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In this simulation-based study, we investigate the surface roughness signature induced
by internal solitary waves in oceans. We present the first-ever effort to directly capture
the surface roughness signature with a deterministic two-layer model to avoid the
singularity encountered in the traditional wave–current interaction theory. By capturing
over four million wave components, the simulation resolves the surface wave and
internal wave dynamics simultaneously. The surface signature characterized by a rough
region followed by a smooth region travelling with an internal wave is quantified by
the local wave geometry variation and the wave energy change. The surface wave
dynamics are analysed in the wavenumber–frequency slope spectrum calculated in the
frame moving with the internal wave. The asymmetric behaviours of right-moving and
left-moving surface waves are found to contribute to the surface signature formation.
Our results show that the formation of the surface signature is essentially an energy-
conservative process and justify the use of the wave-phase-resolved two-layer model.
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1. Introduction

As internal waves propagate, they leave on the ocean surface a distinct signature
of alternating rough and smooth regions. When observed using satellite radars, this
signature of internal waves appears in the form of bright and dark bands, similar to
the white and black stripes of a zebra. Such bands appear because a spatial change
in the wave roughness induces a variation in the strength of the backscattering of the
electromagnetic signals of radars (Perry & Schimke 1965; Ziegenbein 1969; Osborne
& Burch 1980). The surface signature obtained via remote sensing is a critical
technique for the identification of internal waves (Helfrich & Melville 2006), which
allows a large area coverage compared with in situ measurements. The heterogeneity
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in surface roughness can impact the physical properties of the near-surface atmosphere
(Ortiz-Suslow et al. 2019). Despite its importance, it remains a challenge to quantify
the surface signature induced by internal waves. It is desirable to resolve a wide
range of wave motions from the first principles of fluid dynamics so that the impact
of internal waves on the surface waves can be accurately described and modelled.

In previous studies, attempts to quantify the surface wave variation are often based
on the ray theory, which is similar to geometrical optics. In this theory, an individual
surface wave component is tracked by the change in its wavenumber and energy,
whereas the wave phase is discarded. The effect of the internal wave is generally
treated as a prescribed time-invariant surface current (Alpers 1985; Donato, Peregrine
& Stocker 1999; Bakhanov & Ostrovsky 2002). Under this assumption, a singularity
occurs when the surface waves are blocked by the countercurrent induced by the
internal wave (Peregrine 1976). The singularity can be illustrated by the dispersion
relation of a one-dimensional surface wave in a current, ω = kU +

√
gk, where ω

denotes the wave (angular) frequency, k the wavenumber and U the current velocity.
The dispersion relation is therefore a quadratic equation for

√
k. If the wave and

current are counterpropagating, i.e. kU< 0, and if the current is sufficiently strong, it
is possible that the equation has no real solutions where the wave is blocked by the
current (Smith 1975; Peregrine 1976). For certain idealized wave conditions, the wave
amplitude can be approximated by an Airy function in the vicinity of the blocking
point (Smith 1975; Peregrine 1976; Nardin, Rousseaux & Coullet 2009). For the
more complex surface signature formation, the explanation based on the ray theory
contrasts with the conservative mechanism that involves the surface wave absorption
and reflection, according to Craig, Guyenne & Sulem (2012).

Furthermore, it remains unclear whether external physical processes play a
determining role in the surface signature formation. Surface waves can acquire energy
from wind and dissipate energy via turbulent motions when they break. Because these
processes may also affect the water surface roughness (Bakhanov & Ostrovsky 2002;
Jackson, Silva & Jeans 2013), some studies based on the ray theory include them
in the governing equation (e.g. Alpers 1985; Bakhanov & Ostrovsky 2002). Others
choose to exclude the effects of wind and wave breaking and isolate the effect of
internal waves using numerical simulation and laboratory measurement. For example,
Craig et al. (2012) derived a system of a coupled Korteweg–de Vries (KdV) equation
and a Schrödinger equation based on the two-layer ocean model to describe the
dynamics of long internal waves and surface waves, which was then used to study
surface waves near a carrier wavenumber. Similarly, Jiang et al. (2019) developed a
Boussinesq-type model from the two-layer model for the modelling of the coupled
internal wave and surface wave field and investigated the asymmetric behaviour of
long surface waves. Kodaira et al. (2016) conducted a laboratory measurement in the
two-layer setting and observed short surface waves travelling at approximately the
same speed as the internal wave. While not directly showing the zebra pattern, these
studies suggest that an internal wave can induce the surface signature in the absence
of wind input and wave breaking.

In this work, we show that the surface signature can be formed within an
energy-conservative framework, from which the singularity in the ray theory and
the effect of external processes are excluded. Our study is based on the simulation
of a two-layer fluid model (Lamb 1932; Sutherland 2010). Starting from the
wave-phase-resolved governing equations allows us to avoid the singularity issue
encountered in the phase-averaging ray theory. This approach is justified by a number
of studies in the astrophysics community (e.g. Schützhold & Unruh 2002; Euvé et al.
2015), which use the blocking events in wave–current interaction as an analogue to
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Surface signature of internal wave

the black hole physics. Under the potential flow assumption, the simulation framework
conserves energy (Alam, Liu & Yue 2009a; Tanaka & Wakayama 2015), and thus
the interaction between surface waves and internal waves is isolated from the effects
of external energy sources.

The remainder of this paper is organized as follows. In § 2, we briefly review
the mathematical model and introduce the problem set-up. In § 3, we present the
observation and analysis of the surface signature. Finally, discussions and conclusions
are given in § 4.

2. Methodology

2.1. Mathematical model
In this study, we use a deterministic wave-phase-resolved model to address the major
challenge in quantifying the surface signature: capturing the broadband wave motions
between two distinct length scales. The first one is the length scale of the surface
waves relevant to the zebra pattern observed by satellite radars, which can be inferred
from the radar electromagnetic signal wavelength, ranging from a few centimetres
to a few decimetres (Martin 2014), because water waves are visible to the radar
signal only when their wavelengths are close such that the Bragg scattering can
occur. On the surface gravity wave spectrum (Munk 1950), these surface waves are
located near the gravity–capillary wave boundary. The second length scale is that of
internal waves, which often span several hundred metres or several kilometres (Perry
& Schimke 1965). As pointed out by Jiang et al. (2019), the short surface wave
motions are not resolved in their study because a long-wave approximation is used
in the Boussinesq-type wave-phase-resolving model. In our numerical simulation,
the wave motions at these two distinct length scales are directly captured with a
sufficiently large number of wave modes.

Our simulation is performed using the two-layer ocean model based on the potential
flow assumption (Lamb 1932; Sutherland 2010) (see also the supplementary material,
available at https://doi.org/10.1017/jfm.2020.200). The fluid motions in both layers,
assumed to be inviscid, incompressible and irrotational, are governed by the Laplace
equation in terms of the velocity potential. We also assume that the fluids are
immiscible at the interface and that the vertical velocity vanishes at the bottom of
the lower layer. Using the surface/interface elevations and velocity potentials, one
can derive a group of evolution equations based on the fully nonlinear kinematic and
dynamic boundary conditions at the surface and interface as follows (note that the
form of these equations is different from the original boundary conditions because of
the surface and interface quantities used; for details, see Alam, Liu & Yue (2009b)):

∂ηu

∂t
=−∇ηu · ∇φ

s
u + (1+ |∇ηu|

2)φu,z, (2.1)

∂φs
u

∂t
=−gηu −

1
2
|∇φs

u|
2
+

1
2
(1+ |∇ηu|

2)φ2
u,z +

σs

ρu
∇ ·

[
∇ηu√

1+ |∇ηu|
2

]
, (2.2)

∂ηl

∂t
=−∇ηl · ∇φ

i
u + (1+ |∇ηl|

2)φu,z, (2.3)

∂ψ i

∂t
=

1
2
(R|∇φi

u|
2
− |∇φi

l |
2)− gηl(1− R)+

1
2
(1+ |∇ηl|

2)(φ2
l,z − Rφ2

u,z)

+
σi

ρl
∇ ·

[
∇ηl√

1+ |∇ηl|
2

]
, (2.4)
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Internal wave propagation
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FIGURE 1. Sketch of interaction between surface waves and an internal solitary wave in
a two-layer model.

where φu (respectively, φl), ρu (respectively, ρl) and hu (respectively, hl) are the
velocity potential, density and mean depth of the upper (respectively, lower) layer fluid,
σs (respectively, σi) is the surface tension of the air–upper fluid surface (respectively,
upper–lower fluid interface), ∇ = (∂/∂x, ∂/∂y) denotes the gradient operator in the
horizontal directions, φs

u(x, t) = φu(x, ηu(x, t), t), ψ i(x, t) = φi
l(x, t) − Rφi

u(x, t) and
R = ρu/ρl is the density ratio (figure 1). These equations are solved based on the
perturbation expansion of the surface/interface quantities. The calculation of the
surface tension is valid when ηu and ηl are single-valued functions, provided that the
wave steepness is not too large to induce wave breaking.

2.2. Simulation set-up
The numerical experiment, based on a high-order spectral method (Alam et al.
2009b), is outlined here. The evolution equations are discretized on a uniform grid in
a rectangular domain with periodic boundary conditions and then integrated in time
to obtain the evolution of the wave fields. The initial condition is a superposition
of the eigenfunctions of the linearized two-layer system, i.e. wave-like solutions of
barotropic mode and baroclinic mode, and then nonlinear waves develop and evolve
dynamically in the simulation. Our numerical code has been validated by repeating the
simulations of the classical nonlinear wave interaction in a single resonant triad (Alam
et al. 2009b) and a broadband spectrum (Tanaka & Wakayama 2015). Additionally,
we have conducted an auxiliary test case, for which the parameters are adapted from
a recent laboratory measurement (Kodaira et al. 2016); the details of validation can
be found in Hao (2019).

In the main computational case of the present study, the key physical parameters
are comparable to a typical internal wave observed in the field (Stanton & Ostrovsky
1998). Specifically, the upper layer depth is approximated by the pycnocline depth
of the observation, while the lower layer depth is the same as the model variable
used in their simulation. The initial amplitudes of the surface wave components are
set based on the observational data at station 5 in the Joint North Sea Wave Project
(JONSWAP) (see figure 2.5 in Hasselmann et al. (1973)). Note that the spectrum
decays rapidly in the low-wavenumber limit and the energy density for waves longer
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(hu, hl) (m) (Lx, Ly) (m) (Nx, Ny) ∆e (m) λe (m)
(7, 140) (500, 125) (6144, 1536) 0.12 0.24

aiw (m) ciw (m s−1) liw (m) λp (m) cp (m s−1)
−5 0.52 154 10 3.9

R= ρu/ρl hu/hl Fr= cp/
√

ghu Re= cpλp/ν We(Bo)= ρug/σsk2
e

0.997 0.05 0.48 ∞ 195

TABLE 1. Physical and computational parameters of the simulation: hu and hl are the mean
depth of the upper and lower fluid, respectively; Lx and Ly are the computational domain
size in the x and y directions, respectively; Nx and Ny are the corresponding grid numbers;
∆e = 1.5Lx/Nx = 1.5Ly/Ny is the effective grid size after considering dealiasing; λe is the
wavelength of the shortest wave resolved; aiw is the internal wave amplitude, with the
negative sign denoting a depression wave; ciw is the internal wave phase velocity; liw is
the internal wave width defined at 90 % amplitude (see figure 1); λp is the peak surface
wavelength; cp is the peak surface wave phase velocity; ν is the viscosity, which vanishes
under the inviscid flow assumption; and σs = 0.073 N m−1 is the surface tension at the
air–water interface. Also listed are the non-dimensional numbers: the density ratio, the
layer depth ratio, the Froude number, the Reynolds number and the Weber/Bond number,
respectively.

than 3λp is less than 0.8 % of the peak wave energy. Therefore, the total depth is
sufficiently deep for the surface waves. The weight of the wave energy propagating in
each direction is specified by the directional spreading function D(θ)= (2/π) cos2 θ ,
where θ is the angle between the wave propagation direction and the x axis (Young
1999). A random number is assigned to the initial phase of each wave component.
The initial baroclinic (internal) wave components are extracted from a permanent
form of internal wave solution of the KdV equation (see the review by Helfrich
& Melville (2006)). The computational domain is rectangular and sufficiently large
to cover the internal wave. After considering the aliasing error, the total number
of wave modes is approximately 4.2 × 106, nearly 24 times that in the simulation
of Tanaka & Wakayama (2015). The initial condition is then generated with the
information of wave amplitude for the barotropic wave modes and baroclinic wave
modes. The Weber (Bond) number corresponding to the shortest resolved wave is high
(table 1), suggesting that the surface tension forces are negligibly small. Therefore,
the associated terms are not computed for the consideration of simulation time. The
time-step size is 0.028Tp, approximately 18 % of the period of the shortest wave
resolved. The simulation is performed for a duration of about 83Tp. The physical and
computational parameters are presented in table 1.

3. Results

3.1. Direct observation of surface signature
The surface signature can be directly observed from the surface elevation with the
naked eye (Woodson 2018). In our simulation, the initial surface wave field is
statistically homogeneous and the surface signature is found to form gradually and
maintain throughout the simulation. We present an example of the instantaneous
surface elevation and the interface elevation in figure 2(a). As shown, a rough surface
region with increased wave steepness is formed above the leading edge of the internal
wave (figure 1). Right behind the rough region there is a smooth region where the
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FIGURE 2. (a) Direct observation of the surface signature, denoted by the instantaneous
surface wave elevation field. (b) Temporal evolution of the steepness ratio. In (a),
also shown are the interface elevation and the boundaries of the regions used for
spectral analysis in § 3.3, denoted by dashed lines. For clarity, we only plot part of the
computational domain. The internal wave propagates in the +x direction. In (b), two
trendlines are plotted.

surface wave steepness is significantly reduced. The rough and smooth regions
correspond to a pair of bright and dark bands on satellite images. Qualitatively, the
surface signature observed in the present study shows several key features in remote
sensing observations, including the location of the rough and smooth regions with
respect to the internal wave, their length scales and the propagating speed. For the
purpose of quantitative comparison with observational data, the wave-phase-resolved
surface signature can potentially be valuable by providing hydrodynamic information
to radar electromagnetic signal simulations (e.g. Liu & He 2016; Yoshida 2017),
which were conducted on artificially generated ocean surfaces in the literature.

The formation of the surface signature is a transient process, during which the
initially homogeneous surface waves respond to the time-varying surface strain field
driven by the internal wave. To illustrate this process, we define the density ratio
RS =

∫
Srough dx dy/

∫
Ssmooth dx dy, where S(x, y) = [(∂ηu/∂x)2 + (∂ηu/∂y)2]1/2 is the

local steepness and the integrations are performed in the regions denoted by the
dashed lines in figure 2(a). As shown in figure 2(b), RS first undergoes a transient,
linear growth stage (dashed line) and then settles around 2.1 (dotted line). The time
scale of the transient process is approximately 7.7Tp, which is much shorter than
the time scale of the internal wave: liw/ciw = 117Tp. Therefore, for a fixed point in
the Eulerian frame, we expect the surface wave energy to undergo a rapid transient
process as the time-varying surface strain field driven by the internal solitary wave
as it passes by.

3.2. Quantitative analysis of surface signature
To quantify the roughness change, we calculate the local steepness (figure 3a) and find
that the wave steepness in the rough region is higher than that in the smooth region
in a statistical sense. As shown in figure 3(b), the surface wave energy change 1E/E0
calculated from the wavenumber spectrum can also reveal the surface signature pattern.
We divide the computational domain into 48 regions along the x direction, each with
a size of 10.4 m× 125 m. Then we conduct a two-dimensional Fourier transform on
the product of the surface elevation ηu(x, y) and a window function in each region
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FIGURE 3. Quantitative analysis of the surface signature. (a) Plan view of the
instantaneous local steepness S = [(∂ηu/∂x)2 + (∂ηu/∂y)2]1/2 of the surface wave field,
where ηu is the surface elevation. (b) The change in surface wave energy 1E normalized
by the unperturbed value E0, where the black solid line denotes the mean value over
all wavenumbers and the error bar denotes the standard deviation. The shaded area in
light blue denotes the range of the empirical estimation (Alpers 1985). (c) Surface current
induced by the internal wave. Our numerical result is denoted by the blue solid line and
the first-order approximation is denoted by the black dashed line.

and obtain the wavenumber spectrum E(kx, ky). Considering that the surface wave field
should be statistically homogeneous in the y direction, we perform averaging to obtain
the one-dimensional wavenumber spectrum E(kx)=

∫
E(kx, ky) dky.

To clarify the correlation between the wave energy change and the surface motion
induced by the internal wave, we provide another estimation according to the formula
proposed by Alpers (1985): 1E/E0=−τ dU/dx, where τ = 21.2–212 s is a relaxation
time set empirically based on the time scale of the surface wave energy transfer
processes including wind input, nonlinear interaction and dissipation and dU/dx is
the gradient of the surface current. Overall, the results are consistent and show the
same trend in the wave energy change, which sees an apparent correlation with
the current gradient (figure 3b). Here the surface current is calculated by performing
averaging in the spanwise direction and time averaging in the reference frame moving
with the internal wave. The gradient of the current dU/dx is then calculated from
U(x). Instead of direct calculation with a finite difference approximation, we compute
dU/dx by minimizing a functional to avoid extreme values caused by irregularity
and noise in U(x) (Chartrand 2011). The first-order approximation of the current can
also be estimated from mass conservation: −ciwηl/(hu − ηl). Overall, the two results
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FIGURE 4. Wavenumber–frequency slope spectrum of surface waves in the (a) smooth
region and (b) rough region. The spectrum is normalized by the maximum value Sm.
The dashed curves denote the dispersion relation of the surface waves in the moving
frame of reference: ω = (Um − ciw)kx +

√
g|kx|, where Um is the maximum value of the

surface current U (see figure 3). The white cross denotes the maximum frequency of the
right-moving surface wave ωm =−g/4(Um − ciw). The black filled circle denotes the peak
surface wave. The asymmetric behaviours of the surface waves mostly occur in zones I
and II.

agree with each other except for small deviations in the region above the internal
wave trough (figure 3c).

3.3. Surface waves in the wavenumber–frequency domain
To elucidate the formation of the surface signature, we conduct spectral analysis on
the surface elevation in the frame of reference travelling with the internal wave. The
data are extracted from two domains above the internal wave trough, one in the
smooth region and the other in the rough region (see the dashed lines in figure 2a).
The size of each subdomain is 21 m × 125 m, smaller than the actual length scale
of the smooth and rough regions to ensure the homogeneity requirement in Fourier
analysis. The wavenumber–frequency spectrum E(kx, ky, ω) of surface elevation is then
calculated in each subdomain. To better reveal the roughness change of the surface
wave field, we further calculate the slope spectrum S(kx, ky, ω) = (k2

x + k2
y)E. In the

following analysis, the integrated spectrum S(kx, ω)=
∫
S(kx, ky, ω) dky is presented

for clarity. In terms of the physical meaning, the slope spectrum S(kx, ky, ω) can be
seen as the spectral space counterpart to the steepness function S(x, y) in figure 3(a).

From the contours of the wavenumber–frequency spectra (figure 4), we can
separately identify the energy associated with the two different eigenfunctions in
the internal wave system: the baroclinic mode energy is located in the low-frequency
portion, while the barotropic mode energy is primarily along the dispersion relation
curve of the surface wave in the moving frame of reference as shown by the
dashed lines. Because of the space and time limits of the domain used for Fourier
analysis, the wave components of low frequency, e.g. ω/

√
g/hu ∼ O(3), appear as

white-noise-like bands on the spectrum. In the moving frame, the surface motion
induced by the internal wave is a countercurrent because U − ciw < 0. As a result,
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there exists a maximum frequency ωm=−g/4(Um− ciw) for surface waves propagating
against the current (Donato et al. 1999; Nardin et al. 2009).

The surface signature can be identified from the asymmetric behaviours of the
surface waves. In the rough region, we observe a distinct difference in both
right-moving and left-moving surface waves (see zones I and II in figure 4b)
compared with those in the smooth region (figure 4a). Let δS (respectively, δE)
denote the difference of the slope (respectively, energy) spectrum between the rough
and smooth region and we have δS = k2δE. The wave energy change in zone I is
larger than that in zone II, i.e. δEI > δEII , because the background surface wave
energy is maximal near the peak wave component (see the black filled circle in
figure 4). Meanwhile, the wavenumber of wave components in zone II, especially
those shorter than O(1 m), or kxhu < O(50), is higher than that in zone I, namely,
kI < kII . Overall, the contribution of the zone II waves to the roughness change is
comparable to that of zone I waves, i.e. δSII ∼ δSI .

The asymmetric behaviours of the right-moving surface waves in zone I, such as
the increased magnitude towards the leading edge of the internal wave, are consistent
with previous studies (Bakhanov & Ostrovsky 2002; Kodaira et al. 2016; Jiang et al.
2019). In contrast, there are no previous studies reporting the contribution of the left-
moving surface waves of small length scales in zone II, because short surface wave
dynamics were usually neglected. For example, Jiang et al. (2019) studied surface
waves yielding the long-wave (shallow-water) approximation, which assumes that the
surface wavelength scales are much greater than the fluid layer thickness. Even for
the peak surface waves kxhu ≈ 4.4, the upper layer fluid can still be viewed as deep
water (e.g. Dean & Dalrymple 1991).

4. Conclusions

In this study, we have performed the first simulation to directly capture the surface
roughness signature induced by an internal wave using a deterministic phase-resolved
two-layer fluid model. A realistic setting for the interaction between a broadband
surface wave field and a typical oceanic internal wave is considered. The wave
dynamics of nearly 4.2 × 106 independent components are resolved, covering the
wide range of length scales between the internal wave and short surface waves.

Our results show that the formation of the surface signature is essentially an
energy-conservative process. In other words, energy sources and sinks, including
wind input and wave breaking, are not necessarily the direct cause of the surface
signature. With the surface wave and internal wave dynamics captured, the surface
signature is quantified using the wave geometry and the energy change. For the
first time, the roughness change is identified on the full wavenumber–frequency slope
spectrum in a realistic ocean setting of internal and surface waves, which substantiates
the contribution of the asymmetric behaviours of the right-moving surface waves to
the roughness change. Moreover, our result shows that left-moving waves shorter than
O(1 m) also play an important role in the surface signature formation.

Admittedly, we have neglected the effects of the stratification associated with
the continuous density profile, turbulence and the stronger nonlinearity in internal
waves. For example, the internal wave amplitude in the present computational case
is smaller than that in the original field observation (Stanton & Ostrovsky 1998).
Consequently, the magnitude of the surface current induced by the internal wave and
thus the roughness change may be underestimated. In future study, the stratification
effects can also be captured by solving the full three-dimensional Navier–Stokes
equations, yet at a considerably high computational cost not affordable with the
current computing power.
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