
The Emergence of the Macroworld:

A Study of Intertheory Relations in

Classical and Quantum Mechanics

Malcolm R. Forster and Alexey Kryukovyz

Classical mechanics is empirically successful because the probabilistic mean values of

quantum mechanical observables follow the classical equations of motion to a good

approximation (Messiah 1970, 215). We examine this claim for the one-dimensional motion

of a particle in a box, and extend the idea by deriving a special case of the ideal gas law in

terms of the mean value of a generalized force used to define ‘‘pressure.’’ The examples

illustrate the importance of probabilistic averaging as a method of abstracting away from the

messy details of microphenomena, not only in physics, but in other sciences as well.

1. Introduction. Mean values, or probabilistic averages, are used to define
macroquantities in many sciences. In neuroscience, the response of a
neuron is characterized in terms of the mean firing rate, or the expected
spike frequency within a time window (Rieke et al., 1997). Or in evo-
lutionary theory, ‘‘fitness’’ is the probability of survival.1 And then there is
the most popular example of all: Temperature defined as the mean kinetic
energy of molecules in a gas. We cite these examples in order to suggest
that a broader understanding of the role of probabilities, and probabilistic
averaging, may be important for a broader understanding of inter-theory
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relations. Current philosophical work on intertheory relations does not
place much emphasis (Batterman 2001b) on probabilistic averaging as a
method of ‘‘abstracting away from the messy details’’ (Waters 1990) of the
underlying microphenomena.

Nagel’s (1961) account of intertheory relations (as deductive relations)
highlighted the need for bridge laws to bridge the definitional gap between
macroquantities and microquantities. So, the existence of bridge laws is
expected. But it could be that the probabilistic nature of bridge laws is un-
expected. This is especially so when macroquantities are defined as en-
semble averages, where the averages are over possible rather than actual
microquantities.

This paper provides a concise survey of the intertheory relations that
hold between quantum mechanics (QM) and the deterministic laws of
classical physics—in particular, Newton’s equations of motion and the ideal
gas law in thermodynamics. It may be surprising that deterministic laws can
be deduced from a probabilistic theory such as quantum mechanics. Here,
curve-fitting examples provide a useful analogy. Suppose that one is
interested in predicting the value of some variable y, which is a deter-
ministic function of x, represented by some curve in the x-y plane. The
problem is that the observed values of y fluctuate randomly above and
below the curve according to a Gaussian (bell-shaped) distribution. Then
for any fixed value of x, the value of y on the curve is well estimated by the
mean value of the observed y values, and in the large sample limit, the curve
emerges out of the noise by plotting the mean values of y as a function of x.

To apply the analogy, consider x and y to be position and momentum,
respectively, and the deterministic relation between them to be Newton’s
laws of motion. Then it may be surprising to learn that Newton’s laws of
motion emerge from QM as relations between the mean values of QM
position and QM momentum. These deterministic relations are known as
Ehrenfest’s equations. In contrast to curve fitting, the Heisenberg uncer-
tainty relations tell us that the QM variances of position and momentum are
not controllable and reducible without limit. Nevertheless, it is possible for
both variances to become negligibly small relative to the background noise.
This is the standard textbook account of how Newton’s laws of motion
emerge from QM in the macroscopic limit (e.g., Gillespie 1970; Messiah
1970; Schwabl 1993). We review this story in Section 2.

Nevertheless, this is an incomplete account of how the macroworld
emerges in QM. For there are other macroscopic laws, such as thermody-
namic laws, that do not follow from Ehrenfest’s equations. We shall
consider the ideal gas law, which relates the pressure, volume, and tem-
perature of a gas.

The ideal gas law appeals to a very simple mechanical model—that of
tiny billiard balls bouncing around in a box that have zero potential energy
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except for the times at which they are in direct contact with each other or the
walls of the container. Because the collisions are instantaneous, these times
are of measure zero, and can be neglected for some purposes. What is
interesting about this idealization is that the assumptions used to derive
Ehrenfest’s equations are false. Even an appeal to the more fundamental
QM equations from which Ehrenfest’s equations are derived does not help.
The derivation of thermodynamic laws is an independent problem.

We look at how Newtonian mechanics addresses the problem of dis-
continuous jumps in Section 3. Then, in Section 4, we sketch the QM treat-
ment of a particle in an infinite potential well. Our purpose is not merely to
prove the incompleteness of Ehrenfest’s equations, but to compare the defi-
nitions of pressure in Newtonian mechanics (Section 5), and in statistical
mechanics (Section 6), and in QM (Section 7). Our main puzzle is about
how pressure can be defined in QM, and we rest content with a solution to
the problem in the very simple case of a single particle in a one-dimensional
box. More general treatments of the ideal gas law are well documented in
other places (e. g., Khinchin 1960).

In all the cases we examine, the quantities appearing in macrolaws are
defined as averages of microquantities. Some possible consequences of
this fact for a realist interpretation of theories are mentioned in the final
section.

2. Ehrenfest’s Equations. We begin with the Hamiltonian operator for a
single particle written in the form:

Ĥ ¼ P̂2=2mþ UðX̂ Þ; ð1Þ

where the ^ indicates that it is a Hermitian operator (called an ‘observable’
of quantum mechanics, because all the eigenvalues are real numbers if the
operator is Hermitian, and so are their mean values). P̂ and X̂ are the mo-
mentum and position operators, defined respectively as:

P̂u� i,@=@x and X̂ux; ð2Þ

where X̂ operates on a wave function y(x) by mapping y(x) to xy(x).
Using Schrödinger’s equation, one may show that the time rate of change

of the mean value of any operator is equal to i/,
¯
times the mean value of

the commutator of that operator with the Hamiltonian (see Gillespie 1970,
76–77 for a proof). That is, for an arbitrary QM observable, Â,

dhÂit dt ¼ i

,
hĤÂ� ÂĤit;

�
ð3Þ
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where the brackets refer to the QM mean, and the subscript t indicates that
the mean value depends on the time t.

One of the most famous consequences of this general fact is that any
observable that commutes with the Hamiltonian has mean value that is con-
stant in time. In fact, the implications are stronger. Since Â2 commutes with
Ĥ if and only if Â computes with Ĥ, the variance of Â is also constant. In
fact, thewholeprobabilitydistribution for Â is invariant over timewhenever Â
commutes with Ĥ. This applies trivially to the energy itself, for obviously the
Hamilitonian commutes with itself. This provides yet another kind of inter-
theoretic relation of the kindwe are discussing: In Newtonianmechanics, the
conservation of energy says that E is constant in time. Whereas in QM, this
corresponds to the law that the mean value of E, hEi, is constant.

Now choose Â to be P̂, and X̂. With these choices we derive Ehrenfest’s
two equations. The time rates of change of hP̂i and hX̂i are not zero because,
in general, neither operator commutes with Ĥ. The exact commutation
relations can be derived from (1) and (2). They are (Gillespie 1970, 110):

ĤX̂ � X̂ Ĥ ¼ �i, P̂=m; ð4Þ

ĤP̂ � P̂Ĥ ¼ �i, FðX̂ Þ; ð5Þ

where

FðxÞu� dU=dx: ð6Þ

Equation (6) is exactly analogous to how forces are derived from the
potential energy function in Newtonian mechanics. For example, if x denote
the height of an object above the ground, then U(x) = mgx is the potential
energy of the object, where m is its mass and g is the gravitational field
strength. Therefore, F(x) u �dU/dx = �mg is the gravitational force
(weight) acting on the body, where the minus sign indicates that the force
acts in the downward (negative x) direction.

Note that equation (6) assumes that the potential energy function is
differentiable with respect to x. This is not true in idealized cases such as
an ideal gas modeled in terms of hard wall and hard billiard balls. For then
the potential energy changes of 0 tol across a boundary, which is why we
shall treat this case separately in later sections.

If we substitute (4) and (5) into (3), we immediately derive Ehrenfest’s
equations:

dhX̂ it=dt ¼ hP̂it=m; ð7Þ

dhP̂it=dt ¼ hF̂it: ð8Þ
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Note that these two laws are exact in the sense that no approximation has
been used.

If we now differentiate both sides of (7) with respect to t, and make a
substitution using (8), we get:

hFðX̂ Þit ¼ md2hX̂ it=dt2: ð9Þ

This is also an exact equation of QM. While this looks like Newton’s
second law, F = ma, it is only functionally equivalent to it if

hFðX̂ Þit ¼ FðhX̂ itÞ: ð10Þ

If (10) does hold, then we need only write down the bridge laws hX̂it u q(t)
and hP̂itu p(t), to obtain dq/dt = p/m, and F(q) =md2q/dt2. These equations
are isomorphic to Newton’s laws of motion and therefore have the same
solutions.

Equation (10) is true if F(x) = const., or if F(X) = coast� x. But if F(x) =
x2, (10) is only approximately true to the extent that the dispersion, or
standard deviation, of x is very small. For only then is hX̂2i c hX̂i2.
Therefore, in the macroscopic limit, when the dispersion of x is small,
Newton’s laws of motion hold to a high degree of approximation.

3. The Newtonian ‘Force’ Acting on a Particle in a Box. In Newtonian
physics, there are two ways of writing down an expression for the force
acting on a particle. The first ‘definition’ is via Newton’s second law, F =
m.a, or equivalently, F = dp/dt, where p is the particle’s momentum, m is
the mass of the particle, and t is time. Or else, in the Hamiltonian for-
mulation of Newtonian mechanics, force is ‘defined’ as minus the space
derivative (the x-derivative) of the Hamiltonian, or the potential energy
part of the Hamiltonian since the kinetic energy part does not depend
explicitly on x. If U(x) denotes the potential energy of the particle at
position x, then the force acting on the particle is F = �dU/dx. This
‘definition’ works in ‘nice’ cases in which the potential energy function
U(x) is everywhere differentiable, but unfortunately an infinitely deep po-
tential well is not so ‘nice’. For here,

UðxÞ ¼ 0 for 0 V x V L; and l otherwise;

where L is the length of the box. U(x) is not differentiable at the points
x = 0 and x = L.

In loose physical terms, we may say that the particle is subjected to an
infinitely large repulsive force when it hits a wall, which causes the parti-
cle to instantaneously reverse its momentum along the direction perpen-
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dicular to the wall. The details of the interacting forces during the in-
teraction do not matter to the following extent: In any collision, the total
momentum is preserved, and if the collision is also elastic (which, by
definition, means that the total kinetic energy is conserved), then the fi-
nal state of the colliding particle after the interaction is fully determined
from its initial state by the conservation of total momentum and total
energy. This is true irrespective of the exact nature of the forces involved
in the interaction itself. The duration of the interaction may vary from
case to case, but the duration is small if the repulsive force is very
strong.

Still, the force is mathematically undefined at the point at which the
particle collides with the wall in the case of an infinitely deep potential
well. The only reason why this does not create a technical problem is that
the motion of the particle is fully solved from the conservation laws alone.
So, the idealization involved in an infinitely deep potential well is harmless
in Newtonian mechanics.

4. The Quantum ‘Force’ Acting on a Particle in a Box. By direct anal-
ogy, the force operator in quantum mechanics is defined as �dU/dx, where
U is exactly the same as in the Newtonian potential energy function
(except that it is viewed as an operator). So the same problem arises in our
example: At x = 0 and x = L, �dU/dx = Fl.

In quantum mechanics, the mean value of a quantum mechanical
‘observable’ (formally represented by a Hermitian operator on the Hilbert
space of wave functions) is calculated by applying the operator to the wave
function, multiplying the result by the complex conjugate of the wave
function, and then integrating the result with respect to x. In the case of an
infinite potential well, the wave function is 0 at the boundaries of the box.
So, to calculate the mean force, one is faced with the problem of inte-
grating 0 times l at the end points. There are other cases in which one
may justifiably assume that 0 times l is equal to 0. For example, to cal-
culate the mean potential energy, one assumes that the infinite potential
energy outside the box makes zero contribution because the wave function
outside the box is 0. Yet in the case of calculating the mean force, 0 is not
the physically correct answer. Common sense tells us that if the mean
momentum changes in time, then there must be some mean force re-
sponsible for this change. But how is this idea represented in the formal-
ism?

First note that in ‘nice’ cases, in which U(x) is differentiable every-
where,

�dU=dx ¼ ði=,ÞðĤP̂ � P̂ĤÞ; ð11Þ
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where

Ĥ ¼ P̂2=2mþ UðX̂ Þ:

Ĥ is the Hamiltonian operator, X̂ = x is the position operator, and P̂ =
�i,(d/dx) is the momentum operator.2 Now, recall the general fact about
quantum mechanics that the time-rate of change of the mean value of any
operator is equal to i/,

¯
times the mean value of the commutator of that

operator with the Hamiltonian (see equation [3]). So, if we were to define
the quantum mechanical force to be equal to the right-hand side of equa-
tion (11), then the mean force would be given by the equation

h�dU=dxiudhP̂i=dt:

Denoting the quantum mechanical ‘force’ operator by F̂, we have

hF̂it ¼ dhP̂it=dt; ð12Þ

where the subscript t reminds us that the means may change with time.
Equation 12 is Ehrenfest’s second equation.

The interesting fact about QM is that QM solutions exist such that hP̂it
is a continuous differentiable function of time in the case of an infinite
potential well. The singularity, which is a universal feature of the classical
solution, only emerges in the macroscopic limit. So, the puzzle is this: In
the QM case the mean force cannot be calculated from h�dU/dxi because
U is not differentiable. Nevertheless, the mean force does make sense in
the QM example if it is defined in terms of equation 12.

Is this theft or honest toil? In our view, it is not worth struggling over
this particular question. The importance of idealization lies in its con-
nection with the model of an ideal gas. So, the important connection is be-
tween the changes in momentum of the particle and the pressure exerted on
the wall. We compare the classical and quantum mechanical concepts of
pressure in the next two sections.

5. Pressure in Newtonian Mechanics. The purpose of this section is to
motivate the idea that pressure in Newtonian mechanics is the time aver-
age of a kind of generalized force. The generalized force is �@E/@V,
where E is the energy and V is the volume. At first sight, this idea seems
absurd, since in our simple example E ¼ 1

2
mv2, and so E does not depend

2. To prove (11), first note that P̂ commutes with the first term in the Hamiltonian, and

then show that (U(x)P̂ � P̂U(x)) operating on an arbitrary wave function f (x) reduces to

i,U V(x)f (x).
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on the volume V. So how does �@E/@V make sense, yet alone the time
average of such a quantity? Here is must be remembered that E ¼ 1

2mv2

þUðxÞ, where the potential energy U(x) does depend on V. Namely, U(x) is
0 for points x inside V and l for points outside V. How does this implicit
dependence of U on V enter into the physics?

The importance of pressure in physics arises from its role in the formula
for the work done by a system. In particular, the work done by a system is
written as PDV, where P is the average pressure and DV is the change in
volume. In our case, the increase in V is due to an increase in L. That is,
DV = ADL, where A is the area of the ends of the cylindrical tube, and DL
is the increase in the length of tube in some time period DT. To ease the
calculation, suppose that DT is the time that it takes the particle to travel
from one end of the tube and back again. Then velocity of the particle is
v = 2L/DT.

Imagine that a piston at the rightmost end of the cylinder is moving to
right at a uniform speed u. Let DL be the distance the piston travels during
the time DT. If the particle is moving just a little faster than the piston, then
it will strike the moving piston and reflect off it, while continuing to move
to the right with a reduced velocity. Clearly, the particle loses kinetic
energy when it strikes a moving wall.

Quantitatively, the change in the energy, DE, can be deduced from the
fact that the collision is elastic. In the frame of reference in which the
moving wall is stationary, the particle approaches the wall with velocity v V
and reflects from the wall with velocity �v V. Clearly, v Vis less than v by the
amount u. After some calculation,

DE ¼ �ð1=DTÞ2mv VDL:

When we compare this to the formula DE = �PDV, we infer that

P ¼ ð1=DTÞ2mv V=A:

That is, pressure is the time average of the change in momentum (2mv V)
measured relative to the moving wall, per unit area.

When u = 0, the wall is not moving, and the work done is zero, but the
pressure is still well defined. In particular,

P ¼ ð1=DTÞ2mv=A ¼ ðL=DTÞ2mv=V ¼ mv2=V ¼ 2E=V :

The equation P = 2E/V is a special case of the ideal gas law (for a single
particle in one dimension).

It is equally clear from the first equation, DE = �PDV, that P =�DE/DV.
So if E were a differentiable function of V, then we could define the
instantaneous pressure as P = �@E/@V. Then the average pressure could be
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defined as the average instantaneous pressure. But ‘average pressure’ is
well defined far more generally.

6. Pressure in Statistical Mechanics. In classical statistical mechanics,
there is a way of defining a generalized force, then calculating the ‘pres-
sure’ by averaging over an ensemble of microstates of the system.3 The
interesting part of the statistical mechanical story is that generalized force
is defined as we should expect from the previous section—as the de-
rivative of the energy function (the Hamiltonian) with respect to the vol-
ume, V (see Khinchin 1949, sections 30 and 31, 139ff.). We shall not
discuss the details of this case here, but the analogy with the quantum
mechanical case is also striking.

7. Pressure in Quantum Mechanics. In quantum mechanics, the operator
@Ĥ/@V is no less problematic than the corresponding quantity in classical
statistical mechanics (in the case of an infinite well). Surprising the QM
mean value of this operator can be calculated, and the calculated value leads
directly to the same version of the ideal gas law as before ((P = 2E/V ),
except that E is replaced by its QM mean value, hEi. That is,

Mean QM Pressure u h�@Ĥ=@V i ¼ 2hEi=V :

(See the appendix for proof ).
Classical statistical mechanics and quantum mechanics have this much

in common: Both are able to calculate mean values of a generalized force
�@E/@Veven for an infinite potential well, and in both cases, the calculation
of the mean values leads to an analogous version of the ideal gas law.

8. Philosophical Conclusions. Messiah (1970, 215) is typical amongst
writers of quantum mechanical textbooks in claiming that quantum me-
chanics explains the success of classical mechanics because ‘‘the mean
values [of quantum mechanical observables] follow the classical equations
of motion to a good approximation’’ provided that ‘‘the dimensions of the
wave packet be small with respect to the characteristic dimensions of the

3. The ensemble approach to statistical mechanics was developed mainly by Gibbs (see, for

example, his 1902). While the Gibbsian approach is popular amongst contemporary

physicists, important philosophical questions about the meaning and role of ensemble

averages remain (see, for example, Batterman 1998, Batterman 2001a, Callender 1999,

Earman and Rédei 1996). Unfortunately, there is no space to discuss these important issues

here.
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problem.’’ We have extended that story to show how other macroquan-
tities, such as pressure, are also defined in QM as mean values.

There are philosophical puzzles raised. How, for example, can macro-
scopic quantities be identified with quantum mechanical means when,
according to the orthodox interpretation of quantum mechanics, a quantum
mechanical observable has no value unless it is in an eigenstate of that
observable. For example, Ehrenfest’s first equation relates the (rate of
change of the) mean position to the mean momentum, but ‘position’ and
‘momentum’ do not commute. So, classical quantities correspond to
quantum mechanical observables that have no value! How does this make
sense? How does it make sense to say that classical quantities have a value
if they correspond to quantum observables that have no value? Why is it
okay to make such claims if the uncertainties (the variances) of the
observables are small. Why does that make a difference?

Perhaps one should bite the bullet and say that, strictly speaking,
Newtonian quantities do not have values? Perhaps this would make sense
if we could argue that quantum mechanics really explains the empirical
success of classical laws rather than their literal truth. But even the weaker
position has a problem. How is ‘empirical success’ defined? How can we
say that classical physics is empirically successful if not by saying that the
predicted values of macroquantities are close to being the true values?

Perhaps the problem can be resolved by interpreting mean values as real?
This would include the orthodox view as a special case, since an eigenstate
of an observable is a state in which the mean value of the observable is
dispersion free. We need to extend the orthodox view to at least include
cases in which the observables are almost dispersion free, but not exactly
dispersion free.

We have showed how bridge laws in physics commonly equate macro-
quantities with ensemble averages, time averages, and QM averages of
microquantities. Moreover, neuroscience, evolutionary theory, physics, and
many other sciences, appear to follow the same pattern of intertheory rela-
tions. Our conclusion is that the philosophy of science needs a probabilistic
theory of intertheory relations.

Within such a theory, one could raise new and interesting questions, such
as the following. Consider the growing field of econophysics (Mantegna
and Stanley 2000; Plerou et al. 2003), which is applying the models of
statistical mechanics in an attempt to explain how the volatile and unpre-
dictable behavior of the financial markets emerges from a human system
with many interacting participants. Do the concepts of temperature and
entropy usefully describe the behavior of the financial markets? We have
not heard of any such thing. So, why is the analogy with statistical mechan-
ics so influential in econometrics? Perhaps it is the probabilistic method-
ology that is paying dividends, rather than the physics analogy per se.
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Appendix .

Here is the QM derivation of the ideal gas law for one particle moving
in within a infinite potential well. Consider an arbitrary quantum statey(x, t)
= S ck gk (x, t) of a particle in a one-dimensional infinite potential well,
where the gk (x, t) are the energy eigenfunctions, so that for all k, (Ĥ� Ek)�
gk (x, t) = 0. First, differentiate the identity S ck(Ĥ � Ek)gk (x, t) = 0 with
respect to L (the length of the box) to obtain

X
ck

@Ĥ

@L
� @Ek

@L

� �
gkðx; tÞ þ

X
ckðĤ � EkÞ

@gkðx; tÞ
@L

¼ 0:

Now multiply both sides by y*(x, t) and integrate with respect to x.We first
note that:

Iumy*ðx; tÞ
X

ckðĤ � EkÞ
@gkðx; tÞ

@L
dx

¼
X
j pk

cj*ckðEj � EkÞ
ZL

0

gjðx; tÞ*
@gkðx; tÞ

@L
dx;

where we have used the Hermicity of Ĥ. To evaluate these ‘cross terms’ we
need to use the exact expressions for the energy eigenfunctions, which are
(see e.g., Gillespie 1970, 116)

gkðx; tÞ ¼ e�iEk t=t
ffiffiffiffiffiffiffiffi
2=L

p
sin ðkpx=LÞ

when 0 < x < L and 0 otherwise, where

Ek ¼
p2t2

2mL2
k2:

The calculation is laborious, but the summation is simplified by the fact
that

ðEj � EkÞ
ZL

0

gjðx; tÞ*
@gkðx; tÞ

@L
dx ¼ ð�1Þk�j 1

L

p2t2jk
2mL2

2e�iðEk�EjÞt=t:

Therefore

I ¼ 4

L

X
k>j

jcj jjck j ð�1Þk�j p
2 t2jk

2mL2
cos½ðEk � EjÞt=tþ ð/k � /jÞ�;
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where, for all k, ck ¼jck j ei/k . Finally,

� @Ĥ

@L

� �
¼ 2hEi

L
� 4

L

X
k>j

jcj jjck j ð�1Þk�j p
2 t2jk

2mL2

� cos½ðEk � EjÞt=tþ ð/k � /jÞ�:

There are three corollaries to this result. The first is obvious: If the state
is in an energy eigenstate, then there are no cross terms, and we arrive at a
‘version’ of the ideal gas law:

� @Ĥ

@L

� �
¼ 2hEi

L

The second corollary is that if we calculate the time average over a
period of time Dt that is sufficiently large, then the cross term will average
out to something negligible.

The third corollary considers an ensemble of systems with identical
values of jckj but with uniform distribution over all the sequences of phases
f1, f2, f3, .. . , so that the cross terms will cancel out in the ensemble average.

The ensemble mean now reduces to the same simple law.

The final form of the result is obtained by noting that V = L � A, where
A is the area of the end walls of the box, from which it follows that:

@Ĥ

@L

� �
¼ @Ĥ

@V

� �
@V

@L
¼ A

@Ĥ

@V

� �
;

assuming that A is constant. Hence,

Pu � @Ĥ

@V

� �
¼ 2hEi

V
:
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