop containing a negative edge.

Definitions provided above are classical definitions for ASP programs, and now we define
when an ASP sub-program is compilable.

Definition 3
Given an ASP program π, an ASP sub-program λ ⊆ π is compilable with respect to π

if both the following condition hold: (i) λ is a stratified ASP program and (ii) for all
p ∈ P(heads(λ)) it holds that p /∈ P(π \ λ).
Intuitively, a (sub-)program is compilable if it is stratified and does not define any pred-
icate that appears elsewhere in the program. This condition often applies in practice.
Indeed, ASP encodings are often structured according to guess-and-check programming
methodology, where the checking part (typically stratified rules and constraints) is cap-
tured by the above definition.

Example 1
Consider the following program π1:

(1) in(X) | out(X) :- v(X).
(2) r(X,Y) :- e(X,Y).
(3) r(X,Y) :- e(X,Z), r(Z,Y).
(4) :- in(X), in(Y), not r(X,Y).

where v(X) and e(X,Y) model the nodes and edges of a graph, respectively. Program
π1 contains two compilable sub-programs, one given by constraint (4) and one given by
constraint (4) together with rules (2) and (3). �

Note that (sets of) constraints are always compilable; indeed, rules having no head
cannot cause any cycle in the dependency graph and trivially satisfy condition (ii) of
Definition 3.

The following result is fundamental to understand our evaluation strategy.

Theorem 1
Let π be an ASP program and λ ⊆ π be a compilable subprogram. For all answer sets
Mπ of π there exists an answer set Mπ\λ of π \ λ such that Mπ is the unique answer set
of the program {f. | f ∈ M+

π\λ} ∪ λ.

Proof
The thesis follows from the splitting theorem (Lifschitz and Turner 1994). Observe that
the set L(π \ λ), i.e., the literals appearing in π \ λ, is trivially a splitting set for π,
where λ is the top program of π w.r.t. the splitting set, and π \ λ is the bottom program.
Moreover, λ is stratified and possibly includes constraints, thus it admits at most one
answer set (Ceri et al. 1990).

Assuming that one can compile λ in a specialized implementation, the above result
suggests that one can compute an answer set Mπ of a program π by first computing an
answer set Mπ\λ of π \ λ (by using a standard ASP system), and then extending Mπ\λ
to Mπ by computing (resorting to the compiled implementation of λ) the answer set of
the union of λ with all atoms of Mπ\λ as facts. This sketched principle is elaborated in
the following.
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Algorithm 1 Solving with a compiled program
Input: ASP program π′, ASP compilable program λ
Output: An answer set of π = π′ ∪ λ or ⊥ if π is incoherent
1: λeval =compile(λ)
2: Mπ′ = answer_set(π′)
3: while Mπ′ �= ⊥ do
4: (C,Mext) = λeval(Mπ′)
5: if C �= ∅ then
6: π′ = π′ ∪ C
7: else
8: return Mext

9: Mπ′ = answer_set(π′)
10: return ⊥

4 Architecture for Partial Compilation

The architecture for evaluating ASP programs with partial compilation is formalized
in Algorithm 1. The algorithm takes as input two ASP programs π′ and λ, where λ

is compilable with respect to π=π′ ∪λ, and computes one answer set of π if it exists,
otherwise it returns ⊥ to denote that the input is incoherent. In the following λR denotes
the set of stratified rules with non-empty head in λ and λC the set of constraints in λ. First
the program λ is compiled obtaining the procedure λeval . Then, procedure answer_set

(i.e., a standard ASP system comprising grounder and solver) is called to compute an
answer set Mπ′ of π′. If π′ is incoherent then answer_set returns ⊥ and Algorithm 1
terminates returning ⊥. Otherwise, Mπ′ is provided as input to the compiled program
λeval , which returns a pair (C,Mext), where C is a set of ground constraints having
in the body only literals from Bπ′ , and Mext is an answer set for π′ ∪ λR. We use
subscript ext to denote that it is the extension of the answer set of π′ with the answer
set of λR. Importantly, C models a sufficient condition for discarding Mπ′ , and possibly
also other candidate answer sets M ′

π′ of π′ that cannot be extended to answer sets of π
because M ′

π′ ∪λ is incoherent. If C = ∅ then λ∪Mπ′ is coherent, Algorithm 1 terminates,
returning Mext (line 8) which is an answer set of π (by Theorem 1). Otherwise, if C �= ∅,
C is added to π′, so that the subsequent call to answer_set searches for another answer
set of π′. The execution continues until π′ is detected to be incoherent (line 3), and ⊥ is
returned (line 10), or an answer set is found.

The correctness of this evaluation strategy follows trivially from Theorem 1, once we
have correct algorithms for answer_set, and λeval . How to obtain answer_set is well-
known, thus in the following we describe the way in which we obtain λeval .

5 Compilation of sub-programs

In this section, we describe our strategy for compiling a sub-program λ to obtain pro-
cedure λeval . In order to simplify the presentation, we first describe a general-purpose
evaluation strategy that is valid for any compilable input program, and then we describe
how this strategy can be instantiated by transforming λ into a λ-specific algorithm that
evaluates λ w.r.t. an answer set Mπ′ of π′ by applying loop unrolling and dead code
elimination (see Section 2.2). The general purpose strategy is essentially composed of
two components: (i) a procedure for computing bottom-up an answer set of a compil-
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Algorithm 2 BottomupEvaluation()

Input: ASP program λ = λR ∪ λC , an answer set Mπ′ of π′

Output: A set of ground constraints C and an interpretation Mext

1: R = Mπ′

2: DG = dependency_graph(λ)
3: SCCs = topological_sort(DG)
4: for all SCC ∈ SCCs do
5: for all predicate P ∈ SCC do
6: for all exit rules r ∈ λR with P ∈ P(headr) do
7: S = starter_atom(r)
8: for all s ∈ RS do
9: RP = RP ∪ evaluate(r, s, R)

10: for all predicate P ∈ SCC do
11: WP = RP

12: while ∃WP ∈ W | WP �= ∅ do
13: while WP �= ∅ do
14: for all r ∈ λR | P(headr) ∈ SCC,P ∈ P(body+r ) do
15: for all s ∈ WP do
16: E = evaluate(r, s, R)
17: WP(headr) = WP(headr) ∪ (E \RP(headr))
18: RP(headr) = RP(headr) ∪ E
19: WP = WP \ {s}
20: K = ∅
21: for all r ∈ λC do
22: S = starter_atom(r)
23: for all s ∈ RS do
24: K = K ∪ ground(r, s,R)
25: Mext = R
26: C = ∅
27: for all c ∈ K do
28: C = C ∪ {BuildConstraint(c,Mπ′ ,Mext, λR)}
29: return (C,Mext)

able program and a set of facts, and in case there does not exists one, (ii) an algorithm
computing a set of constraints that are violated by the input facts.

Generic Bottom-up Evaluation. Historically, bottom-up semi-naïve algorithms are the
standard way to evaluate stratified programs (Ceri et al. 1990). We also adopt this
algorithm, that we have refactored and exemplified in pseudo-code in Algorithm 2 to
make more clear how compilation specializes it depending on the program in input. In
the algorithm, SCCs denotes the topologically ordered set of the strongly connected
components of the dependency graph DGλ; and given a set of literals X, XP denotes
the set of literals in X whose predicate is P , thus WP and RP denotes sets of literals
w.r.t. predicate P and we call them the working set and the result set of predicate P ,
respectively.

The evaluation of λ starts with the computation of the dependency graph DG of λ.
Once the dependency graph is computed, the evaluation considers one strongly connected
component (SCC) at a time, following a topological sort of the dependency graph. The
for loops at line 5 and 10 iterate over all predicate names in the current SCC. Rules are
classified into exit and recursive. A rule r is an exit rule for an SCC S if all predicates in
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Algorithm 3 BuildConstraint()

Input: A constraint c, an interpretation Mπ′ of π′, an answer set Mext, the program λR

Output: A ground constraint
1: R = ∅, S = ∅
2: while c �= ∅ do
3: l = NextLiteral(c)
4: S = S ∪ {l}
5: if P(l) ∈ P(π′) then
6: R = R ∪ {l′ ∈ Mπ′ | l′ .

= l}
7: else if P(l) /∈ P(π′) ∧ positive(l) then
8: for all r ∈ λR | l σ

= headr do
9: for all b ∈ bodyr do

10: c = c ∪ {σ(b)}
11: else if P(l) /∈ P(π′) ∧ negative(l) then
12: for all r ∈ λR | l σ

= ∼headr do
13: for all b ∈ bodyr do
14: c = c ∪ {σ(b)}
15: c = c \ S
16: return toConstraint(R)

P(bodyr) belong to a component that precedes S in the topological sort. Otherwise, r is
said to be recursive, i.e. there is some body predicate in the body of r that belongs to S.
For each SCC, exit rules are evaluated first (line 6), while recursive rules are evaluated
whenever all exit rules of the SCC have been evaluated (line 14).

Rules are evaluated as nested join loops (Ceri et al. 1990; Garcia-Molina et al. 2009)
and the join starts with an atom, called starter atom. For exit rules and constraints, we
have only a single join loop and the starter atom is selected among positive body atoms
of the rule. For recursive rules, we might have several join loops, and each starter atom is
selected among atoms whose predicate belongs to the recursive component. The reason
is that exit rules do not produce new atoms in the same component while recursive rules
produce new atoms that can trigger new joins. A nested join loop of a rule r and a starter
atom s is implemented by function evaluate, which returns a set of atoms that belong
to the predicate of the head of r. For the evaluation of recursive rules, the algorithm
takes advantage of a set W , used as a working set to accumulate the atoms of recursive
predicates in the evaluation. The computation of constraints that are returned is done at
the end of the bottom-up evaluation (from line 20) and takes advantage of the algorithm
BuildConstraint described in the following. Note that for constraints we use the function
ground which extends evaluate to produce ground constraints C generated from λ w.r.t.
Mπ′ .

Handling Failed Constraints. We now describe how the constraints to be added to π′

are computed. A non-trivial issue is that the constraints in the compiled program might
consist of literals that do not appear in π′. Algorithm 3 presents a simplified pseudo-code
of the procedure that we adopt in our implementation. The idea is to build a result set
R of literals step by step starting from a ground constraint c. Note that c is initially
ground, but during the execution of the algorithm non-ground literals might be added to
it. In the following, we use the standard concept of variable-substitution σ that represents
a mapping from variables to either constants or variables. At each step, the algorithm
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selects one literal l in c (function NextLiteral(c)). If the predicate of l appears in π′ we
add all the literals l′ in Mπ′ that unifies (symbol .

=) it, i.e. there is a variable-substitution
σ such that σ(l) = l′. Otherwise, if the predicate of l does not appear in π′ and l is a
positive literal, we add σ(b), where b is a body literal of a rule whose head unifies with
substitution σ (symbol σ

=) with l. Finally, if the predicate of l does not appear in π′ and
l is a negative literal, we add σ(b), where b is a body literal of a rule whose negated
head (denoted as ∼headr) unifies with substitution σ (symbol σ

=) with l. The process
continues until c becomes empty. The set of literals S stores literals that have already
been processed to prevent loops. Note that Algorithm 3 starts from c that is known to
be not satisfied in Mext, and traces back (like in a top-down evaluation of a query) the
computation of c from λ to identify a set of literals from Mπ′ that imply c. Indeed, steps
7–10 replace a positive literal l ∈ c by the body of a rule that can infer l, whereas steps
11–14 replace a negative literal ∼l ∈ c with the negation of the body of the rules that
could infer l but did not, and 5–6 instantiate the remaining literals in c w.r.t Mπ′ . Thus,
at the end of the process, R will contain some literals in Mπ′ that caused the derivation
of c from λ and Mπ′ . Termination is guaranteed, since the same literal is not processed
twice (step 15) and steps 7–14 replace literals until no l can be further replaced.

Compilation. The general purpose bottom-up evaluation strategy described above con-
stitutes the template that is instantiated by the compiler depending on the program in
input. In particular, the parts of Algorithm 2 outlined in blue (i.e. lines 2–7, 10, 12–14,
and 20–22) contain instructions that can be evaluated at compile-time because they de-
pend on the syntactic structure of the input; and thus they are subject to loop unrolling
and dead code elimination. Moreover, the dependency graph and its SCCs are computed
at compile time and eliminated after unrolling the loops mentioning them. The parts of
the algorithm in black cannot be simplified and are kept in the compiled version to be ex-
ecuted at runtime. Thus, the compiler given a compilable program λ produces an ad-hoc
procedure obtained by applying the transformations mentioned above to Algorithm 2,
and obtains λeval (see Algorithm 1). Note that the output of the compiler is a procedure
that computes the same result of Algorithm 2 only for the given λ.

6 Implementation and Experiments

The strategy has been implemented within the wasp solver by exploiting its C++ APIs.
The fact that the implementation is embedded into a state-of-the-art ASP solver makes
partial compilation more appealing due to the possibility to rely on the consolidated per-
formance of a CDCL solver. In particular, when the solver starts it calls our implemented
compiler, which compiles the input compilable program into a C++ dynamic library that
implements a lazy propagator. Candidate models are passed to the dynamic library that
computes the extended model and checks the constraints. The implementation is available
at https://bitbucket.org/bernardo_cuteri/lazy_wasp.

We experimented with partial compilation in four different settings:

(E1) Compilation of stratified programs;
(E2) Partial compilation of constraints;
(E3) Partial compilation of rules and constraints; and
(E4) Partial compilation of rules.
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Time and memory for each run are limited to 10 minutes CPU-time and 6GB, respec-
tively. In all experiments, we compare our system against the best ASP systems for the
benchmark at hand. Concerning experiment (E1), ASP solvers are not included since
the programs are already evaluated by ASP grounders. Concerning experiments (E2),
(E3) and (E4), clasp and wasp are used as a reference. Moreover, clasp, wasp, and
compilation-based approach use gringo as grounder. In addition, it should be noted
that, being based on wasp, the most relevant result is given by how the compilation-
based implementation compares with plain wasp.

Compilation times are reported exactly once per domain (thus, only on one instance)
because the system automatically avoids compiling twice the same program, using an
MD5 hash on the compiled program. This fits real-world use-cases where the program
is fixed and the instance changes. In general, compilation times are negligible (up to
2.6 seconds) since we are compiling few rules (up to 15), the only exception being the
wine encoding in OpenRuleBench that consists of 999 rules and takes some minutes to
compile.

For what concernes what parts of the input programs are compiled, we report that
in experiment (E1) we compile the whole program, while in all the others we find ex-
perimentally some sub-programs that are hard to ground. Sub-programs selection, is in
general non trivial, but in many practical cases one can try to incrementally remove parts
of the input program, respecting the compilability condition, until grounding becomes
acceptable (e.g. the grounding step terminates in an acceptable amount of time).

For all experimental settings, we selected pre-existing benchmarks wherever possible
and considered two new benchmarks (connected k-cut, min-cut with transitive closure)
in the cases where we could not find any. New benchmarks consist of classical computer
science problems possibly extended to fit the experiment use-case, naively encoded in
ASP.

The results are commented in the following in a separate paragraph for each setting.
The benchmarks are available for download at https://bitbucket.org/bernardo_cuteri/
lazy_wasp.

(E1) Evaluation of stratified programs. Stratified programs are a large sub-
set of ASP programs that allows to model and solve deductive database applications
(Eiter et al. 2009). To test our implementation, we considered the well-known bench-
marks called OpenRuleBench, which is an open community benchmark designed to test
rule engines. In particular, we run perfect model computation as done for comparing
ASP implementations in (Calimeri et al. 2017). We compared our method with three
state-of-the-art ASP systems: gringo (Gebser et al. 2016), dlv (Leone et al. 2006), and
i-dlv (Calimeri et al. 2017). Plain wasp is not included in this benchmark since strati-
fied programs are already solved by grounders. Results are reported in a cactus plot in
Figure 2 and clearly show the performance benefits of the compilation-based approach.
Indeed, it solves more instances than state-of-the-art approaches and has in general lower
running time.

(E2) Partial compilation of constraints. In this experiment, we considered two
benchmarks presented in (Cuteri et al. 2017), namely StableMarriage and Natural Lan-
guage Understanding (NLU). As shown in (Cuteri et al. 2017), the encodings of such
benchmarks include some constraints leading to a grounding bottleneck. Cuteri et al.
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Fig. 2: (E1) OpenRuleBench benchmark

(2017) presented a strategy to lazily evaluate such constraints by means of custom Python
scripts. Therefore, in the analysis, we compare our approach with these custom Python
scripts.

The Stable Marriage benchmark is based on the well-known Stable Marriage problem
where there are n men and m women, where each person has a preference order over
the opposite sex and the problem consists in finding a marriage that is stable (i.e. there
is no couple for which both partners would rather be married with each other than
their current partner). Results are reported in Table 1. Each table row is associated to
a different value of a parameter k of preferences, e.g. each man (resp. woman) gives the
same preference to all the women (resp. men) but to k% of them a lower preference is
given.

The NLU benchmark is about an application of ASP to Natural Language Under-
standing involving the computation of optimal solutions for First Order Horn Abduction

Table 1: (E2) Stable Marriage: Number of solved instances and average running time (in sec-
onds).

Pref. (k%) clasp wasp wasp python compiled
sol. avg t sol. avg t sol. avg t sol. avg t

0 10 4.36 10 6.2 10 5.8 10 5.6
5 10 28.3 10 25.3 10 5.7 10 5.8

10 10 43.6 8 48.2 10 5.4 10 5.6
15 10 57.9 9 38.3 10 6.8 10 5.6
20 10 62.9 9 50 10 5.9 10 5.4
25 10 67.8 7 52.6 10 5.9 10 5.9
30 10 72.8 10 60.1 10 6 10 5.7
35 10 84.4 5 111.4 10 6.3 10 8.3
40 10 87.6 7 63.3 10 9.4 10 20
45 10 92.0 8 83.8 10 6.3 10 11.3
50 10 94.7 9 67.9 10 6.4 10 8.3
55 10 95.13 7 124.4 9 7.2 9 9.4
60 10 96.36 8 63.3 10 11.5 9 10.7
65 10 99.8 6 66.7 6 18.2 9 17.1
70 10 98.9 6 71 3 21.8 5 132.3
75 10 96.0 8 89.9 0 - 1 13.8
80 10 99.3 7 148.9 0 - 0 -
85 10 107.7 6 107.2 0 - 0 -
90 10 278.7 9 152.2 0 - 0 -
95 8 295.6 10 70.3 0 - 0 -

100 10 98.8 8 61.9 1 7.3 0 -

Tot solved 206 167 139 143
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Table 2: (E2) NLU Benchmark: Number of solved instances and average running time (in sec-
onds).

Obj. Func. clasp wasp wasp python compiled
sol. avg t sol. avg t sol. avg t sol. avg t

card 46 63.7 48 83.0 50 2.8 50 2.3
coh 45 68.6 48 83.0 50 26.8 49 18.3
wa 46 90.5 48 103.2 49 23.6 49 38.5
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Fig. 3: (E2) NLU Benchmark: Cumulative results of all cost functions.

Fig. 4: (E3) Connected k-cut benchmark

problems under cost functions cardinality, cohesion, and weighted abduction. Results are
reported in Table 2 and Figure 3. Each row in the table presents the result obtained
for a specific cost function, while the figure presents the cumulative results for all cost
functions.

It is possible to observe that our evaluation strategy works best in the same settings
in which constraint lazy instantiators work (Cuteri et al. 2017), i.e., when the removed
constraints are hard to ground, but easy to satisfy. The reason is that our evaluation
follows the same execution pattern of lazy constraints, i.e., check the constraint on answer
set candidates of the original input program without the lazy constraint. It is important
to emphasize here that approaches from (Cuteri et al. 2017) are hand-written by experts,
whereas our approach automatically generates the source code with no need of expertise
in an imperative language and solver internals/APIs (i.e., the purely declarative solving
approach is preserved).
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Fig. 5: (E3) Non-partition removal coloring benchmark

(E3) Partial compilation of rules and constraints. In this experiment, we consider
two benchmarks: connected k-cut and non-partition removal coloring.

Connected k-cut is a graph problem where the goal is to find a cut of size at least k
such that the two formed partitions are connected. Instances were randomly generated
containing graphs with different numbers of nodes (from 200 to 800), different densities
(from 0.001 to 0.25) and different cut sizes (from 50 to 800). Non-partition removal
coloring is a benchmark inspired by a real-world configuration application (Gebser et al.
2015) and proposed by Bogaerts and Weinzierl (2018). The formulation of the problem
is as follows: given a directed graph, the goal is to remove one vertex in such a way
that the transitive closures of the original and of the resulting graph are equal on the
remaining nodes and that the resulting graph is 3-colorable. Instances were taken from
(Bogaerts and Weinzierl 2018).

Results are reported in Figures 4 and 5. Concerning connected k-cut, compilation-
based approach solves 15 and 28 more instances than clasp and wasp, respectively.
Similar results can be observed also in the benchmark non-partition removal coloring.
Indeed, compilation-based approach outperforms both clasp and wasp, solving 49 and
43 more instances, respectively. For the sake of completeness, in this benchmark, we
included in the analysis the lazy-solver alpha (Weinzierl 2017). Indeed, albeit alpha is
not competitive in general with state-of-the-art solvers, in this benchmark it outperforms
both clasp and wasp. However, alpha cannot reach the performance of the compilation-
based approach (which solves 12 instances more with similar average running times).

(E4) Partial compilation of rules. In this experiment, we consider the min-cut
problem with transitive closure. Given a graph G the goal is to compute a minimum cost
cut of G and to compute the transitive closures of the two resulting partitions. In order
to analyze the performance of compilation-based approach on sub-programs without
constraints, in this benchmark the compiled sub-program is only made of rules. Results
are reported in Figure 6, where we observe that clasp is much faster than wasp solving
15 more instances. Such a gap is partially filled by the compilation-based approach which
is able to solve 8 more instances than plain wasp.

Summary of the results. Experiments show that the approach is particularly effective for
solving stratified programs (E1) and for compiling grounding intensive sub-programs. For
what concernes stratified programs, the evaluation is bottom-up as implemented in the
other compared systems, but the compilation approach pays off due to its specificity. In
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Fig. 6: (E4) Min-cut with transitive closure

experiment (E2), where only constraints are compiled, the approach works similarly w.r.t.
the custom lazy instantiators implemented in (Cuteri et al. 2017): good performances
when the constraint is easy to satisfy, but hard do ground. This behaviour has been
already shown empirically in (Cuteri et al. 2017) and can easily be observed, for example,
in the Stable Marriage results (small values of k). In (E3), the approach is effective also
in presence of rules. In the k-cut benchmark wasp is originally slower than clingo, but
the compiled approach is faster than clingo. Moreover, the compiled approach behaves
well w.r.t. lazy grounding approaches as shown in the non-partition removal coloring
benchmark. Finally, in (E4) the compiled is again able to improve on the performance of
the base solver wasp when only rules (no constraints) are compiled.

7 Related Work

Traditional evaluation strategy of ASP systems is based on two steps, namely ground-
ing and solving ; for both phases, several efficient systems have been proposed. Con-
cerning the grounding, state-of-the-art grounders are dlv (Faber et al. 2012), gringo
(Gebser et al. 2011) and idlv (Calimeri et al. 2017); which are all based on semi-naïve
database evaluation techniques (Ullman 1988) for avoiding duplicate work during ground-
ing. Concerning ASP solvers, the first generation, i.e., smodels (Simons et al. 2002)
and dlv (Leone et al. 2006), was based on a DPLL-like algorithm extended with infer-
ence rules specific to ASP. Modern ASP solvers such as clasp (Gebser et al. 2015) and
wasp (Alviano et al. 2015) include mechanisms for conflict-driven clause learning and for
non-chronological backtracking. Both solvers also offer an external interface to simplify
the integration of custom solving strategies in the main search algorithm. In particular,
we used the interface of wasp to implement the techniques described in the paper. Al-
ternative approaches are based on the lazy grounding of the whole program, e.g., gasp
(Dal Palù et al. 2009), asperix (Lefevre et al. 2017), or alpha (Weinzierl 2017), where all
rules are instantiated lazily; this makes the search less informed but might have a better
memory footprint. These ‘fully lazy’ approaches have in common, that they instanti-
ate even the non-stratified part of the program only when rule bodies of the respective
rules are satisfied in the current assignment of the search process, as opposed to our
approach where all guesses are instantiated upfront and only stratified parts depend-
ing on guesses (including constraints) are computed lazily. Our Algorithm 3 computes
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constraints that are related to Justifications (Bogaerts and Weinzierl 2018), with the
difference that our approach needs ground constraints using only atoms from π′, while
the alpha solver uses nonground constraints computed from Justifications branches that
are cut off at the first negated literal. CASP (Balduccini and Lierler 2017; Ostrowski and
Schaub 2012) and ASPMT (Bartholomew and Lee 2014) can solve problems with large
constraints, but extend the language with external theories. The compilable program
definition is related to Rule Splitting Sets of HEX programs (Eiter et al. 2016), however,
we here define them on the basis of predicates, not partially ground atoms. ASP Modules
(Janhunen et al. 2009) are more permissive than compilable subprograms because they
permit mutually cyclic (negative) dependencies among modules, which is not possible in
compilable subprograms.

8 Conclusion

Compilation-based approaches are meant to speed up computation by exploiting infor-
mation known at compilation time to create custom procedures that are specific to the
problem at hand. In this paper, we presented what is, to the best of our knowledge,
the first work on compilation-based techniques for ASP solving. In our approach, we al-
low compilation of ASP sub-programs and we define what a compilable sub-program is,
i.e., we specify what are the conditions under which our approach can be adopted. The
presented approach has been developed as a solver extension of wasp which is a state-of-
the-art ASP solver. The evaluation strategy presented includes a bottom-up evaluation
for computing the unique stable model of the compilable sub-program and a top-down
evaluation for computing failed constraints in terms of literals that are known to the
ASP solver. An experimental analysis shows the benefits that can be obtained in differ-
ent use-cases by a compilation-based approach. The approach is particularly suited for
solving stratified programs, and for compiling ground-intensive sub-programs where lazy
instantiators are effective.

In the future, we are planning to extend the presented approach to allow eager/post
propagation, i.e., the evaluation is performed also on partial interpretations every time
a new literal is chosen (eager) or when unit propagation ends (post). Moreover, it is also
interesting to investigate whether it is possible to automatically select a sub-program to
be compiled that maximizes the performance of our technique.
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