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We study radial symmetry of entire solutions of the equation

(0.1) Δ2u = 8(N − 2)(N − 4)eu in RN (N � 5).

It is known that (0.1) admits infinitely many radially symmetric entire solutions.
These solutions may have either a (negative) logarithmic behaviour or a (negative)
quadratic behaviour at infinity. Up to translations, we know that there is only one
radial entire solution with the former behaviour, which is called ‘maximal radial
entire solution’, and infinitely many radial entire solutions with the latter behaviour,
which are called ‘non-maximal radial entire solutions’. The necessary and sufficient
conditions for an entire solution u of (0.1) to be the maximal radial entire solution
are presented in [7] recently. In this paper, we will give the necessary and sufficient
conditions for an entire solution u of (0.1) to be a non-maximal radial entire
solution.

Keywords: Bi-harmonic equation; radial symmetry; entire solutions; exponential
nonlinearity
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1. Introduction

We consider radial symmetry of entire solutions of the equation

Δ2u = λ0e
u in R

N , λ0 = 8(N − 2)(N − 4), N � 5. (1.1)

The necessary and sufficient conditions for an entire solution of (1.1) to be a radially
symmetric entire solution are established.
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We first consider the structure of radial entire solutions of (1.1). It is known from
[1,2] that for any α, β ∈ R, the initial value problem{

Δ2u = λ0e
u, r ∈ (0, R),

u(0) = α, u′(0) = 0, Δu(0) = β, u′′′(0) = 0 (1.2)

admits a unique solution uα,β(r), where R is the maximal interval of existence of
solutions and r = |x|. Moreover, there exists β0 = β0(α) < 0 such that the radial
solution is entire if and only if β � β0. Moreover, (i) if β < β0, then

limr→∞r−2uα,β(r) < −c < 0 (1.3)

for some c > 0 depending on β and β0; (ii) if β = β0, then

lim
r→∞[uα,β(r) + 4 ln r] = 0. (1.4)

Therefore, the radial entire solution of (1.1) exists for β � β0, but their asymptotic
behaviours at ∞ may be different. For each fixed α ∈ R, the comparison princi-
ple (lemma 3.2 in [9]) ensures that uα,β0 > uα,β in (0,∞) when −∞ < β < β0.
Therefore, uα,β0 is the maximal radial entire solution with respect to u(0) = α.

The necessary and sufficient conditions for an entire solution u of (1.1) to be the
maximal radial entire solution of (1.1) are presented in [7] recently. In this paper,
we will give the necessary and sufficient conditions for an entire solution u of (1.1)
to be a radial entire solution, but not the maximal radial entire solution. The main
result is the following theorem.

Theorem 1.1. Let u ∈ C4(RN ) be an entire solution of (1.1) with N � 5. Then
u is a radially symmetric solution about some x0 ∈ R

N (i.e. u(x) = u(r) with r =
|x − x0|), but is not the maximal radial entire solution about x0 of (1.1), if and
only if there exists D > 0 such that

|x|−2u(x) → −D as |x| → ∞. (1.5)

The constant D then determines a particular non-maximal radial entire solution.

In a recent paper [5], the authors constructed a non-radial entire solution of (1.1)
with the asymptotic behaviour (see theorem 1 in [5]):

u(x) = −p(x) + O(|x|4−N ) as |x| → ∞,

where

p(x) = ΣN
i=1αi(xi − x∗

i )
2, α1, α2, . . . , αN > 1 + N/2.

It is easily seen that if the coefficients αi are not all equal, then u(x) is not radial
about any point. Our theorem 1.1 implies that if αi are all equal, then u(x) is radial
about x = x∗, where x∗ = (x∗

1, x
∗
2, . . . , x

∗
N ).

When N = 4, radial symmetry of an entire solution u of the equation

(Q) Δ2u = 24eu in R
4

satisfying |u(x)| = o(|x|2) at |x| = ∞ has been obtained by Lin [8]. Another inter-
esting question is: can we show that an entire solution u(x) of (1.1) is radially
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symmetric in R
N for N � 5 provided that there exists D > 0 such that u(x) =

−D|x|2 + o(|x|2) at |x| = ∞? Our theorem 1.1 gives a positive answer to this
question.

The structure and properties of entire solutions to (1.1) in the conformal dimen-
sion N = 4 and the ‘supercritical dimension’ N � 5 have been studied by many
authors, see [1–3,5,6,11,12] and the references therein. Entire solutions of (1.1)
with N � 5 have been classified via Morse index theory. In [11], the author deter-
mined the stability properties of the solutions of (1.1). In [2,5], the authors found
that there exist both unstable and finite Morse index solutions of (1.1) in ‘lower
dimensions’ 5 � N � 12 and any radially symmetric solution to (1.1) is fully stable
in ‘high dimensions’ N � 13. The second author of the present paper [6] classi-
fied all the maximal radial entire solutions of (1.1) in ‘lower dimensions’ and ‘high
dimensions’. He also obtained the asymptotic expansions of the maximal radial
entire solutions at ∞.

We will use the moving-plane argument of system of equations to prove theorem
1.1. Note that the equation can be written to a system of equations:{−Δu = w, in R

N ,
−Δw = λ0e

u, in R
N ,

(1.6)

which is cooperative. Unfortunately, the asymptotic behaviour (1.5) at |x| = ∞ of
an entire solution of (1.1) is not enough to make the moving-plane procedure work.
In order to use the moving-plane argument, we need to know more information
on the asymptotic behaviour at |x| = ∞ of an entire solution u ∈ C4(RN ) of (1.1)
satisfying (1.5).

In § 2, we obtain the asymptotic behaviours of uα,β(r) (given in (1.2)) at ∞
with −∞ < β < β0. In § 3, we will give the exact asymptotic behaviour of an entire
solution of (1.1) satisfying (1.5) and in the final section, we present the proof of
theorem 1.1. In this paper, we use C to denote a positive constant which may
change from one line to another line.

2. Asymptotic behaviours of uα,β(r) at ∞ with −∞ < β < β0

In this section, we obtain more information for uα,β(r) with −∞ < β < β0, where
uα,β is given in (1.2).

Proposition 2.1. There exists d > 0 depending on α and β such that

Δuα,β(r) → −d, r−2uα,β(r) → − d

2N
as r → ∞. (2.1)

Proof. It is easily seen from the equation in (1.2) that Δuα,β(r) is increasing in
(0,∞) with Δuα,β(0) = β < 0. Therefore, there are three cases for Δuα,β(r):

(i) Δuα,β(r) → e > 0 (e may be +∞) as r → ∞,

(ii) Δuα,β(r) → 0 as r → ∞,

(iii) Δuα,β(r) → −d < 0 as r → ∞.
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We show that the cases (i) and (ii) do not happen.
If (i) occurs, we see that for any small ε > 0, there is an R = R(ε) > 1 such that

Δuα,β(r) > e − ε for r > R. (2.2)

(We may assume 0 < e < ∞. If e = ∞, we can choose any 0 < e1 < ∞ such that
(2.2) holds.) This implies

rN−1u′
α,β(r) − RN−1u′

α,β(R) � (e − ε)
N

(rN − RN )

and

u′
α,β(r) � RN−1

rN−1
u′

α,β(R) +
(e − ε)

N
(r − RNr1−N ).

Therefore,

uα,β(r) �uα,β(R) +
RN−1u′

α,β(R)
2 − N

(r2−N − R2−N )

+
(e − ε)

2N
(r2 − R2) +

(e − ε)RN

N(N − 2)
(r2−N − R2−N ).

This implies

limr→∞r−2uα,β(r) � e

2N
> 0 (2.3)

by sending ε to 0. This contradicts to (1.3).
If (ii) occurs, arguments similar to those in the proof of case (i) imply that

limr→∞r−2uα,β(r) � 0. (2.4)

This also contradicts to (1.3).
Therefore, case (iii) occurs. Arguments similar to those in the proof of case (i)

imply that

limr→∞r−2uα,β(r) � − d

2N
(2.5)

and

limr→∞r−2uα,β(r) � − d

2N
. (2.6)

Both (2.5) and (2.6) imply

lim
r→∞ r−2uα,β(r) = − d

2N
. (2.7)

This completes the proof of this proposition. �
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Remark 2.2. We can easily see that for any α ∈ R, d := d(α, β) > 0 for β ∈
(−∞, β0) and d is decreasing with respect to β,

lim
β→β−

0

d(α, β) = 0

and

lim
β→−∞

d(α, β) = ∞.

3. Exact asymptotic behaviour of an entire solution of (1.1) satisfying
(1.5)

To prove the sufficiency of theorem 1.1, we need to know more information on the
asymptotic behaviour of an entire solution u ∈ C4(RN ) of (1.1) satisfying (1.5).

Let u ∈ C4(RN ) be an entire solution of (1.1). We introduce the Kelvin-type
transformation:

v(y) = |x|−2u(x) + D, y =
x

r2
, r = |x| > 0, D > 0. (3.1)

Then v(y) = v(s, θ) with s = |y| = r−1 satisfies v(s, θ) → 0 uniformly for θ ∈ SN−1

as s → 0 and the equation:

v(4)
s − 2(N − 3)s−1vsss + (N − 1)(N − 3)s−2vss − (N − 1)(N − 3)s−3vs

+ 2Ns−4Δθv − 2(N − 1)s−3Δθvs + 2s−2Δθvss + s−4Δ2
θv

− λ0s
−6es−2(v−D) = 0. (3.2)

Lemma 3.1. For any integer τ � 0, there exist constants M = M(u) > 0, 0 < s∗ =
s∗(u) < 1, such that

lim
s→0

v(y) = 0, |∇τv(y)| � M

sτ
for s = |y| � s∗. (3.3)

Proof. The estimates in (3.3) can be obtained from (1.5) and the standard elliptic
theory. �

Define

w(s, θ) = v(s, θ) − v(s),

where

v(s) =
1

|SN−1|
∫

SN−1
v(s, θ)dθ.

Then v and w, respectively, satisfy

v(4)
s − 2(N − 3)s−1vsss + (N − 1)(N − 3)s−2vss − (N − 1)(N − 3)s−3vs

− λ0s
−6es−2(v−D) = 0 (3.4)
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and

w(4)
s − 2(N − 3)s−1wsss + (N − 1)(N − 3)s−2wss − (N − 1)(N − 3)s−3ws

+ 2Ns−4Δθw − 2(N − 1)s−3Δθws + 2s−2Δθwss + s−4Δ2
θw

− s−4g(s, ξ, w) = 0, (3.5)

where by the Mean Value Theorem,

g(s, ξ, w) = λ0s
−4[es−2(ξ(s,θ)−D)w(s, θ) − es−2(ξ(s,θ)−D)w(s, θ)]

and min{v(s, θ), v(s)} � ξ(s, θ) � max{v(s, θ), v(s)}. Note that ξ(s, θ) → 0 uni-
formly for θ ∈ SN−1 as s → 0, since v(s, θ) → 0 uniformly for θ ∈ SN−1 as s → 0
and v(s) → 0 as s → 0. If we define

ζ(s) = λ0s
−4 max

θ∈SN−1
es−2(ξ(s,θ)−D),

we see that

ζ(s) = o(e−((D)/(2))s−2
) for s near 0. (3.6)

Since w(s) = 0, we have the expansion:

w(s, θ) = Σ∞
i=1Σ

mi
j=1w

i
j(s)Q

i
j(θ),

where {Q0
1(θ), Q

1
1(θ), . . . , Q

1
m1

(θ), Q2
1(θ), Q

2
2(θ), . . . , Q

2
m2

(θ), Q3
1(θ), . . .} is the stan-

dard eigenfunction basis of −Δθ or Δ2
θ in H2(SN−1) ∩ L2(SN−1), i.e.,∫

SN−1 Qi
l(θ)Q

j
m(θ)dθ = 0 if i �= j or l �= m,

∫
SN−1(Q

j
i )

2(θ)dθ = 1 and

mk =
(N − 3 + k)!(N − 2 + 2k)

k!(N − 2)!
.

It is known from [4] that the eigenvalues of the problem

−ΔθQ = σQ, θ ∈ SN−1

are

σk = k(N + k − 2), k � 0

with multiplicity mk. Therefore, {Qk
1 , Qk

2 , . . . Qk
mk

} is the standard eigenfunction
basis of the eigenspace of σk. In particular, we have that

σ0 = 0, m0 = 1, Q0
1 =

1√|SN−1| ,

σ1 = N − 1, m1 = N, Q1
i (θ) =

xi|SN−1√∫
SN−1(xi|SN−1)2dθ

, 1 � i � N,

σ2 = 2N.
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Moreover, the eigenspace of σk consists of homogeneous harmonic polynomials on
R

N , of degree k, restricted to SN−1. The boot-strap argument implies that for
1 � j � mk,

max
θ∈SN−1

|Qk
j (θ)| � Dk, max

θ∈SN−1
|(Qk

j )θ(θ)| � Ek, (3.7)

where

Dk := C(1 + σk + . . . + στ
k), Ek := C(1 + σk + . . . + στ1

k ) (3.8)

with C > 0 being independent of k and τ, τ1 � 1 being positive integers such that
2τ > N − 1, 2τ1 > N . Note that (Qk

j )θ(θ) is in the eigenspace of σk. We also see
that for each i and 1 � j � mi, wi

j(s) satisfies the equation

(wi
j)

(4) − 2(N − 3)s−1(wi
j)sss + [(N − 1)(N − 3) − 2σi]s−2(wi

j)ss

− (N − 1)[N − 3 − 2σi]s−3(wi
j)s − (2Nσi − σ2

i )s−4wi
j

= s−4g̃i
j(s), (3.9)

where

g̃i
j(s) =

∫
SN−1

g(s, ξ, w)Qi
j(θ)dθ = λ0s

−4

∫
SN−1

es−2(ξ(s,θ)−D)w(s, θ)Qi
j(θ)dθ.

(3.10)
Note that the Hölder inequality implies that

|g̃i
j(s)| � ζ(s)W (s), (3.11)

where

W (s) =
(∫

SN−1
w2(s, θ)dθ

)1/2

.

This implies that for s ∈ (0, s∗),

|g̃i
j(s)| = o(e−((D)/(2s2))). (3.12)

Note also that for any fixed (i, j) and 0 < κ < 1, if a sequence {sk}
satisfies s∗ > s1 > s2 > . . . > sk > . . . with sk → 0 as k → ∞ and wi

j(sk) =∫
SN−1 w(sk, θ)Qi

j(θ)dθ �= 0 for all k, we have that there exists 10 < C < ∞ such
that

limk→∞

∣∣∣∣∣
∫

SN−1(1 − λ0s
−(κ+4)
k es−2

k (ξ(sk,θ)−D))w(sk, θ)Qi
j(θ)dθ∫

SN−1 w(sk, θ)Qi
j(θ)dθ

∣∣∣∣∣ � C, (3.13)

since s
−(κ+4)
k maxθ∈SN−1 es−2

k (ξ(sk,θ)−D) → 0 as k → ∞. Note that maxθ∈SN−1

|ξ(sk, θ)| → 0 as k → ∞ and, for k sufficiently large,∣∣∣∣
∫

SN−1
λ0s

−(κ+4)
k es−2

k (ξ(sk,θ)−D)w(sk, θ)Qi
j(θ)dθ

∣∣∣∣ = o

(∣∣∣∣
∫

SN−1
w(sk, θ)Qi

j(θ)dθ

∣∣∣∣
)

.
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This implies that there is K > 0 such that for all k � K,

|g̃i
j(sk)| � (2C + 1)sκ

k |wi
j(sk)|. (3.14)

This also implies that there is 0 < s∗∗ � s∗ such that for s ∈ (0, s∗∗) and wi
j(s) �= 0,

|g̃i
j(s)| = O(sκ)|wi

j(s)|. (3.15)

We have the following proposition.

Proposition 3.2. For N � 5, there exist a sufficiently small 0 < s0 < 1/10 and
C > 0 independent of s such that for s ∈ (0, s0),

W (s) � Cs. (3.16)

Proof. Let t = − ln s, zi
j(t) = wi

j(s) and Z(t) = W (s) (note that Z(t) → 0 as t →
∞). Then zi

j(t) satisfies the equation

(zi
j)

(4) + 2N(zi
j)ttt + (N2 + 2N − 4 − 2σi)(zi

j)tt + 2N(N − 2 − σi)(zi
j)t

− σi(2N − σi)zi
j = f i

j(t), (3.17)

where f i
j(t) = g̃i

j(e
−t). We also know from (3.11) and (3.6) that |f i

j(t)| �
o(e−D/2e2t

)Z(t) as t → +∞. The corresponding polynomial of (3.17) is

ν4 + 2Nν3 + (N2 + 2N − 4 − 2σi)ν2 + 2N(N − 2 − σi)ν − σi(2N − σi) = 0.
(3.18)

Using Matlab, we obtain four roots of (3.18):

ν
(i)
1 =

1
2

(
2 − N +

√
(N − 2)2 + 4σi

)
,

ν
(i)
2 =

1
2

(
2 − N −

√
(N − 2)2 + 4σi

)
,

ν
(i)
3 =

1
2

(
−2 − N +

√
(N − 2)2 + 4σi

)
,

ν
(i)
4 =

1
2

(
−2 − N −

√
(N − 2)2 + 4σi

)
. (3.19)

Therefore, we have

ν
(i)
1 = i, ν

(i)
2 = 2 − N − i, ν

(i)
3 = i − 2, ν

(i)
4 = −N − i. (3.20)

We easily see that

ν
(i)
4 < ν

(i)
2 < ν

(i)
3 < ν

(i)
1 .

Therefore, for i = 1,

ν
(1)
1 = 1, ν

(1)
2 = 1 − N, ν

(1)
3 = −1, ν

(1)
4 = −N − 1

and

ν
(1)
4 < ν

(1)
2 < ν

(1)
3 = −1 < 0 < ν

(1)
1 .
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For i = 2,

ν
(2)
1 = 2, ν

(2)
2 = −N, ν

(2)
3 = 0, ν

(2)
4 = −N − 2

and

ν
(2)
4 < ν

(2)
2 < −1 < ν

(2)
3 = 0 < ν

(2)
1 .

For i � 3, we see that

ν
(i)
4 < ν

(i)
2 < −1 < 0 < ν

(i)
3 < ν

(i)
1 .

For i � 2 and 1 � j � mi, we see from (3.17) and ODE theory that for any T �
T∗ := − ln s∗∗ (s∗∗ is given in (3.15)), there are constants Ai

j,k, Bi
k (k = 1, 2, 3, 4)

such that, for t > T ,

zi
j(t) = Σ4

k=1[A
i
j,keν

(i)
k t + Bi

k

∫ t

T

eν
(i)
k (t−τ)f i

j(τ)dτ ],

where each Ai
j,k depends on T and ν

(i)
k , but each Bi

k depends only on ν
(i)
k . The

detailed calculations show that

Ai
j,1 =

F i
j,1(T )

(ν(i)
1 − ν

(i)
2 )(ν(i)

1 − ν
(i)
3 )(ν(i)

1 − ν
(i)
4 )

e−ν
(i)
1 T ,

Ai
j,2 =

[
F i

j,1(T )

(ν(i)
2 − ν

(i)
1 )(ν(i)

2 − ν
(i)
3 )(ν(i)

2 − ν
(i)
4 )

+
F i

j,2(T )

(ν(i)
2 − ν

(i)
3 )(ν(i)

2 − ν
(i)
4 )

]
e−ν

(i)
2 T ,

Ai
j,3 =

[
F i

j,1(T )

(ν(i)
3 − ν

(i)
1 )(ν(i)

3 − ν
(i)
2 )(ν(i)

3 − ν
(i)
4 )

+
F i

j,2(T )

(ν(i)
3 − ν

(i)
2 )(ν(i)

3 − ν
(i)
4 )

+
F i

j,3(T )

(ν(i)
3 − ν

(i)
4 )

]
e−ν

(i)
3 T ,

Ai
j,4 =

[
F i

j,1(T )

(ν(i)
4 − ν

(i)
1 )(ν(i)

4 − ν
(i)
2 )(ν(i)

4 − ν
(i)
3 )

+
F i

j,2(T )

(ν(i)
4 − ν

(i)
2 )(ν(i)

4 − ν
(i)
3 )

+
F i

j,3(T )

(ν(i)
4 − ν

(i)
3 )

+ zi
j(T )

]
e−ν

(i)
4 T ,

where

F i
j,1(T ) = (∂t − ν

(i)
2 )(∂t − ν

(i)
3 )(∂t − ν

(i)
4 )zi

j(T ),

F i
j,2(T ) = (∂t − ν

(i)
3 )(∂t − ν

(i)
4 )zi

j(T ),

F i
j,3(T ) = (∂t − ν

(i)
4 )zi

j(T )
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and

Bi
1 =

1

(ν(i)
1 − ν

(i)
2 )(ν(i)

1 − ν
(i)
3 )(ν(i)

1 − ν
(i)
4 )

,

Bi
2 =

1

(ν(i)
2 − ν

(i)
1 )(ν(i)

2 − ν
(i)
3 )(ν(i)

2 − ν
(i)
4 )

,

Bi
3 =

1

(ν(i)
3 − ν

(i)
1 )(ν(i)

3 − ν
(i)
2 )(ν(i)

3 − ν
(i)
4 )

,

Bi
4 =

1

(ν(i)
4 − ν

(i)
1 )(ν(i)

4 − ν
(i)
2 )(ν(i)

4 − ν
(i)
3 )

.

Therefore,

zi
j(t) = M i

j,1e
ν
(i)
1 t + M i

j,3e
ν
(i)
3 t + Ai

j,2e
ν
(i)
2 t + Ai

j,4e
ν
(i)
4 t

− Bi
1

∫ ∞

t

eν
(i)
1 (t−τ)f i

j(τ)dτ − Bi
3

∫ ∞

t

eν
(i)
3 (t−τ)f i

j(τ)dτ

+ Bi
2

∫ t

T

eν
(i)
2 (t−τ)f i

j(τ)dτ + Bi
4

∫ t

T

eν
(i)
4 (t−τ)f i

j(τ)dτ (3.21)

by using that
∫ t

T
=

∫ ∞
T

− ∫ ∞
t

, where

M i
j,1 = Ai

j,1 + Bi
1

∫ ∞

T

eν
(i)
1 (t−τ)f i

j(τ)dτ, M i
j,3 = Ai

j,3 + Bi
3

∫ ∞

T

eν
(i)
3 (t−τ)f i

j(τ)dτ.

Note that the limits∫ ∞

t

eν
(i)
1 (t−τ)f i

j(τ)dτ → 0,

∫ ∞

t

eν
(i)
3 (t−τ)f i

j(τ)dτ → 0 as t → ∞ (3.22)

hold for i � 3 since ν
(i)
1 > ν

(i)
3 > 0 and |f i

j(t)| � o(e−((D)/(2))e2t

)Z(t). For i = 2, we

see that ν
(2)
1 > ν

(2)
3 = 0. Then we also know that∫ ∞

t

eν
(2)
3 (t−τ)f i

j(τ)dτ =
∫ ∞

t

f i
j(τ)dτ → 0 as t → ∞.

Since zi
j(t) → 0 as t → ∞, we see from (3.21) that M i

j,1 = M i
j,3 = 0. Therefore,

zi
j(t) =Ai

j,2e
ν
(i)
2 T eν

(i)
2 (t−T ) + Ai

j,4e
ν
(i)
4 T eν

(i)
4 (t−T )

− Bi
1

∫ ∞

t

eν
(i)
1 (t−τ)f i

j(τ)dτ − Bi
3

∫ ∞

t

eν
(i)
3 (t−τ)f i

j(τ)dτ

+ Bi
2

∫ t

T

eν
(i)
2 (t−τ)f i

j(τ)dτ + Bi
4

∫ t

T

eν
(i)
4 (t−τ)f i

j(τ)dτ. (3.23)
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Without loss of generality, we assume that zi
j(t) �≡ 0 for t ∈ [T,∞) in the following.

We claim that

|zi
j(t)| = O(ieν

(i)
2 (t−T )) (3.24)

for t > T and i � 2, 1 � j � mi. For any fixed (i, j), we show that zi
j(t) can only

admit isolated zeroes in (T,∞) provided that zi
j(t) �≡ 0 for t > T . Suppose that

there exist t1 < t2 < t3 such that zi
j(t) ≡ 0 for t ∈ [t1, t2] ⊂ (T,∞) and zi

j(t) �= 0 for
t ∈ (t2, t3). We see that zi

j(t2) = (zi
j)

′(t2) = (zi
j)

′′(t2) = (zi
j)

′′′(t2) = 0. Note that it
is known from (3.15) that

|f i
j(t)| = ot(1)|zi

j(t)| for t ∈ (t2, t3).

It follows from the initial value problem of the equation in (3.17) for t ∈ (t2, t3) and
the standard ODE theory that

zi
j(t) ≡ 0 for t ∈ (t2, t3).

This is a contradiction. This contradiction implies that zi
j(t) can only admit iso-

lated zeroes in (T,∞) provided that zi
j(t) �≡ 0 for t > T . Without loss of generality,

we assume that T < t1i,j < t2i,j < . . . < tki,j < . . . are the zeroes of zi
j in (T,∞) and

tki,j → ∞ as k → ∞. (The case that zi
j does not admit any zero or only admits finite

zeroes in (T,∞) can be studied similarly.) Then, we have from (3.15) that

|f i
j(t)| = O(e−κt)|zi

j(t)| for t ∈ (T,∞)\{tki,j}∞k=1. (3.25)

It follows from lemma 3.1 and (3.23) that, for t ∈ (T,∞)\{tki,j}∞k=1 and 0 < κ < 1
given in (3.15),

|zi
j(t)| �O(ieν

(i)
2 (t−T )) + C

∫ t

T

eν
(i)
2 (t−τ)O(e−κτ )|zi

j(τ)|dτ

+ C

∫ ∞

t

eν
(i)
3 (t−τ)O(e−κτ )|zi

j(τ)|dτ. (3.26)

Note that

eν
(i)
1 (t−τ) � eν

(i)
3 (t−τ) for τ � t, eν

(i)
4 (t−τ) � eν

(i)
2 (t−τ) for τ � t.

Note also that for � = 1, 3 and any fixed t > T with t �∈ {tki,j}∞k=1 and t < tmi,j <

tm+1
i,j < . . .,∣∣∣∣

∫ ∞

t

eν
(i)
� (t−τ)f i

j(τ)dτ

∣∣∣∣
=

∣∣∣∣∣
∫ tm

i,j

t

eν
(i)
� (t−τ)f i

j(τ)dτ + Σ∞
k=m

∫ tk+1
i,j

tk
i,j

eν
(i)
� (t−τ)f i

j(τ)dτ

∣∣∣∣∣
�

∫ tm
i,j

t

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ + Σ∞
k=m

∫ tk+1
i,j

tk
i,j

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ

=
∫ ∞

t

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ.
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Similar arguments imply that for � = 2, 4,∣∣∣∣
∫ t

T

eν
(i)
� (t−τ)f i

j(τ)dτ

∣∣∣∣
=

∣∣∣∣∣
∫ t1i,j

T

eν
(i)
� (t−τ)f i

j(τ)dτ + Σm−2
k=1

∫ tk+1
i,j

tk
i,j

eν
(i)
� (t−τ)f i

j(τ)dτ

+
∫ t

tm−1
i,j

eν
(i)
� (t−τ)f i

j(τ)dτ

∣∣∣∣∣
�

∫ t1i,j

T

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ + Σm−2
k=1

∫ tk+1
i,j

tk
i,j

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ

+
∫ t

tm−1
i,j

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ

=
∫ t

T

eν
(i)
� (t−τ)O(e−κτ )|zi

j(τ)|dτ.

It follows from (3.26) and arguments similar to those in [7] that, for t ∈
(T,∞)\{tki,j}∞k=1,

|zi
j(t)| = O(ieν

(i)
2 (t−T )). (3.27)

This implies that our claim (3.24) holds for zi
j(t) �= 0. If zi

j(t) = 0, we can easily see
that (3.24) holds. Therefore, our claim (3.24) holds.

For i = 1 and 1 � j � m1, we know that

ν
(1)
4 < ν

(1)
2 < ν

(1)
3 = −1 < 0 < ν

(1)
1 .

Therefore,

z1
j (t) =A1

j,2e
ν
(1)
2 t + A1

j,3e
ν
(1)
3 t + A1

j,4e
ν
(1)
4 t

− B1
1

∫ ∞

t

eν
(1)
1 (t−τ)f1

j (τ)dτ + B1
3

∫ t

T

eν
(1)
3 (t−τ)f1

j (τ)dτ

+ B1
2

∫ t

T

eν
(i)
2 (t−τ)f1

j (τ)dτ + B1
4

∫ t

T

eν
(i)
4 (t−τ)f1

j (τ)dτ.

Arguments similar to those in the proof of (3.24) imply that, for 1 � j � m1 and
t > T ,

|z1
j (t)| = O(e−(t−T )). (3.28)

Since Z(t) = [Σ∞
i=1Σ

mi
j=1(z

i
j(t))

2]1/2, we have

Z(t) �Σ∞
i=1Σ

mi
j=1|zi

j(t)|

�O(Σ∞
i=2imie

ν
(i)
2 (t−T )) + O(e−(t−T )).

https://doi.org/10.1017/prm.2018.49 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.49


Radial symmetry of non-maximal entire solutions of a bi-harmonic equation 1615

Let T ∗ = 10T . We obtain that, for t > T ∗,

Σ∞
i=2imie

ν
(i)
2 (t−T ) = O(eν

(2)
2 (t−T )). (3.29)

To see (3.29), we notice that, for any t > T ∗ (we may enlarge T ∗),

lim
i→∞

(i + 1)mi+1e
ν
(i+1)
2 (t−T )

imieν
(i)
2 (t−T )

= e−(t−T ) lim
i→∞

(i + 1)mi+1

imi
= e−(t−T ) <

1
2
.

Since ν
(2)
2 < −1, we easily have that, for t > T∗,

Z(t) = O(e−t). (3.30)

Let s0 = e−T∗
. We see from (3.30) that there exists C > 0 such that for 0 < s < s0,

W (s) � Cs. (3.31)

This completes the proof of this proposition. �

Lemma 3.3. Let v be a solution of (3.2). Then there exist constants 0 < s0 < 1/10
and M = M(v) > 0 such that for N � 5 and s ∈ (0, s0),

|v(s)| � Ms2, |v′(s)| � Ms, |v′′(s)| � M (3.32)

and ∫
SN−1

v2(s, θ)dθ � Ms2. (3.33)

Proof. Let z(t) = v(s), t = − ln s. Then z(t) satisfies the equation

z(4) + 2N(z)ttt + (N2 + 2N − 4)(z)tt + 2N(N − 2)(z)t = f(t), (3.34)

where |f(t)| = o(e−D/2 e2t

). The corresponding polynomial of (3.34) is

ν4 + 2Nν3 + (N2 + 2N − 4)ν2 + 2N(N − 2)ν = 0. (3.35)

The four roots of (3.35) are:

ν
(0)
1 = 0, ν

(0)
2 = 2 − N, ν

(0)
3 = −2, ν

(0)
4 = −N. (3.36)

The ODE theory implies

z(t) = M1 + A2e
−2t + A3e

−(N−2)t + A4e
−Nt

− B1

∫ ∞

t

f(τ)dτ + B2

∫ t

T

e−2(t−τ)f(τ)dτ

+ B3

∫ t

T

e−(N−2)(t−τ)f(τ)dτ + B4

∫ t

T

e−N(t−τ)f(τ)dτ. (3.37)

The fact that z(t) → 0 as t → ∞ implies that M1 = 0. Arguments similar to those
in the proof of proposition 3.2 imply that for t > T ∗,

|z(t)| = O(e−2t).

This implies that (3.32)1 holds. Differentiating (3.37) with respect to t once and
twice respectively and noticing v′(s) = −z′(t)et and v′′(s) = [z′′(t) + z′(t)]e2t, we
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easily see that (3.32)2 and (3.32)3 hold. Note that v(s, θ) = w(s, θ) + v(s), we obtain
(3.33). This completes the proof of this lemma. �

Lemma 3.4. Let τ � 0 be an integer and let v be a solution of (3.2). Then there
exist 0 < s0 < 1/10 and M = M(v, τ, s0) > 0 such that for s ∈ (0, s0),

max
|y|=s

|Dτv(y)| � Ms1−τ . (3.38)

Proof. We first obtain (3.38) for the case of τ = 0. If we define z(t, θ) = w(s, θ), we
see that

max
θ∈SN−1

|z(t, θ)| � Σ∞
i=1Σ

mi
j=1|zi

j(t)| max
θ∈SN−1

|Qi
j(θ)| � Σ∞

i=1Σ
mi
j=1Di|zi

j(t)|,

where Di is given in (3.7). Arguments similar to those in the proof of proposition
3.2 imply that there exist C > 0 independent of t and T ∗ � 1 such that, for t � T ∗,

Σ∞
i=1Σ

mi
j=1Di|zi

j(t)| = O
(
Σ∞

i=2imiDie
ν
(i)
2 (t−T )

)
+ O(e−(t−T )) � Ce−t

(note that limi→∞(((i + 1)mi+1Di+1)/(imiDi)) = 1) and hence

max
θ∈SN−1

|z(t, θ)| � Ce−t,

max
θ∈SN−1

|w(s, θ)| � Cs (3.39)

for 0 < s < s0 := e−T∗
. Therefore, (3.38) with τ = 0 can be obtained from (3.39)

and the fact that v(s, θ) = w(s, θ) + v(s).
We only show (3.38) for τ = 1, the rest is essentially the same by differentiating

w(s, θ) = Σ∞
i=1Σ

mi
j=1w

i
j(s)Q

i
j(θ). We only need to show |∇w(y)| � C. Since |∇w|2 =

w2
s + ((1)/(s2))|wθ|2, we need to present the estimates of w2

s and |wθ|2. We see that
ws(s, θ) = Σ∞

i=1Σ
mi
j=1(w

i
j)

′(s)Qi
j(θ), then

max
θ∈SN−1

|ws(s, θ)| � Σ∞
i=1Σ

mi
j=1Di|(wi

j)
′(s)|. (3.40)

For each σi = i(N + i − 2) and 1 � j � mi, we see from the expression of zi
j(t) in

(3.23) and (wi
j)

′(s) = −(zi
j)

′(t)et (t = − ln s) that for 0 < s < s0,

Di|(wi
j)

′(s)| � M̃is
−(ν

(i)
2 +1) for i � 2

and

D1|(w1
j )′(s)| � M̃1.

These and (3.40) imply that there is M1 = M1(v, s0) > 0 independent of s such
that, for s ∈ (0, s0),

max
θ∈SN−1

|ws(s, θ)| � M1. (3.41)

Note that ν
(i)
2 + 1 < 0 for i � 2. Since |wθ(s, θ)| = Σ∞

i=1Σ
mi
j=1|wi

j(s)||(Qi
j)θ|, we

also obtain that there exists M2 = M2(v, s0) > 0 independent of s such that for
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s ∈ (0, s0),

max
θ∈SN−1

|wθ(s, θ)| � M2s. (3.42)

(Note that limi→∞(((i + 1)mi+1Ei+1)/(imiEi)) = 1.) Therefore, for s ∈ (0, s0),

max
|y|=s

|∇w(y)|2 = max
|y|=s

[w2
s +

1
s2

|wθ|2] � M̂, (3.43)

where M̂ = M2
1 + M2

2 . This, (3.32)2 and the fact that v(s, θ) = w(s, θ) + v(s) imply
that (3.38) holds for τ = 1. This completes the proof of this lemma. �

Let

w̃(s, θ) =
w(s, θ)

s
.

Then w̃(s, θ) satisfies the equation

w̃(4) − 2(N − 5)s−1w̃sss + (N − 3)(N − 7)s−2w̃ss + (N − 1)(N − 3)s−3w̃s

− (N − 1)(N − 3)s−4w̃ + 2s−4Δθw̃ − 2(N − 3)s−3Δθw̃s

+ 2s−2Δθw̃ss + s−4Δ2
θw̃ − s−4ĝ(s, ξ, w̃) = 0, (3.44)

where

ĝ(s, ξ, w̃) = λ0s
−4[es−2(ξ(s,θ)−D)w̃(s, θ) − es−2(ξ(s,θ)−D)w̃(s, θ)].

We also have

w̃(s, θ) = Σ∞
i=1Σ

mi
j=1w̃

i
j(s)Q

i
j(θ), w̃i

j(s) =
wi

j(s)
s

.

Then, for any integer i � 1 and 1 � j � mi, w̃i
j(s) satisfies the equation:

(w̃i
j)

(4) − 2(N − 5)s−1(w̃i
j)sss + [(N − 3)(N − 7) − 2σi]s−2(w̃i

j)ss

+ [(N − 1)(N − 3) + (2N − 6)σi]s−3(w̃i
j)s

+ [−(N − 1)(N − 3) − 2σi + σ2
i ]s−4w̃i

j = s−4ĝi
j(s), (3.45)

where ĝi
j(s) = λ0s

−3
∫

SN−1 es−2(v−D)Qi
j(θ)dθ. Note that |ĝi

j(s)| = o
(
e−((D)/(2))s−2

)
for s near 0.
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Let z̃i
j(t) = w̃i

j(s), t = − ln s. We see that z̃i
j(t) satisfies the equation (for t near

∞):

(z̃i
j)

(4) + 2(N − 2)(z̃i)ttt + (N2 − 4N + 2 − 2σi)(z̃i
j)tt

− 2[N − 2 + (N − 2)σi](z̃i
j)t + [−(N − 1)(N − 3) − 2σi + σ2

i ]z̃i
j

= f̂ i
j(t), (3.46)

where |f̂ i
j(t)| = o(e−((D)/(2)) e2t

). The corresponding polynomial of (3.46) is

ν4 + 2(N − 2)ν3 + (N2 − 4N + 2 − 2σi)ν2 − 2[N − 2 + (N − 2)σi]ν

+ [−(N − 1)(N − 3) − 2σi + σ2
i ] = 0 (3.47)

which has four roots:

ν̃
(i)
k = ν

(i)
k + 1, k = 1, 2, 3, 4

that is,

ν̃
(i)
1 = i + 1, ν̃

(i)
2 = 3 − N − i, ν̃

(i)
3 = i − 1, ν̃

(i)
4 = 1 − N − i. (3.48)

Thus we see that for i = 2, 3, 4, . . .,

ν̃
(i)
4 < ν̃

(i)
2 < −1 < 0 < ν̃

(i)
3 < ν̃

(i)
1 .

For i = 1, the four roots are given by

ν̃
(1)
1 = 2, ν̃

(1)
2 = 2 − N, ν̃

(1)
3 = 0, ν̃

(1)
4 = −N.

Then

ν̃
(1)
4 < ν̃

(1)
2 < −1 < 0 = ν̃

(1)
3 < ν̃

(1)
1 .

Since |wi
j(s)| = O(is−ν

(i)
2 ) for i � 2, 1 � j � mi and |w1

j (s)| = O(s) for 1 � j � N ,
we have lims→0 w̃i

j(s) = 0 for i � 2, 1 � j � mi and |w̃1
j (s)| is bounded for s near

0 and 1 � j � N . Then |z̃1
j (t)| is bounded for t near ∞ and 1 � j � N and for any

T � 1,

z̃1
j (t) = Cj + A1

j,2e
ν̃
(1)
2 t + A1

j,4e
ν̃
(1)
4 t

− B1
1

∫ ∞

t

eν̃
(1)
1 (t−τ)f̂1

j (τ)dτ − B1
3

∫ ∞

t

f̂1
j (τ)dτ

+ B1
2

∫ t

T

eν̃
(1)
2 (t−τ)f̂1

j (τ)dτ + B1
4

∫ t

T

eν̃
(1)
4 (t−τ)f̂1

j (τ)dτ,

where Cj is a constant. This implies that z̃1
j (t) → Aj (a constant) as t → ∞. Since

Q1
j (1 � j � N) are the eigenfunctions corresponding to σ1 = N − 1, we see that

lim
s→0

w̃(s, θ) = V (θ), (3.49)
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where V (θ) is 0 or one of the eigenfunctions of −Δ on SN−1 corresponding to N − 1
and also one of the eigenfunction of Δ2 on SN−1 corresponding to (N − 1)2, that is,

ΔθV + (N − 1)V = 0, V = 0,

and

Δ2
θV = (N − 1)2V, V = 0.

In conclusion, we have the following theorem.

Theorem 3.5. Let v be a solution of (3.2) and w̃ be given in (3.44). Then we
have

(i) v(y) = v(s) + sw̃(s, θ) satisfies

|v(s)| = O(s2), |v′(s)| = O(s), |v′′(s)| = O(1).

(ii) For any non-negative integers τ and τ1, there exists M = M(v, τ, τ1) > 0 such
that

|sτDτ1
θ Dτ

s w̃(y)| � M, y ∈ Bs0 , y �= 0, (3.50)

where Bs0 = {y ∈ R
N : |y| < s0}. Moreover, w̃ satisfies

lim
s→0

w̃(s, θ) = V (θ), (3.51)

uniformly in Cτ (SN−1), where V (θ) is 0 or one of the eigenfunctions of −Δ on
SN−1, that is,

ΔθV + (N − 1)V = 0, V = 0

(or one of the eigenfunction of Δ2 on SN−1, that is, Δ2
θV = (N − 1)2V, V = 0.)

It is known from lemma 8.1 of [13] that

V (θ) = θ · x0 (3.52)

for some x0 ∈ R
N fixed and θ = ((x)/(|x|)) ∈ SN−1.

We obtain from theorem 3.5 the asymptotic expansion of u(x) near |x| = ∞.

Theorem 3.6. Let N � 5 and u be a solution of (1.1) satisfying (1.5). Then u
admits the expansion:

u(x) = r2

[
−D + ξ(r) +

η(r, θ)
r

]
, (3.53)

w(x) := −Δu(x) = 2ND + ξ1(r) +
η1(r, θ)

r
(3.54)

where

ξ1(r) = −[r2ξ′′ + (N + 3)rξ′ + 2Nξ],

η1(r, θ) = −[r2ηrr + (N + 1)rηr + (N − 1)η + Δθη].
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Moreover, the following properties are satisfied:

(i) ξ(r) = r−2u(r) + D and there exist R0 (:= s−1
0 ) > 0 and a constant M =

M(u) > 0 such that, for r > R0,

|ξ(r)| � Mr−2, |ξ′(r)| � Mr−3, |ξ′′(r)| � Mr−4, (3.55)

|ξ1(r)| � Mr−2. (3.56)

(ii) Let τ and τ1 be two non-negative integers. Then there exists a positive
constant M := M(u, τ, τ1) such that, for r > R0,

|rτDτ1
θ Dτ

r η(r, θ)| � M, (3.57)

|η1(r, θ)| � M. (3.58)

(iii) Let τ be a non-negative integer. Then η(r, θ) tends to V (θ) uniformly in
Cτ (SN−1) as r → ∞, where V (θ) is given in (3.51)

and

V (θ) = θ · x0 (3.59)

for some x0 ∈ R
N fixed and θ = ((x)/(|x|)) ∈ SN−1.

4. Proof of Theorem 1.1

We present the proof of our main theorem in this section.
Without loss of generality, we assume x0 = 0 in theorem 1.1. The necessity follows

from proposition 2.1.
We will use moving-plane arguments of the system of equations (see [10]) to

prove the sufficiency.
We first write (1.1) to a system of equations:

{−Δu = w, in R
N ,

−Δw = λ0e
u, in R

N .
(4.1)

We now start the procedure of moving-plane. For any γ ∈ R, let Σγ be the
following hyperplane:

Σγ = {x ∈ R
N : x1 = γ}.

For x ∈ R
N , denote xγ to be the reflection point of x about Σγ , that is,

xγ := (2γ − x1, x2, . . . , xN ).

As a consequence of the expansions of u(x) in theorem 3.6, we have the following
lemma.
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Lemma 4.1. Let N � 5 and u be a solution of (1.1) satisfying (1.5). Then,

(i) If γj ∈ R → γ and {xj} → ∞ with xj
1 < γj, then

lim
j→∞

1
γj − xj

1

[u(xj) − u((xj)γ)] = 4Dγ − 2(x0)1, (4.2)

where (x0)1 is the first component of x0 given in (3.59).

(ii) Define

γ0 =
(x0)1
2D

. (4.3)

Then there exists a constant M = M(u) > 0 such that

∂u

∂x1
� 0 if x1 � γ0 + 1 and |x| � M. (4.4)

Proof. To prove (4.2), without loss of generality, we assume that

lim
j→∞

xj

|xj | = θ ∈ SN−1.

For simplicity, we also assume that γj = γ, j = 1, 2, . . . since the following argu-
ments work equally well for the sequence {γj}. Using the the expansion of u in
(3.53), we have

1
γ − xj

1

[u(xj) − u((xj)γ)] =
1

γ − xj
1

[−D(|xj |2 − |(xj)γ |2)]

+
1

γ − xj
1

[|xj |2ξ(|xj |) − |(xj)γ |2ξ(|(xj)γ |)]

+
1

γ − xj
1

[|xj |η(|xj |, θj) − |(xj)γ |η(|(xj)γ |, (θj)γ)]

= I + II + III.

We have

−D(|xj |2 − |(xj)γ |2) = 4Dγ(γ − xj
1)

and hence

I = 4Dγ.

We also have that there is βj between |xj | and |(xj)γ | such that

|xj |2ξ(|xj |) − |(xj)γ |2ξ(|(xj)γ |) =
[
2βjξ(βj) + β2

j ξ′(βj)
] −4γ(γ − xj

1)
|xj | + |(xj)γ | ,

and, in turn,

II =
1

γ − xj
1

[2βjξ(βj) + β2
j ξ′(βj)]

−4γ(γ − xj
1)

|xj | + |(xj)γ | = O(|xj |−2) → 0
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as j → ∞, since ((|(xj)γ |)/(|xj |)) → 1 as j → ∞. Here we have used the estimates
of ξ(r) and ξ′(r) in (3.55). We now write

III =
η(|(xj)γ |, (θj)γ)

γ − xj
1

[|xj | − |(xj)γ |]

+
|xj |

γ − xj
1

[η(|xj |, (θj)γ) − η(|(xj)γ |, (θj)γ)]

+
|xj |

γ − xj
1

[η(|xj |, θj) − η(|xj |, (θj)γ)]

= III1 + III2 + III3.

As before, by (3.57) and arguments similar to those in the proof of (8.11) in lemma
5.2 of [13], we obtain that III1 = O(|xj |−1) → 0 as j → ∞, III2 = O(|xj |−1) → 0
as j → ∞ and III3 → −2(x0)1 as j → ∞. These imply that (4.2) holds.

To prove (4.4), we use (4.2). Suppose that (4.4) is false. Then there exists a
sequence {xj} → ∞ such that

∂u

∂x1
(xj) > 0, xj

1 � γ0 + 1, ∀j ∈ N.

It follows that there exists a sequence of bounded positive numbers {dj} such that

u(xj) < u(xdj
), xdj

= xj + (2dj , 0, . . . , 0), ∀j ∈ N.

Let

γj = xj
1 + dj > xj

1.

We have

1
γj − xj

1

[
u(xj) − u((xj)γ)

]
< 0, ∀j ∈ N. (4.5)

There are two possibilities:

lim
j→∞

inf γj < ∞, lim
j→∞

γj = ∞.

If the first case occurs, we choose a convergent subsequence of {γj} (still denoted
by {γj}) with the limit γ � γ0 + 1 and apply (4.2) and (4.3) to obtain

lim
j→∞

1
γj − xj

1

[
u(xj) − u((xj)γ)

]
= 4Dγ − 2(x0)1 � 4D > 0.

This contradicts (4.5). We can derive a contradiction for the second case similarly.
The proof is a little variant of the proof of Lemma 8.2 of [13]. Thus, neither the
first nor the second case can occur and (4.4) holds. This completes the proof of this
lemma. �
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Completion of the proof of Theorem 1.1

To complete the proof of the sufficiency, we use moving-plane arguments for the
system of equations (4.1). The main idea of the proof is similar to that in the
proof of theorem 1.1 of [7]. We notice that lemma 6.1 of [7] is true for our problem
here, lemma 6.2 of [7] is also true for the entire solution u of (1.1) satisfying (1.5)
provided N � 5. (To obtain the conclusions of lemma 6.2 of [7] for our problem
here, we need the expansions of u(x) and w(x) given in (3.53) and (3.54).)

We first claim that there exists γ′ > 0 such that

u(x) > u(xγ), w(x) > w(xγ) if x1 < γ and γ � γ′. (4.6)

Suppose for contradiction that (4.6) is not true. A little variant of lemma 6.2 of [7]
implies that there exist two sequences {γi} → ∞ and {xi}, with xi

1 < γi such that

u(xi) � u(yi), yi = (xi)γi

, i = 1, 2, . . . . (4.7)

Obviously, yi → ∞, so u(yi) → −∞. In turn |xi| → ∞. By lemma 4.1, we must
have

xi
1 � γ0 + 1 for i large.

It follows that, for any γ1 > γ0 + 1,

u(xi) � u(yi) � u((xi)γ1) for i large,

since (xi)γi

1 � (xi)γ1
1 for i large and u(x) → −∞ as |x| → ∞. On the other hand,

by lemma 4.1 again, we conclude that

0 � 1
(γ1 − xi

1)
[u(xi) − u((xi)γ1)] → 4Dγ1 − 2(x0)1 > 0

since xi
1 � γ0 + 1 < γ1. This is a contradiction and (4.6) follows.

Now let Γ ⊂ R be defined by

Γ = {γ ∈ (γ0,∞) : (4.6) holds}.

We will prove that

Γ = (γ0,∞). (4.8)

We first prove that Γ is open. Suppose for contradiction that, for some γ ∈ Γ, there
exist sequences {γi} and {xi} with γi → γ as i → ∞ and xi

1 < γi such that (4.7)
holds. Obviously, there is a subsequence of {xi} tending to either ∞ or x̂ ∈ R

N as
i → ∞. If the first case occurs, we simply use lemma 4.1 to derive a contradiction,
since γ > γ0. If the second case occurs, we can infer, from the definition of γ,
lemma 6.1 of [7] and a variant of lemma 6.2 of [7], that x̂1 = γ. It follows that
((∂u)/(∂x1))(x̂) � 0, x̂1 = γ. This simply cannot happen because of (6.3) of [7],
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that is, Γ is open. Set

γ̃ = inf{γ ∈ (γ0,∞) : (γ,∞) ⊂ Γ}.
We show that

γ̃ = γ0. (4.9)

Suppose for contradiction that this is not true, that is, γ̃ > γ0. By continuity, we
have

u(x) � u(xγ̃) for x1 < γ̃.

By lemma 6.1 of [7] and a lemma similar to lemma 6.2 of [7], we see that either

u(x) ≡ u(xγ̃) for x1 < γ̃

or

u(x) > u(xγ̃) for x1 < γ̃, i.e., γ̃ ∈ Γ.

The latter cannot occur because (γ̃,∞) is maximal and Γ is open. The former cannot
occur either because it contradicts lemma 4.1 since γ̃ > γ0 and (4.8) is obtained.

By continuity again, we have

u(x) � u(xγ0) for x1 < γ0.

Reversing the x1-axis, we conclude that

u(x) � u(xγ0) for x1 > γ0.

That is, u is symmetric about the plane x1 = γ0. Since this argument applies for
any direction, we finally obtain the radial symmetry of u about the point x0 :=
((x0)/(2D)) ∈ R

N and x0 is given in (3.59). Set y = x − x0 and ũ(y) := u(x). Then
ũ(y) is a radial entire solution of (1.1), that is, ũ(y) = ũ(|y|) and satisfies

lim
|y|→∞

|y|−2ũ(|y|) = lim
|x|→∞

|x|−2u(x) = −D.

It is known from [1] that ũ(|y|) is a non-maximal radial entire solution of (1.1) with
the initial value ũ(0) = u(x0). The sufficiency of theorem 1.1 is proved and hence
the proof of theorem 1.1 is complete. �

Remark 4.2. We conjecture that the following conclusion holds: If u ∈ C4(RN ) is
an entire solution of (1.1) with N � 5, then u is the maximal radial entire solution
of (1.1) about some x0 ∈ R

N , if and only if

|x|−2u(x) → 0 as |x| → ∞. (4.10)

This conjecture implies that if u is an entire solution of (1.1) and (4.10) holds
for u, then u must have the exact asymptotic behaviour at ∞:

u(x) + 4 ln |x| → 0 as |x| → ∞.
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