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Abstract

We studied the variability of germination, dormancy and viability loss of Hirschfeldia incana
seeds in relation to seed size. Seeds were stored at 35°C under humid [75% relative humidity
(RH)] or dry (33% RH) conditions. Seed germination and electrolyte leakage were evaluated
periodically. Small seeds had lower longevity at humid or dry storage conditions (5 or 407
days, respectively) than large or intermediate seeds (7–9 or 536–727 days, respectively).
Moreover, H. incana shows variability in seed dormancy related to seed size within a popu-
lation, with small seeds having lower dormancy (13%) than intermediate (50%) or large seeds
(72%). Dormancy was partially released after a short storage at 35°C and humid conditions.
Under dry storage conditions, endogenous dormancy cycles were observed for over a year, and
longer times of storage had a dormancy-breaking effect through dry after-ripening. Results
suggest a dual strategy producing non-dormant seeds with low longevity that will germinate
immediately after dispersal, and seeds with greater longevity that will delay germination.
Membrane permeability increased linearly with ageing at both humid and dry storage (R2

= 0.60). Small seeds showed greater conductivity than intermediate or large seeds (0.7, 0.4
or 0.3 mS g–1 dry weight, respectively, at the 80% germination). The conductivity test
could be used to evaluate the quality of H. incana seeds and would allow us to identify dor-
mant (non-germinating) seed lots as viable. However, the influence of storage conditions and
variability within a seed population on seed longevity should be taken into account when
evaluating seed quality.

Introduction

Production of seeds with variable germination behaviour is a mechanism present in many
plant species to cope with changing environmental conditions, and it is a widespread strategy
in Mediterranean wild species (Pérez-García, 1993, 2009). Phenotypic variation of a trait can
be the result of genetic and/or environmental influences. Individuals from the same population
may show differences in seed morphology or germination, which can be the result of micro-
environmental factors during seed maturation and maternal genotype (Pérez-García, 1993;
Bewley and Black, 1995). Therefore, seed germination is subject to strong selection pressure
and, consequently, is likely to be highly sensitive to climatic changes (Walck et al., 2011). A
better understanding of variation of seed germination and viability within a population is
important, as phenotypic plasticity might provide a buffer against climate change
(Fernández-Pascual and Jiménez-Alfaro, 2014; Hudson et al., 2015).

Seed heterogeneity may be associated with ecological strategies that have evolutionary sig-
nificance. Morphological heterogeneity within a population may occur in seed size, shape or
colour (Baskin and Baskin, 1998; Imbert, 2002; Matilla et al., 2005; Zaidi et al., 2010), and has
been related to physiological properties, including dormancy (Duran and Retamal, 1989;
Rodríguez et al., 2015), germination (Puga-Hermida et al., 2003; Mira et al., 2011b; 2017),
and longevity (Kochanek et al., 2009; Niedzielski et al., 2009; Nagel and Borner, 2010).
Seed characteristics may also vary within plant and even fruit (Venable, 1985; Guzzon
et al., 2018).

Regarding seed germination, there is a narrow correlation between seed mass and germin-
ation characteristics in some species (Milberg et al., 1996; Baloch et al., 2001; Matilla et al.,
2005). Most studies have reported greater viability and vigour for heavier seeds compared
with lighter seeds of the same species (Khan, 2004; Lopes Souza and Fagundes, 2014).
However, some authors have informed that higher germination could not be clearly linked
to heavier seeds (Pérez-García et al., 1995; Delgado et al., 2008; Genna and Pérez, 2016),
and even in some cases, the lightest seeds reached the highest germination percentages
(Pérez-García, 2009; Zaidi et al., 2010).
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Intra-specific variation in seed longevity is an important func-
tional trait that has been scarcely studied. There are some reports
of highly variable longevity among seed lots of the same cultivar
(Niedzielski et al., 2009; Nagel and Borner, 2010) or wild seed lots
(Kochanek et al., 2009). Also, seed characteristics such as size and
weight have been related to longevity variation among species,
and Venable and Brown (1988) proposed that strong selection
for seed longevity in the soil coincides with weaker selection for
seed size, as adaptations to heterogeneity in the environment.
However, the variation of seed longevity within a species and
its relationship with seed size has been rarely studied.

Hirschfeldia incana (L.) Lagr.-Foss., Fl. Tarn (Brassicaceae) is
an annual herbaceous plant widely distributed throughout the
Mediterranean and Irano-Turanian regions. It is also a frequent
weed in a large number of crops and invasive species in diverse
localities of the world (Gómez-Campo, 1993; USDA, 2017). Its
short life cycle, its ability to prosper in highly disturbed environ-
ments, and the high number of seeds produced per plant showing
differences in seed mass provide a unique model to study the
mass-dependent response of germination.

We hypothesize that there is a relationship between seed size,
germination and viability loss during storage of H. incana, being
likely that seeds with deep dormancy would show a higher lon-
gevity. The objectives of the study were: (1) to identify primary
dormancy differences among seed lots related to seed size; (2)
to determine whether seed longevity varied among seed size
and storage conditions; and (3) if seed viability loss was related
to electrolyte leakage, measured using the conductivity test.

Materials and methods

Seed collection

Experiments were performed on seeds of H. incana collected from
the same wild population in Soto del Real (Madrid, Spain), in July
2014. The sample was taken randomly across the extent of the
population, collecting 5–10 fruits (siliqua) from 40–50 individuals
that were kept mixed. Size of the population was about 200 indi-
viduals. Seeds were all collected at full maturation, when fruits
were about to open. Fruits were dried under laboratory conditions
and seeds collected.

Seeds were separated according to their size in order to study
its effect on seed germination and longevity. Visibly deficient
seeds were excluded. Three categories of seed size were established
using sieves: small seeds (diameter <500 μm); intermediate seeds
(diameter = 500–630 μm); and large seeds (diameter >630 μm).
Seeds of the three categories were weighted in 12 replicates of
110 seeds. Seeds were stored under laboratory conditions [at
approximately 23°C, in darkness, at 20% relative humidity
(RH)] until their use, in October 2014.

Seed storage experiments

Seeds were equilibrated within an air-tight plastic box with a satu-
rated solution of NaCl (75% RH, ‘humid conditions’); or a box with
a saturated solution of MgCl2 (33% RH, ‘dry conditions’) at 25°C
(Vertucci and Roos, 1993) for 3 days. When seeds were equilibrated,
the two boxes were stored at 35°C for 1 month (humid storage) or 3
years (dry storage). Storage conditions were chosen to study the
effect of high temperature and humid or dry environments on
seed viability loss, and resemble environmental conditions of the
natural population during summer, time of seed dispersal.

Within each plastic box, seeds of the three categories (small,
intermediate and large) were stored in subsamples of 110 seeds.
Subsamples were used for determination of seed germination, dor-
mancy level, viability, water content and electrolyte leakage at an
interval of 2 to 7 days (humid storage) or an interval of 84 to
365 days (dry storage). Seed water content (WC) was evaluated
twice during the storage period. WC was calculated by the low
constant temperature oven method (ISTA, 2017) on three repli-
cates and expressed as percentage of g H2O g–1 dry weight (DW).

Seed germination

Seed germination was evaluated with four replicates of 25 seeds
incubated in glass Petri dishes (9 cm diameter) on top of two
sheets of filter paper previously moistened with 4 ml of distilled
water before and during storage experiments. Filter papers were
re-wetted regularly with distilled water as required. Incubation
conditions were 25°C with a 16-hour photoperiod provided by
cool white fluorescent tubes with an irradiance of 35 μmol
m2 s–1. Samples were checked every 1–5 days and germinated
seeds were counted and removed. Emergence of the radicle was
the criterion for germination.

Dormancy was evaluated by applying gibberellic acid (1000 mg
l–1) for 24 h to non-germinated seeds after 21 days of incubation
in germination chambers. Dormancy level was calculated as the
percentage of viable but non-germinated seeds previously to the
application of gibberellic acid. Viability after different times of
storage was defined as final percentage of germinated seeds,
after gibberellic acid was added.

Electrolyte leakage

Electrolyte leakage was determined by placing three replicates of
10 mg of seeds into 10 ml deionized water at 20°C and measuring
the conductivity of the medium with a conductivity meter
(EC-Meter GLP 31) after 16 h. Results are expressed as mS g–1

DW and represent the mean of three measurements ± standard
error (SE).

Data analysis

Seed viability loss, the response to storage time in terms of per-
centage germination, was modelled using the glm function with
a binomial distribution available in the statistical package R (R
Core Team, 2015). Time for germination percentage to decrease
to 50% of maximum germination (i.e. longevity, P50) was calcu-
lated from the modelled curves for each treatment using the
dose.p function available in R (R Core Team, 2015). ANOVA
was used to compare viability loss curves with the test statistic
for F-tests.

One-way factorial ANOVA was used to test differences among
seeds lots on weight, water content, initial parameters of germin-
ation and P50 (Table 1). Square roots of germination values were
arcsine-transformed prior to statistical analysis (untransformed
data appear in Table 1). Where ANOVA indicated a significant
effect (P < 0.01), a multiple comparison test was carried out
with Tukey’s test at P < 0.05.

Results

Differences in H. incana seed size were related to differences in
seed weight and WC during storage (Table 1). Small seeds had
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a higher WC than large seeds when stored at the same conditions
of relative humidity (12.8 and 10.7%, respectively, at 75% RH, P <
0.05).

Seed lots showed differences in the initial dormancy level, but
initial viability (final germination after dormancy break) was
similar, 77% on average (Table 1). Viability loss during storage
at 35°C and humid or dry conditions is shown in Fig. 1.
Significant differences were found when comparing viability
curves of seed with different size, both at humid (P < 0.05) and
dry storage (P < 0.01). P50 was lower for small seeds than inter-
mediate or large seeds, both at humid and dry storage (Table 1).

The cumulative germination curves for each seed lot are shown
in Fig. 2. Curves up to 21 days of incubation, which represent ger-
mination of non-dormant seeds, were used to observe germin-
ation speed and estimate graphically the number of days
required to reach 50% of germination (T50). Initial T50 for non-
aged seeds was: 1.1 days for small seeds, 0.8 days for intermediate
seeds, and 2.2 days for large seeds. Short storage in humid or dry
storage slightly increased germination speed, but as storage con-
tinued germination slowed down (T50 increased), and differences
could be detected depending on seed size. Small seeds showed the
greatest increase in T50 with ageing, being, for example, 5 days
after 706 days of storage at 33% RH while it was 3 days for
both intermediate and large seeds (Fig. 2B).

The relationship between viability and conductivity is shown
in Fig. 3. There was a negative linear relationship between electro-
lyte leakage and seed germination for both humid storage (R2 =
0.60) (Fig. 3A) and dry storage (R2 = 0.62) (Fig. 3B). When taking
all seeds lots into account, the slope of the relationship between
conductivity and germination was –47% g mS–1 in humid and
–27% g mS–1 in dry storage. At humid storage, the correlation
between electrolyte leakage and seed germination was higher
when studying each individual seed lot (R2 = 0.95–0.98). At the
same germination percentage, conductivity decreased with seed
size. For example, when seed germination during storage
decreased to 80% of the initial value, the conductivity was 0.7
mS g–1 DW for small seeds, 0.4 mS g–1 DW for intermediate
seeds and 0.3 mS g–1 DW for large seeds.

Changes in dormancy during storage are shown in Fig. 4, up
to the storage time when seed lots maintained at least 40% viabil-
ity. Small seeds showed low dormancy (13% initial value, Table 1)
and no remarkable changes during storage (Fig. 4). Intermediate
and large seeds showed a high initial dormancy level (50 and 72%,
respectively) which was released in humid conditions in a short
period of time. For example, after 4 days dormancy of intermedi-
ate seeds was down to 25% (Fig. 4A). Under dry conditions, dor-
mancy level was highly irregular up to around 350 days, ranging
from 60 to 90% for large seeds and from 9 to 61% for

intermediate seeds. Moreover, during a long time of storage
under dry conditions, large and intermediate seeds lose their
dormancy.

Discussion

It is known that seed viability is influenced by genotype, environ-
ment during seed development and seed storage conditions
(Clerkx et al., 2004; Fessel et al., 2006; Acikgoz et al., 2013;
Hampton et al., 2013). Our results confirm that humidity during
storage is an important parameter affecting seed viability, and that
the higher the seed water content the faster ageing occurs at a
given temperature (Mira et al., 2015; 2016). Moreover, membrane
permeability was related to loss of seed viability in H. incana, as
has been previously reported for some cultivated Brassica species
(Mirdad et al., 2006; Demir et al., 2008; Matthews et al., 2009;
Lazar et al., 2014) and wild species of Brassicaceae (Mira et al.,
2011a). Our data indicate that electrolyte leakage increased lin-
early with ageing at both humid and dry conditions, but that
the slope of the relationship between conductivity and germin-
ation is steeper when seeds were stored in humid rather than in
dry conditions.

Intra-specific variability of seed longevity has been little stud-
ied, and our results indicate that even within the same population,
viability loss of H. incana varied among seeds lots classified by
size. Small seeds were shorter-lived than larger seeds under
both humid and dry storage, indicating that storage behaviour
in humid conditions was predictive of the relative longevity in
dry conditions similar to those used for long-term conservation
(Hay and Whitehouse 2017). Differences on viability loss curves
were greater in dry than in humid storage. Longevity studies
using a high humidity storage produce an accelerated loss of ger-
mination that might mask differences among seed lots. When
longevity was evaluated as membrane permeability by the con-
ductivity test, however, differences among seeds of different size
were detected only under humid storage. Previous reports identify
differences in conductivity among cultivars of Brassica oleracea
and Pisum sativum that related to seed heterogeneity in colour
(Atak et al., 2008; Demir et al., 2008). If mechanisms of ageing
are different under different storage conditions (Mira et al.
2010, 2016), correlating seed characteristics with longevity will
depend on both the viability loss parameters analysed and the
storage conditions at which longevity was evaluated.

Seed characteristics such as size and weight were hypothesized
to be related to the variation in longevity among species, with lar-
ger seeds having shorter longevity (Venable, 1985). Previous
reports have indicated that species producing smaller seeds tend
to persist for longer in the natural environment (Thompson

Table 1. Seed diameter and weight, initial seed germination (germ), initial dormancy level, initial seed viability, seed water content (WC) and seed longevity (P50) of
three Hirschfeldia incana seed categories: small seeds, intermediate seeds (Int), and large seeds; stored at 35°C and two humidity conditions: 75% RH (humid) or
33% RH (dry)

Seed
lots

Seed
diameter
(μm)

Seed weight
(mg/110 seeds)

Initial
germ (%)

Initial
dormancy (%)

Initial
viability (%)

WC at
75% RH
(%)

WC at
33% RH
(%)

P50 at 75%
RH (days)

P50 at 33%
RH (days)

Small < 500 9.5 ± 0.6a 66 ± 2a 13 ± 2a 76 ± 3a 12.8 ± 0.2a 5.3 ± 0.1a 4.9 ± 0.4a 407 ± 21a

Int 500–630 17.5 ± 1.3b 37 ± 4b 50 ± 6b 74 ± 2a 11.4 ± 0.0b 4.8 ± 0.1b 9.0 ± 0.6b 536 ± 28b

Large >630 24.9 ± 1.7c 23 ± 3b 72 ± 4b 81 ± 4a 10.7 ± 0.1c 4.6 ± 0.1b 7.1 ± 0.5b 727 ± 34c

Data are expressed as mean values ± standard error. In each column, mean values followed by the same letters are not significantly different by pair-wise comparison (P < 0.05).
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et al., 1993; Funes et al., 1999), although this might not reflect
their longevity but only their particular germination requirements
(Probert et al., 2009). In the Brassicaceae family there was no rela-
tionship between seed weight and longevity when comparing
among species (Mira et al., 2015), and these findings were consist-
ent with several previous reports using a wide variety and number

of species (Priestley, 1986; Medeiros et al., 1998; Walters et al.,
2005; Probert et al., 2009; Schwienbacher et al., 2010). However,
studies on longevity variability within a species are rare. Smaller
seeds (size and weight) of H. incana had lower longevity than lar-
ger ones. When equilibrated at the same relative humidity, small
seeds acquired higher water content, which contributes to faster

Fig. 1. Seed viability loss during storage at 35°C and 75% RH (A, Humid) or 33% RH (B, Dry) of three Hirschfeldia incana seed accessions: small (long dashed line,●);
intermediate (dotted curve,○); and large seeds (continuous curve, ▼). Each data point represents the percentage of final germination, after gibberellic acid was
added, for a particular treatment, storage time and replicate.

Fig. 2. Germination time courses for non-dormant seeds (without treatment with gibberellic acid) stored at 35°C and humid (A) or dry (B) conditions. Three
Hirschfeldia incana seed accessions were studied: small, intermediate and large seeds. Values represent the average of four replicates after different storage
times representative of the experiment. Humid conditions: 0 (●), 4 (○), 7 (▼), 11 (△), 14 (■), 18 (□), 20 (◆) and 27 (◇) days of storage. Dry conditions:
0 (●), 88 (△), 172 (◆), 341 (▲) and 706 (▽) days of storage.
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ageing. As seed lipid content greatly influences water content, we
hypothesize that small seeds might have a lower lipid content than
larger seeds. Moreover, we know that pre-zygotic environment
greatly influences seed development, seed constituents (Lee et al.,
2017), and also seed longevity (Kochanek et al., 2011; Mondoni
et al., 2014). Previous reports on species from the Asteraceae family
found an inverse relationship between seed size and longevity
among individuals within a population (Schutte et al., 2008;
Genna and Pérez, 2016), which is contrary to our findings.
However, it was suggested that this relationship was affected by
the environment during seed development and seed burial in the
field (Schutte et al., 2008). So, we hypothesize that differences in
the environment during seed development might produce varia-
tions in seed size and lipid composition, which might ultimately

affect seed water content and, therefore, longevity (Schutte et al.,
2008; Kochanek et al., 2011; Lee et al., 2017).

The relationship between longevity and dormancy in seeds has
not been studied in detail. Deeper dormancy has been correlated
with low longevity in Arabidopsis seed populations (Nguyen et al.,
2012). Our results on a single population contradict this previous
statement, as seeds with the lowest longevity showed a low level of
dormancy (small seeds). However, longevity of H. incana was
interlinked with seed size, water content and, probably, seed com-
position. It is likely that deeply dormant seeds have to stay alive
for longer than non-dormant seeds, hence they may show higher
resistance to ageing. Consistently, studies in Aegilops neglecta
showed that dormant seeds were longer lived than non-dormant
seeds (Guzzon et al., 2018).

Fig. 3. Relationships between electrolyte leakage (mS g–1 DW) and viability (final germination, %) of seeds stored at 35°C and humid (A, Humid) or dry conditions
(B, Dry) of three Hirschfeldia incana seed accessions: small (long dashed line,●); intermediate (dotted line,○); and large seeds (short dashed line,▼). Values are the
average of three replicates ± standard error. At humid storage (A), linear regression was fitted for each seed lot (R2 = 0.95–0.98) and the complete dataset (R2 = 0.60).
At dry storage (B), linear regression was fitted for the complete dataset (R2 = 0.62).

Fig. 4. Dormancy level of seeds during storage at 35°C and humid (A, Humid) or dry conditions (B, Dry) of three Hirschfeldia incana seed accessions: small (●),
intermediate (○) and large seeds (▼). Each data point represents the percentage of viable but non-germinated seeds after storage, previously to the application of
gibberellic acid. Data points presented are those for storage times when seeds maintained at least 40% viability.
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Our study marks the importance of careful viability loss evalu-
ation during storage, so that low germination is not misunder-
stood with dormancy and variability within a species and
population is taken into account. Several authors have identified
that differences in dormancy across seed lots may sometimes be
mistaken as differences in viability (Pérez-García et al., 2007;
Mira et al., 2011a; van Hintum and van Treuren, 2012; van
Treuren et al., 2013). Therefore, assessing seed viability by labora-
tory germination tests, as established by International Standards
(ISTA, 2017), require to be accompanied by parallel studies on
intra-specific variability, especially in wild species.

The conductivity test may be used to evaluate the quality of
H. incana seeds and allows the identification of a dormant (non-
germinating) seed lot as viable.

Intermediate and large seeds of H. incana showed a deeper
dormancy than small seeds, which was partially released after a
short storage at 35°C and humid conditions. Under dry storage
conditions, irregular changes in the dormancy level were observed
for over a year, and longer times of storage had a dormancy-
breaking effect through dry after-ripening. It has been reported
before that some species show a highly irregular germination dur-
ing storage at controlled conditions, due to endogenous dormancy
cycles (Froud-Williams et al., 1986; Rawat and Thapliyal, 2003;
Gutterman and Gendler, 2005). Production of heterogeneous
seeds with different germination behaviours is a widespread
strategy to cope with changing environmental conditions
in Mediterranean wild species (Pérez-García, 1993, 2009).
However, the capacity to overcome environmental barriers also
increases a species’ colonization potential and persistence
(Gioria et al., 2012). Hirschfeldia incana is a Mediterranean
wild species, found all over the world as a weed of agricultural sys-
tems or invasive in urban areas (Lee et al., 2004; DiTomaso and
Healy, 2007; USDA, 2017). A successful strategy for H. incana
resilience is, on the one hand, to have seeds that germinate imme-
diately after seed dispersal, small seeds with low dormancy and
short longevity. Simultaneously, larger seeds with greater dor-
mancy and longevity will form part of the soil seed bank.
Storage conditions studied here will resemble environmental con-
ditions of the wild population during summer, time of seed dis-
persal. So, a summer rain will release some dormancy, allowing
for germination. Dormant seeds in the soil bank might have
endogenous dormancy cycles and, with time and after-ripening,
increase sensitivity to environmental conditions promoting ger-
mination and decrease perception of conditions repressing ger-
mination (Finch-Savage and Leubner-Metzger, 2006). This dual
germination strategy has been identified in H. incana seeds of dif-
ferent harvest years by Castro et al. (2016), and could explain the
species’ high persistence and spread in the ecosystem.
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