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Abstract. We perform a fully self-consistent three-dimensional numerical simula-
tion for a compressible, dissipative magnetoplasma driven by large-scale perturba-
tions, that contain a fairly broad spectrum of characteristic modes, ranging from
largest scales to intermediate scales and down to the smallest scales, where the
energy of the system is dissipated by collisional (ohmic) and viscous dissipations.
Additionally, our simulation includes nonlinear interactions amongst a wide range
of fluctuations that are initialized with random spectral amplitudes, leading to the
cascade of spectral energy in the inertial range spectrum, and takes into account
large-scale as well as small-scale perturbations that may have been induced by the
background plasma fluctuations, as well as the non-adiabatic exchange of energy
leading to the migration of energy from the energy-containing modes or randomly
injected energy driven by perturbations and further dissipated by the smaller
scales. Besides demonstrating the comparative decays of the total energy and the
dissipation rate of the energy, our results show the existence of a perpendicular
component of the current, thus clearly confirming that the self-organized state is
non-force free.

1. Introduction and motivation

The phenomenon of self-organization, in which a continuous system naturally
evolves towards a state exhibiting some form of order on large scales, is deeply
rooted in nature. The ordered states are remarkably robust; their detailed structure
remains relatively invariant across experimental realization; these preferred states
are independent of the way the system is prepared (Hasegawa 1985; Ortolani and
Schnack 1993).
Several broad classes of physical processes, such as first- and second-order phase

transitions, crystallization, structure formations in space and astrophysics and
cosmology can be described as examples of self-organization. In chemistry, ex-
amples of self-organizations include reaction–diffusion systems such as Belousov–
Zhabotinsky reactions, self-assembled monolayers, molecular self-assembly, etc.
Biological systems are swarmed with examples of self-organization; besides the
examples of pattern formation and morphogenesis, the origin of life itself from self-
organizing chemical systems is the supreme example of self-organization. Most of
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the systems exhibiting self-organization in nature are intrinsically nonlinear and
often are not isolated—they are driven by some external input. Self-organization
occurs in open systems which are far from thermal equilibrium. Nicolis and
Prigogine (1977) had envisaged new types of self-organized states for driven dis-
sipative systems and called these states ‘dissipative structures’. Such structures
provide striking examples of non-equilibrium as a source of order.
Over the past decades, nonlinear dynamics and non-equilibrium thermodynamics

have developed along with plasma physics, providing qualitatively new approaches
to complex problems. It is thus widely accepted nowadays, for instance, that non-
equilibrium may be a source of order in dissipative systems, allowing the emergence
of self-organization. Self-organizations have been observed in varieties of laboratory
magnetically confined systems. Most plasma systems are dissipative, externally
driven and far from equilibrium, thus sharing some essential features with other
complex nonlinear systems that show spatial and temporal coherence. Such a sys-
tem is described by a set of nonlinear partial differential equations. During its
relaxation towards a self-organized state, it takes advantage of instabilities that
lead it, for instance, to a preferred state, under certain constraints that prevent it
from falling into a trivial unconfined state. Such constraints appear as quadratic or
higher-order quantities, which are conserved in the absence of dissipation. The
relevant feature is that, in the presence of dissipation, one of these quantities
decays faster than the others. Generally, it remains to be determined which is
the relevant variational principle underlying the relaxation mechanisms described
above that is appropriate to characterize the self-organized state. In the space and
Solar plasma flows, a number of commonly observed processes including flares,
prominences, filaments and/or (magnetic) loop-like structures that are generated
often during the active Solar period can be modeled by relaxation of plasma through
self-organization (Bhattacharya et al. 2007). The kinematic as well as dynamics of
these entities are far more complex than ever thought and we still lack an in-depth
insight into their evolutionary characteristics despite the availability of enormous
databases from various spacecraft missions.
Part of the problem lies with the lack of a fully self-consistent description (or

physical model) of evolution of these structures in realistic environments. For in-
stance, one of the mechanisms of the generation of magnetic field loops is often
attributed to the Taylor relaxation (Taylor 1974) process where magnetic stresses
overcome the pressure stresses which thereby balance all themagnetohydrodynamic
(MHD) forces. Such a state is often characterized by a low plasma beta (where
plasma beta is a ratio of pressure and magnetic energy). Under no external forces,
the pressure gradients flatten out to nullify the magnetic pinch (J× B) force. This
state is called a ‘force-free state’. The force-free state is one of the analytic de-
scriptions that describes a magnetic loop in terms of a magnetic field configuration
where rotation of the magnetic field is proportional to the field itself, thus giving
rise to a constant of proportionality. The constant of proportionality can be a real
constant (linear force free) or dependent on space (nonlinear force free). The validity
of a force-free model is however restricted to the formation of the non-evolutionary
magnetic loops essentially in the vicinity of the Solar corona. Further, they are
strictly invalid to describe the evolution dynamics. This further necessitates the
development of a self-consistent description of coronal magnetic field loops that
can respond to as well as interact with the realistic perturbations ubiquitously
present in the Solar atmosphere.
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Motivated by the issues described above, we have developed a more generic model
based on three-dimensional (3D) simulations of fully compressible, non-adiabatic,
driven dissipative magnetofluid plasma that contains a fairly broad spectrum of
characteristic modes. The underlying modes range from largest scale (of the size of
the system) to the intermediate scales (constituting the inertial range spectra) to
the smallest scales where the energy of the system can be dissipated by virtue of
collisional or viscous dissipation. One of the novel features of our 3D compressible
MHD plasma model is that it deals with the entire spectrum of fluctuations, unlike
those works that either describe a single mode of the flux of the coronal magnetic
field and ignore the background small-scale realistic perturbations or describe single
coherent structures (Amari and Luciani 2000). Additional features of our simulation
model are that it includes: (i) nonlinear interactions amongst a wide range of
fluctuations that are initialized with random spectral amplitudes; the nonlinearities
in the underlying system drive turbulent processes and lead to the cascade of
spectral energy in the inertial range spectrum; (ii) large-scale as well as small-scale
perturbations that may have been induced by the background plasma fluctuations;
(iii) non-adiabatic exchange of energy leading to the migration of energy from the
energy-containing modes or randomly injected energy driven by perturbations and
further dissipated by the smaller scales.
The plan of the paper is as follows: in Sec. 2 we briefly summarize some of

the MHD relaxation models appropriate for driven dissipative plasma based on
the principle of minimum dissipation rate (MDR) leading to non-force-free states.
Section 3 presents a description of our model starting with the conservative forms of
the MHD equations with applicable normalization procedures. Section 4 describes
our simulation results. Section 5 includes a summary of our work, a conclusion and
a discussion of future work.

2. Non-force-free self-organized states from MHD relaxation models

The seminal work on plasma relaxation proposed by Taylor predicts a force-free
state for a magnetized plasma. For such states, the current J is always along the
direction of the magnetic field B and the perpendicular component of the current
J⊥ = 0. So, from the force-balance equation J × B = ∇p, it is seen that, for force-
free states, the pressure gradient is zero, and such states are not suitable for devices
confining plasma by magnetic fields.
A small amount of resistivity, ingrained in any realistic plasma, is essential to

allow reconnective processes leading to relaxation. In fact, dissipation, along with
nonlinearity, is universal in systems evolving towards self-organized states and it
is natural to assume that dissipation plays a decisive role in the self-organization
of a system. Alternative models of plasma relaxation, based on the principle of
minimum dissipation rate (MDR) of energy, have been proposed by several authors
(Montgomery and Phillips 1988; Farengo and Sobehart 1994, 1995; Farengo and
Caputi 2002; Dasgupta et al. 1998, 2002, 2009; Bhattacharya and Janaki 2004).
The principle of minimum dissipation rate is closely akin to the principle of min-
imum entropy production rate of irreversible thermodynamics as formulated by
Prigogine (1946). Relaxation of a driven dissipative plasma has been formulated
by Bhattacharya and Janaki (2004). As shown by these authors, the relaxed states
obtained from MDR are non-force free, that is, for these states, ∇p �= 0. A critical
signature of such a non-force-free state is that the perpendicular component of the
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current J⊥ �= 0. It may be mentioned that relaxation of a MHD plasma to a non-
force-free state has been numerically demonstrated by Zhu et al. (1995). One of
the main objectives of this work is to investigate the existence of non-zero J⊥ in a
self-organized state of a driven system.

3. Description of the simulation model

The fluid model describing nonlinear turbulent processes in the magnetofluid
plasma, in the presence of a background magnetic field, can be cast into plasma
density (ρp), velocity (Up), magnetic field (B) and pressure (Pp) components accord-
ing to the conservative form

∂Fp
∂t

+ ∇ · Qp = Q, (3.1)

where

Fp =

⎡
⎢⎢⎣

ρp

ρpUp
B
ep

⎤
⎥⎥⎦ , Qp =

⎡
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0
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1
2
ρpU

2
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Pp
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+
B2

8π
.

Equations (3.1) are normalized by typical length �0 and time t0 = �0/VA scales in
our simulations such that ∇̄ = �0∇, ∂/∂t̄ = t0∂/∂t, Ūp = Up/VA, B̄ = B/VA(4πρ0)1/2 ,
P̄ = P/ρ0V

2
A , ēp = ep/ρ0V

2
A and ρ̄ = ρ/ρ0 . The bars are removed from the

normalized equations (3.1). Here VA = B0/(4πρ0)1/2 is the Alfvén speed and Ī
is a unit tensor.
The right-hand side in the momentum equation denotes a forcing function

(fM(r, t)) that essentially influences the plasma momentum at the larger length
scale in our simulation model. With the help of this function, we drive energy
in the large-scale eddies to sustain the magnetized turbulent interactions. In the
absence of forcing, the turbulence continues to decay freely. While the driving term
modifies the momentum of the plasma, we conserve density (since we neglect photo-
ionization and recombination). The large-scale random driving of turbulence can
correspond to external forces or instabilities, for example fast and slow streams,
a merged interaction region, etc., in the Solar wind, supernova explosions, stellar
winds in the interstellar medium (ISM), etc. Themagnetic field evolution is governed
by the usual induction equation and obeys the frozen-in-field theorem unless a
nonlinear dissipative mechanism introduces small-scale damping. Note carefully
that the MHD plasma momentum equation contains nonlinear terms on the right-
hand side. This means that mode-coupling processes can potentially be mediated by
nonlinear interactions, in addition to the damping associated with the small-scale
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turbulent motion. Thus, nonlinear turbulent cascades are not only responsible for
the spectral transfer of energy in the inertial range, but are also likely to damp the
plasma motion in a complex manner. Nonetheless, the spatiotemporal scale in the
nonlinear damping can be distinct from that of the linear dissipation. We restrict
forcing of plasma momentum fluctuations in a region specified by the wavenumbers
k < kf such that energy is injected in the large-scale plasma fluctuations. The
driving is random in time and space. The amplitude of the driving force is also
chosen randomly between zero and one. We further make sure that the random
number generator used for the driving force is isotropic and uniform in the spectral
space and does not lead to spectral anisotropy.
Turbulent-relaxation evolution studies in three dimensions are performed to

investigate the nonlinear mode coupling interaction of a decaying compressible
MHD turbulence described by the closed set of equations (3.1). For this pur-
pose, we have developed a full three-dimensional (3D) compressible MHD code
(Shaikh et al. 2008). All the fluctuations are initialized isotropically (no mean fields
are assumed) with random phases and amplitudes in Fourier space and evolved
further by integration of (3.1) using a fully de-aliased pseudospectral numerical
scheme. Fourier spectral methods are remarkably successful in describing turbulent
flows in a variety of plasma and hydrodynamic (i.e. non-magnetized) fluids. Not
only do they provide an accurate representation of the fluid fluctuations in the
Fourier space, but they are also non-dissipative. Because of the latter, nonlinear
mode coupling interactions preserve ideal rugged invariants of fluid flows, unlike
finite difference or finite volume methods. The conservation of the ideal invariants
(energy, entropy, magnetic potential, helicity, etc.) in turbulence is an extremely
important feature in general, and particularly in our simulations, because these
quantities describe the cascade of energy in the inertial regime, where turbulence
is, in principle, free from large-scale forcing as well as small-scale dissipation. The
precise measurement of the decay rates associated with the MHD invariants is
therefore one of the major concerns in the study of MDR. Dissipation is nonetheless
added physically in our simulations to push the spectral cascades further down to
the smallest scales and also to allow minimal dissipation. The evolution variables
are discretized in Fourier space and we use periodic boundary conditions. The initial
isotropic turbulent spectrum was chosen to be close to k−2 with random phases in
all three directions. The choice of such (or even a flatter than −2) spectrum does
not influence the dynamical evolution of the turbulent fluctuations as the final
state in all our simulations leads to the identical results that are consistent with
the proposed analytic theory. The equations are advanced in time using a second-
order predictor–corrector scheme. The code is made stable by a proper de-aliasing of
spurious Fourier modes and choosing a relatively small time step in the simulations.
Additionally, the code preserves the ∇·B = 0 condition at each time step. Our code is
massively parallelized using message passing interface (MPI) libraries to facilitate
higher resolution in a 3D volume. Kinetic and magnetic energies are also equi-
partitioned between the initial velocity and the magnetic fields. The latter helps
treat the transverse or shear Alfvén and the fast/slow magnetosonic waves on an
equal footing, at least during the early phase of the simulations.

4. Simulation results

Our major focus in the paper is to study turbulent relaxation of magnetofluid
plasma through nonlinear interactions. For this purpose, we let magnetized fully
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compressible MHD turbulence evolve under the action of nonlinear interactions in
which random initial fluctuations, containing sources of free energy, lead to the
excitation of unstable modes. These modes often deviate the initial evolutionary
system substantially away from its equilibrium state. When the instability tends
to saturate, unstable modes lead to fully developed turbulence in which larger
eddies transfer their energy to smaller ones through a forward cascade until the
process is terminated by the small-scale dissipation. During this process, MHD
turbulent fluctuations are dissipated gradually due to the finite Reynolds number,
thereby damping small-scale motion as well. The energy in the smaller Fourier
modes migrates towards the higher Fourier modes following essentially the vector
triad interactions k + p = q. These interactions involve the neighboring Fourier
components (k, p, q) that are excited in the local inertial range turbulence. We con-
jectured in our earlier work (Shaikh et al. 2008) that MDR plasma relaxes towards
a nonlinear non-force-free state through nonlinear evolution. In our simulations, we
consider this point in the presence of driven turbulence. Our simulations are carried
out in the presence of a mean magnetic field (taken along the z direction). One of the
ways we ensure the nonlinear non-force-free evolution is by determining whether
or not there develops any perpendicular component of the plasma current. In the
following, we explain why it is essential to self-consistently produce a perpendicular
component of the plasma current (J⊥) that facilitates the nonlinear non-force-free
interactions.
The nonlinear interactions in magnetoplasma turbulence are determined predom-

inantly by J̄ × B̄ forces in the plasma momentum equation. Similarly, since V̄ ∝ B̄
(through J̄), the same nonlinear interactions also govern the magnetic induction
equation. In the presence of a mean magnetic field along the z direction, the parallel
and perpendicular components can be denoted respectively by J̄‖ and J̄⊥. For
obvious reasons, J̄‖ × B̄ = 0 for magnetic field fluctuations that lie strictly along
the J̄‖ component of the plasma current. Hence, this term contributes negligibly in
the nonlinear interactions. By contrast, it is only the J̄⊥ component, emerging
from the J̄⊥ × B̄ term, that contributes largely to the nonlinear interactions.
Thus, current fluctuations orthogonal to the mean or fluctuating magnetic field
component predominantly govern the nonlinear interactions.
Figure 1 shows isosurfaces of the x component of the magnetic field by the

evolution of random initial turbulent fluctuations leading to the formation of rel-
atively small-scale isotropic structures. Figure 1 is a typical snapshot of nonlinear
turbulent fluctuations during an early phase of evolution. The initial condition
in combination with the random forcing leads to the state depicted in Fig. 1. In
Fig. 2, we follow the evolution of both J̄‖ and J̄⊥ components of the currents to
quantitatively measure their progressive development. Clearly, the two components
gradually develop and evolve self-consistently in our simulations. This further leads
to J̄⊥ = J̄ − (J · B̄/|B̄|)b̂—where b̂ = B̄/|B̄| is the unit vector along B̄—which is non-
zero, thus proving conclusively that the resultant state is non-force free. For a
force-free state, J⊥ is zero.
The corresponding decay rates associated with turbulent relaxation of the rugged

ideal invariants of MHD, namely magnetic helicity (K =
∫
A · B dv), magnetic

energy (E = 1/2
∫

B2 dv) and energy dissipation rate (R = η
∫

J2 dv), are shown
simultaneously in Fig. 3. Clearly, the magnetic energy E decays faster than the
magnetic helicityK, and the energy dissipation (R) decays even faster than the two
invariants. This state corresponds to aminimum dissipation in which selective decay
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Figure 1. Evolution of random initial turbulent fluctuations leads to the formation
of relatively small-scale isotropic structures in 3D compressible MHD simulations. The
numerical resolution is 1283 in a cubic box of volume π3 . The dissipation parameter
η = ν = 10−4 . Shown are the isosurfaces of the x component of the magnetic field.

Figure 2. Evolution of currents associated with the parallel and perpendicular components
of the magnetic field fluctuations in driven MHD plasma system. The evolution of a finite
J⊥ establishes the fact that the relaxed state is a non-force-free state, i.e. J× B �= 0.
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Figure 3. Evolution of decay rates associated with turbulent relaxation of the rugged
ideal invariants of MHD, namely magnetic helicity (K =

∫
A · B dv), magnetic energy

(E = 1/2
∫

B2 dv) and dissipative current (R = η
∫

J 2 dv) are shown simultaneously.

Figure 4. The decay rates of kinetic energy of turbulent fluctuations are initially higher than
the magnetic energy. Hence, the ratio of magnetic to kinetic energies shows a sharp rise in
the initial evolution. The two decay rates eventually become identical, thereby leading to a
constant value of the ratio.

processes lead to the faster decay rates of the magnetic energy (when compared
with the magnetic helicity decay rates). Furthermore, the time evolutions of the
volume averages of global helicity, magnetic energy and the dissipation rates are
plotted in Fig. 4. Thus, these quantities are averaged over the fluctuations, and
hence they show a regular behavior. So, the decays of the global helicity, magnetic
energy and the dissipation rates are not due to any linear decay; they are the
results of nonlinear turbulence in the system. The selective decay processes (in
addition to dissipations) depend critically on the cascade properties associated with
the rugged MHD invariants that eventually govern the spectral transfer in the
inertial range. This can be elucidated as follows (Biskamp 2003). The magnetic
vector potential in 3D MHD dominates, over the magnetic field fluctuations, at
the smaller Fourier modes, which in turn leads to a domination of the magnetic
helicity invariant over the magnetic energy. On the other hand, dissipation occurs
predominantly at the higher Fourier modes, which give rise to a rapid damping
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of the energy-dissipative quantity R. A heuristic argument for this process can
be formulated in the following way. The decay rates of helicity K and dissipation
rate R =

∫
V ηj2 dV in the dimensionless form, with the magnetic field Fourier

decomposed as B(k, t) = Σkbk exp(ik · r), are

dK

dt
= −2η

S
Σkkbk2 ,

dR

dt
= −2η2

S2 Σkk4bk2 , (4.1)

where S = τR/τA is the Landquist number and τR and τA are the resistive and
Alfvén time scales, respectively. The Landquist number in our simulations varies
between 106 and 107 . We find that at scale lengths for which k ≈ S1/2 , the decay
rate of energy dissipation is ∼ O(1). However, at these scale lengths, helicity
dissipation is only ∼O(S−1/2) � 1. This physical scenario is further consistent with
our 3D simulations. Interestingly, the decay rates of kinetic energy of turbulent
fluctuations are initially higher than the magnetic energy. Hence, the ratio of
magnetic to kinetic energies shows a sharp rise in the initial evolution, as shown in
Fig. 4. However, as the evolution progresses, the two decay rates become identical
and the ratio eventually approaches a constant value. Another important outcome
to emerge from our investigations is that a state corresponding to the minimum dis-
sipation rates is more plausible in a driven dissipative plasma. So, we may conclude,
notwithstanding the Taylor hypothesis of a force-free state, that our simulations
clearly demonstrate that the nonlinear selective decay processes lead the plasma
fluctuations to relax towards a non-force-free state in a rather natural and self-
consistent manner.

5. Summary, conclusion and future work

We have demonstrated through a fully self-consistent 3D numerical simulation that
a compressible, dissipative magnetoplasma driven by large-scale perturbations can
give rise to a self-organized state, which is not force free. This is corroborated by
the presence of a perpendicular component of the current J⊥ in the self-organized
state. In addition, the comparative decay rates of global helicity, magnetic energy
and the (ohmic) dissipation rate amply indicate that the dissipation rate can also
serve as an effective minimizer for a driven dissipative plasma.
It is to be noted that the underlying system has a finite dissipation. When the

rate of dissipation exceeds that of the forcing, dissipative processes dominate the
evolution. In such a case, both the energy and helicity decrease rapidly. Note that
dissipation is necessary in our simulation to validate the hypothesis of minimum
dissipation rates that lead eventually to a self-organization state in a dissipative
MHD plasma by selectively operating on magnetic energy and helicity. In the event
of initially zero fluctuations, the forcing leads to the population of the turbulent
spectra during the early phase of evolution, which then decay owing to the finite
dissipation in the system. The final results in such cases give rise to the same
conclusions that are described in the context of the MDR state elsewhere in our
paper.
Further, we would like to indicate that our results are in line with Prigogine’s idea

of the emergence of a new type of self-organized states called ‘dissipative structures’
for systems far from equilibrium, where the nonlinear interactions of fluctuations
create an ordered state in the system. A detailed investigation of the dissipative
structures in plasma will be undertaken as a future work.
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