Bull. Aust. Math. Soc. 105 (2022), 101–105 doi:10.1017/S0004972721000368

ON THE REGULAR GRAPH RELATED TO THE G-CONJUGACY CLASSES

ADAM B. R.^D and Z. AKHLAGHI^D[⊠]

(Received 16 March 2021; accepted 9 April 2021; first published online 12 May 2021)

Abstract

Given a finite group *G* with a normal subgroup *N*, the simple graph $\Gamma_G(N)$ is a graph whose vertices are of the form $|x^G|$, where $x \in N \setminus Z(G)$ and x^G is the *G*-conjugacy class of *N* containing the element *x*. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma_G(N)$ is a connected incomplete regular graph, then $N = P \times A$ where *P* is a *p*-group, for some prime $p, A \leq Z(G)$ and $\mathbf{Z}(N) \neq N \cap \mathbf{Z}(G)$.

2020 Mathematics subject classification: primary 20E45.

Keywords and phrases: finite group, G-conjugacy class sizes, regular graph.

1. Introduction

Given a finite group G, by cs(G) we mean the set of conjugacy class sizes of the group G. It is well known that strong results can be obtained from cs(G) about the structure of G (see, for example, [5]).

Certain graphs have been introduced in order to study properties of a given finite group *G*. We will discuss the graphs which are constructed on the set cs(G). The common divisor graph on conjugacy class sizes, which we denote by $\Gamma(G)$ (see [2]), is a graph whose vertex set is $cs(G) \setminus \{1\}$ and the vertices *v* and *w* are adjacent if gcd(v, w) > 1. The properties of this graph associated to the structure of the group *G* have been thoroughly investigated in the last few decades. We refer to [6] for a survey on this topic.

Given a normal subgroup N of the finite group G, the set $cs_G(N)$ denotes the G-conjugacy class sizes of N. Investigating the structure of N based on $cs_G(N)$ could potentially extend the results based on cs(G), and these properties have also been actively studied in recent years. It is natural to define analogous graphs based on $cs_G(N)$. Denote by $\Gamma(cs_G(N))$ or $\Gamma_G(N)$ the graph whose vertex set contains elements of the form $|x^G|$, where $x \in N \setminus Z(G)$ and the vertices v and w are adjacent in $\Gamma_G(N)$ if and only if they are adjacent in $\Gamma(G)$ (see [1]).

The research of the second author was in part supported by a grant from IPM (No. 1400200028). © 2021 Australian Mathematical Publishing Association Inc.

In [4] it is proved that if $\Gamma(G)$ is k-regular then it must be a complete graph of order k + 1 for k = 2, 3. The result is extended for any $k \in \mathbb{N}$ in [3].

It seems reasonable to ask whether the same results hold when $\Gamma_G(N)$ is a regular graph. Note that if $\Gamma_G(N)$ is a disconnected graph, then by [1, Theorems A, B, E], $\Gamma_G(N)$ has two complete components and the structure of *N* in that case is determined. It remains to discuss the connected case. In this paper, we aim to prove the following theorem.

THEOREM 1.1 (Main Theorem). Let G be a finite group and N a normal subgroup of G such that $\Gamma_G(N)$ is a connected incomplete regular graph. Then $N \cong P \times A$, where P is a p-group, for some prime p, $A \leq \mathbb{Z}(G)$ and $\mathbb{Z}(N) \neq N \cap \mathbb{Z}(G)$.

This result shows that if $\Gamma_G(N)$ is a connected regular graph, then either $\Gamma_G(N)$ is complete as we expected, or $N = P \times A$, where A is a central subgroup of G and P is a *p*-group. As an application of the main theorem we re-prove the main result in [3].

2. Preliminaries

DEFINITION 2.1. For a given vertex v of the graph Γ , define the neighbourhood of v as the set of vertices adjacent to v, including v itself, and denote it by $N_{\Gamma}(v)$.

DEFINITION 2.2. Two distinct vertices v_1 , v_2 of the graph Γ are said to be *partners* if

$$\mathcal{N}_{\Gamma}(v_1) = \mathcal{N}_{\Gamma}(v_2).$$

Partnership defines an equivalence relation on the set of vertices of the graph.

LEMMA 2.3. Let $|x^G|$ be a vertex of $\Gamma_G(N)$ for some $x \in N$ and assume $\Gamma_G(N)$ is regular. If $y = x^a$ is noncentral for some integer a, then either $|y^G| = |x^G|$ or $|x^G|$ and $|y^G|$ are partners.

PROOF. If $|x^G| \neq |y^G|$, then $C_G(x) < C_G(y)$. Therefore $|x^G|$ is divisible by $|y^G|$ and so $\mathcal{N}_{\Gamma}(|y^G|) \subseteq \mathcal{N}_{\Gamma}(|x^G|)$. As $|y^G|$ and $|x^G|$ have the same degrees in $\Gamma_G(N)$, we conclude that they are partners.

We say that *G* is quasi-Frobenius if $G/\mathbb{Z}(G)$ is Frobenius. The inverse images in *G* of the kernel and a complement of $G/\mathbb{Z}(G)$ are then called the kernel and a complement of *G*.

LEMMA 2.4 [2, Theorem 2]. For a finite group G, the divisor graph $\Gamma(G)$ has exactly two connected components if and only if G is quasi-Frobenius with abelian kernel and complement.

3. Main results

LEMMA 3.1. Let G be a finite group and let N be a normal subgroup of G such that $|N/(N \cap Z(G))|$ is divisible by two distinct primes p_1 and p_2 . Let $x_0, y_0 \in N \setminus (N \cap Z(G))$ be p_1 - and p_2 -elements, respectively, such that $x_0 \in C_G(y_0)$. Also,

assume that $\Gamma_G(N)$ is a connected incomplete regular graph. Denote by v_0, w_0 and z_0 the sizes of the conjugacy classes of G associated with x_0, y_0 and x_0y_0 , respectively. Then the following statements hold.

- (a) There exist p_1 and p_2 -elements $x_1, y_1 \in N \setminus (N \cap \mathbf{Z}(G))$, respectively, such that $v_1 = |x_1^G|, w_1 = |y_1^G| \in \mathcal{N}_{\Gamma_G(N)}(z_0)$, where v_1 and w_1 are not adjacent in $\Gamma_G(N)$, $(v_1, p_1 p_2) = p_2$ and $(w_1, p_1 p_2) = p_1$.
- (b) v_0 is divisible by p_2 , w_0 is divisible by p_1 and z_0 is divisible by p_1p_2 .

PROOF. By Lemma 2.3, $S = \{v_0, w_0, z_0\}$ is a subset of $cs_G(N)$, with at most three elements, and any two elements in *S* (in case of existence) are partners in $\Gamma_G(N)$.

Since $\Gamma_G(N)$ is a connected incomplete regular graph, for each vertex v in $\Gamma_G(N)$, there exist two distinct nonadjacent vertices in $\mathcal{N}_{\Gamma_G(N)}(v)$. Therefore noncentral elements x_1 and y_1 in N exist such that $v_1 = |x_1^G|$, $w_1 = |y_1^G|$ with $(v_1, w_1) = 1$, and both are connected to $z_0 = |(x_0y_0)^G|$. By Lemma 2.3, we may assume that $o(x_1)$ and $o(y_1)$ are both powers of primes.

Note that p_1 cannot divide both $|x_1^G|$ and $|y_1^G|$. Assume that $p_1 \nmid |x_1^G|$, so that $C_G(x_1)$ must contain some Sylow p_1 -subgroup of G. Without loss of generality, we may assume $C_G(x_1)$ contains x_0 and so $x_1x_0 = x_0x_1$. If $o(x_1)$ is not a power of p_1 , then there exist integers a_0 and a_1 such that $x_0 = (x_0x_1)^{a_0}$ and $x_1 = (x_0x_1)^{a_1}$ and, by Lemma 2.3, v_1 and v_0 must be equal or partners. On the other hand, z_0 and v_0 are equal or partners, which means that v_1 and z_0 are partners, implying that v_1 and w_1 must be adjacent, a contradiction. Therefore x_1 must be a p_1 -element. Note that if p_2 does not divide $|x_1^G|$, by the same argument x_1 is a p_2 -element, which is not possible. Hence p_2 does not divide $|y_1^G|$, and by the same argument as before, $o(y_1)$ must be a power of p_2 .

We now prove (b). Assume that $p_2 \nmid v_0$ so that $C_G(x_0)$ contains a Sylow p_2 -subgroup of G. Without loss of generality, we may assume $C_G(x_0)$ contains y_1 and so $y_1x_0 = x_0y_1$. Then x_0 and $y_1 \in \langle x_0y_1 \rangle$, and by Lemma 2.3, w_1 and v_0 are partners or equal. Since v_0 and z_0 are partners or equal, it follows that v_1 must be adjacent to w_1 , a contradiction. Therefore, v_0 is divisible by p_2 . Similarly, w_0 is divisible by p_1 . Since v_0 and w_0 divide z_0 , it follows that z_0 is divisible by p_1p_2 , as required.

THEOREM 3.2. Let G be a finite group and N a normal subgroup of G such that $|N/(N \cap Z(G))|$ is divisible by two distinct primes p_1 and p_2 . Let x_0 by a p_1 -element and y_0 a p_2 -element such that $x_0, y_0 \in N \setminus (Z(G) \cap N)$ and $x_0y_0 = y_0x_0$. If $\Gamma_G(N)$ is a connected regular graph, then $\Gamma_G(N)$ is complete.

PROOF. Assume that $\Gamma_G(N)$ is not complete so that Lemma 3.1 applies. Accordingly there exist vertices $z_0 := |(x_0y_0)^G|$, $v_0 := |x_0^G|$ and $w_0 := |y_0^G|$ as described in the statement of Lemma 3.1. Let v_1 and w_1 be vertices as described in the statement of Lemma 3.1(a) and define $A = \mathcal{N}_{\Gamma_G(N)}(v_1) \setminus \{z_0, v_1\}$.

First, we prove that every element in *A* is divisible by either p_1 or p_2 . Suppose not and assume there exists an element $s \in N$ such that $|s^G| \in A$ and $(p_1p_2, |s^G|) = 1$. According to Lemma 2.3, we may assume *s* is an *r*-element for some prime *r*. Without loss of generality, we may assume $r \neq p_1$.

Since $(p_1p_2, |s^G|) = 1$, we may assume that $x_0s = sx_0$ and hence, by Lemma 2.3, $|(sx_0)^G|$ and $|s^G|$ must be partners or equal. Also v_0 and $|(sx_0)^G|$ are partners or equal, hence v_0 and $|s^G|$ are partners or equal. Replacing x_0 by x_1 and using the same argument, we deduce that v_1 and $|s^G|$ are partners, which implies that v_1 and w_1 are adjacent, as v_0 and z_0 are partners or equal, a contradiction. Accordingly, every vertex in *A* is divisible by p_1 or p_2 .

Observe that $d(v_1) = |A| + 1$. By the regularity of $\Gamma_G(N)$, we have $d(z_0) = |A| + 1$. By Lemma 3.1(b), z_0 is adjacent to all vertices in $\{v_1, w_1\} \cup A$, which implies that $w_1 \in A$, again a contradiction by the definition of A.

PROOF OF THE MAIN THEOREM. Let $\pi(N/(N \cap \mathbf{Z}(G))) = \{p_1, \ldots, p_n\}$ where the p_i are distinct primes. By Theorem 3.2, there is no element of order divisible by $p_i p_j$ in $N/(N \cap \mathbf{Z}(G))$, for $i \neq j$. So, if n > 1, then $\mathbf{Z}(N) \leq \mathbf{Z}(G)$ and, for every p_i -element a_i , $|a_i^G|$ is divisible by $(\prod_{i=1}^n p_i)/p_i$.

If n > 2, then $\Gamma_G(N)$ is complete. Therefore we discuss the case where $n \le 2$. First, assume n = 2. From the above discussion, $\mathbf{Z}(N) = N \cap \mathbf{Z}(G)$ and $|N/\mathbf{Z}(N)| = p_1^{n_1} p_2^{n_2}$, for integers n_1 and n_2 .

We may assume $|x^G|$ is not divisible by p_1p_2 for every noncentral element $x \in N$, since otherwise $\Gamma_G(N)$ is complete. Therefore, by the argument in the first paragraph of the proof, $|x^N| = p_j^{n_j}$ for every noncentral p_i -element x, where $j \neq i \in \{1, 2\}$. So, $\Gamma(N)$ is a disconnected graph with two vertices of sizes $p_i^{n_i}$, for i = 1, 2. From Lemma 2.4, N is a quasi-Frobenius group with abelian kernel and complement. Therefore, the Frobenius complements of $N/\mathbb{Z}(N) = N/(N \cap \mathbb{Z}(G))$ are cyclic p_i -groups, for i = 1, 2. Without loss of generality, we assume that the Frobenius complements of $N/(N \cap \mathbb{Z}(G))$ are cyclic p_2 -groups. We remark that $S = \{|y^G| : 1 \neq y\mathbb{Z}(N) \in K/\mathbb{Z}(N)\}$ and $T = \{|y^G| : 1 \neq y\mathbb{Z}(N) \in H/\mathbb{Z}(N)\}$ induce a complete subgraph of $\Gamma_G(N)$, where $K/\mathbb{Z}(N)$ and $H/\mathbb{Z}(N)$ are the Frobenius kernel and a Frobenius complement of $G/\mathbb{Z}(G)$. Further, $S \cup T$ is the set of all vertices of $\Gamma_G(N)$.

Let *x* be a noncentral p_2 -element of *N*, such that $\langle x(N \cap \mathbb{Z}(G)) \rangle$ is a Sylow p_2 -subgroup of $N/(N \cap \mathbb{Z}(G))$. The conjugacy class size of every noncentral p_2 -element of *N* is the partner of $|x^G|$ or equal to $v = |x^G|$, by Lemma 2.3. As $\Gamma_G(N)$ is connected, $\mathcal{N}_{\Gamma_G(N)}(v) \cap S \neq \emptyset$ and $T \subseteq \mathcal{N}_{\Gamma_G(N)}(v)$. Now, $\mathcal{N}_{\Gamma_G(N)}(v)$ induces a complete subgraph of $\Gamma_G(N)$, so the degree of each element in $\mathcal{N}_{\Gamma_G(N)}(v) \cap S$ is $|S \cup T| - 1$. Therefore, the completeness of $\Gamma_G(N)$ follows from its regularity. This proves the case n = 2 of the theorem.

Finally, consider the case n = 1. If $\mathbf{Z}(N) \leq \mathbf{Z}(G)$, the graph would be complete, since each vertex is divisible by p. Therefore, it must be the case that $\mathbf{Z}(N) \nleq \mathbf{Z}(G)$ and the proof is complete.

As a consequence of the Main Theorem, we re-prove the main result in [3].

COROLLARY 3.3. If G is a finite group and $\Gamma(G)$ is a k-regular graph for some $k \ge 1$, then $\Gamma(G)$ is complete.

PROOF. If $\Gamma(G)$ is disconnected, then by Lemma 2.4, $G/\mathbb{Z}(G)$ is a Frobenius group with abelian kernel and complement and so $\Gamma(G)$ has exactly two isolated vertices, namely the order of the Frobenius kernel and a Frobenius complement of $G/\mathbb{Z}(G)$. Therefore, as $k \ge 1$, it follows that $\Gamma(G)$ is connected. Now using the Main Theorem and replacing *N* by *G* itself, we see that $G = P \times A$, where *A* is a central subgroup of *G* and *P* is a *p*-group. Therefore all nontrivial conjugacy class sizes are *p*-numbers, which leads to the completeness of $\Gamma(G)$.

References

- A. Beltrán, M. J. Felipe and C. Melchor, 'Graphs associated to conjugacy classes of normal subgroups in finite groups', *J. Algebra* 443 (2015), 335–348.
- [2] E. A. Bertram, M. Herzog and A. Mann, 'On a graph related to conjugacy classes of groups', *Bull. Lond. Math. Soc.* 22(6) (1990), 569–575.
- [3] M. Bianchi, R. D. Camina, M. Herzog and E. Pacifici, 'Conjugacy classes of finite groups and graph regularity', *Forum Math.* 27(6) (2015), 3167–3172.
- [4] M. Bianchi, M. Herzog, E. Pacifici and G. Saffirio, 'On the regularity of a graph related to conjugacy classes of groups', *European J. Combin.* 33(7) (2012), 1402–1407.
- [5] A. R. Camina and R. D. Camina, 'The influence of conjugacy class sizes on the structure of finite groups: a survey', *Asian-Eur. J. Math.* 4(4) (2011), 559–588.
- [6] M. L. Lewis, 'An overview of graphs associated with character degrees and conjugacy class sizes in finite groups', *Rocky Mountain J. Math.* 38 (2008), 175–211.

ADAM B. R., Faculty of Mathematics and Computer Science,

Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran e-mail: adamr21@ru.is

Z. AKHLAGHI, Faculty of Mathematics and Computer Science,

Amirkabir University of Technology (Tehran Polytechnic), 15914 Tehran, Iran and

School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

e-mail: z_akhlaghi@aut.ac.ir