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The oscillatory flow around a spherical object lying on a rough bottom is investigated
by means of direct numerical simulations of the continuity and Navier–Stokes
equations. The rough bottom is simulated by a layer/multiple layers of spherical
particles, the size of which is much smaller that the size of the object. The period
and amplitude of the velocity oscillations of the free stream are chosen to mimic the
flow at the bottom of sea waves and the size of the small spherical particles falls in
the range of coarse sand/very fine gravel. Even though the computational costs allow
only the simulation of moderate values of the Reynolds number characterizing the
bottom boundary layer, the results show that the coherent vortex structures, shed by
the spherical object, can break up and generate turbulence, if the Reynolds number
of the object is sufficiently large. The knowledge of the velocity field allows the
dynamics of the large-scale coherent vortices shed by the object to be determined
and turbulence characteristics to be evaluated. Moreover, the forces and torques acting
on both the large spherical object and the small particles, simulating sediment grains,
can be determined and analysed, thus laying the groundwork for the investigation of
sediment dynamics and scour developments.
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1. Introduction
An object lying on the sea bed causes a local acceleration of the flow field and

a local increase of the bottom shear stress. It follows that the sediments surrounding
the object might be swept away from it, causing a local lowering of the bed profile,
even when the flow far from the object is not strong enough to move the sediment.
This phenomenon is observed at different spatial scales, which range from that of a
small pebble lying on a sandy bottom to that of the foundation of a large coastal
structure. Then, the scour which develops around the object has different consequences
as, for example, the self-burial of the object (e.g. self-burial of a pipeline) and its
possible instability (e.g. the instability of a wind mill). The self-burial of the object
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is also quite important for mines or unexploded ordnance (UXO). For example, today,
because of increasing human activities in shallow waters (e.g. navigation, fisheries,
sand extraction), the buried mines and UXO of World Wars I and II are a threat to
public safety and remediation in many coastal areas is becoming a priority.

A key role in the mechanics of sediment transport and in the dynamics of the scour
around the object is played by the dynamics of the vortices which are generated by
the interaction of the external flow with the object. Indeed, these vortices tend to pick
up the sediment grains from the bottom, making them roll and slide along the bottom
surface or even carrying them into suspension, when the vertical velocity they induce
is larger than the fall velocity of the sediment particles.

The determination of the threshold conditions, above which the sediments start
to move or are carried into suspension, is a complex problem. Indeed, to quantify
the bottom erodibility, it is necessary to know both the mechanical properties of the
sediments (e.g. grain size and sediment density) and the dynamics of the large vortex
structures which are present close to the bottom and can induce, locally, large values
of the hydrodynamic forces acting on sediment particles.

In coastal environments, the phenomenon is made more complex by the oscillatory
character of the flow induced by the propagation of sea waves, which makes the
vortex structures shed by the object during a half-cycle to interact with the object
and the vortices shed during the previous half-cycle. This nonlinear interaction might
give rise to a possible chaotic flow which might appear through different scenarios,
e.g. Feigenbaum scenario (Blondeaux & Vittori 1991) and quasi-periodicity and phase-
locking scenario (Vittori & Blondeaux 1993).

Moreover, for relatively small objects, the vortices shed by the object might interact
with the small eddies shed by the sediment grains and the eddies generated by the
transition process from the laminar to the turbulent regime in the bottom boundary
layer. On the other hand, for relatively large objects, the vortices shed by the object
do not interact directly with the small eddies shed by the sediment grains and the
turbulent eddies, even though the latter certainly affect the dynamics of the former.

Therefore, to obtain an accurate and reliable description of the phenomenon, it is
necessary to consider the simultaneous presence of (i) the vortex structures shed by
the object, (ii) the small vortices shed by the sediment grains and (iii) the possible
presence of turbulent eddies. The turbulent eddies appear when the Reynolds number
of the flow is large enough to trigger the transition process from the laminar to
the turbulent regime either in the bottom boundary layer or in the free shear layers
released by the object invested by the oscillatory flow.

For an oscillatory boundary layer over a smooth wall, both experimental measure-
ments (e.g. Hino, Sawamoto & Takasu 1976) and direct numerical simulations (e.g.
Verzicco & Vittori 1996; Vittori & Verzicco 1998) indicate that turbulence appears
explosively during the decelerating phases of the oscillatory cycle, when the Reynolds
number Rδ is larger than a value ranging between 500 and 600. Hereinafter, the
Reynolds number is defined with the amplitude U∗0 of the velocity oscillations far from
the bottom and the thickness of the viscous bottom boundary layer δ∗ =

√
2ν∗/ω∗,

ν∗ being the kinematic viscosity of the water and ω∗ the angular frequency of
the velocity oscillations. However, close to the critical conditions, turbulence does
not survive during the accelerating phases and the flow recovers a laminar ‘like’
behaviour (‘intermittently turbulent regime’). Larger values of the Reynolds number
cause turbulence to appear earlier and to pervade larger parts of the cycle till, at high
Reynolds numbers, turbulence is present throughout the cycle. The direct numerical
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simulations of Costamagna, Vittori & Blondeaux (2003) showed that the elementary
process which generates turbulent eddies in an oscillatory flow is similar to that in a
steady flow.

More recently, Carstensen, Sumer & Fredsøe (2010) observed the presence of
turbulent spots during the transition process from the laminar to the turbulent regime
in an oscillatory boundary layer and showed that these isolated turbulent areas in
an otherwise laminar boundary layer, cause violent oscillations of both the velocity
and the shear stress. Moreover, Carstensen et al. (2010) observed that turbulent spots
emerge from the breaking of low-speed streaks. Later, the existence of turbulent spots
in an oscillatory boundary layer was confirmed by the direct numerical simulations of
Mazzuoli, Vittori & Blondeaux (2011). Since the numerical simulations give access
to velocity and pressure fields in the three-dimensional space and time, the numerical
results of Mazzuoli et al. (2011) supplemented the experimental measurements of
Carstensen et al. (2010) and in particular allowed to determine the speed of the head
and tail of the spots along with the speed of the lateral spreading of the spot.

As already pointed out, the studies summarized so far were carried out by
considering a smooth bottom. In natural environments, the sediment grains make
the bottom to be rough and generate small vortices, which interact with the turbulent
eddies. An experimental investigation of the oscillatory flow over macroroughness
elements was made by Sleath (1976), who measured the velocity profile in an
oscillatory boundary layer over spheres of large diameter, arranged in an hexagonal
pattern. The measurements of Sleath (1976) showed a complex turbulent flow field
and suggested the existence of coherent vortex structures which are shed by the
roughness elements at flow reversal and move away from the bottom. The oscillatory
flow over a similar rough bottom was investigated by Fornarelli & Vittori (2009) by
means of direct numerical simulations of the continuity and Navier–Stokes equations.
The roughness consisted of semi-spheres regularly fixed on a plane wall in an
hexagonal pattern. The results of Fornarelli & Vittori (2009) show that the temporal
development of the velocity close to the spheres is characterized by two maxima. One
maximum is correlated to the maximum of the free stream velocity. A further peak
in the velocity appears close to the reversal of the external flow and is generated
by the passage of the vortex structures shed by the roughness elements, which move
away from the bottom.

More recently, the oscillatory flow over a layer of spherical grains has been
simulated by Mazzuoli & Vittori (2016) for different values of the diameter of the
spheres and different values of the Reynolds number. Their results show that at
least three flow regimes exist, namely the laminar regime, the transitional turbulent
regime and the hydrodynamically rough turbulent regime. For relatively small values
of the Reynolds number, the turbulent kinetic energy has negligible values and the
flow regime can be defined laminar. When the Reynolds number is increased, two
different regimes are encountered depending on the value of the sphere size. For small
spheres, it is likely that the turbulent regime is due to an intrinsically instability of
the oscillatory boundary layer. Indeed, turbulent fluctuations are observed when the
Reynolds number is larger than a critical value similar to that of the Stokes boundary
layer over a flat wall. On the other hand, for large spheres, turbulence is generated
by the nonlinear interaction of the free shear layers shed by the sediment grains.

There are many other results on the flow over a bottom of regular roughness
elements. For example, let us mention that, recently, Celik, Diplas & Dancey (2014)
have carried out pressure measurements on a spherical grain resting upon a bed
of identical grains. However, even though interesting results have been obtained by
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Celik et al. (2014), their results as well as other results which are not summarized
herein consider a steady forcing flow, the characteristics of which are different from
those of an oscillatory flow.

Much less is known about the dynamics of the three-dimensional vortex structures
shed by an object lying on a flat wall and subject to an oscillatory flow. Fischer,
Leaf & Restrepo (2002) made direct numerical simulations of the oscillatory flow
around a sphere laying on a plane wall. The investigation of Fischer et al. (2002)
was inspired by the experiments described by Rosenthal & Sleath (1986) and was
aimed at providing more information on the lift and drag forces acting on a sediment
grain at the bottom of sea waves. Unlike the results of Cherukat & McLaughlin
(1994), Cherukat, McLaughlin & Graham (1994), Asmolov (1999) and Asmolov &
McLaughlin (1999), the numerical result of Fischer et al. (2002) are not restricted to
relatively small values of the Reynolds number or to disparate diffusive, convective
and oscillatory length scales. However, attention was focused on the forces acting on
the sphere and the velocity and vorticity field around the sphere as well as the shear
stress acting on the bottom were not analysed.

Let us mention also the recent studies of the flow and scour around pipelines and
piles of Fuhrman et al. (2014) and Baykal et al. (2015) where the results of previous
studies are also summarized. The investigations of Fuhrman et al. (2014) and Baykal
et al. (2015) were carried out by solving the Reynolds averaged Navier–Stokes
(RANS) equations and introducing a two-equation turbulence model. The introduction
of the Reynolds average has the advantage of allowing the simulation of flow fields
characterized by high Reynolds numbers, however, a RANS approach does not resolve
explicitly the turbulent mixing and hence does not provide accurate results about the
dynamics of the coherent vortices shed by the objects and their interactions with the
turbulent eddies and the vortices shed by the sediment grains.

The present paper describes the results of direct numerical simulations of the
oscillatory flow over an idealized sea bottom made by small spherical particles, which
simulate a coarse sand or a very fine gravel sediment, above which a much larger
sphere is resting, which can be thought to represent any object at rest (e.g. a small
cobble or a small unexploded ordnance). The use of direct numerical simulations
allows us to evaluate quantities that are very difficult to measure in a laboratory
experiment (e.g. vorticity, dissipation and production of turbulence, . . .). Moreover,
the results of direct numerical simulations allow a detailed study of the vortex
structures generated during the oscillatory cycle to be carried out, along with the
investigation of the interaction of the vortices with the particles lying on the bottom.

The forcing flow is assumed to be oscillatory and generated by the propagation of
a surface wave. Hence, the frequency of the fluid oscillations is chosen to reproduce
what happens at the bottom of a sea wave. The computational costs do not allow high
Reynolds numbers to be simulated but results for values of the Reynolds number large
enough to trigger transition to turbulence are obtained and presented.

The structure of the rest of the paper is the following. In the next section, we
formulate the problem and summarize the main steps of the numerical procedure
employed to determine the oscillatory flow around a spherical object resting on the
sea bed. In § 3, we describe the results, focusing attention on the dynamics of the
coherent vortex structures shed by the object and on their interaction with the bottom
and the roughness elements. Section 4 is devoted to the conclusions and to a brief
description of the future developments of the work.
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FIGURE 1. Sketch of the problem (e.g. run with Rδ = 56, D= 28, d= 2.6 and ε= 0.374).

2. Formulation of the problem and numerical approach

When a propagating surface wave of small amplitude is considered, it is well known
that, at the leading order of approximation and in a region the thickness of which
scales with the amplitude of the fluid oscillations, the flow close to the bottom can
be studied by considering the flow generated close to a wall by an oscillating pressure
gradient described by

∂p∗

∂x∗1
=−ρ∗U∗0ω

∗ sin(ω∗t∗);
∂p∗

∂x∗2
= 0;

∂p∗

∂x∗3
= 0, (2.1a−c)

where (x∗1, x∗2, x∗3) is a Cartesian coordinate system with the x∗1-axis pointing in the
direction of wave propagation and the x∗3-axis being vertical and pointing in the
upward direction. In (2.1), ρ∗ is the density of the sea water, assumed to be constant,
and U∗0 and ω∗ = 2π/T∗ are the amplitude and the angular frequency of the fluid
velocity oscillations induced by the surface wave close to the bottom but in the region
where the flow is irrotational and the fluid behaves like an inviscid fluid. Hereinafter,
a star is used to denote dimensional quantities, while the same symbols without the
star denote their dimensionless counterparts.

The bottom is assumed to be made up of spherical sediment grains of size d∗ resting
on a plane wall located at x∗3 = 0. Because of numerical reasons, as in Fischer et al.
(2002), the small spheres, which mimic the sediment grains, do not touch but they
are ε∗ away from the bottom. Then, a much larger spherical object, characterized by
a diameter D∗, is laid down on the sediment bed (see figure 1).

The hydrodynamic problem, the solution of which describes the flow close to the
bottom, is written in dimensionless form by introducing the following variables

t= t∗ω∗; (x1, x2, x3)=
(x∗1, x∗2, x∗3)

δ∗
; (u1, u2, u3)=

(u∗1, u∗2, u∗3)
U∗0

; p=
p∗

ρ∗(U∗0)2
.

(2.2a−d)
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In (2.2), t∗ is time, u∗1, u∗2, u∗3 are the fluid velocity components along the x∗1-, x∗2- and
x∗3-axes, respectively, and δ∗ =

√
2ν∗/ω∗ is the conventional thickness of the viscous

boundary layer close to the bottom, ν∗ being the kinematic viscosity of the fluid.
Using the variables defined by (2.2), continuity and Navier–Stokes equations read

∂uj

∂xj
= 0 (2.3)

∂ui

∂t
+

Rδ
2

(
uj
∂ui

∂xj

)
=−

Rδ
2
∂p
∂xi
− δk1 sin(t)+

1
2

(
∂2ui

∂xk∂xk

)
+ fi, (2.4)

where the Einstein’s summation convention is used. Moreover, the Reynolds number
Rδ, which appears into (2.4), is defined by

Rδ =
U∗0δ

∗

ν∗
(2.5)

and the meaning of the terms fi is defined later on.
The continuity and momentum equations are solved numerically by means of a

finite difference approach in a computational domain of dimensions Lx1,Lx2 and Lx3 in
the streamwise, spanwise and vertical directions, respectively. Equations (2.3)–(2.4) are
solved throughout the whole computational domain, including the space occupied by
the sediment grains and the large spherical object, and appropriate force terms fi are
added to the right-hand side of (2.4) to force the no-slip condition at the fluid–particle
interfaces (immersed boundary approach). In particular, the direct-forcing immersed
boundary method (IBM) proposed by Uhlmann (2005) is used to quantify the terms
fi which are explicitly computed at each time step as a function of the values of the
velocity interpolated at nodes uniformly distributed on the spheres by means of the
regularized delta function formulated by Roma, Peskin & Berger (1999), without any
feedback procedure.

Periodic boundary conditions are forced in the homogeneous directions (x1, x2),
because the computational box is chosen large enough to include the largest vortex
structures of the flow. At the upper boundary, located at x3 = Lx3 , the free stream
condition is enforced(

∂u1

∂x3
,
∂u2

∂x3

)
= (0, 0); u3 = 0 at x3 = Lx3, (2.6a,b)

which is equivalent to forcing the shear stresses to vanish, since at this elevation the
flow is assumed to be irrotational. At the lower boundary of the fluid domain (x3= 0),
where a rigid wall is located, the no-slip condition is enforced

(u1, u2, u3)= (0, 0, 0) at x3 = 0. (2.7)

The numerical approach solves the problem in primitive variables and uses a
fractional-step method to advance momentum equations in time. A non-solenoidal
intermediate velocity field is evaluated by means of momentum equations (2.4)
using a semi-implicit scheme of second order to discretize the viscous terms and a
three-step, low-storage, self-restarting Runge–Kutta method to discretize explicitly the
nonlinear terms. The implicit treatment of the viscous terms would require for the
inversion of large sparse matrices which are reduced to three tridiagonal matrices by
a factorization procedure with an error of order (1t)3, 1t being the time step of the
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No. layers No. small
Rδ D d of spheres ε Lx1 Lx2 Lx3 1xfine 1xcoarse

D
1xfine

spheres

47.87 6.267 — — 0.09777 60.54 60.54 30.27 0.059 0.24 106 —
56.0 28.0 2.6 1 0.374 191.3 95.66 95.66 0.19 0.75 150 2 338

112.1 28.0 2.6 1 0.374 382.6 95.66 95.66 0.19 0.75 150 4 740
112.1 28.0 2.6 5 0.374 382.6 95.66 95.66 0.19 1.50 150 24 548
112.1 11.2 0.56 3 0.112 172.2 43.05 43.05 0.056 0.45 200 56 620

TABLE 1. Summary of domain discretization and flow parameters for the present runs.

numerical approach (Beam & Warming 1976). Then, by using momentum equation
(2.4) and forcing continuity equation (2.3), a Poisson equation for the pressure field is
obtained, which is solved by means of an iterative procedure. Once the pressure field
is obtained, the non-solenoidal velocity field is corrected to obtain a divergence-free
velocity field.

An adaptive mesh refinement (AMR) was used, which allows an octree-structure
local refinement of the grid in the regions of the flow, where large gradients are
expected to be present. The use of the present adaptive mesh requires also the use
of specific multigrid solvers of the Helmholtz and Poisson problems which arise
from the prediction step of the fractional-step scheme and from the procedure used
to evaluate of pseudo-pressure, respectively. The Poisson solver implements the
iterative procedure proposed by Ricker (2008) which is based on the more general
algorithm given by Huang & Greengard (2000). A similar approach was adopted to
develop a multigrid Helmholtz solver which exploits the alternate direction implicit
approximation to generate, on the coarse mesh, an initial guess of the solution.
Moreover, second-order accurate interpolation/average operators were used at the
interfaces between different refinement levels. To guarantee the accuracy of the
results, the grid spacing in the region close to the bottom is chosen in the range
(0.056δ∗, 0.19δ∗), depending on the parameters of the problem, and it increases up to
a factor 8 in the regions far from the bottom, where the flow is weakly influenced by
the presence of the spheres. Table 1 summarizes the values of the parameters of the
numerical simulations, along with some information on the size of the computational
domain and the numerical grid. The reader should notice that the grid size, which
has the same value along the three spatial directions, is kept constant and equal to
1xfine in the regions characterized by the presence of both the large sphere and the
small spheres, in such a way that no adjustment of the IBM algorithm proposed by
Uhlmann (2005) is necessary. A grid spacing, such that d/1xfine ∼ 10, is used to
guarantee a reliable description of the flow around the roughness elements. Since
the size of the computational domain is of order O(100δ∗) and the time step is
fixed in such a way that the Courant–Friedrichs–Lewy number does not exceed 0.4,
remarkable computational resources are required by a typical run. More details on
the numerical procedure are described in Mazzuoli & Vittori (2016).

3. The results
3.1. Validation of the code

To validate the numerical approach, oscillatory flow over a plane and smooth wall,
where a single sphere is kept fixed, was simulated for a value of the Reynolds
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number Rδ equal to 47.87. The dimensionless diameter D=D∗/δ∗ of the sphere was
set equal to 6.267 and the sphere did not touch the bottom but its dimensionless
distance ε = ε∗/δ∗ from it was set equal to 0.0978, which is equal to the value used
by Fischer et al. (2002). These values of the parameters were chosen to allow a
comparison of the present results with those of Fischer et al. (2002). Figure 2 shows
the spanwise vorticity component in a vertical plane aligned with the direction of
the fluid oscillations and crossing the centre of the sphere. Different phases of the
cycle are considered after the flow reaches a periodic state. The phases are chosen
equal to those considered by Fischer et al. (2002) in their figure 3 and a qualitative
comparison can be easily made. This comparison shows that the present approach
provides a reliable description of the oscillatory flow around an object. Indeed,
looking at figure 2 and at figure 3 of Fischer et al. (2002), it can be observed that
counter-clockwise spanwise vorticity is generated along the sphere surface when
the external flow moves from the right to the left of the figure. The production of
counter-clockwise vorticity intensifies, when the clockwise vortex shed during the
previous half-cycle is convected from the right to the left and travels above the top
of the sphere. Then, the flow separates at the sphere crest and the free shear layer
tends to be convected by the clockwise vortex which moves because dragged by the
free stream flow. Later, further counter-clockwise vorticity is shed, which tends to
roll up and to generate a counter-clockwise rotating vortex. Meanwhile, the clockwise
rotating vortex, previously shed by the sphere surface, dissipates because of viscous
effects. Then, the counter-clockwise rotating vortex is convected from the left to the
right and the phenomenon repeats specularly during the following half-cycle.

No quantitative comparison can be made between the vorticity computed by means
of the present code and that described by Fischer et al. (2002), because Fischer et al.
(2002) do not provide the values of the isovorticity lines. A quantitative estimate of
the accuracy of the present results can be made by comparing the time development
of the lift coefficient CL plotted in figure 3 with that drawn in figure 3 of Fischer et al.
(2002). Herein, the lift coefficient is defined as the ratio between the lift force and the
quantity (1/8)ρ∗πD∗2U∗20 . The agreement turns out to be fair (the largest difference
is a few per cent of the maximum value) and similar to that observed comparing the
velocity profiles with those obtained by Fischer et al. (2002).

3.2. The velocity field
Once the reliability of the code was ascertained, results were obtained by considering
a large sphere over a rough bed made by much smaller spheres. The first simulation is
characterized by Rδ = 56.0,D= 28.0 and d= 2.6. Moreover, because of the numerical
approach, the spheres do not touch the bottom but are 0.374δ∗ from it and are laid
in a hexagonal arrangement. The distance of the spheres from the bottom, which is
required for numerical reasons, is larger than that used in the previous run because
small values of ε∗ imply large computational costs and the value of ε∗ does not affect
significantly the flow above the roughness elements. Indeed, the results of Fornarelli &
Vittori (2009) and those of Mazzuoli & Vittori (2016), who computed the oscillatory
flow above semi-spheres and spheres, respectively, show that the geometry of the wall
roughness below the sphere centres does not affect significantly the flow above them.
Figure 4 shows the value of the streamwise velocity component plotted in the vertical
midplane aligned with the direction of the fluid oscillations, at different phases of the
cycle starting from π to 15π/8 every π/8, once the flow field attained a periodic state.
As expected, the presence of the large sphere slows down the fluid in front of the
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FIGURE 2. (Colour online) Spanwise component of the vorticity computed in the middle
vertical plane crossing the sphere (x2= 30) for Rδ = 47.87, D= 6.267, ε= ε∗/δ∗= 0.09777
at t=ω∗t∗ = 3.66π, (a); t= 3.80π, (b); t= 3.96π, (c); t= 4.44π, (d); t= 4.50π, (e). The
vorticity isolines are for ω∗2δ

∗/U∗0 = ±0.2, ±0.5, ±1, ±2, ±3, ±4 (solid lines = positive
values, broken lines = negative values). When comparing the present results with those by
Fischer et al. (2002), the reader should consider that the values of the vorticity isolines
in Fischer et al.’s paper are unknown.
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FIGURE 3. Time development of the lift coefficient CL for a single sphere in an oscillatory
boundary layer over a smooth wall for Rδ = 47.87, D = 6.267 and ε = ε∗/δ∗ = 0.09777.
(a) Present results; (b) Fischer et al.’s 2002 results.

sphere, while a recirculating region appears behind it. Moreover, high velocities are
present just above the crest of the sphere. A careful analysis of the figure shows the
presence of further high velocity regions in the wake of the sphere, the most evident
of which is denoted by the label A in the figure. These regions, which are close to
the bottom (see and compare figure 4b–e), move and suggest the existence of vortex
structures which are convected by the oscillating fluid and feel the effects of the self-
induced velocity due to the interaction of the vortices with their image vortices below
the seafloor. These vortex structures survive for a significant time interval as it can
be inferred by the presence of regions (the most evident of which is denoted by A
in figure 4h) characterized by a positive velocity, while the fluid far from the bottom
has a significant negative velocity.

The smaller spheres act as a bottom roughness and create a layer of fluid, the
thickness of which is O(d), where the velocity almost vanishes. To show the details
of the flow around the small spheres, the left-hand side panels of figure 5 show
enlargements of the region close to the bottom, when the free stream velocity is
positive and maximum. Near the large sphere, on the downstream side (see figure 5a),
the streamwise velocity component close to the bottom is directed from the right to
the left while the free stream velocity is in the opposite direction. The flow reverses
its direction because of the clockwise vorticity shed by the large sphere which induces
negative velocities close to the bottom. On the other hand, on the upstream side (see
figure 5c), the velocity is positive but it assumes small values because of the blockage
effect due to the resting large sphere. However, around the base of the sphere, the
fluid accelerates and the streamwise velocity increases because the pressure on the
stoss side of the sphere is larger than the pressure on the lee side. At last, far from
the sphere (see figure 5e), the velocity field is ‘homogeneous’ in the streamwise and
spanwise directions. In particular, within the gaps among the small spheres, the fluid
is practically at rest and significant velocities are observed only above the crests of
the spheres. Figure 5 (right-hand side panels) also shows results for the same values
of the parameters but for Rδ = 112, which are discussed later on.

Figure 6 shows again the streamwise velocity component, at the same phases of
the cycle as those considered in figure 4, but in a horizontal plane which crosses the
centre of the large sphere. As expected, on the upstream side, the fluid slows down
when approaching the sphere because of its blockage effect, while on the lateral sides
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FIGURE 4. (Colour online) Streamwise velocity component at different phases of the cycle
in the middle vertical plane crossing the largest sphere for Rδ = 56, D= 28, d= 2.6 and
ε = 0.374. The thin solid (u1 > 0) and broken (u1 < 0) lines are the isovelocity contours
(1u1 = 0.1) and the thick solid line corresponds to u1 = 0. (a) t = π, (b) t = 9π/8, (c)
t = 10π/8, (d) t = 11π/8, (e) t = 12π/8, ( f ) t = 13π/8, (g) t = 14π/8, (h) t = 15π/8.
Particularly high-velocity regions in the wake of the sphere are denoted by the label A.

it accelerates and the flow separates from the sphere surface along the downstream
side, generating recirculating regions behind the sphere. Moreover, the presence of
intense vortex structures shed by the sphere can be inferred by the regions of high
velocity denoted by B and C in figure 6(a,b).

Some of the panels of figure 6 show very small flow structures which might appear
not fully resolved. To show that the numerical grid is small enough to provide an
accurate description of the time development of the flow field, figure 7 shows an
enlargement of the region highlighted in figure 6( f ), where the numerical grid is
also plotted. Figure 7 shows that the grid size is much smaller than the smallest
flow structures and it is small enough to provide reliable description of the viscous
boundary layer which develops on the sphere surface (more quantitative results which
support this statement are described later when larger values of the Reynolds number
are considered such that smaller vortices are generated).
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FIGURE 5. (Colour online) Streamwise velocity component at t=π, when the free stream
velocity is maximum, in the region close to the bottom for D= 28, d= 2.6, ε= 0.374 and
Rδ = 56 (a,c,e) and Rδ = 112 (b,d, f ). (a,b) Region on the downstream side; (c,d) region
on the upstream side and (e, f ) region far from the large sphere. The thin solid (u1 > 0)
and broken (u1 < 0) lines are the isovelocity contours (1u1= 0.1) and the thick solid line
corresponds to u1 = 0.

The flow described by figures 4–6 is practically the mirror image of that observed
during the previous and following half-cycles. This finding, along with the symmetry
of the flow with respect to the vertical plane crossing the centre of the large sphere
and aligned with the flow direction, suggests that the flow is not turbulent. However,
the signal of the velocity just behind the large sphere (see figure 8) shows that rapid
fluctuations of the velocity are superimposed on much slower oscillations. The former
are induced by the passage of the vortex structures shed by the large sphere while the
latter are due to the oscillating pressure gradient which forces the fluid motion.

Since it is expected that an increase of the Reynolds number leads to stronger
nonlinear effects and causes the generation of a larger number of vortex structures
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FIGURE 6. (Colour online) Streamwise velocity component at different phases of the cycle
in the horizontal plane crossing the largest sphere for Rδ = 56, D = 28, d = 2.6 and
ε = 0.374. The thin solid (u1 > 0) and broken (u1 < 0) lines are the isovelocity contours
(1u1 = 0.1) and the thick solid line corresponds to u1 = 0. (a) t = π, (b) t = 9π/8, (c)
t = 10π/8, (d) t = 11π/8, (e) t = 12π/8, ( f ) t = 13π/8, (g) t = 14π/8, (h) t = 15π/8.
Regions of high velocity are denoted by B and C in panels (a) and (b).

of smaller size, it might be that a chaotic flow appears and/or turbulence is triggered
when the Reynolds number is increased. Indeed, Blondeaux & Vittori (1991) and
Vittori & Blondeaux (1993), who investigated the two-dimensional oscillatory flow
above a rippled bed and around a circular cylinder, respectively, found that the
nonlinear interaction of coherent vortex structures gives rise to a chaotic flow when
the Reynolds number becomes larger than a critical value.

To ascertain whether an increase of the Reynolds number leads to a turbulent
flow, a further run was made for the same values of the parameters (D = 28,
d = 2.6, ε = 0.374) but for Rδ = 112 and figure 9, which is similar to figure 4,
shows the streamwise velocity component. Since the dimensionless diameters of
large and small spheres are kept fixed, the increase of Reynolds number is due to
a proportional increase of U∗0 . It follows that the Keulegan–Carpenter number of the
phenomenon, Kc = U∗0/(ω

∗D∗), increases too and this explains why the streamwise
size of computational box was increased.
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FIGURE 7. (Colour online) Detail of panel ( f ) of figure 6 (red box). The computational
grid is overlapped to contour patches (two confining mesh refinements can be seen). See
the caption of figure 6 for the values of the simulation parameters.
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FIGURE 8. (a) Streamwise, (b) wall-normal and (c) spanwise components of the velocity
at (x1, x3)= (123.67, 14.39) plotted versus time for Rδ = 56, D= 28, d = 2.6, ε = 0.374
and x2 = 54.83 (—E—), x2 = 61.83 (—@—), x2 = 68.83 (—A—).

The results show that the vortex structures, which are generated during each
half-cycle by the roll up of the shear layer shed by the surface of the large sphere,
break and generate an ensemble of small vortices on the lee side of the sphere. The
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FIGURE 9. (Colour online) Streamwise velocity component at different phases of the cycle
in the middle vertical plane crossing the largest sphere for Rδ = 112, D= 28, d= 2.6 and
ε = 0.374. The thin solid (u1 > 0) and broken (u1 < 0) lines are the isovelocity contours
(1u1 = 0.1) and the thick solid line corresponds to u1 = 0. (a) t = π, (b) t = 9π/8, (c)
t = 10π/8, (d) t = 11π/8, (e) t = 12π/8, ( f ) t = 13π/8, (g) t = 14π/8, (h) t = 15π/8.
Particularly high-velocity regions in the wake of the sphere are denoted by the label A.

nonlinear self-interaction of the small vortices in the wake of the large sphere gives
rise to a turbulent flow, as it appears from figure 10 where the time development
of the three velocity components just behind the sphere is plotted. Indeed, the rapid
velocity fluctuations, which are superimposed on the slow oscillations induced by the
pressure gradient, turn out to have a random character. Moreover, the velocity field
is no longer the mirror image of the velocity fields which are observed during the
following or previous half-cycles and the instantaneous flow field loses its symmetry
with respect to the vertical plane which crosses the centre of the sphere and is aligned
with the direction of the fluid oscillations.

The results of the numerical simulation for Rδ= 112 show that the flow in the wake
of the large sphere is turbulent but the evaluation of turbulence characteristics is not
simple. First of all, the flow induced by the forcing pressure gradient is oscillating
and turbulence characteristics are time dependent and confined within relatively small
regions. Moreover, the turbulent fluctuations are neither homogeneous nor isotropic.

In principle, the average flow field could be evaluated by using a phase average
procedure and by taking advantage of some symmetries of the problem. However, the
large computational costs did not allow us to simulate the flow for a large number
of cycles. Since turbulence is observed in the wake of the sphere within relatively
small regions, where turbulence characteristics weakly depend on the horizontal
coordinates but they strongly vary in the vertical direction, we evaluate the velocity
fluctuations (u′1, u′2, u′3) by subtracting a spatial averaged flow field (u1, u2, u3)
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FIGURE 10. (a) Streamwise, (b) wall-normal and (c) spanwise components of the velocity
plotted versus time. x1 = 123.67, x3 = 14.39 and x2 = 54.83 (—E—), x2 = 61.83 (—@—),
x2 = 68.83 (—A—). Rδ = 112, D= 28, d= 2.6, ε = 0.374.

from the actual values of the velocity field. The spatial average is performed over
a volume which extends in the horizontal directions, covering the region where
turbulence is detected, but it is quite thin, having a thickness equal to a few grid
cells. Moreover, the turbulent velocity fluctuations are evaluated only at particular
phases of the oscillatory cycle and far from the sphere, when and where turbulence
can be assumed to be independent on the horizontal coordinates. In particular, the
regions close to the sphere, where the coherent vortices shed by the sphere make
turbulence characteristics to depend on x1 and x2 are not considered.

Then, the normalized two-point correlations of the velocity fluctuations are evaluated
in the streamwise and spanwise directions. The results allow one to gain an estimate
of the size of the vortex structures which characterize the turbulence field. For
example, the normalized two-point correlation R11 = u′1(x)u′1(x+ r)/u′1(x)u′1(x) is
plotted at (x1, x2, x3)= (276.33, 47.64, 16.63) as a function of r1 and r2 in figure 11.
The results allow an estimate of (i) the longitudinal and lateral integral length scales
of the turbulent fluctuations, which turn out to be of order 10δ∗, and (ii) longitudinal
and lateral Taylor microscales, which turn out to be of order δ∗. It is worth pointing
out that the evaluation of R11 was not made for larger values of r, even though its
value does not vanish for r= 22, because turbulence is present only in a small spatial
region such that the evaluation of R11 for larger values of r would be meaningless. At
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FIGURE 11. Normalized correlation function R11 of the fluctuations of the streamwise
velocity component, as a function of the streamwise and spanwise separations r1 and r2,
respectively, obtained at t= 5.13 considering a rectangular volume centred in (x1, x2, x3)=
(276.33, 47.64, 16.63) of dimensions (46.71× 46.71× 1.87) for Rδ = 112, D= 28, d= 2.6.

last, the dissipation rate ε∗ = (∂u∗i /∂x∗j )(∂u∗i /∂x∗j ) is evaluated again at t= 5.13π and
it shows that the Kolmogorov scale (ν∗3/ε∗)1/4 is of order 10−1δ∗, thus indicating that
the grid size is sufficiently small to provide reliable results on turbulence dynamics.

Turbulence is generated also close to the rough bottom by the interaction of
the large-scale coherent vortices, convected by the free stream, with the roughness
elements (the small spherical particles). The results show that in this region the
velocity fluctuations are highly anisotropic.

Even though turbulence is present in the wake of the large sphere, the bottom
boundary layer (see figure 5f ) and the flow close to the large sphere (see figure 5b)
keep in the laminar regime. Indeed, no random oscillations of the velocity field are
present above the small spheres as long as they do not interact with the vortices
originated from the large sphere (see figure 5f ). This finding is in agreement with the
results of Mazzuoli & Vittori (2016) who observed that larger values of the Reynolds
number are necessary to trigger turbulence appearance in the oscillatory boundary
layer over spherical particles of similar size. For example, Mazzuoli & Vittori (2016)
found that the critical value of the Reynolds number for d = 2.32 (a value which is
close to d= 2.6) ranges above 500.

3.3. The vorticity field and the dynamics of the vortex structures
As discussed in the introduction, one of the aims of the work is the identification
of the coherent vortex structures shed by the large sphere and their influence on the
forces exerted by the fluid on the sediment spherical particles resting on the bottom.
Similarly to figure 2, figure 12 (left-hand side panels) shows the spanwise vorticity
component in the middle vertical plane crossing the sphere (x2= 30) and aligned with
the direction of the fluid oscillations for Rδ = 56, D= 28, d = 2.6 and ε = 0.374 for
a few phases of the cycle. The main differences between the results of figure 12 and
those of figure 2 are due to the different diameter of the large sphere and the presence
of the spherical roughness elements in the former case. The numerical simulation
shows that clockwise vorticity is generated along the surface of the large sphere when
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FIGURE 12. (Colour online) Spanwise component of the vorticity computed in the middle
vertical plane (a,c,e,g,i) and vertical component of the vorticity computed in the horizontal
plane crossing the centre of the sphere (b,d, f,h,j) for Rδ = 56, D= 28, d = 2.6 and ε =
0.374 at t = 21/8π, (a,b); t = 23/8π, (c,d); t = 25/8π, (e, f ); t = 28/8π, (g,h); t = 4π,
(i,j). The vorticity isolines are equispaced by 1ω2= 0.1 in the range ±0.8. Instead of the
isoline ω2 = 0, the value ω2 =−0.05 is considered (solid lines = positive values, broken
lines = negative values). A and B in panel (c) denote regions of high vorticity.

the fluids moves from left to right (see figure 12a,c,e). Moreover, the production of
vorticity increases as the fluid velocity close to the sphere increases because of
either the external pressure gradient or the interaction of the sphere with a coherent
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FIGURE 13. (Colour online) Spanwise component of the vorticity computed in the plane
x2 = x2c + 20 (x2c being the spanwise coordinate of the centre of the large sphere) for
Rδ = 56, D= 28, d= 2.6 and ε= 0.374 at t= 21/8π, (a) and t= 25/8π, (b). The vorticity
isolines are equispaced by 1ω2 = 0.1 in the range ±0.8. Instead of the isoline ω2 = 0,
the value ω2=−0.05 is considered (solid lines = positive values, broken lines = negative
values).

vortex structure. When the flow reverses its direction, no further clockwise vorticity
is generated along the surface of the sphere (figure 12i) but the counter-clockwise
rotating vortices (see vortices A and B in figure 12c) still moves from left to right
because of their interaction with the seafloor (see figure 12e,g). Figure 12 shows that
significant vorticity is also shed close to the seafloor by the small spheres and a thick
boundary layer is present close to the bottom.

Up to now, the vorticity dynamics is discussed looking at the flow in a vertical
plane crossing the centre of the large sphere and aligned with the direction of the
fluid oscillations. However, the flow is not two-dimensional. Indeed, the vorticity is
more intense around the large sphere on the lateral sides where a strong interaction
of the vortex structures shed by the sphere takes place with the bottom roughness.
In particular, figure 13 shows that the local deceleration of the external flow induced
close to the bottom by a coherent vortex causes the separation of the bottom boundary
layer and a complex dynamics of the vorticity field. The three-dimensional features
of the flow are clearly shown in figure 12 (right-hand side panels) where the vertical
vorticity component in a horizontal plane crossing the centre of the large sphere is
plotted. The vortex structures shed by the sphere during half-cycle have a size larger
than that which can be guessed on the basis of the spanwise vorticity plots and they
are characterized by a more complex dynamics. In particular, figure 12(b,d,h) show
that complex vortex structures exist where clockwise and counter-clockwise vorticity
strongly interact. These vortex structures move away from the sphere till they break
and dissipate. Finally, figure 14 shows the streamwise vorticity component in three
different vertical planes orthogonal to the direction of the fluid oscillations and in the
wake of the sphere, when the free stream velocity is maximum (t = 3π). The first
plane crosses the centre of the large sphere, the second is tangent to the sphere on
the downstream side and the third is one diameter apart. The figure shows that two
counter-rotating streamwise vortices are present behind the sphere, which are close to
the bed and strongly interact with the seafloor. In particular the streamwise vortices,
which are close to the seafloor when they are near the sphere, lift from the bed as
they move away from the sphere.

A similar vorticity dynamics is observed for the larger value of Rδ (Rδ = 112),
even though the vortex structures, shed by the large sphere and moving away from
it, break earlier and give rise to smaller vortices (see figure 15a–f ). The size of the
turbulent eddies appearing in figure 15 is quite small and the reader might question the
reliability and accuracy of the results. To show that also in this case the flow is well
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FIGURE 14. (Colour online) Streamwise component of the vorticity computed (a,b) in the
middle vertical plane crossing the sphere centre x1 = x1c = 95.66, (c,d) at x1 = x1c + 0.5D
and (e, f ) at x1= x1c+ 1.5D for D= 28, d= 2.6, ε = 0.374, t=ω∗t∗= 3π. (a,c,e), Rδ = 56
and (b,d, f ), Rδ = 112. The vorticity isolines are equispaced by 1ω2 = 0.1 in the range
±0.8. Instead of the isoline ω2 = 0, the value ω2 = −0.05 is considered (solid lines =
positive values, broken lines = negative values).

resolved, figure 16(a) shows an enlargement of the region highlighted in figure 15(d)
along with the numerical grid which appears to be small enough to provide reliable
and accurate results. To quantitatively support this statement, the energy spectrum
of the flow field shown in figure 16(a) is computed as a function of the spanwise

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

24
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.242


Direct numerical simulation of oscillatory flow around a sphere 255

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

80
60
40
20

0 50 100 150 200 250 300 350

0.4
0
–0.4
–0.8

(a) (b)

(c) (d)

(e) ( f )

(g) (h)

(i) ( j)

FIGURE 15. (Colour online) Spanwise component of the vorticity computed in the middle
vertical plane (a,c,e,g,i) and vertical component of the vorticity computed in the horizontal
plane crossing the centre of the sphere (b,d, f,h,j) for Rδ = 112, D= 28, d= 2.6 and ε =
0.374 at t = 21/8π, (a,b); t = 23/8π, (c,d); t = 25/8π, (e, f ); t = 28/8π, (g,h); t = 4π,
(i,j). The vorticity isolines are equispaced by 1ω2= 0.1 and visualized in the range ±0.8.
Instead of the isoline ω2 = 0, the value ω2 =−0.05 is considered (solid lines = positive
values, broken lines = negative values).

wavenumber κ2 for x1 = 229.3 and plotted in figure 16(b). The results show that the
energy of the smallest resolved flow components is negligible. Since similar results
are obtained for different values of (x1, x3) and t (not shown herein), it clearly appears
that the flow field is well resolved.

Since the analysis of isosurfaces of the velocity and vorticity components provides a
partial information on the coherent vortex structures and may be considered inadequate
to detect vortices in an unsteady three-dimensional flow, we computed the eigenvalues
of the symmetric tensor D

2
+Ω

2
(D is the strain rate tensor and Ω is the spin tensor)

and we considered the regions with two negative eigenvalues. Indeed, as discussed by
Jeong & Hussain (1995), these regions correlate well with coherent vortex structures
buried in a background vorticity field. Figure 17 visualizes the isosurface characterized
by a negative value of λ2, which is the second eigenvalue of the tensor D

2
+ Ω

2

(λ2=−0.1) at different phases of the cycle for Rδ=56. The results plotted in figure 17
allow to visualise the three-dimensional structure of the vorticity field and to gain a
clear idea of its dynamics. In particular, at t = 21π/8 (figure 17a), the fluid moves
from the right to the left and the roll up of the vorticity shed by the sphere generates
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FIGURE 16. (Colour online) (a) Spanwise component of the vorticity computed at x3 =

7.38 inside the red box indicated in figure 15(d). The computational grid is overlapped
to the contour patches. (b) Energy spectrum E(κ2) of the flow field shown in panel (a)
(red line A–B) is plotted versus the spanwise wavenumber k2 for x1 = 229.3.

two vortex structures at the base of the sphere which grow in time because of the
continuous shedding of vorticity. Later, when the flow reverses its direction, these
vortex structures no longer grow but are simply convected from the left to the right. In
particular, when the vortex structures come close to the sphere, they strongly interact
with it and induce the shedding of two new vortex structures which couple with the
vortices previously released from the sphere and move away from the sphere because
of the free stream flow and the self-induced velocity (see figure 17b). Meanwhile,
two further vortex structures are shed by the sphere while the vortices previously
generated decay because of viscous effects and their interaction with the rough bottom
(see figure 17d). The vorticity dynamics during the following half-cycle is practically
the mirror image of that previously described. It is interesting to point out that those,
which appear as vortex structures generated by the roll up of vorticity of the same
sign, are indeed generated by the strong interaction of vortex structures of different
sign as it can be inferred by the results plotted in figure 12(d), where it appears
clearly that the curved vortex structures which move away from the sphere (denoted
as C in figure 17(c)) are due to both clockwise and counter-clockwise vorticity (see
figure 12d, f ).

3.4. The bottom shear stress and the forces acting on bottom particles
The present investigation was also aimed at identifying the regions of the seafloor
where the vortices shed by the larger sphere tend to set the sediments into motion
and sweep them away. A simple analysis shows that the sediment particles start to
move when the bed shear stress becomes larger than a critical value which depends
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FIGURE 17. (Colour online) Vortex structures visualized by (red) the contour surfaces of
λ2 = −0.1, for D = 28, d = 2.6, Rδ = 56 at (a) t = 21π/8, (b) t = 23π/8, (c) t = 25π/8,
(d) t= 28π/8, (e) t= 4π. The curved vortex structures that move away from the sphere
are denoted by C in panel (c).

on the parameter
√
(ρ∗s /ρ

∗ − 1)g∗d∗3/ν∗, which is known as both the Galilei/Galileo
number and the sediment Reynolds number. Hence, the shear stress just above the
small spheres is evaluated as a function of time and figure 18 shows its streamwise
component at different phases of the cycle for D = 28, d = 2.6 and Rδ = 56. As
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FIGURE 18. (Colour online) Shear stress acting on the plane x3 = 3.08, just above the
crest of the small roughness elements, shadowed by colours for D= 28, d= 2.6, Rδ = 56.
From left to right and from top to bottom: t= 9.82, t= 10.21, t= 11.39, t= 11.98.

expected, the numerical results show that the shear stress acting on the seafloor (far
from the large sphere) attains its maximum value with a phase shift φ ' π/4 with
respect to the free stream velocity. Indeed, the flow regime in the bottom boundary
layer keeps laminar for Rδ = 56 and even for Rδ = 112. The spatial and temporal
distribution of the shear stress feels the effects of the large sphere and the action
of the vortices shed by the sphere itself. Indeed, the largest values of the shear
stress are found around the sphere in the lateral regions where the velocity attains its
maximum values, while behind the sphere, regions of relatively small values of the
shear stress are observed because of the shadow effect of the sphere which creates a
sheltered area characterized by a relatively small velocity. Moreover, the footprints of
the coherent vortex structures shed by the sphere can be easily identified, since the
coherent vortices induce locally relatively high velocities and hence high values of
the shear stress.

For example, at t= 11.98, the maximum values of the bed shear stress are attained
in the vicinity of the large sphere and into two layers, which leave the lateral surface
of the sphere in the downstream direction, because of the local large velocities induced
by the sphere presence and the flow separation. However, at t= 10.21, when the shear
stress far from the sphere is relatively small because of the flow inversion, the regions
characterized by the largest values of the shear stress are in the wake of the sphere
and can be paired with the coherent vortices convected by the free stream.

Finally, the region where the flow would be able to move the small spheres at
any phase of the cycle is visualized in figure 19(a). This region is evaluated by
computing the modulus of the shear stress at each phase and selecting its maximum
value τ ∗max, during the oscillatory cycle, at each location. Then, the maximum value
of the Shields parameter θmax is computed as θmax= τ

∗

max/(ρ
∗

s − ρ
∗)g∗d∗ and the region

of the possible motion of the small spheres is assumed to be coincident with the area
of the sea bottom where θmax is larger than a critical value θcrit. The value of θcrit

depends on the particle Reynolds number Rp =
√
(ρ∗s /ρ

∗ − 1)g∗d∗3/ν∗ and different
empirical relationships are available into the literature to determine θcrit. One of the
most used is that of Brownlie (1981) which has been recently amended by Parker,
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FIGURE 19. (Colour online) Top view of the bottom areas where the small spheres could
be potentially mobilized by the flow during certain phases of the oscillatory period, in
which the Shields parameter θmax exceeds θcrit = 0.05, for either the relative density of
the spheres s = 1.025 (grey areas) or s = 1.05 (red/darker areas) and D = 28, d = 2.6.
The broken line indicates the projection of the large sphere equator (a) Rδ = 56 and
(b) Rδ = 112.

Seminara & Solari (2003) dividing its value by a factor 2. For small values of Rp, the
relationships provide large values of θcrit. However, Soulsby, Whitehouse et al. (1997)
noticed that, even for small grain sizes, the value of θcrit never exceeds 0.3. To take
into account this experimental evidence, he proposed a new relationship. Because
of the large uncertainty which affects the estimate of θcrit, the results of figure 19
are obtained by using θcrit = 0.05 which is a reasonable estimate for relatively large
spherical particles.

Because of the relatively large size of the small spheres and the weakness of the
oscillatory flow, the region of potential erosion around the large sphere is quantified
by assuming that the small spheres are made by a relatively light material (e.g.
polyethylene with a relative density s= ρ∗s /ρ

∗ equal to both 1.025 and 1.05).
As it could be guessed on the basis of the time development of the streamwise

component of the bottom shear stress (see figure 18), the results plotted in figure 19(a)
show that the small spheres, simulating the sediments around the ‘large’ spherical
object, tend to be swept away mainly from the sides of the large sphere and along
the trajectories of the coherent vortex structures shed by the object. The symmetry
of the flow is not perfect because it would be necessary to simulate more cycles
to have a fully periodic regime. For Rδ = 56, the small spheres, which simulate the
sediment grains, would move only for s= 1.025. Moreover, sediment transport would
be observed only in the region surrounding the large sphere while the sediment grains
far from it would be at rest (clear water conditions). On the other hand for Rδ = 112
and s= 1.025 (see figure 19b), the small spheres would move also far from the large
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sphere even though the largest values of the shear stress and the most intense sediment
transport would be observed close to the large sphere. However, increasing s (s=1.05),
the sediment motion would again be confined in the region close to the large sphere
and clear water conditions would be observed.

Finally, we should point out that the critical value of the Shields parameter is
evaluated on the basis of an empirical approach which is based on data obtained
for steady flows and does not take into account the effects of the pressure gradient
oscillations (Sleath 1999). Even though it is likely that the oscillatory character of the
flow has no significant influence on the initiation of sediment motion because of the
large ratio between the fluid displacement oscillations and the sediment size, future
simulations with mobile particles might provide detail information on the conditions
of incipient motion of sediment particles in oscillatory flows, which is still an active
area of research (Frank et al. 2015a,b).

To better simulate the flow close to and within the sea bottom, the run for D =
28, d = 2.6, Rδ = 112 was repeated with five layers of sediment particles, laid over
the plane rigid wall located at x3 = 0. If the results obtained for these values of
the parameters are compared with those previously discussed, no qualitative change
is observed. In particular, the boundary layer separates from the surface of the large
sphere and generates free shear layers which in turn roll up and generate large vortex
structures. Later, these vortex structures break and give rise to turbulent regions. These
turbulent regions are advected by the mean flow until viscous effects damp turbulence
oscillations. It is only interesting to point out that the streamwise pressure gradient,
which forces the flow, is independent of the vertical coordinate and it tends to generate
fluid motion also inside the packed small spheres. However, the fluid encounters a
large resistance through the sphere gaps and the flow through the particles turns out
to be negligible.

It is also interesting to analyse the force acting on a single small sphere within
the bed. Figure 20 shows the time development of the dimensionless horizontal
component (

√
F2

1 + F2
2) of the force (figure 20b) along with the vertical (F3)

component (figure 20c) and the spanwise component of the torque acting on the
sediment grains considered in figure 20(a). The force Fi and torque Ti components
acting on the large and small spheres are evaluated by means of the numerical
integration of ti and δijkxjtk on the surface of the spheres:

Fi =
8F∗i

ρ∗(U∗0)2πd∗2
=

8
πd2

∫
S

ti dS, Ti =
16T∗i

ρ∗(U∗0)2πd∗3
=

16
πd3

∫
S
δijkxjtk dS, (3.1a,b)

where ti=−pni+ (1/Rδ)((∂ui/∂xj)+ (∂uj/∂xi))nj is the sum of two contributions. The
former is due to the pressure acting on the surface of the spheres and the latter to the
viscous stresses. In the previous relationships S indicates the surface of the spheres,
ni is the component along the xi-axis of the unit vector normal to the surface, xi
indicates the position of the infinitesimal surface of the sphere with respect to its
centre and δijk is the Levi-Civita symbol. The blue lines (with crosses) show the
time development of the components of the force and torque acting on the particles
far from the large sphere (blue particles on the left-hand side of figure 20a) while
the red lines (with circles) show the force components on the particles close to the
large sphere (red particles on the right-hand side of figure 20a). In both figures 20(b)
and 20(c), continuous lines and broken lines appear. The former refer to particles in
the top layer while the latter refer to particles in the bottom layer. Far from the large
sphere, the horizontal component of the force is almost in phase with the pressure
gradient which originates the fluid motion (figure 20e shows the free stream velocity).
The differences between the horizontal component of the force acting on the particles
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FIGURE 20. (Colour online) Top view of the lower part of the bottom layer of
particles (a). Red (on the right) and blue (on the left) spheres are numerically instrumented
to determine the hydrodynamic force exerted by the flow oscillations. The broken black
line indicates the equator of the large sphere (Rδ = 112, D = 28, d = 2.6 and five layers
of small spheres arranged in a hexagonal patterns). Time development of the horizontal
(
√

F2
1 + F2

2) (b) and vertical (F3) (c) components of the hydrodynamic force as well as
the spanwise torque component (T2) (d) acting on the small spheres indicated in panel
(a) (blue-cross and red-circle lines are related to the blue (left) and red (right) spheres,
respectively) located either in the top layer [——] or in the bottom layer [- - -]. Panel
(e) shows the velocity far from the bottom.
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of the surficial layer and that acting on the particles of the bottom layer are small,
thus indicating that the viscous contribution to the force is small. Moreover, the
vertical component is negligible. Close to the large sphere, the force acting on the
particles shows large fluctuations which are due to the interaction of the particles with
the vortex structures shed by the large sphere. Of course the largest fluctuations are
observed for the particle of the surficial layer, since the effects of the vortex structures
on the particle rapidly damp moving inside the packed particles. We should note the
presence of large uplifting forces near t = 8.5 and t = 11.5 that can significantly
reduce the particle stability. The time development of the force acting on the surficial
particle close to the large sphere indicates a phase lag of the maximum force with
respect to the maximum flow which is similar to that observed by Mazzuoli & Vittori
(2016) for larger values of the Reynolds number. Indeed, the presence of the large
sphere causes a local acceleration of the flow around it and the small particles feel
larger values of the velocity which induce also significant values of the vertical
component of the force. The torque oscillates and is significant only for the particles
in the surficial layer. In particular the torque oscillates almost in phase with the free
stream velocity even though, close to the large spherical object, large fluctuations are
present which are caused by the effects of the shear layers and the vortex structures
shed by the large sphere.

A simple dimensional analysis of the phenomenon shows that the flow field
depends on three dimensionless parameters beside the geometrical arrangement of
both the large sphere and the small spheres. In particular, the results would appear
to depend on the value of ε, i.e. the dimensionless distance of the spheres from
the bottom and of a sphere from the other. However, as discussed previously, the
parameter ε has a minor influence on the velocity field and the forces acting on
both the large sphere and the spherical roughness elements. Hence, in the following,
we do not consider explicitly the values of ε which are slightly different in the
simulations described in the paper. We chose the Reynolds number Rδ = U∗0δ

∗/ν∗

and the ratios D = D∗/δ∗, d = d∗/δ∗ as dimensionless parameters and we fixed the
sphere arrangement as depicted in figure 1. The reader should be aware that the
Keulegan–Carpenter number Kc = U∗0/(ω

∗D∗) of the phenomenon, often introduced
in coastal engineering studies, turns out to be Rδ/(2D) and the Reynolds number
Re = U∗20 /(ω

∗ν∗) turns out to be equal to R2
δ/2. The large computational costs did

not allow an exhaustive investigation of the parameter space to be carried out. Hence,
being interested in the flow field generated close to the sea bottom by wind waves
and in its interaction with small spherical objects, the simulations we carried out
consider values of Rδ typical of the boundary layer under sea waves. Moreover,
values of Kc of order 1 are considered such that the velocity and vorticity fields are
significantly affected by the unsteadiness of the forcing flow and the wake behind
the sphere is topologically different from that which is generated behind an isolated
sphere in a steady uniform flow. To show that the numerical approach can be used to
investigate cases of practical relevance, a further run was carried out by considering
D = 11.21, d = 0.561, Rδ = 112 and ε = 0.112. These values of the parameters
correspond to sea waves characterized by a period and a height equal to about 10 s
and 0.4 m, respectively, propagating on a water depth h∗ ' 30 m. Moreover, the
sediment diameter d∗ = 1 mm is that of a coarse sand and D∗ = 20 mm corresponds
to the size of a small munition. Figure 21(a) shows a snapshot of the velocity field
around the small munition at t = 2.75π. Looking at the velocity field, it is possible
to understand why the streamwise component F1 of the force on the munition (see
figure 21b) attains relative maxima for values of t close to nπ (n= 1, 2, . . .), when
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FIGURE 21. (Colour online) (a) Streamwise velocity component at t=2.75π in the middle
vertical plane crossing the largest sphere for Rδ= 112, D= 11.21, d= 0.56, ε= 0.112. The
thin lines are the isovelocity contours equispaced by 1u1 = 0.1. Panel (b) shows, for the
same simulation, the streamwise (thick solid line), spanwise (broken line) and wall-normal
(thin solid line) force components acting on the large sphere throughout the last period
presently simulated. The grey broken line indicate the free stream velocity.

a region of dead water develops behind the munition. Moreover, it appears that the
small bumps and further relative maxima in the time development of F1 are caused
slightly before other maxima by the passage of clockwise/counter-clockwise vortices
shed during the previous half-cycle and dragged by the free stream. The lift force
is always positive and tends to pick up the small munition, while the spanwise
component of the force almost vanishes even though small oscillations are randomly
generated when the symmetry of the flow, with respect to a vertical plane crossing
the centre of the large sphere, is broken by the instability of the wake. A detailed
analysis of the flow field and the bed shear stress shows that no qualitative change,
with respect to the results previously described, is generated by the variation of the
parameters, at least in the investigated range.

4. Conclusions
The numerical results previously described show that the direct numerical simulation

of the oscillatory flow around an object lying on small spherical particles, which
mimic a sandy bottom, can be performed thus making possible a detailed investigation
of this unsteady, three-dimensional flow field. The power of actual computers allows
only the simulation of relatively small objects, coarse sand and moderate values of
the Reynolds numbers. Nevertheless, problems of practical relevance can be tackled
and solved.

The oscillatory flow around the object gives rise to coherent vortex structures
which are generated by the roll up of the free shear layers shed by the object surface
because of boundary layer separation. These vortices move away from the object
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and later break up and generate turbulence. Even though the Reynolds number is not
large enough to lead to a turbulent flow within the bottom boundary layer, turbulence
is observed also close to the bottom but only below the large vortices shed by
the object. Accurate information on the possible incipient motion of the sediment
particles are provided by the analysis of the spatial and temporal distribution of the
bottom shear stress and of the force and torque acting on the particles. The area of
the possible erosion around the large spherical object resting on the bottom depends
on the parameters which characterize the flow, the object and the sediment particles.
First of all, for the particles to be set into motion, the maximum value of the
Shields parameter should be larger than its critical value for the initiation of sediment
transport. Because of the presence of the large, resting object, the flow is accelerated
around the object and therein the Shields parameter is significantly larger than far
from it. Hence, close to the large sphere, the sediment can be set into motion even
though far from the sphere the flow is not strong enough to move the sediment (clear
water condition). Even though only moderate values of the flow Reynolds number are
simulated, results for both clear water conditions and live bed conditions (sediment
is set into motion also far from the object) are obtained by varying the relative
density of the sediment particles and considering hydrodynamic and morphodynamic
parameters which can be easily reproduced in a laboratory experiment. Since, the
erosion and deposition processes are controlled by the divergence of the sediment
transport, the area of possible erosion is limited also in the case of live bed conditions.
The Keulegan–Carpenter number, Kc, largely controls the area of possible erosion
since the displacement of the vortex structures shed by the large sphere increases as
the value of Kc is increased. Moreover, the Keulegan–Carpenter number affects also
the trajectories of the vortices which do not follow the path of the previous cycle if
the flow Reynolds number is large enough to generate a chaotic flow and to trigger
transition to turbulence. The numerical simulations show that the drag as well as the
lift forces, acting on the sediment particles close to the large sphere, are characterized
by large fluctuations and vary from particle to particle, thus showing the possible
selective pick up of the sediments by the forcing flow. Finally, it is worth pointing
out that a significant reduction of both the drag and lift forces is observed moving
within the sea bottom from the top layer of particles towards the underlying layer
because of the sheltering effects of the particles which stand above. The next step of
the research project is to let the particles to move and to investigate their dynamics
and the time development of the scour around the object.
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