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Integrals of the mean and turbulent energy dissipation rates are examined using direct
numerical simulation (DNS) databases in a turbulent channel flow. Four values of the
Karmdn number (h™ =180, 395, 640 and 1020; 4 is the channel half-width) are used.
Particular attention is given to the functional 4™ dependence by comparing existing
DNS and experimental data up to At = 10*. The logarithmic A" dependence of the
integrated turbulent energy dissipation rate is established for 300 < At < 10*, and is
intimately linked to the logarithmic skin friction law, viz. U} = 2.54 In(h") + 2.41
(U, is the bulk mean velocity). This latter relationship is established on the basis
of energy balances for both the mean and turbulent kinetic energy. When A* is
smaller than 300, viscosity affects the integrals of both the mean and turbulent
energy dissipation rates significantly due to the lack of distinct separation between
inner and outer regions. The logarithmic 4™ dependence of U, is clarified through
the scaling behaviour of the turbulent energy dissipation rate € in different parts
of the flow. The overlap between inner and outer regions is readily established in
the region 30/h* < y/h < 0.2 for At > 300. At large h* (>5000) when the finite
Reynolds number effect disappears, the magnitude of gy/U’ approaches 2.54 near
the lower bound of the overlap region. This value is identical between the channel,
pipe and boundary layer as a result of similarity in the constant stress region. As 't
becomes large, the overlap region tends to contribute exclusively to the 2.54 In(h™)
dependence of the integrated turbulent energy dissipation rate. The present logarithmic
h* dependence of U is essentially linked to the overlap region, even at small /*.
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1. Introduction

Since the earlier experimental studies by Laufer (1951) and Comte-Bellot (1963),
the fully developed turbulent channel flow has received a great deal of attention, both
experimentally and numerically, due mainly to the simplicity of the flow geometry
and consequent simplifications that can be made to the governing equations of
motion. A major stimulus for unravelling various aspects of the physics of turbulence,
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especially close to the wall, was provided by the direct numerical simulation (DNS)
of Kim, Moin & Moser (1987) in which the governing equations were solved directly
so that all the essential scales of the motion were resolved. In their DNS, the
data were obtained at a relatively small value (=180) of the Karman number h*
(= U.h/v), which represents the ratio of the half-width of the channel & and the
viscous length scale v/U, (U.(= (t,/p)"?) is the friction velocity, where T, is the
wall shear stress and p is the density of the fluid; the superscript + will subsequently
denote normalization by v/U, and U,). Since then, many DNSs (e.g. Moser, Kim
& Mansour 1999; Abe, Kawamura & Matsuo 2001, 2004a; Iwamoto, Suzuki &
Kasagi 2002; Abe, Kawamura & Choi 2004b; del Alamo et al. 2004; Tanahashi et al.
2004; Hu, Morfey & Sandham 2006; Laadhari 2007; Hoyas & Jiménez 2008; Abe,
Antonia & Kawamura 2009; Bernardini, Pirozzoli & Orlandi 2014; Lozano-Duran &
Jiménez 2014; Vreman & Kuerten 2014; Lee & Moser 2015) have been performed
at increasingly larger values of A" in the same flow. To date, the maximum value
for ht reached in the DNS of the present flow is 5000 (Lee & Moser 2015) without
compromising spatial resolution requirements. This is about a factor of 2 smaller than
the maximum value achieved in the laboratory by Comte-Bellot (1963) by using a
large physical value of & (= 0.09 m).

A major difficulty in experiments is the accurate determination of the wall shear
stress t,,.. In this context, significant attention has been given to the streamwise length
(L) and the aspect ratio (AR) of the channel. To achieve a fully developed flow with
dP/dx =const., a relatively long channel is required (Monty (2005) suggests L =260h).
The AR also needs to be as large as possible to avoid possible side wall effects and
hence ensure two-dimensionality (Monty (2005) suggests that the AR should be at
least 12). When these requirements are met, the momentum balance over a control
volume which extends across the whole section of the channel and includes the two
walls yields

th 1.1

T, o (1.1

However, in order to check that momentum is conserved on an integral basis, an

independent, preferably direct estimate of t, is needed. Zanoun, Durst & Nagib

(2003) have estimated 1,, using both the measured pressure gradient and the oil film

interferometry technique in a fully developed channel flow. Good agreement between

the two estimates was obtained for values of h' extending up to A" =~ 5000. The
corresponding data for the skin friction coefficient defined as

Cr=1./30U;, =2/U;” (1.2)

(U, is the bulk mean velocity defined in the channel as U, = (1/h) foh Udy) were
consistent with Dean’s (1978) well-known power-law formulation as a function of Re,
(= Up2h/v), viz.

C; =0.073Re; ", (1.3)

Recently, Zanoun, Nagib & Durst (2009) observed that the logarithmic skin friction
relation

1 1
Uf=—In(h")— —+A (1.4)
K K
or, equivalently,
2 1 1
L (Reb\/cf/zﬁ) —4A (1.5)
G« K
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obtained from the logarithmic law of the wall
1
Ut=-InGG") +A (1.6)
K

(« and A denote the Kdrman constant and the additive constant, respectively), with
k =0.37 and A=3.7, as obtained by Zanoun et al. (2003), represents more accurately
the experimental skin friction data than Dean’s (1978) formula (1.3), in particular,
for h™ > 2000 (see figure 5 of their paper). Relation (1.4) is obtained by integrating
(1.6) across the channel. Although this may be valid strictly when At — oo, the mean
velocity profiles of Zanoun et al. (2003) do not deviate significantly from the log law
over a wide cross-section of the flow (this was also confirmed by Monty et al. (2007)).
More recently, Schultz & Flack (2013) made laser Doppler velocimetry measurements
in the range AT = 1000-6000 and employed (1.1) to determine 7,,. They reported that
the logarithmic friction relation (1.4) with x =0.40 and A = 5.0 provides a good fit
to their experimental data.

An interesting question which arises from the above observations is why a skin
friction relation, based on log-law constants which can only be defined, with some
degree of confidence, for A% > 2000, represents adequately data at values of A" that
are smaller by almost one order of magnitude. For example, for the 4™ = 180 DNS
channel data of Kim et al. (1987), C; is approximately 8 % smaller than the prediction
by the logarithmic skin friction law (1.5). It is also only approximately 3 % smaller
than the value given by Dean’s (1978) relation (1.3) (see also figure 1 of Abe et al.
(2001)). We explore this theme by focusing almost exclusively on the behaviour of
the turbulent dissipation rate; this approach provides an answer to the question raised
above. Particular attention is given to the energy dissipation function E (Rotta 1962)
since E/U? is equal to U, . This latter relation is obtained readily by considering that
the total energy dissipated in the channel is equal to the energy input via the mean
pressure gradient, viz.

1dP 5 . + 3
E= ——anh =U.U, or equivalently, U, =E/U.. (1.7)
P

Possible relations for U, are therefore obtained on the basis of not only the velocity
log law (viz. (1.4)), but also via E (viz. (1.7)). This approach provides an interesting
insight into the logarithmic skin friction law since the logarithmic 4" dependence of
U, appears to be established at lower Reynolds numbers than the velocity log law.
In this context, Laadhari (2007) examined the relative contributions of the turbulent
strain rate € and that which arises from the mean strain rate €,,..,, Viz.

E= vui,j(u,"j + l/tj,i) + vUi,j(ﬁ,-J + Uj,i) . (18)

€ Emean

Note that u;, up, uz denote the streamwise, wall-normal and spanwise velocity
fluctuations, respectively; u, v, w are used interchangeably with u,, u,, us3; v denotes
the kinematic viscosity and the overbar denotes averaging with respect to x, z (x, Y,
z are the streamwise, wall-normal and spanwise directions, respectively) and ¢ (time);
upper cases denote instantaneous quantities. He noted that the logarithmic friction
relation is obtained from E, with k = 0.38 and A = 4.65, and the resulting relation
agrees well with his DNS data for 4™ > 500 as well as the higher 4" data of Zanoun
et al. (2003). In the present paper, we extend Laadhari’s (2007) work and assess how
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E varies over a wider range of A™ than covered by Laadhari (2007). In particular, we
try to clarify how the logarithmic dependence of U, is established by focusing on
how the turbulent energy dissipation rate € scales in different regions of the channel.
We also give significant attention to the overlap scaling of € by applying a matching
argument to elucidate the outer layer similarity we observe for €.

This paper is organized as follows. In §2, E is explained in the context of a
turbulent channel flow. A brief description is given in §3 of the present DNS
databases for the channel flow. The effect of the streamwise domain on E is addressed
in §4.1. Results for the dependence of E on h' are presented in §4.2 together with
available DNS and experimental data. Section 4.3 extends the U, relation established
in §4.2 to a pipe flow since (1.7) holds in internal flows. The relationship between
the resulting In(h*) dependence of U, and the scaling law of the turbulent energy
dissipation rate is also discussed in some detail in §§4.4 and 4.5 where comparisons
are made with available DNS data of ¢ for the pipe and the zero-pressure-gradient
turbulent boundary layer. Conclusions are given in §5.

2. Relation for the energy dissipation function E in a channel flow

Rotta (1962) discussed the energy dissipation function E in some detail in the
context of the boundary layer. By integrating the transport equations of the mean and
turbulent kinetic energy between the wall and the freestream, he obtained

2

E =/ edy+/ v<> dy
0 0 dy
=/ r() dy—/ (u2—v2 dy—/ Tk dy, 2.1)

o P \0y 0

where 7 is the total shear stress and k the turbulent kinetic energy. Rotta (1962)
underlined that the last two terms on the right of (2.1) are merely corrections and
that the main contribution to E comes from the work done by the shear stress.

In a channel flow, a relation for E is obtained readily using the total shear stress

relation, viz. _ B

T o du 1 dpP

—=—-w+v—=—|17,—-y— |, (2.2)
P dy »p dx

where the mean-pressure-gradient term appears. By multiplying (2.2) by dU/dy, we
obtain the energy balance for the mean ﬂow, viz.

dU dU 1 dU dP dU
—uv—~+v =—|t,——y—— (2.3)
dy dy dy dx dy

(t,,/p)(dU/dy) represents the rate of energy transfer from the outer part of the
boundary layer to the inner region (see also DeGraaff & Eaton 2000; Morrison et al.
2004); the term which includes dP/dx is the energy input from the mean pressure
gradient. The energy is partly dissipated directly by viscosity (the second term on the
left-hand side of (2.3)) and partly extracted to turbulence via the work done by the
Reynolds shear stress (the first term on the left-hand side of (2.3)).

By assuming the symmetry with respect to the centreline, the integral of (2.3) from
y=0 to h then leads to

b 4o VA AN 1dP [ _
/ —uv— dy + / v () dy=——— [ Udy, (2.4)
0 0 ,0 d.x 0
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= 2
&)+ <v <‘;ly]> > =UU,, (2.5)

where the angular brackets denote integration with respect to y across the channel half-
width. Note that in (2.5) we also consider the energy balance for the turbulent kKinetic
energy so that (P;) is replaced by (€) where P, = —uv(dU/dy) since the relation

or equivalently,

(Pr) = (&), (2.6)

which expresses equality between the net turbulent energy production and the total
turbulent energy dissipation rate, holds in a channel flow. Relation (2.5) can then be

arranged as follows
N
U, (&) dU , E
—=— — U, =—. 2.7
U, U3+<v<dy N e

Equation (2.7) is equivalent to the relationship between E/ U;” and U,/U., (1.7). The
viscous contribution is expected to dominate near the wall while the contribution
from the turbulent energy dissipation rate should dominate elsewhere. It is also
expected that the viscous term will be dominant at small At whereas () should
become increasingly important as At becomes very large so that the A+ dependence
of U,/U,, which is related to the skin friction coefficient C; = 2(U,/ U,? (1.2),
should essentially reflect that of the normalized integrated energy dissipation rates
across the channel.

3. DNS databases

The present numerical databases have been obtained from DNSs in a turbulent
channel flow with passive scalar transport by Abe et al. (2004a, 2009). In the present
study, we exclusively use flow field data for a fully developed turbulent channel flow
driven by a constant streamwise mean pressure gradient. Four values of it (= 180,
395, 640 and 1020) are used. We also consider other DNS data available in the
literature up to At =5200 (Moser et al. 1999; Iwamoto et al. 2002; del Alamo et al.
2004; Tanahashi et al. 2004; Tsukahara et al. 2005; Hu et al. 2006; Laadhari 2007;
Hoyas & Jiménez 2008; Bernardini et al. 2014; Lozano-Durdn & Jiménez 2014;
Vreman & Kuerten 2014; Lee & Moser 2015).

The numerical methodology for the DNSs is briefly as follows. A fractional step
method is used with semi-implicit time advancement. The third-order Runge—Kutta
method is used for the viscous terms in the y direction and the Crank—Nicolson
method is used for the other terms. A finite difference method is adopted for the
spatial discretization. A fourth-order central scheme is used in the x and z directions,
whilst a second-order central scheme is used in the y direction. The periodic boundary
condition is employed in the x and z directions, whereas the no-slip condition applies
in the y direction. Further details of the simulations are given in Abe et al. (2001,
2004a,b, 2009) and Antonia, Abe & Kawamura (2009), and the reader may refer to
these papers for information on basic turbulence statistics.

The computational domain size (L, x L, x L;), number of grid points (N, x Ny x N)
and spatial resolution (Ax, Ay, Az) are given in table 1, the superscript * representing
normalization by either vx (= (v€)/4; the Kolmogorov velocity scale) or n
(= (v¥/2)"*; the Kolmogorov length scale); the subscripts w and ¢ referring to
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ht 395 1020

L, (h, 12.8h)  (0.4h, 0.8h, 1.6h, 3.2h, 6.4h, 12.8h)
LY (395, 5056) (408, 816, 1632, 3264, 6528, 13056)
N. (40, 1536) (64, 128, 256, 512, 1024, 2048)
Axt (9.88, 3.29) 6.38

AZ"  (4.94, 3.29) 4.25

TABLE 2. Information on streamwise domain size, grid points and spatial resolution
need for testing the effect of L, on the quantities plotted in figures 1 and 2.

the wall and centreline, respectively. The effect of the domain size was examined by
Abe et al. (2004b) (ht = 640) who compared two cases: (L, x L.) = (6.4h x 2h) and
(12.8h x 6.4h). They found that the effect on the mean flow variables and second-order
moments was negligible. They also examined one-dimensional energy spectra and
noted that their streamwise domain size was not large enough to include all the
large-scale contributions, whereas their spanwise domain size was quite sufficient.
Abe et al. (2004b) also reported that the most energetic spanwise wavelength of
u is approximately 1.3-1.6A in the outer region. The identical behaviour was also
observed for ht = 1020 (see figure 4b of Antonia et al. (2009)) and for h™ = 2022
and 4079 (see figure 13a of Bernardini et al. (2014)), which supports the finding
of Flores & Jiménez (2010) and Lozano-Durdn & Jiménez (2014) that L, = wh is
sufficient to obtain good one-point statistics up to the centre of the channel.

In §4.1, we further examine the effect of L, on the main quantities of interest, viz.
those which contribute most significantly to E. This will be done for At =395 and
1020 by varying the streamwise domain size, while keeping the spanwise domain
constant (Abe et al. 2007). The domain size, number of grid points and spatial
resolutions are listed in table 2. The smallest streamwise domain for At = 395
and 1020 is L} ~ 400, which is the minimal unit of near-wall turbulence (Jiménez
& Moin 1991). We also compare our results with other DNS data obtained with
different domain sizes (Lozano-Duran & Jiménez 2014; Lee & Moser 2015).

4. Results for the energy dissipation function E
4.1. Effect of the streamwise domain

We first clarify the effect of L, on the total energy dissipation E. Distributions of
(v(dU/dy)?) and (g) normalized by U? are shown in figure 1 as a function of L,/h for
both 4" =395 and 1020. Also included in figure 1(a) are the data of Lozano-Durdn &
Jiménez (2014) at " =4179 with L, =27h and Lee & Moser (2015) at A" =1000 and
5186 with L, =8mwh since (v(dU/dy)?)/U? is constant for A" > 300 (see figure 3a) and
the departure from constancy corresponds to the L, effect. It is shown that the viscous
energy dissipation rate (v(dU/dy)?)/ U? increases with decreasing L, when L, < 2h.
This is caused by the thickened buffer region as L, decreases (see figure 2a where
the distributions of (dU*/dy")? are shown). (£)/U? is however essentially unaffected
by L./h, whereas (g1;)/U? (the streamwise component of the dissipation) is affected
in a similar manner to (v(dU/dy)?)/ U?. This is closely associated with the energy
redistribution where the pressure strain rate and pressure diffusion terms, viz.

ou  ouf
;=p+< +’> 4.1

+ +
0x; ax;
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FIGURE 1. Distributions of (v(dU/dy)?)/U? and (g)/U? in a channel flow as a function
of L,/h: (a) (v(dl_//dy)z)/Ug; (b) (?)/U:
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FIGURE 2. Distributions of (dU*/dy*)? ¢ and ¢3; in a channel flow for h* = 1020:

(a) (AUT/dy")?; (b) ¢;f and ¢3.

and

0 0
+_ + T
Yy =— (8xi+”j P+ @”i P*) ) 4.2)

play an important role. Distributions of ¢; and ¢; are shown in figure 2(b) for
ht =1020. The data of Lee & Moser (2015) for A" = 1000 with L, = 8nh are also
plotted. For L, < 6.4h, the magnitudes of ¢, ¢,, and ¢3; are attenuated significantly
due to the impaired global nature of the pressure, i.e. the turbulent kinetic energy is
not redistributed properly to vtv* and wrw*. In particular, the rate of decrease in
¢, and ¢3; with decreasing L,/h is large, which makes utu™ and wtwt more and
less energetic, respectively. This result implies that the inactive motion is affected
more significantly by L, than the active motion. Note that the inactive motion refers
to the large-scale motion (or structure) and the irrotational pressure fluctuations of
the outer region (Townsend 1961; Bradshaw 1967) which contribute to the Reynolds
normal stress (mostly to the low-wavenumber components of utu* and wtw™ as
described by Townsend’s (1976) attached eddy model) in the inner region, while the
active motion contributes almost exclusively to the Reynolds shear stress (see also
§6 of Antonia et al. (1992)) in this region. &,; (the streamwise component of the
dissipation) and €33 (the spanwise component of the dissipation) become therefore
larger and smaller with decreasing L,/h. This leads to an increase in (g)/U?
and decrease in (533)/U3 (figure 1b), and hence a small dependence on L,/h of
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FIGURE 3. Distributions of (v(dl_]/dy)2)ZU§ and (g)/U? in a channel flow as a function
of h™: (a) (v(dU/dy)z)/Uf; b) (5)/U§

(£)/U? since the sum of (g1,)/U3, (€x) /U3, (33)/U? is equal to 2(g)/U>. This is the
reason why the L, effect does not appear in (£)/U? explicitly. The present criterion of
L, =06.4h is identical with the finding of Lozano—Durén & Jiménez (2014) that correct
one-point statistics are obtained when L, is larger than 2mh. This criterion is most
likely associated with the streamwise extent of the large-scale structures (Balakumar
& Adrian (2007) reported 2-36), but not very large-scale structures (Monty et al.
(2007) reported long meandering features up to 255 long in the channel and pipe)
since the latter are very long structures and exhibit a shallow angle to the wall so
that they may be thought of as the wall-parallel mode (i.e. the zero mode in the
energy spectra). The required L, in the DNS is obviously shorter than that in the
experiment since the DNS is started with the fully developed turbulent state. In the
DNS, once the velocity field reaches the statistically steady state (viz. a linear profile
of the total shear stress), the Navier—Stokes equations are integrated further in time
to obtain various turbulence statistics.

4.2. Reynolds number dependence

We now quantify the 4* dependence of the total energy dissipation rate by considering
the DNS data in which L, > 2wh. The normalized values of (g) and (v(dU/dy)?)
are plotted in figure 3 (on linear—log scales) in terms of h* using the present and
existing DNS data. The viscous energy dissipation rate (v(dU/dy)?)/U? (figure 3a) is
essentially constant for 2% > 300; the value of the constant (=9.13) is the same as that
reported by Laadhari (2007), who noted that this constancy applies for A+ > 500, when
(2)/U3 exceeds (v(dU/dy)?)/U3. The value of (v(dU/dy)?)/U? seems to be identical
with the values obtained in either a pipe or a boundary layer (see figure 3a where
the data of Wu & Moin (2008) in a pipe flow and Schlatter & Orlii (2010) in a zero-
pressure-gradient boundary layer are included in terms of RT (R is the pipe radius)
and 84y (899 is the 99 % boundary layer thickness), respectively). This is consistent
with the good collapse in the near-wall distribution of U" in terms of y* for these
three flows; the inner layer similarity of U™ leads to the constancy of (v(dU/dy)*)/U>.
Klebanoff (1954) also noted that the viscous energy dissipation rate is negligible above
y+ a2 30 for the three flows (see also figure 2a where the distribution of (dU*/dy*)? is
shown at 4" =1020). On the other hand, (£)/U? (figure 3b) increases logarithmically
with increasing At over the same range of A" (viz. h* > 300). This increase is well
described by

()/U} =2.541In(h") — 6.72, (4.3)
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which is obtained by substituting the relation for U; (4.6) and the constant value
(=9.13) for (v(dU/dy)*)/U? into (2.7). Viscosity affects (g) and (v(dU/dy)?)
significantly below A%t = 300 since there is no clear separation between the inner
and outer regions.

To ensure the accuracy of (£) and (v(dU/dy)?), the ratios

&= (Pu)/(€) (4.4)

and B
Y = ((8) + (v(dU/dy)*)/U:U, 4.5)

should be equal to 1 (see also (2.6) and (2.7)). Several DNS data, including the
present data, indicate that the departure from 1 of the ratios £ and ¥ is almost
negligible (figure 4), thus confirming the accuracy of these simulations. From a
historical perspective, it is of interest to note that the earliest attempt to test ,2,
measured in a turbulent channel flow, was made in Taylor’s (1935) seminal paper
where the isotropic expressions &;, = 15v(du/dx)? and g;,, = 7.5v(du/dy)> were first
derived. In essence, Taylor (1935) was testing (2.6), except that his integration was
started at the centre of the channel and the upper limit of the integration did not
quite go to the wall (the measurement location closest to the wall was y/h =~ 0.08).
By extrapolating the data to the wall, we estimate that (P;)/(€;,2) could be somewhat
greater than 2. This is, perhaps surprisingly, not an implausible outcome since the
contribution from (v(dU/dy)?) is likely to be comparable to that of (g) at this
Reynolds number (h™ ~ 450), (g;,,) is likely to overestimate (£) (inset of figure 4a)
and the aspect ratio of the channel was only 4. In experiments, data for (£)/U? and
(v(dU/dy)*)/U? are not usually available. A possible formula for U; can however
be established from the experimental data.

Distributions of U, in a channel flow for all available DNS data and several sets
of experimental data are shown in figures 5(a) and (b), respectively. A least squares
fit to the DNS data in figure 5(a) over the range h™ > 300 yields

U/ (=U,/U,) =2.541In(h") 4+ 2.41, (4.6)
or, equivalently,
1
N 1.801In <Reb« /cf> ~0.163. 4.7)
f
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This relation represents a good fit to nearly all the experimental data for U, over
more than one decade of A" (see figure 5b). Also included in figure 5 are relations
for U;, originally established for the skin friction coefficient C; by Dean (1978) and
Zanoun et al. (2009), which can be written as

Uiy =7132nt""7 (4.8)
and

U =2.702 In(h*) 4 0.997, (4.9)

respectively. Dean’s (1978) relation (4.8) appears to represent the data adequately over
almost the complete range of A*. However, the concave curvature exhibited by (4.8) is
not discernible in the overall trend of the data and implies that the difference between
the logarithmic dependence (4.6) and the power-law relation (4.8) will become more
perceptible as h* extends beyond 10%.
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Note that among the experimental data included in figure 5(b), U, was most likely
underestimated by Comte-Bellot (1963) (AR = 13.3, L = 133h) (see also Abe &
Antonia 2011). For the latter data, correction was hence made for U, using (4.7); the
resulting values of U, lie much closer to relation (4.6) than the original values (see
figure 5b). For more recent experiments, special care was taken in determining U,.
Zanoun et al. (2003) (also Zanoun et al. 2009) obtained close agreement between
7,, determined from the static pressure distribution along the fully developed part
of the channel (aspect ratio AR =12 and length L =260k) and that estimated using
oil film interferometry. Their hot-wire data covered the range 1167 < h™ < 4783.
Fischer, Jovanovi¢ & Durst (2001) determined U, from a polynomial fit to the
mean velocity in the viscous sublayer and the lower part of the buffer region. Their
LDA measurements in a water channel (AR = 18, L = 200h), acquired with good
spatial and temporal resolution, extended up to At ~ 480. Earlier, Durst et al. (1998)
reported results in the same channel over the range 87 < At < 293. Shah (1988)
(AR = 18.1, L = 349h) and Hussain & Reynolds (1975) (AR = 16.4, L = 460h)
conducted measurements with long channels for At = 187-1357 and 637-1383,
respectively, to ensure dP/dx = const. and hence accuracy of U,. Bakken et al.
(2005) made measurements in both smooth and rough walls (AR =14, L =100A). In
their smooth wall case, At ranges from 360 to 3300; U, was determined from both
the mean pressure gradient and the Reynolds shear stress using the total shear stress
relation. Monty (2005) obtained U, using the mean pressure gradient in a channel
(AR = 11.7, L = 205h) for h* ~ 380-4000. Monty’s data for U, are in reasonable
agreement with those of Zanoun et al. (2003) (also Zanoun et al. 2009) when h*
exceeds approximately 2000. Schultz & Flack (2013) also obtained U, using (1.1) in
their LDV measurements (AR =28, L =248h) for h™ =1010-5900. These experimental
data indeed provide strong support for relation (4.6) in figure 5(b). The logarithmic
variation of U, established from DNS data up to A" = 5000, can be extrapolated to
values of A" that extend to approximately 10%.

It should also be noted that the logarithmic relation (4.6) is a better fit to both the
DNS and experimental data than (4.9) for A" <2000, possibly because the present U,
relation (4.6) is based on (2.7), whereas Zanoun et al. (2009) obtained the U; relation
(4.9) from the velocity log law (1.4). This difference cannot be dismissed given that,
unlike the velocity log law, the skin friction law (4.6) is established unambiguously
for At > 300.

4.3. Extension to a pipe flow

Given that the sum of the integrals of the mean and turbulent energy dissipation rates
is equal to the non-dimensional energy input from the mean pressure gradient (U;")
in internal flows (i.e. (2.7)) and that as in a channel (i.e. (4.3)), (€)/U? exhibits the
2.541In(R™) dependence in a pipe (see §4.5), it would be straightforward to check if
the slope of U, (viz. In(h™) versus h™) obtained in the channel (viz. the slope of (4.6))
also applies to the pipe. In the latter flow, Prandtl (see Schlichting 1979) established
the well-known law for the friction factor A(=4C;) based on Nikuradse’s (1932) data,
viz.

1/4/2=2.01log <Rebﬁ> ~08. (4.10)
This equation can be rewritten as

U/ =2.461n(R") 4 2.0. 4.11)
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FIGURE 6. Distributions of U; in a pipe flow as a function of R*.

The present relation, based on the Reynolds number dependence of (g)/U?, is written
as
U =2.54In(R") + 1.31, (4.12)

which is close to Prandtl’s relation. Clearly, (4.12) gives a reasonable fit to the DNS
and experimental data in the range R™ =300-10* (see figure 6). The magnitude of U,
is approximately 5 % larger in the channel than in the pipe. On the other hand, while
there is reasonable inner layer similarity in the distributions of U*, the magnitude of
U™ is larger in the pipe than in the channel in the outer region (see Monty et al.
2009; see also figure 12 where €5/ Uf (6 denotes either i, R or &99) shows the same
trend as U"). The difference in U, is thus most likely due to a difference in geometry
between these two flows.

It is worthwhile mentioning that the present skin friction relation for the pipe (4.12)
is quite close to that obtained by Furuichi er al. (2015) using LDV measurements in
the range 4 x 10> < RT < 2.7 x 10°, viz.

1/+/2=2.090 log (Rebﬁ) — 1172, (4.13)

The corresponding expression for U, is
U =2.57In(R") + 1.13. (4.14)

Both (4.12) and (4.14) give a reasonable fit to the data for lower Reynolds numbers
than those at which the velocity log law is established.

4.4. Scaling laws of € and matching argument

Here, we focus on the scaling of € in different regions of the channel. There have
been a number of observations indicating that the classical inner scaling,

g =8v/U =f0), (4.15)
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does not hold, the normalized distributions of €+ in the wall region exhibiting a non-
negligible dependence on 4t (Antonia, Kim & Browne 1991; Hoyas & Jiménez 2008).
On the other hand, there is adequate evidence that the outer scaling,

eh/U; = g(y/h), (4.16)

is satisfied closely in the outer region of the channel (see Hoyas & Jiménez 2008;
Abe & Antonia 2011). Distributions of € with inner and outer scalings are shown
in figure 7 together with those of U. The magnitude of €' increases with h* close
to the wall due to the effect of the inactive motion (see Hoyas & Jiménez 2008),
while €7 seems to collapse for y* > 20 provided A" > 300 (figure 7b). In contrast to
the mean velocity, viscous effects are unlikely to affect the energy dissipation rate
significantly for y* > 20. This is associated with Bradshaw’s (1967) observation that
the only noticeable effect of the inactive motion is an increased dissipation of kinetic
energy into heat in the viscous sublayer. For y* > 20, —uv = const. is also satisfied
reasonably well when A™ is large enough (see figure 10b). On the other hand, unlike
U, 7 collapses almost perfectly on U? and £ in the region 20/h™ <y/h <1 (figure 7d;
see also figure 95 where the location 20/h* is identified by the dashed vertical lines).
In this context, McKeon & Morrison (2007) indicated that the similarity in & is
obtained for R* > 5000 in a pipe by analysing the superpipe data, in which estimates
for € are made by invoking P, =¢. The present results indicate that the outer layer
similarity for # is more convincing than that for U even at small A™ (k™ > 300)
(see figure 7c,d).
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We now apply a matching argument to €. Here, we assume that 4™ is large enough
to have a clear distinction between inner and outer regions, and that there is a region
where relations (4.15) and (4.16) overlap so that the gradient of € should coincide,
viz.

de U df _ U? dg

— = = , 4.17
dy vZdyt k% dy* “-17)

where y* = y/h. After multiplying by y?, the equality between the second and third
members of (4.17) becomes

d d
wdf _ e ds (4.18)
dy+ dy*
This is satisfied if d b q b
4G4 _D o dk_D (4.19a.b)

dyt oyt dy- y*

Equation (4.18) indicates that & should indeed scale with U? and y in the overlap
region. After integrating (4.19a,b), we obtain

D D
f=——+D or g=——+D,. (4.20a,b)
y »*

Here, we adopt a small parameter y = 1/h" and an outer variable y* = yy* as was
done by Afzal (1976) for the mean velocity gradient and obtain D; = —yc and
D, = —c. Equation (4.20a,b) is then rewritten as

D D
f=———yc or yg=—y— —vyc, (4.21a,b)
¥t v

where ¢ is a constant. After the normalization, it follows from (4.21a,b) that the
overlap scaling may be written as

gy/U. =1/k, — c(y"/h") (4.22)

and
gy/U =1/k. — c(y/h) (4.23)
in inner and outer coordinates, respectively, where D = —1/k. and «. is a constant.

The matching argument highlights that the overlap scaling of € requires neither the
existence of a velocity log law nor energy equilibrium (P, = €). It does however
require the Reynolds number to be large enough (At ~ 300) to allow the overlap
region, where the relevant length scale is the distance from the wall, y to be
distinguished unambiguously. In the overlap region, when —uv >~ const. (this constancy
is plausible only when h* is large enough) (see figure 10b), Py/U? ~ ydU*/dy (see
figures 10c and 11a) and P,/ =~ 1 (see figure 10a). Equations (4.22) and (4.23)
are analogous to the generalized velocity log law for the channel flow proposed
by Jiménez & Moser (2007) using the asymptotic matching of the mean velocity
gradient,
dut 1 yt B
y ok +ah+ + i (4.24)
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and ai

U 1 y B

o " x ta o (4.25)
in inner and outer coordinates, respectively, with 1/k =2.49, o = 1.0 and B = 150.
While both the present study and that of Jiménez & Moser (2007) use a matching
argument, there are discernible differences between (4.22) and (4.23) and (4.24)
and (4.25) in terms of the constants (i.e. k., and «x) and in the limits of applicability
of the overlap expressions (i.e. 30/hT < y/h < 0.2 in (4.22) and (4.23) (this is
discussed below) and 300/h" <y/h < 0.45 in (4.24) and (4.25)).

In (4.22) and (4.23), the second terms on the right-hand sides are responsible for the
finite Reynolds number effect, i.e. —c(y™/h™) (the second term of (4.22)) goes to zero
as ht — oo, while —c(y/h) (the second term of (4.23)) does not depend on A" but
may enhance the outer limit of the overlap scaling. When the finite Reynolds number
effect disappears, equations (4.22) and (4.23) reduce to gy/U? = 1/k, analogous to
the classical scaling based on the velocity log law gy/U? = 1/k (see, for example,
Townsend 1976). Note that «, is identical with « only if the velocity log law and
energy equilibrium conditions are satisfied. Hoyas & Jiménez (2008) found that the
magnitudes of all the terms in the budgets of u;%; and k in the channel decrease almost
proportionally to y~! in the region y© =50 to y/h = 0.4 for h* = 2003. Figure 8(a)
highlights that the largest magnitude of €y/U? (= 2.54) is attained at y* =30-40. This
value is the same for the channel, pipe and boundary layer due to the wall similarity

y
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— . (4.26)-(4.27).

of the constant stress region (Townsend 1976). It depends on the Reynolds number
in the channel and pipe, but not in the boundary layer (see figure 8). This finite
Reynolds number effect comes from the dP/dx effect, which reduces the magnitude
of —uv and hence P, and € when A" is small. On the other hand, this effect is
negligible when A"~ 5000, which allows us to determine 1/k, unambiguously. Indeed,
1/k, =2.54 is identified asymptotically for A% > 5000 in the channel (figure 8a), while
this value is obtained for 8g, > 300 in the zero-pressure-gradient boundary layer due to
the absence of the dP/dx effect (figure 8b). A fit to the DNS data over 30/8% <y/8 <
0.2 then yields ¢ =2.6, 1.3 and O in the channel, pipe and boundary layer. Indeed,
equations (4.22) and (4.23) reproduce the A% dependence of the peak magnitude of
gy/U? successfully for A" > 300 and provide a good fit to the data in the region
30/h* <y/h < 0.2 (see figure 8c). While the classical overlap argument based on U
(Millikan 1938) strictly holds only at large A%, the overlap region for € is established
at small 4™ (=~ 300) (see also figure 8c in which the DNS data for 2t =395 follow
the present overlap scaling very well).

In the outer region (y/h > 0.2), there is still a decrease in gy/U? towards the
centreline (see figure 11b). After the fit to the DNS data in figure 7(d), the decrease
is approximated closely by the outer scaling, viz.

gh/U; =2.45/(y/h) —d, (4.26)

with d = 1.7. Figure 9(b) underlines that (4.26) is a good fit in the region 20/h" <
y/h <1 (see the thick lines in figure 9b). Equation (4.26) also applies to the pipe
reasonably well albeit with a different value of d. In the boundary layer, it applies
only below y/8q9 ~ 0.4, with yet another value of d (see figure 12 where d =0.9 and
—1.0 for the pipe and boundary layer, respectively). The different magnitudes of d are
most likely associated with the different flow characteristics (e.g. effects of the mean
pressure gradient in the channel and pipe, curvature in the pipe and the presence of the
turbulent/non-turbulent interface in the boundary layer). The present results underline
that, as for the mean velocity, there is a discernible departure from similarity in the
energy dissipation rate for the channel, pipe and boundary layer.
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_The excellent agreement with (4.26) in both the channel and pipe is due to the
dP/dx effect. This latter effect seems to be responsible for yielding nearly the same
slope (i.e. 2.45) as in the overlap scaling (i.e. 1/k, = 2.54) so that a reasonable
collapse on the outer scaling is obtained over a wider range 20/h™ < y/h < 1 (see
figure 9b) than for the velocity log law, usually between y* ~ 30 and y/h=0.2. A
nearly identical observation was made for U by Monty et al. (2007) who noted that
the pipe and channel mean velocity profiles lie closer to the log law than in the
boundary layer beyond y/8 = 0.15. In the region 20 < y* < ht, there is satisfactory
collapse on inner scaling with the same slope (i.e. 2.45) as for outer scaling, viz.

gv/U=2.45/yt —d/h* 4.27)

(see figure 9a). Note that since it seems difficult to make a clear distinction between
the overlap and outer regions of € in the channel (see figure 9 where the inner and
outer scalings (4.26), (4.27) hold reasonably well in the region 20/h™ <y/h < 1), we
assume that the upper bound of the overlap region of € is y/h=0.2, as is normally
assumed for the velocity log law. In the present work, the overlap region of € is thus
defined by the region 30/hA™ < y/8 < 0.2, in which (4.22) and (4.23) hold quite well.

4.5. Fractional contributions to (g)/U?

It is of importance to clarify if the integral of € over the overlap region yields the
logarithmic A" dependence of (£)/U?. In the present study, we follow the same
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FIGURE 12. Distributions of £5/U? in a channel, pipe and boundary layer at §* ~ 1000.

approach as in Sreenivasan (1995), viz.

= 30 0.2h — 1 —
h
“z:/ e+dy++/ 83dy+/ %d(X), (4.28)
UT 0 30v/U; U'L’ 0.2 Ur h
Ci 81; Co

where the limits for the second integral in (4.28) correspond to the extent of the
overlap region of &, i.e. y© =30 and y/h =0.2. Values of C;, Cj, and C, obtained
from the DNS data in the channel are shown in figure 13 and are compared with
the corresponding values in the pipe and boundary layer. Clearly, there is a In(ht)
dependence for Cj,, (figure 13b). This dependence is obtained by integrating (4.22)
or (4.23), viz.

0.2h 1
Clog = / ( — C) dy =2.54(In(h*) +In(0.2) — In(30)) — 2.6(0.2 — 30/h+),
300/U;, \KeY h 4.29)
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in which the last term of (4.29), the finite Reynolds number effect or the dP/dx
effect, cannot be dismissed when A* is small. On the other hand, the last term of
(4.29) is negligible in the zero-pressure-gradient boundary layer due to the absence
of the dP/dx effect (see figure 13b). Given that C, is essentially constant (~1/«,)
(figure 13¢) but the magnitude of C; increases slowly with At (figure 13a), we
integrate € from y =0 to 0.2 (viz. C; + Cy,) (figure 13b). The resulting integral is
described adequately by

02h —=
Cin+ Ciog = / % dy=2.54In(h") — G, (4.30)
0

T

for At > 300 with C, =9.28. Note that the sum of (4.30) and C, (*2.6) is identical to
(4.3). This implies that the more appropriate expression for the logarithmic dependence
of (g)/U? for the channel requires integration from y =0 to 0.2h, viz. the contribution
of C; (h") cannot be ignored. The same trend is observed for the pipe. The slightly
different magnitude of the integral from y =0 to 0.28 (viz. C; + Cj,) between the
three flows is attributed to the finite Reynolds number effect or the dP/dx effect,
represented well by the terms —c(y*/h") and —c(y/h) in (4.22) and (4.23). This effect
however does not affect the In(§*) dependence of C; + Cj, (see figure 13b where
the 2.54 In(6"7) dependence is valid for the three flows when §* > 300). The present
results highlight that the slope of 2.54 in (4.30) can be identified with 1/k, as inferred
from the overlap scaling of g, and that 1/k, is identical with the slope for the In(A*)
dependence of U} .

The Reynolds number dependence of C; is more significant for the channel/pipe
than for the boundary layer (figure 13a) owing to the finite Reynolds number effect
(viz. the dP/dx effect) in the former two flows. Schlatter & Orlii (2010) observed
a difference in t,%, = (du*'/dy"),, t;'2, being one of the major contributors to &*
at the wall, between the channel and boundary layer at low Reynolds numbers and
attributed it to the presence of dP/dx in the channel. On the other hand, C, differs
significantly between the three flows (figure 13c¢) due to the different external flow
characteristics (see figure 12 which shows distributions of §/U? in the three flows).
The constancy of C, for the channel and pipe is associated with the excellent outer
scaling we observe for these two flows, viz. integrating (4.26) from y=0.25 to § yields
2.58 and 1.53 for the channel and pipe, respectively, these two values being reasonable
estimates of C, (see figure 13c¢).

The dependence on §* of C; tends to become small in all three flows as the
Reynolds number increases (see figure 13a), implying a decreasing contribution
of C; to the 2.54 In(h™) dependence as At increases. When h™ — oo, the overlap
region should contribute exclusively to the 2.54 In(h*) dependence of the integrated
turbulent energy dissipation rate. The present logarithmic A™ dependence of U, is
essentially linked to the excellent overlap region we observe for € even at small At.
Note that x, = 0.39 defined in (4.22) and (4.23) is not identical with « obtained
from the velocity log law (1.6) for the Reynolds numbers examined (see figures 8a
and 10c). This is because the constancy of 1/« = yt(dU*t/dy") is apparent only
above AT = 5000 due to the non-negligible viscous effect on U (figure 10c). Also,
there is a discernible departure from unity of P;/€ in the region normally referred
to as the velocity log law (figure 10a). The universality of x obtained from the
velocity log law has been questioned (see the review of Smits, McKeon & Marusic
(2011)); its magnitude increases slowly with increasing 2" in the channel (k =0.37 at
h™ =2000 by Zanoun et al. (2003); « =0.38 at h" = 5200 by Lee & Moser (2015);
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see also figure 10c). Marusic et al. (2013) also reported that experiments support
a universal logarithmic behaviour of the mean velocity and streamwise turbulence
intensities in the region 367" < y* < 0.158" of the laboratory boundary layer, pipe
and atmospheric surface layer with « = 0.39 at extremely large Reynolds number
(2 x 10* <8 <6 x 10°). The present value of x, may be reconcilable with the value
of «k (obtained at very large h*) if one recognizes that the outer layer similarity
of ¢ is established at a much smaller A" than for U". Indeed, this appears to be
adequately supported by the available DNS data (see figure 7).

5. Conclusions

In the present study, we have examined the functional dependence on the Kérman
number h* of the energy dissipation function (viz. (1.7), (1.8)) in a fully developed
turbulent channel flow. The present DNS data for AT = 180, 395, 640 and 1020
together with other DNS and experimental data extending to At = 10* have been
used to clarify this dependence. After establishing that the streamwise extent of
the computational domain is sufficient to allow reliable estimates of the integrals
across the channel half-width of the mean and turbulent energy dissipation rates,
an unambiguous relation for U, with respect to A" is obtained on the basis of the
energy balances for both mean and turbulent kinetic energy. The scaling behaviour
of the turbulent energy dissipation rate has also been carefully examined in order
to confirm the logarithmic dependence of U; on h'. The main conclusions are as
follows.
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In a channel flow, after normalizing by U?, the energy dissipation function, or sum
of the integrals of the mean and turbulent energy dissipation rates, is equal to U, (i.e.
(2.7)). For h* > 300, the integral of the mean energy dissipation rate associated with
the mean velocity gradient, i.e. (v(dU/dy)?), normalized by U?, is essentially constant,
whereas (g)/U? increases logarithmically with increasing h*. Viscosity affects () and
(v(dU/dy)?) significantly for h* <300 since there is no clear separation between inner
and outer regions. The logarithmic A" dependence of (g)/U? for A" > 300 is hence
linked to that of U,. The resulting logarithmic friction relation (4.6) is supported
convincingly by DNS and experimental data over the range 300 <A™ < 10,

Support for the logarithmic 4™ dependence of (g)/U? is provided by the scaling
behaviour of the mean turbulent energy dissipation rate. The inner layer scaling, i.e.
gv/U? = f(y"), does not hold for y™ < 20. On the other hand, & collapses almost
perfectly with U? and # in the region 20/h* <y/h < 1. Unlike the mean velocity, the
turbulent energy dissipation rate is not affected significantly by viscosity for y* > 20.
Whereas the classical overlap argument based on U (Millikan 1938) strictly holds only
at large h™, the overlap region for Z is established at small 4z (=300) independently
of the existence of a velocity log law. It does however require the Reynolds number
to be large enough (h* ~ 300) to allow an overlap region where the relevant length
scale is y. In this region (30/h™ < y/h <0.2), gy/U? approaches a constant (k' =
2.54), allowing for a finite Reynolds number correction, equations (4.22) and (4.23),
for At >300. When At is sufficiently large (>5000) for the velocity log law to be
established over a region where P, >~ and —uv =~ const., the Karmédn constant ¥ can
be identified with «,. The present logarithmic A" dependence of U, follows from the
overlap argument based entirely on the behaviour of € in the inner and outer regions.
We stress that the outer layer similarity of & is more convincing than that of U and is
established at a smaller value of A" (see figure 7). This is the reason why the present
U, relation (4.6) is validated over a wide range of 4™ and is established at a lower
Reynolds number than that the velocity log law. The present logarithmic Reynolds
number dependence of U, also applies to the pipe due to the excellent similarity of
the overlap scaling for € in internal flows.
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