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Abstract

We call ‘bits’ a sequence of devices indexed by positive integers, where every device
can be in two states: 0 (idle) and 1 (active). Start from the ‘ground state’ of the system
when all bits are in 0-state. In our first binary flipping (BF) model the evolution of the
system behaves as follows. At each time step choose one bit from a given distribution P
on the positive integers independently of anything else, then flip the state of this bit to
the opposite state. In our second damaged bits (DB) model a ‘damaged’ state is added:
each selected idling bit changes to active, but selecting an active bit changes its state
to damaged in which it then stays forever. In both models we analyse the recurrence
of the system’s ground state when no bits are active. We present sufficient conditions
for both the BF and DB models to show recurrent or transient behaviour, depending on
the properties of the distribution P . We provide a bound for fractional moments of the
return time to the ground state for the BF model, and prove a central limit theorem for
the number of active bits for both models.
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1. Introduction and model description

In many areas of engineering and science one faces an array of devices which possess a
few states. In the simplest case these could be on-off or idle-active states, in other situations a
damaged state is also possible. By the analogy with computer science, such a two-state device
can be called a bit which in some cases can also be ‘damaged’. Assuming the bits change
their states in a random fashion, a natural question to ask is when, if at all, the system of bits
recovers to the state when none of the bits are active. We call such a state with only idling or
damaged bits a ground state of the system. The time to recover may be finite, but, in general,
may also assume infinite values when the system actually does not recover. In the latter case
we speak of a transient behaviour of the system. In the former case, depending on whether the
average recovery time is finite or not, we speak of a positive- or of a null-recurrence. Similarly
to random walk models, this classification is tightly related to the exact random mechanism
governing the change of the bits’ states.

In this paper we consider two basic models: binary flipping and damaged bits. In both
models we deal with a countably infinite array of bits which we index by the positive integers
N = {1, 2, . . . }. Initially, at step 0, the system is in the ground state, i.e. all the bits are idling.

Received 11 October 2013; revision received 12 May 2015.
∗ Postal address: KTH Royal Institute of Technology, EES, Osquldas v. 10, 100 44 Stockholm, Sweden.
Email address: anton.muratov@gmail.com
∗∗ Postal address: Chalmers University of Technology, MV, 412 96 Gothenburg, Sweden.
Email address: sergei.zuyev@chalmers.se

650

https://doi.org/10.1017/jpr.2016.32 Published online by Cambridge University Press

http://www.appliedprobability.org
mailto:anton.muratov@gmail.com?subject=J. Appl. Prob.%20paper%2015092
mailto:sergei.zuyev@chalmers.se?subject=J. Appl. Prob.%20paper%2015092
https://doi.org/10.1017/jpr.2016.32


Bit flipping and time to recover 651

At each next step the index of the bit to change its state is sampled independently of the current
state of the bits from a given probability distribution on N,

P = (p1, p2, . . . ) :
∞∑
i=1

pi = 1.

We assume that the rates are all positive, otherwise our models are described by a finite-state
Markov chain with an evident behaviour. Renumbering the bits, if necessary, we may assume
that the rates are nonincreasing: p1 ≥ p2 ≥ p3 ≥ · · · > 0, so that the bits most likely to
change their state are put first. The main quantities of interest are the time to recovery τ—the
number of steps until the first return to the ground state, and ηn—the number of bits active at
step n.

Binary flipping. In the binary flipping (BF) model each bit alternates between the two states:
idle and active. At step n = 0 all of the bits are idling. Let χ1, χ2, . . . be independent and
identically distributed (i.i.d.) random variables with distribution P . At each step n = 1, 2, . . . ,
the bit with index χn is flipped, i.e. its state is changed to the opposite. If 0 and 1 represent,
respectively, the idling and the active states, the evolution of the system is described by a
discrete-time Markov chain {ζn}n≥0 = {(ζ 1

n , ζ
2
n , ζ

3
n , . . . )}n≥0 with the state space X = {x ∈

{0, 1}N : x has finitely many nonzeros} such that ζ0 = 0 is the vector of all 0s, and

ζ kn+1 =
{
ζ kn , k �= χn+1,

1 − ζ kn , k = χn+1,
k = 1, 2, . . . , n = 0, 1, 2, . . . . (1.1)

The main quantity of interest is the first time of return to the ground state with no active bits,
i.e. the stopping time

τBF = min{n ≥ 1 : ζ kn = 0 for all k = 1, 2, . . . }.
Damaged bits. This damaged bits (DB) model elaborates on the first one by adding a

damaged state to the bits. As in the BF model above, we start with a sequence of idling bits
and then consecutively sample from P for the index of the bit to change its state. When
selected, an idle bit becomes active, however, an active bit becomes damaged, and a damaged
bit remains damaged, so no reversal is possible. If 0, 1, 2 encode the idle, active, and damaged
states, respectively, the corresponding Markov chain {ζn}n≥0 with the state space Y = {y ∈
{0, 1, 2}N : y has finitely many nonzeros} is defined by

ζ kn+1 =
{
ζ kn , k �= χn+1,

min{2, 1 + ζ kn }, k = χn+1,
k, n ∈ N, (1.2)

with the starting configuration ζ0 being the vector of all 0s, ζ0 = 0. Here again we are looking
for the number of steps to return to the ground state which is now understood as the subset of
Y with no active bits, i.e.

τDB = min{n ≥ 1 : ζ kn ∈ {0, 2} for all k = 1, 2, . . . }.
In contrast to the BF model, the ground state in the DB model, in general, cannot be identified
with any one particular state of the Markov chain {ζn}.

Continuous-time version. Consider continuous-time versions of both the BF and DB models.
Let {ζt }t≥0 = {(ζ 1

t , ζ
2
t , . . . )}t≥0 be a continuous-time Markov jump process with the state

https://doi.org/10.1017/jpr.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.32


652 A. MURATOV AND S. ZUYEV

space X in the BF case, and Y in the DB case. The process has jump rate 1, at each jump
a random index is sampled from P , then the state of the respective coordinate is changed
according to the BF or the DB dynamics. Define the renewal process {tn}n≥0 of jump times and
let t0 = 0. The embedded Markov chain {ζtn}n≥0 is then a distributional copy of the discrete-
time version {ζn}n≥0 of the model. One of the advantages of this representation, sometimes
referred to as Poissonisation and widely used since at least 1968 [2], is the independence of the
marginal processes {ζ kt }t≥0 for different k = 1, 2, . . . , which leads to explicitly computable
probabilities as we demonstrate here. The notion of recurrence/transience stays the same for
both the discrete- and continuous-time implementations.

A directly related class of models was studied in [4], where the main question is which
properties of random sequences are preserved under independent dynamic resampling of indi-
vidual terms at ticks of Poisson clocks of different rates. In a somewhat similar vein, one could
interpret the BF model as a dynamical percolation process on Z, where, starting with all edges
‘open’, every edge is switching between ‘open’ and ‘closed’ states. The question of recurrence
is then equivalent to the question of existence of a sequence of percolation times when all the
edges are open and, thus, 0 is connected to ∞. For a recent survey of the dynamical percolation,
see [7].

The Markov chains (1.1) and (1.2) describing our models can be regarded as random walks
on an infinite-dimensional group; see, e.g. [6]. Typically the analysis of random walks on
discrete groups assumes a finite generator set, so that the underlying Cayley graph is locally
finite, as, for example, in [8]. However, the state spaces in our models are not finitely generated
groups, so analysis of a random walk in such a space is interesting in its own right. Practical
applications are also envisaged: in addition to an evident relation to modelling reliability of a
complex system with multiple components prone to fail at different rates, one can also mention
computer science and information encryption techniques. The term ‘bit flipping’ is borrowed
from the literature on randomised simplex algorithms [3], where a similar model was analysed:
each flipped bit there makes all of the bits to the right change their states as well.

2. Main results

For the above models we prove the following main result: each model exhibits a transient or
recurrent behaviour, depending on how fast the rates {pk} decay. We start with the BF model:
there turns out to be a critical decay separating the two regimes.

Theorem 2.1. If the distribution P is such that

(i) lim supk→∞ 2kpk < ∞, then the BF model is recurrent, i.e.

P(τBF < ∞) = 1;
(ii) lim infk→∞(2 − ε)kpk > 0 for some ε > 0, then the BF model is transient, i.e.

P(τBF = ∞) > 0.

Furthermore, the BF model is never positive recurrent, as we show in the next theorem.

Theorem 2.2. The expected time of recovery in the BF model is infinite, i.e. EτBF = ∞.

Although the first moment of τBF is infinite, it is reasonable to ask for which values of r < 1
the rth moment becomes finite. The next theorem presents bounds for such r in the case of
asymptotically geometrically decaying {pk}, these are presented graphically in Figure 1.
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Figure 1: Integrability of τ rBF as given by Theorem 2.3.

Theorem 2.3. Consider a recurrent BF model in discrete time with pk ∼ C1p
k for some fixed

constant C1 > 0 and p ∈ (0, 1
2 ). Then

(i) Eτ rBF < ∞ for any positive r < r1(p) := 1− log 2/ log(1/p). Moreover, for any such r ,
if the Markov chain (1.1) starts from an arbitrary initial state ζ0 ∈ X with the largest
active bit M0, then there exists a constant C2 = C2(C1, p, r) such that

E[τ rBF | M0 = m] ≤ C2

(
1

2p

)m
;

(ii) Eτ rBF = ∞ for any r > r2(p) := 1 − log(2 − p)/ log(1/p).

Remark 2.1. There is an obvious coupling of the DB model with the BF model: just declare the
bits which flipped more than once in the BF model damaged in the DB model. Then τDB ≤ τBF
almost surely and the upper bound of Theorem 2.3(i) also holds for τDB.

The DB model can also be recurrent or transient, depending on P . The recurrence/transience
now does not correspond to the recurrence/transience of the Markov chain (1.2), because the
ground state of the DB model is an infinite collection of states of {ζn}. We call the DB model
recurrent if τDB < ∞ with probability 1, and transient otherwise. Denote by Qk the tail of the
distribution P : Qk = ∑∞

j=k+1pj .

Theorem 2.4. If the distribution P is such that

(i) lim supk→∞(Qk+1/Qk) = p < 1, then the DB model is recurrent;

(ii) pk ∼ C exp(−αkγ ), k → ∞, for some α > 0, γ ∈ (0, 1
2 ), then the DB model is

transient.

Denote by ηt the total number of active bits in the continuous version of each model at time
t ≥ 0. In both the BF and DB models, whenever Eηt → ∞, conditions of the central limit
theorem are fulfilled for ηt . We prove the following fact.
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Theorem 2.5. For both the BF and DB models, whenever Eηt → ∞, then

var ηt → ∞ and
ηt − Eηt√

var ηt

d−→ N (0, 1) as t → ∞,

where ‘
d−→’ denotes convergence in distribution. In the BF model the condition Eηt → ∞ is

always fulfilled, and in the DB model a sufficient condition for Eηt → ∞ ispk ∼ C exp(−αkγ ),
k → ∞, for some constants C > 0, α > 0, γ ∈ (0, 1).

3. Proofs

3.1. Transience and recurrence of the BF model

Proof of Theorem 2.1. First, we are going to prove the theorem for a particular case of a
geometric decrease pk = Cpk for some p ∈ (0, 1) and then extend it using monotonicity
arguments.

Consider the continuous-time BF model. Recall that ζt = (ζ kt )k≥1 is a continuous-time
Markov jump process on X representing the configuration of the bits at time t ≥ 0, and
ζ0 = 0 = (0, 0, . . . ). Denote by νtotal the total time {ζt } spends in the state 0 for t > 0. Since
the process {ζt } is irreducible, recurrence of the BF model implies that the state 0 is recurrent.
Since the holding times at state 0 are i.i.d. exponential with parameter 1, we obtain Eνtotal = ∞.
When the BF model is transient, i.e. when

q = P{ζt = 0 for some finite t > t1 | ζ0 = 0} < 1,

where t1 is the time of the first jump of the process ζt , then νtotal is distributed as the sum∑ν
i=1εi , where ν has a geometric distribution with parameter q and the εi are i.i.d. exponentially

distributed with parameter 1 random variables representing holding times at state 0. In that
case, Eνtotal = EνEεi = 1/q < ∞. Thus, Eνtotal = ∞ is equivalent to recurrence of ζ(t) and
of the BF model. Since

Eνtotal = E

∫ ∞

0

∞∏
k=1

1{kth bit is idle at time t} dt =
∫ ∞

0

∞∏
k=1

P{ζ kt = 0} dt

and

P{ζ kt = 0} =
∞∑
j=0

P{kth bit flipped 2j times by time t} = e−pkt
∞∑
j=0

(pkt)
2j

(2j)! = 1
2 (1 + e−2pkt ),

the transience is equivalent to the convergence of the integral

Eνtotal =
∫ ∞

0

∞∏
k=1

1
2 (1 + e−2pkt ) dt =

∫ ∞

0

∞∏
k=1

(1 − f (pkt)) dt, (3.1)

where f (x) = (1−e−2x)/2. Now we establish lower and upper bounds for the infinite product
under the integral.

Fix an arbitrary small θ > 0. Note that the function 1−f (x) is continuous, decreasing in x,
and 1 − f (x) = 1/(2 − θ) has only one root, call this root xθ . Decompose the right-hand side
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of (3.1) into two parts, i.e.

∞∏
k=1

(1 − f (pkt)) =
∏

{k : pkt≤xθ }
(1 − f (pkt))︸ ︷︷ ︸
�1(t)

∏
{k : pkt>xθ }

(1 − f (pkt))︸ ︷︷ ︸
�2(t)

.

The first factor �1(t) stays between the two positive constants C1, C2 for all t ≥ 0. The
upper bound�1(t) ≤ 1 =: C2 is obvious. For the lower bound, make an exponential change of
timescale t = (xθ/p1)(1/p)s, s ∈ (−∞,+∞). The key observation is that for a geometric P ,
the rescaled function �(s) = �1((xθ/p1)(1/p)s) is periodic with period 1 on the positive
half-line s ≥ 0. Since �(s) is left-continuous and nonincreasing on its intervals of continuity,
its global minima are attained at the discontinuities s = 0, 1, 2, . . . , and, therefore, for any
t ≥ 0,

�1(t) ≥ �(0) = �

(
xθ

p1

)
=

∏
{k : pk/p1≤1}

(
1 − f

(
pk

p1
xθ

))
=

∞∏
k=0

(1 − f (pkxθ )) =: C1.

Thus defined, C1 is positive, since

∞∑
k=0

f (pkxθ ) =
∞∑
k=0

1 − e−2pkxθ

2
≤

∞∑
k=0

pkxθ = xθ

1 − p
< ∞.

To estimate the second factor �2(t), introduce A(t) = {k : pkt > xθ }. Then, for any
k ∈ A(t), we have 1 − f (pkt) ≤ 1/(2 − θ), and, thus,(

1

2

)|A(t)|
≤ �2(t) ≤

(
1

2 − θ

)|A(t)|
.

Since

|A(t)| = card

{
k : pk > xθ

t

}
= card

{
k : k < log xθ

logp
− logCt

logp

}
,

we obtain
log t

log(1/p)
+ C3 ≤ |A(t)| ≤ log t

log(1/p)
+ C3 + 1,

and, hence,

C4

(
1

2

)log t/ log(1/p)

< �2(t) < C5

(
1

2 − θ

)log t/ log(1/p)

,

C6t
− log 2/ log(1/p) <

∞∏
k=1

(1 − f (pkt)) < C7t
− log(2−θ)/ log(1/p), (3.2)

proving the theorem for a geometric {pk} by choosing a sufficiently small θ .
Consider now the case of a general distribution P . In case (i), for all sufficiently large k,

pk < C82−k < 2C9−k , and since 1 − f (x) is nonincreasing in x and 1 − f (x) > 1
2 for x > 0,
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we can choose a sufficiently large M so that∫ ∞

0

∞∏
k=1

(1 − f (pkt)) dt ≥ C10

∫ ∞

0

∞∏
k=M

(1 − f (pkt)) dt

≥ C10

∫ ∞

0

∞∏
k=M

(1 − f (2C9−kt)) dt

= C10

∫ ∞

0

∞∏
k=1

(1 − f (2−k2C9+M−1t))
d(2C9+M−1t)

2C9+M−1

= C11

∫ ∞

0

∞∏
k=1

(1 − f (2−kt)) dt.

Similarly, in case (ii), for all sufficiently large k, pk > C12(2 − ε)−k > (2 − ε)C13−k , and
1 − f (x) ≤ 1, x > 0, yielding∫ ∞

0

∞∏
k=1

(1 − f (pkt)) dt ≤ C14

∫ ∞

0

∞∏
k=1

(1 − f ((2 − ε)−kt)) dt,

and both theorem statements follow from (3.2). �
Proof of Theorem 2.2. The Markov chain {ζn}n≥0 as defined by (1.1) is irreducible, has

period 2, and a symmetric transition matrix; hence, the chain {ζ2n}n≥0 is irreducible, aperiodic,
and also has a symmetric (and, thus, doubly stochastic) transition matrix. Therefore, the chain
{ζ2n}n≥0 has a unique (up to a multiplicative constant) nonnegative nondegenerate invariant
measure π , uniform on its state space {x ∈ X : x has an even number of 1s}. The latter,
however, is countably infinite; thus, the total mass of π is necessarily infinite and {ζ2n}n≥0
cannot be positive recurrent, in particular, for EτBF = ∞. �

In order to prove Theorem 2.3, we make use of [1, Theorem 1 and Corollary 1].

Theorem 3.1. ([1, Theorem 1].) Suppose that {Yn}n≥0 is an {Fn}-adapted stochastic process
taking values in an unbounded subset of R+. Introduce τA = inf{n ≥ 0 : Yn ≤ A}. Suppose
that there exist positive constants A and ε such that, for every n, Y 2r

n is integrable and

Y 2−2r
n E[Y 2r

n+1 − Y 2r
n | Fn] ≤ −ε on {τA ≥ n}.

Then for any r∗ satisfying 0 < r∗ < r there exists a constant c = c(ε, r∗, r) such that, for any
x ≥ 0, Eτ r

∗
A ≤ cx2r whenever Y0 = x almost surely.

Theorem 3.2. ([1, Corollary 1].) Let {Yn}n≥0, τA be as in Theorem 3.1. Suppose that there
exist positive constants A, ε, and J such that, for any n,

E[Y 2
n+1 − Y 2

n | Fn] ≥ −ε on {τA > n},
and, for some ρ > 1,

Y 2−2ρ
n E[Y 2ρ

n+1 − Y 2ρ
n | Fn] ≤ J on {τA > n}.

Suppose also that Y0 = x > A and for some positive r0 the process {Y 2r0
n∧τA}n≥0 is a submartin-

gale. Then, for any r > r0, Eτ rA = ∞.

We will also need the following technical lemma.
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Lemma 3.1. Let {ζn}n≥0 be a discrete-time BF model starting from the ground state ζ0 = 0
with the parameter distribution P = {p1, p2, . . . } possibly with a finite support p1 ≥ p2 ≥
p3 ≥ · · · ≥ 0. Then for K = min{k : ∑∞

i=kpi ≤ 1
2 } and any n = 1, 2, . . . , the vector

(ζKn , ζ
K+1
n , . . . ) is stochastically dominated by the vector (ζ̌K, ζ̌K+1, . . . ) of i.i.d. Bern( 1

2 )

random variables.

Proof. Assume that
∑∞
k=Kpk > 0, otherwise the lemma statement is trivial. Let {ζn}n≥0

and {ζ̌n}n≥0 be two discrete-time BF models with the same transition probabilities where the
first one starts from the ground state ζ0 = 0 and the second one starts from stationarity:
ζ̌0 = (ζ̌ 1

0 , ζ̌
2
0 , . . . ) is an infinite vector of i.i.d. Bern( 1

2 ) random variables. Our goal is to

couple the Markov chains {ζn} and {ζ̌n} on {0, 1}N preserving the almost sure coordinatewise
domination ζ kn ≤ ζ̌ kn for k = K,K + 1, . . . , and all n = 0, 1, 2, . . . .

The idea is to treat the first K − 1 bits of both Markov chains as a ‘buffer’ for which the
domination does not generally hold. This is an expense to pay for the domination for all the
large coordinates. On every step, if one of the chains is flipped at some coordinate k ≥ K ,
where the chains agree, the other one does the same. If, otherwise, they disagree at such k, then
the other one is flipped at one of the coordinates of the buffer, thus removing the discrepancy
at k. As a result, no new discrepancies are created for k ≥ K and the coordinatewise domination
is preserved almost surely outside of the buffer.

Specifically, we define the joint transition dynamics for {ζn} and {ζ̌n} inductively, for n =
0, 1, 2, . . . . Denote by Dn the (random) set of discrepancies at time n, i.e. the set of indices
k ≥ K at which ζn, ζ̌n disagree. The induction assumption is that the coordinatewise domination
is preserved on step n : ζ kn ≤ ζ̌ kn for all k ≥ K and, hence, only discrepancies of the form
ζ kn = 0, ζ̌ kn = 1 are possible, i.e.

Dn = {k ≥ K : ζ kn = 0, ζ̌ kn = 1}.
Let F−1(u) : (0, 1) → N be the quantile function for the distribution P , i.e.

F−1(u) = min

{
k :

k∑
i=1

pi > u

}
, u ∈ (0, 1).

The key element of the coupling is a map sn(u) : (0, 1) → (0, 1)which swaps the parts of (0, 1)
mapped by F−1 to Dn with the parts of (0, 1) of the same length, mapped to the buffer, i.e.

sn(u) =
{

1 − u if F−1(u) ∈ Dn or F−1(1 − u) ∈ Dn,

u otherwise.

The condition
∑∞
i=Kpi ≤ 1

2 ensures that there is always enough buffer space for such a swap.
We now introduce a common source of randomness for the chains: the sequenceU1, U2, . . .

of i.i.d. random variables distributed uniformly on the interval (0, 1). The indices of the bits to
flip on step n+ 1 in ζn and ζ̌n, n = 0, 1, . . . , are defined, respectively, as

χn+1 = F−1(Un+1), χ̌n+1 = F−1(sn(Un+1)).

Since sn(u) preserves the Lebesgue measure, sn(Un+1) is also uniformly distributed implying
that both chains have correct transition probabilities: P(χn+1 = k) = P(χ̌n+1 = k) = pk, k =
1, 2, . . . , n = 0, 1, 2, . . . . The coordinatewise domination ζ kn < ζ̌ kn obviously holds for all k
for n = 0, and on each step n = 1, 2, . . . it is preserved for k ≥ K by the construction
of sn, χn, χ̌n. �
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Proof of Theorem 2.3. (i) Select an arbitrary y ∈ ((1/p)r , 1/2p), which is always possible
to do, because p < 1

2 and r < 1 − log 2/ log(1/p) given the assumptions. Denote by Mn the
index of the rightmost active bit at time n, i.e. Mn = max{k : ζ kn = 1} with the convention
Mn = 0 for ζn = 0. In the formulation of Theorem 3.1, put Y 2r

n = yMn . Define the filtration
Fn = σ(ζ0,M1, . . . ,Mn). The process {Yn} is obviously {Fn}-adapted. Recall that χk is an
index of a bit flipped on step k, χk ∼ P . We have

E(Y 2r
n ) = E(yMn) ≤ E(y

∑n
k=1 χk ) = (E(yχ1))n. (3.3)

The inequality above follows, since Mn ≤ max{χ1, χ2, . . . , χn} ≤ ∑n
k=1χk , so that the right-

hand side of (3.3) is finite since py < p(1/2p) = 1
2 < 1. Next,

E[Y 2r
n+1 − Y 2r

n | Mn = m]
= E[(Y 2r

n+1 − Y 2r
n ) 1{χn+1=m} | Mn = m]︸ ︷︷ ︸

E1

+ E[(Y 2r
n+1 − Y 2r

n ) 1{χn+1>m} | Mn = m]︸ ︷︷ ︸
E2

.

Introduce ψ(xK, . . . , xm−1) = ymax{j : xj=1, j=K,...,m−1} − ym. Then

E1 ≤ E[ψ(ζKn , . . . , ζm−1
n ) 1{χn+1=m} | Mn = m] = pmE[ψ(ζKn , . . . , ζm−1

n ) | Mn = m].
(3.4)

Our claim is that the vector (ζKn , . . . , ζ
m−1
n ) conditionally on {Mn = m} is stochastically

dominated by a vector of i.i.d. Bernoulli random variables (ζ̌K, . . . , ζ̌ m−1). Introduce an
embedded Markov chain {̃ζl}l≥0 = {(̃ζ 1

l , . . . , ζ̃
m−1
l )}l≥0 tracking the state of the first m − 1

coordinates of {ζn} considered at the times when one of those coordinates changes. We set
ζ̃0 = (ζ 1

0 , . . . , ζ
m−1
0 ) and define ζ̃l = (ζ 1

tl (m)
, . . . , ζm−1

tl (m)
), where tl(m) is the lth time when one

of the firstm− 1 coordinates of ζn is flipped. Lemma 3.1 applied to the BF model {̃ζl}l≥0 with
the flipping probabilities

P̃ =
{
p1

Sm−1
, . . . ,

pm−1

Sm−1
, 0, 0, . . .

}
, Sm−1 =

m−1∑
k=1

pk,

implies for every l = 0, 1, 2, . . . the stochastic domination

(̃ζ K̃l , . . . , ζ̃
m−1
l ) ≤st (ζ̌

K̃ , . . . , ζ̌ m−1),

where ζ̌ K̃ , . . . , ζ̌ m−1 are i.i.d. Bern( 1
2 ) random variables. Note that

K̃ = min

{
k :

∞∑
i=k

pi ≤ Sm−1

2

}
≤ K = min

{
k :

∞∑
i=k

pi ≤ 1

2

}
,

therefore, for every l = 0, 1, 2, . . . ,

(̃ζKl , . . . , ζ̃
m−1
l ) ≤st (ζ̌

K, . . . , ζ̌ m−1). (3.5)

Introduce the series of events: A(n,m, l) = {∑n
k=1 1{1≤χk≤m−1} = l} for n = 0, 1 . . . and l =

0, . . . , n. Conditionally onA(n,m, l), the firstm−1 coordinates of vector ζ are flipped l times
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and, hence, the distribution of (ζ 1
n , . . . , ζ

m−1
n ) is the same as that of (̃ζ 1

l , . . . , ζ̃
m−1
l ), so we can

continue (3.4) with

E1 ≤ pm

n∑
l=0

E[ψ(ζKn , . . . , ζm−1
n ) 1A(n,m,l) | Mn = m]

= pm

n∑
l=0

E[ψ(ζKn , . . . , ζm−1
n ) 1{Mn=m} | A(n,m, l)]P(A(n,m, l))

P(Mn = m)
.

Conditionally on A(n,m, l), the random variables

ψ(ζKn , . . . , ζ
m−1
n ) = ψ(̃ζKl , . . . , ζ̃

m−1
l ) and 1{Mn=m}

are independent. Indeed, on A(n,m, l), the first variable is a function of the chain ζ̃ after l
steps which is governed by transition probabilities P̃ ; while the event {Mn = m} relates to
the configuration of the bits m,m + 1, . . . after n − l steps of the BF model with parameter
distribution {pk/(1 − Sm−1), k = m,m+ 1, . . . }. Thus,

E1 ≤ pm

n∑
l=0

E[ψ(ζKn , . . . , ζm−1
n ) | A(n,m, l)]P(Mn = m | A(n,m, l))P(A(n,m, l))

P(Mn = m)

= pm

n∑
l=0

E[ψ(̃ζKl , . . . , ζ̃ m−1
l )]P(A(n,m, l) | Mn = m).

The function ψ is nondecreasing with respect to the coordinatewise order on its argument, so
the stochastic domination (3.5) implies that

E1 ≤ pmEψ(ζ̌K, . . . , ζ̌ m−1)

n∑
l=0

P(A(n,m, l) | Mn = m)︸ ︷︷ ︸
=1

= pmEψ(ζ̌K, . . . , ζ̌ m−1)

=
m−1∑
k=K

(yk − ym)pm

(
1

2

)m−k
.

Because of the assumption (i) for an arbitrary small ε > 0 we can, if necessary, increase K
so that pk ≥ C1(1 − ε)pk for any k ≥ K , and continue, thus,

E1 ≤ C1(1 − ε)(py)m
m−1∑
k=K

((2y)−m+k − 2−m+k)

= C1(1 − ε)(py)m
(

2 − 2y

2y − 1
− (2y)−m+K

2y − 1
+ 2−m+K

)
≤ C1(1 − ε)(py)m

(
2 − 2y

2y − 1
+ 2−m+K

)
. (3.6)

Before choosing a particular value of ε, we make the following three observations.

https://doi.org/10.1017/jpr.2016.32 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2016.32


660 A. MURATOV AND S. ZUYEV

First, because of the conditionpy < 1
2 , and the asymptotic equivalencepk ∼ C1p

k, k → ∞,
for an arbitrary small ε > 0, we can choose a large M = M(ε) so that, for m ≥ M ,

E2 =
∞∑
k=1

pm+k(ym+k − ym)

≤ C1(1 + ε)(py)m
( ∞∑
k=1

(py)k −
∞∑
k=1

pk
)

= C1(1 + ε)(py)m
(

py

1 − py
− p

1 − p

)
. (3.7)

Second, introduce

Q(p, y, ε) = (1 − ε)
2 − 2y

2y − 1
+ (1 + ε)

(
py

1 − py
− p

1 − p

)
.

Given the appropriate choice of ε,M,K , the definition Y 2r
n = yMn , together with (3.6) and

(3.7), implies that

Y 2−2r
n E[Y 2r

n+1 − Y 2r
n | Mn = m] ≤ C1(Q(p, y, ε)+ 2−m+K)(py1/r )m for m > M. (3.8)

Because of our choice of y, we have py1/r > 1 and, therefore, given Q(p, y, ε) < 0 we
can further increase M so that the right-hand side of (3.8) is negative and uniformly separated
from 0 for all m > M .

Third, to find ε satisfying Q(p, y, ε) < 0, note that for any fixed p0, y0, Q(p0, y0, ε) is a
continuous function of ε in a small neighbourhood of ε = 0, whenever Q(p0, y0, 0) is well
defined and nonzero. The inequality Q(p, y, 0) < 0 can be written as

(2py − 1)(y − 1)(2 − p)

(1 − py)(1 − p)(2y − 1)
> 0,

which is satisfied due to our choice of y.
Now, we can choose a small ε > 0 so that Q(p, y, ε) < 0, then fix large K,M so that

(3.6) and (3.7) are satisfied, and so the right-hand side of (3.8) is negative, uniformly separated
from 0, for all m > M , as required by Theorem 3.1.

Denote τx = inf{n ≥ 1 : Mn ≤ x}. Theorem 3.1 implies that for p < 1
2 and r <

1 − log 2/ log(1/p) there exists C = C(p, r) such that for our particular choice of y and M ,
we have

E[τ rM | M0 = x] ≤ Cyx ≤ C

(
1

2p

)x
. (3.9)

We now prove that τ rBF = τ r0 is integrable and satisfies the same asymptotic bound. In
E[τ r0 | M0 = x], τ0 is the first time when the process Mn reaches 0 starting from the state x.
For any M ≥ 0, we have τ0 = τM + (τM − τ0). By simple coupling arguments, the law of
(τM − τ0), conditional on {M0 = x}, is stochastically dominated by the law of τ0, conditional
on {M0 = M}. That, together with the inequality (a + b)r ≤ 2r (ar + br) for 0 < r < 1 and
nonnegative a, b, implies the bound

E[τ r0 | M0 = x] ≤ 2r (E[τ rM | M0 = x] + E[τ r0 | M0 = M] ).
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An asymptotic upper bound for the first conditional expectation on the right-hand side is given
by (3.9). It is left to the reader to derive an upper bound for the second expectation. Conditionally
on {M0 = M}, τ0 is stochastically dominated from above by the sum of two terms. The first
one is the time needed for ζn to reach 0 not leaving the finite sub-cube {0, 1}M , which is, in
turn, dominated by τ∧M

0 = inf{n : ζ∧M
n = 0∧M}. The second one is a geometrically distributed

number of excursions γ ∼ geom(π) from {0, 1}M . Thus,

E[τ r0 | M0 = M] ≤
∞∑
k=1

E[τ r0 | M0 = M, γ = k]P{γ = k}.

Now, conditionally on {γ = k},

E[τ r0 | M0 = M, γ = k] ≤ E

[(
τ∧M

0 +
k∑
j=1

ψj

)r ∣∣∣∣ M0 = M

]
≤ k1+r (E[(τ∧M

0 )r | M0 = M] + Eψr), (3.10)

where ψj is the length of excursion j = 1, . . . , γ and ψ denotes the length of a typical
excursion. The first expectation on the right-hand side of (3.10) is a finite constant. As for the
second, for some finite constant C4 > 0, we have

Eψr = 1 +
∞∑
k=1

pk+ME[τ rM | M0 = k +M] ≤ 1 +
∞∑
k=1

C4p
k+M

(
1

2p

)k+M
< ∞.

Thus, for some C5 > 0, E[τ r0 | M0 = M] ≤ ∑∞
k=1 C5k

1+rπ(1 − π)k−1 < ∞,completing the
proof of (i).

(ii) Put Y 2
n = yMn for some y > 1 and verify the conditions of Theorem 3.2. As before, Yn is

adapted and for an arbitrary small ε > 0, we can choose M = M(ε) large enough so that

E[Y 2
n+1 − Y 2

n | Mn = m] ≥ −pmym +
∞∑
k=1

pm+k(ym+k − ym)

≥ −C1(1 − ε)pmym +
∞∑
k=1

C1(1 + ε)pm+k(ym+k − ym)

= C1(py)
m

(
−1 + ε + (1 + ε)

∞∑
k=1

pk(yk − 1)

)
= C1(py)

m

(
−1 + ε + (1 + ε)p(−1 + y)

(1 − p)(1 − py)

)
= C1(py)

mR(p, y, ε),

where R(p, y, ε) = (−1 + ε + (1 + ε)p(−1 + y)/(1 − p)(1 − py)). It is then possible to
choose a small enough ε > 0 and a largeM so that the latter expression is bounded from below
for all m > M , when py < 1. Furthermore, for such p, y, we have, as before,

Y 2−2ρ
n E[Y 2ρ

n+1 − Y 2ρ
n | Mn = m] ≤ C1y

m(1−ρ)(pyρ)m(Q(p, yρ, ε)+ (1 − ε)2−m+K),

which is bounded from above when ρ is such that pyρ < 1 (such a ρ > 1 exists whenever
py < 1).
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Finally, find a suitable value r0 such that the process Y 2r0
n∧τM is a submartingale. Since

E[Y 2r0
n+1 − Y 2r0

n | Mn = m] ≥ C1(py
r0)mR(p, yr0 , ε),

we can choose ε > 0 so that the latter is greater than 0 for any m > M , if

r0 ∈
(

log(1/(2p − p2))

log y
, 1

)
.

Recalling that we can take y arbitrary close to 1/p, we conclude that the conditions of
Theorem 3.2 are satisfied for any r0 such that

r0 ∈
(

1 − log(2 − p)

log(1/p)
, 1

)
.

This together with the results of Theorem 2.2 implies that none of the fractional moments of τM
(and, hence, of τ0) of order higher than 1 − log(2 − p)/ log(1/p) exist, completing the proof
of (ii). �
3.2. Transience and recurrence of the DB model

Proof of Theorem 2.4. (i) We first consider the discrete-time version of the DB model.
Introduce Rn, the index of the rightmost bit (i.e. with the largest index) to ever have been
flipped by time n. The sequence {Rn} is almost surely nondecreasing. We aim to prove that
almost surely for infinitely many terms of the sequence {Rn}, each of the bits 1, 2, . . . , Rn
is flipped at least twice before the next flip of some bit with an index larger than Rn. That
would guarantee that the ground state of the DB model, corresponding to the set of states
{y ∈ {0, 1, 2}N : y has no 1s and only a finite number of 2s} of Markov chain {ζn}, is visited
infinitely often.

It is convenient to use the continuous-time version now. Let �1(t),�2(t), . . . the inde-
pendent Poisson processes (clocks) describing the times at which, respectively, the first, the
second, etc. bits are chosen for flipping. Introduce

τ>k = inf

{
t > 0 :

∞∑
j=k+1

�j(t) > 0

}
,

the time of the first flip of a bit with an index greater than k. Note that τ>k is a stopping time
for each k = 0, 1, 2, . . . , and, moreover, τ>0 ≤ τ>1 ≤ τ>2 ≤ · · · . Introduce the events

Ak = {k appears in the sequence {Rn}},
Bk = Ak ∩ {starting from the first tick of �k , each of the clocks �1,�2, . . . ,�k

ticks at least twice before the first tick of one of the clocks �k+1,�k+2, . . . }.
Our aim is to prove that the events Bk happen infinitely often. In terms of a continuous-time
notation, we can write these as

Ak = {τ>k−1 < τ>k},
Bk =

⋂
j≤k

{�j([τ>k−1, τ>k)) ≥ 2}. (3.11)

Since {τ>k} is a sequence of stopping times, it is not difficult now to see that the events Bk
are independent of each other. By the Borel–Cantelli lemma it suffices to prove that the series∑
k≥1P{Bk} diverges.
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The probability of Ak (probability of an index k to ever appear in the sequence {Rn}) is
pk/(pk+Qk) = 1−Qk/Qk−1, which is uniformly bounded away from 0 given assumption (i).

As follows from (3.2), the probability P(Bk | Ak) is equal to the probability for each of the
first k Poisson clocks �1(t), . . . ,�k(t) to tick at least twice before the time of the first tick of
one of the clocks �k+1(t),�k+2(t), . . . . We have

P(Bk | Ak) = P

( k⋂
j=1

{�j(τ>k) ≥ 2}
)

=
∫ ∞

0

k∏
j=1

P{�j(t) ≥ 2} dP(τ>k ≤ t). (3.12)

Introduce g(x) = e−x(1 + x). Due to (i), there exists a large K such that

pj

Qk

= pj

Qj−1

Qj−1

Qj

· · · Qk−1

Qk

≥
(

1

p
− 1

)
1

p
· · · 1

p︸ ︷︷ ︸
k−j+1

≥ C2p
j−k for any k ≥ j ≥ K.

The function g(x) is strictly decreasing in x, so we can continue and write that (3.12) is equal to∫ ∞

0

k∏
j=1

(1 − g(pj t))Qke
−Qkt dt =

∫ ∞

0

k∏
j=1

(
1 − g

(
pj

Qk

t

))
e−t dt

≥ C1

∫ ∞

0

k−K∏
j=1

(1 − g(C2p
−j t))e−t dt for k ≥ K,

where C1 and C2 are positive constants. Next,

k−K∏
j=1

(1 − g(C2p
−j t)) ≥

∞∏
j=1

(1 − g(C2p
−j t)).

The latter is strictly positive, i.e.

∞∑
j=1

g(C2tp
−j ) =

∞∑
j=1

e−C2tp
−j
(1 + C2tp

−j ) ≤ C3

∞∑
j=1

e−C4tp
−j
< ∞ for all t;

thus,
∏k−K
j=1 (1 − g(C2p

−kt)) is bounded away from 0 uniformly in k, k ≥ K , by

h(t) =
∞∏
j=1

(1 − g(C2p
−j t)) > 0, and P(Bk | Ak) ≥ C1

∫ ∞

0
h(t)e−t dt > 0,

so the series
∑∞
k=1P(Bk) diverges and the DB model is recurrent given assumption (i).

(ii) Now, assume that pk ∼ Ce−αkγ . Consider the total time ν spent in the ground state, when
none of the bits are active. We are going to prove for this particular choice of pk that the
expected time spent in the ground state Eν = ∫ ∞

0

∏∞
k=1(1 −pkte−pkt ) dt is finite. The product

under the integral is bounded by

∞∏
k=1

(1 − pkte
−pkt ) ≤ exp

{
card{k : l1,ε ≤ pkt ≤ l2,ε} log

(
1 − 1

e
+ ε

)}
.
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Here, l1,ε and l2,ε are the left and the right boundaries of the interval, where the function xe−x
is greater than or equal to 1/e − ε. Taking into account the particular choice of pk , we write

card{k : l1,ε ≤ pkt ≤ l2,ε} ∼
(

1

α
log

tC

l1,ε

)1/γ

−
(

1

α
log

tC

l2,ε

)1/γ

∼ log l2,ε − log l1,ε
γ α1/γ−1 (log(tC))1/γ−1; (3.13)

hence, the infinite product in question is integrable for γ < 1
2 . �

Remark 3.1. The condition of Theorem 2.4(i),

lim sup
k→∞

Qk+1

Qk

= p < 1, (3.14)

is stronger than a condition in the style of Theorem 2.1(i), i.e.

lim sup
k→∞

βkpk < ∞ for some constant β > 1. (3.15)

It is not difficult to see that (3.14) implies (3.15) with

β = 1

p + ε
for any ε ∈ (0, 1 − p).

The converse implication does not hold in general: for a counterexample, define κ(k) =
min{j2 : j ∈ N and j2 > k} and put pk = C2−κ(k), k = 1, 2, . . . , where C is a normalizing
constant. Then (3.15) holds with β = 2. However, (3.14) does not hold: setting ki = i2, i =
1, 2, . . . , we obtain, for the subsequence {ki},

Qki

Qki−1
= 1 − pki

Qki−1

= 1 − pi2∑∞
j=ki pj

≥ 1 − pi2∑(i+1)2−1
j=i2 pj

= 1 − C2−(i+1)

((i + 1)2 − i2)C2−(i+1)

≥ 1 − 1

2i + 1
→ 1, i → ∞.

For (3.15) to imply (3.14) we need additional constraints on P ; for example, it is enough to
require the sequence {Qk/Qk+1} to be monotone.

3.3. The central limit theorem

For the proof of the central limit theorem for the number of active bits in the BF and DB
models we use the following general central limit theorem for a triangular array.
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Theorem 3.3. ([5, Chapter 8, Theorem 5].) Let {ξk,n}, 1 ≤ k ≤ rn, 1 ≤ n ≤ ∞, be a triangular
array of random variables such that Eξk,n = 0 and that the random variables (ξk,n)1≤k≤rn are
mutually independent inside of every row n = 1, 2, . . . . Assume that

(i)
∑rn
k=1 Eξ2

k,n = 1;

(ii)
∑rn
k=1E[ξ2

k,n; |ξk,n| > M] → 0, n → ∞, for every M > 0.

Then
∑rn
k=1ξk,n

d−→N (0, 1) as n → ∞.

Proof of Theorem 2.5. The expected number of active bits Eηt in both models tends to ∞,
given the assumptions. For the BF model, we have

Eηt =
∞∑
k=1

P{ζ kt = 1} =
∞∑
k=1

1

2
(1 − e−2pkt ).

Every term in the latter sum monotonically approaches 1
2 as t → ∞; thus, the whole sum tends

to ∞.
Next, for the DB model, given the assumption pk ∼ C exp(−αkγ ), k → ∞, if we fix a

small ε > 0 and take l1,ε and l2,ε, which are the left and the right boundaries of the interval
where the function xe−x is greater than 1/e − ε to be as in (3.13), then, by the same reasoning
as in (3.13), we obtain

Eηt =
∞∑
k=1

P{ζ kt = 1}

=
∞∑
k=1

pkte
−pkt

≥ (e−1 − ε) card{k : λ1,ε ≤ pkt ≤ λ2,ε}
≥ C1(log(tC))1/γ−1

→ ∞
for a constant C1 depending on ε, γ , and α.

The rest of the proof works for both the BF and DB models. It is sufficient to prove the central
limit theorem for the embedded discrete-time process {ηTn}n≥1 for an arbitrary nonrandom time
sequence {Tn}n≥1 going to ∞. Let us fix such a sequence and denote ζn := ζTn and ηn := ηTn ,
for short. Introduce the random variables

Zn,k = 1{ζ kn=1}, ξn,k =

⎧⎪⎪⎨⎪⎪⎩
Zn,k − EZn,k√

var ηn
, k < rn,∑

k≥rn(Zn,k − EZn,k)√
var ηn

, k = rn.

We choose a suitable sequence {rn} later. The random variables {ξn,k}rnk=1 are mutually inde-
pendent for every n. Theorem 3.3(i) holds trivially. For (ii), we have∑

1≤k≤rn
E[ξ2

n,k; |ξn,k| > M] =
∑

1≤k≤rn−1

E[ξ2
n,k; |ξn,k| > M]

︸ ︷︷ ︸
S1

+ E[ξ2
n,rn

; |ξrn,n| > M]︸ ︷︷ ︸
S2

. (3.16)
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By the assumptions, Eηt → ∞ as t → ∞. Moreover,

C2Eηt ≤ var ηt =
∑
k≥1

f (pkt)(1 − f (pkt)) ≤ Eηt ,

where f (x) = 1
2 (1 − e−x) in the BF model, f (x) = xe−x in the DB model, and C2 =

(1 − supx∈R+ f (x)), with the respective f , so that 0 < C2 < 1 in both cases. By the
construction of ξn,k , the sum S1 in (3.16) tends to 0 as n goes to ∞, because almost surely
ξn,k ≤ 1/ var ηn → 0 and every term in S1 is eventually 0. Finally,

Eξ2
rn,n

= 1

var ηn

∑
k≥rn

f (pkTn)(1 − f (pkTn))

and so we can choose rn such that the latter sum is no larger than, for instance,
√

var ηn, thus
satisfying Theorem 3.3(ii) and completing the proof. �
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