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An experimental investigation focusing on the effect of dissipation on the evolution of
the Benjamin–Feir instability is reported. A series of wave trains with added sidebands,
and varying initial steepness, perturbed amplitudes and frequencies, are physically
generated in a long wave flume. The experimental results directly confirm the
stabilization theory of Segur et al. (J. Fluid Mech., vol. 539, 2005, pp. 229–271), i.e.
dissipation can stabilize the Benjamin–Feir instability. Furthermore, the experiments
reveal that the effect of dissipation on modulational instability depends strongly on the
perturbation frequency. It is found that the effect of dissipation on the growth rates
of the sidebands for the waves with higher perturbation frequencies is more evident
than on those of waves with lower perturbation frequencies. In addition, numerical
simulations based on Dysthe’s equation with a linear damping term included, which is
estimated from the experimental data, can predict the experimental results well if the
momentum integral of the wave trains is conserved during evolution.
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1. Introduction
Following the landmark work of Benjamin & Feir (1967), it is now well known

that deep-water gravity waves are unstable to small perturbations and that the unstable
disturbances grow exponentially as the wave trains evolve. Hereafter, this phenomenon
is called the Benjamin–Feir instability or the modulational instability. At about the
same time, Zakharov (1968) demonstrated that the evolution of narrowband wave
trains is well described by the nonlinear Schrödinger (NLS) equation. Over the
decades since, much progress has been made in the understanding of this phenomenon
by both theoretical and experimental approaches, and it has contributed greatly to the
knowledge of deep-water waves. Detailed surveys on this topic can be found in the
review articles of Yuen & Lake (1980) and Hammack & Henderson (1993).

Recently, Segur et al. (2005) have proven theoretically that, even if the dissipation is
weak, it can prevent the instability of wave trains with small and moderate amplitudes;
they also performed laboratory experiments to confirm their theory. (In fact, Mei &
Hancock 2003 have obtained a similar result using the NLS equation with an empirical
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complex dissipation term.) The conclusion of Segur et al. (2005) was somewhat
surprising as in the previous experiments of Benjamin (1967) and Lake et al. (1977),
the presence of dissipation only reduced the growth rate of the unstable disturbances.

Subsequent to the work of Segur et al. (2005), many similar studies have been
conducted. However these studies were based primarily on theoretical and numerical
approaches. For example, the stabilization theory for long-time wave train evolution
was confirmed by Wu, Liu & Yue (2006) using a fully nonlinear numerical model.
Canney & Carter (2007) added a linear dissipation term to the NLS equation, to
Dysthe’s equation, and to the band-modified NLS equation (Trulsen & Dysthe 1996)
respectively, and found that any finite amount of dissipation bounds the growth of the
sidebands of plane waves. Carter & Contreras (2008) showed that with the presence
of dissipation, the solution of the NLS equation is linearly stable, though perturbations
may grow a finite amount. Islas & Schober (2011) showed that the presence of
damping can prevent the development of freak waves based on Dysthe’s equation.
Kharif et al. (2010) combined the effects of wind and dissipation in the NLS equation
and demonstrated that this combination has a cumulative effect on the modulation
evolution. This aggregate effect has been shown using a fully nonlinear wave model in
their subsequent work (Touboul & Kharif 2010).

To date, though many previous experimental studies (Melville 1982; Tulin &
Waseda 1999; Waseda & Tulin 1999; Chiang & Hwung 2007; Hwung, Chiang &
Hsiao 2007) on the modulational instability have been carried out, and much progress
has been made, there are but a few experiments focusing on the effect of dissipation
on the Benjamin–Feir instability. Segur et al. (2005) presented only a few cases.
And very recently, Henderson, Segur & Carter (2010) experimentally demonstrated the
stability of bi-periodic patterns of waves on deep water when dissipation was included.
However they had a relatively short facility, thus very short waves (wavelengths of
0.14 m) were used. The lack of experiments to further verify the stabilization theory
is the primary motivation of this study. To our knowledge, the results presented
here represent the first experiments to consider initially perturbed wave trains with
varying steepness and added sidebands, to provide quantitative evidence of the effect
of dissipation on the modulational instability in deep water.

In this study, we have performed detailed experiments by varying initial wave
steepness and added sidebands so that we could quantitatively examine the theory of
Segur et al. (2005). However, due to the limitation of the present flume (∼50 m of
usable length), the main focus of this study is the effect of dissipation on the initial
stage of the modulational evolution.

The paper is arranged as follows. In § 2 the experimental procedure and data
analysis are described in detail. Experimental results and some numerical simulations
based on Dysthe’s equation are presented in § 3. A discussion of the results on the
growth of sidebands is included in § 4. Lastly, conclusions are advanced in § 5.

2. Description of the experiment
2.1. Experimental setup

The experiments are conducted in a wave–current flume located at the State Key
Laboratory of Coastal and Offshore Engineering, Dalian University of Technology,
Dalian, China. The flume is 65 m long, 2 m wide and 1.8 m deep. The detailed
experimental setup is shown in figure 1. In this flume, both waves and currents
can be generated; however only waves are generated in this study. The flume is
equipped with a servo-motor-driven piston-type wavemaker with x = 0 m defined as
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FIGURE 1. (Colour online) Experimental set-up (not to scale).

the mean position of the wavemaker. At the other end of the flume, wave absorbers are
installed to mitigate wave reflection. Prior experiments have shown that the reflection
coefficient is only ∼5 % for 1 Hz waves; thus we neglect its effect. In a physical
wave flume, viscous dissipation due to sidewalls is ubiquitous (Banner & Peirson
2007; Tian, Perlin & Choi 2010). To increase the energy dissipation by the sidewalls
for this investigation, from x = 8.9 m onward, a narrower width flume is used; a
surface-ground concrete wall separates the flume longitudinally into two sections with
widths of 0.8 and 1.2 m with the surface ground to give a condition similar to the
glass wall and thus help retain a two-dimensional flow. The narrower 0.8 m wide
section is chosen as the working section. By using the narrower side of the flume, the
likelihood of retaining two-dimensionality of the wave field is increased.

The water surface elevations are recorded simultaneously with 36 capacitance wave
gauges, which are shown by filled circles in figure 1. For x < 12.9 m, the distance
between the wave gauges is 2 m; for the remainder of the flume, the gauge spacing
is decreased to 1 m. The absolute accuracy of these gauges is of the order of ±1 mm.
Before initiating any measurements, the gauges are examined for soundness, cleaned if
necessary, and then calibrated. All experiments are repeated three times to ensure the
repeatability of the entire system and to provide an indication of the error. Between
experiments at least 15 min is allowed to elapse to ensure a calm water surface. The
data acquisition system is PC based with multiple channels, and was developed by
Beijing Hydraulic Research Institute. The water surface elevations are sampled with
frequency 50 Hz, and the duration of each record is 163.84 s.

2.2. Wave group generation
Wave trains with imposed sidebands, or so-called ‘seeded’ waves (Tulin & Waseda
1999), are chosen. This method ensures that the background noise is suppressed
significantly (Tulin & Waseda 1999). The imposed sideband wave train is as follows:

η = ac cos(2πfct)+ a+ cos(2πf+t + ϕ+)+ a− cos(2πf−t + ϕ−), (2.1)
f± = fc ±1f , (2.2)

where ac, a+ and a− are the amplitudes of the carrier, upper sideband and lower
sideband respectively, fc, f+ and f− are the corresponding cyclic frequencies, 1f is the
frequency difference between the carrier wave and its sidebands, and ϕ+ and ϕ− are
the initial phase differences between the sidebands and the carrier wave, which are set
to −π/4 in the generation signal, to provide the maximum growth rate (Benjamin &
Feir 1967). Here the initial steepness ε and the amplitude a0 of the wave trains are
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Case fc
(Hz)

ε 1f
(Hz)

a−/ac a+/ac βx δ BFI 1E
(%)

σe
(m−1)

SB1 1.0 0.115 0.05 0.058 0.092 0.0056 0.44 4.6 0.33 0.0058
SB2 1.0 0.115 0.075 0.044 0.064 0.0065 0.65 3.1 0.34 0.0067
SB3 1.0 0.115 0.1 0.041 0.047 0.0061 0.87 2.3 0.31 0.0057
SB4 1.0 0.115 0.125 0.043 0.046 −0.0005 1.09 1.8 0.36 0.0062
SB5 1.0 0.157 0.05 0.061 0.084 0.0097 0.32 6.3 0.33 0.0059
SB6 1.0 0.157 0.075 0.044 0.073 0.0125 0.48 4.2 0.33 0.0064
SB7 1.0 0.157 0.1 0.047 0.045 0.0128 0.64 3.1 0.32 0.0068
SB8 1.0 0.157 0.125 0.051 0.047 0.0113 0.8 2.5 0.35 0.0072
SB9 1.0 0.157 0.15 0.041 0.045 0.0073 0.96 2.1 0.35 0.0061
SB10 1.0 0.157 0.175 0.038 0.069 0.0042 1.11 1.8 0.33 0.0056
SB11 1.0 0.115 0.125 0.079 0.117 — 1.09 1.9 0.33 0.0061
SB12 1.0 0.115 0.175 0.081 0.129 — 1.09 1.3 0.30 0.0063
SB13 1.0 0.157 0.125 0.191 0.204 — 1.11 2.5 0.31 0.0068
SB14 1.0 0.157 0.175 0.163 0.207 — 1.11 1.8 0.32 0.0065

TABLE 1. Wave parameters measured at the first location x= 4.9 m

defined as:

ε = kca0, (2.3)

a0 =
√

a2
c + a2+ + a2−, (2.4)

where kc is the wavenumber of the carrier wave, which satisfies the deep-water
dispersion relationship:

(2πfc)
2 = gkc. (2.5)

To investigate fully the effect of dissipation on the modulational evolution of
deep-water waves, wave trains with varying initial steepness, varying frequency and
differing perturbation amplitude are chosen. The detailed wave parameters, which are
determined from the measured data at the first location (x = 4.9 m), are shown in
tables 1 and 2. Here, δ is a non-dimensional frequency parameter:

δ =1f /εfc. (2.6)

When the value of δ is in the range 0–
√

2, the condition of the modulational instability
is satisfied (Benjamin & Feir 1967). Janssen (2003) defined a parameter called the
Benjamin–Feir index (BFI) to determine the instability onset:

BFI= 2εfc

1f
. (2.7)

According to Alber (1978) and in terms of Janssen’s BFI, if BFI is larger than
1, the modulational instability develops along the wave propagation direction. In
addition 1E = (Ei − Ef )/Ei is the measured energy loss in the tank (presented as
a percentage in table 1), where Ei and Ef are the measured energies at the initial and
final measurement locations, with the wave energy E herein defined as:

E =
N∑

n=1

A2
n. (2.8)
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In this equation An is the measured amplitude of the nth Fourier mode while N
represents the highest Fourier mode. For all experimental cases, the energy loss along
the tank is nearly identical. The last column of table 1 presents the fitted decay
parameter σe, which will be used as a linear damping term in Dysthe’s equation (see
§ 3.2).

To reduce the effect of wave fronts, following Tulin & Waseda (1999), a finite ramp
e(t) is added at the beginning and the end of the wave generation signals:

e(t)=


1
2(1− cos(πt/τ)), 0 6 t 6 τ,

1, τ < t 6 T − τ,
1
2(1− cos(π(t − T)/τ)), T − τ < t 6 T,

(2.9)

where τ is the ramp duration and T is the total duration of the signal.

2.3. Data analysis method
Wave spectra are used to examine the redistribution of energy across the frequency
spectrum. In this study, wave spectra are obtained by fast Fourier transform (FFT),
and then smoothed by the Hanning window. The frequency resolution of the spectra
is ∼0.012 Hz, which is small enough to distinguish adjacent wave modes. The
amplitudes, an, from the wave energy spectra are estimated as the square root of
the energy of the spectral peaks by integrating the contributions from the neighbouring
frequency bins as follows:

a2
n = 1

2(A
2
n−1 + A2

n+1)+ A2
n. (2.10)

This method is used to help compensate for the leakage of the spectral energy due to
the finite length of the time series record.

To study the initial sideband growth rate βx, the following steps are implemented
(Lake et al. 1977; Waseda & Tulin 1999). The calculated amplitudes of the sidebands
(a±) are non-dimensionalized by the carrier wave amplitude (ac). Next, the mean non-
dimensional sideband amplitudes ā are calculated by averaging the non-dimensional
amplitudes of the upper and lower sidebands (a+, a−). Then, the mean non-
dimensional sideband amplitudes ā are plotted versus non-dimensional distance kx,
and βx is estimated through fitting the data to the model equation:

ā(kx)= ā (0) exp(βxkx), (2.11)

using the least-squares method. Illustration of this method can be seen in figure 2,
which indicates that it can estimate the sideband growth accurately. The estimated βx

for the weak modulated cases are shown in table 1.

3. Results
3.1. Evolution of the measured results

Figure 3 shows the evolution at the first and the last measurement locations of the
surface elevations and the corresponding spectra for three initial weakly modified cases
with ε = 0.115. We can see that the modulation has developed slightly downstream.
In particular, as is evident from their spectra, there is almost no change in the wave
train for Case SB4, which in fact has a similar theoretical growth rate to Case
SB1. In these cases, though sideband amplitudes developed, the spectra at the end
of the flume indicate that there is no apparent asymmetric growth of the lower and
upper sidebands, which always was observed in experiments with large amplitudes
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FIGURE 2. Illustration of the fitting of the non-dimensional amplitudes. Solid circles:
measured non-dimensional amplitudes, curves: fitted results: (a) Case SB2, βx = 0.0065;
(b) Case SB8, βx = 0.0113.

(Melville 1982; Tulin & Waseda 1999). It is noted that as the waves propagated, no
sideband amplitude exceeded one quarter of the carrier wave amplitude (see figure 11).
Thus, the x = 4.9 m and x = 46.9 m data presented in figure 3 are indicative of the
downstream evolution.

The measured amplitude evolution of the lower and upper sidebands for the weakly
perturbed cases with ε = 0.115 are shown in figure 4 (i.e. Cases SB1 to SB4,
respectively). (Throughout this paper, these measured amplitudes are designated by ‘a’
as in figure 4.) For the first three cases, the amplitudes of the sidebands oscillated, but
in an increasing manner along the flume. However, no sideband grew to exceed even
one quarter of the carrier wave (figure 11). Contrastingly, the sideband amplitudes
for Case SB4 have not increased, but exhibited a slight tendency to decrease, even
though the initial condition satisfied the onset criterion (δ <

√
2) of the Benjamin–Feir

instability. At the middle of the wave channel, about x = 25 m, the wave system
of Case SB4 still satisfied the onset condition of the Benjamin–Feir instability
(ac = 2.74 cm, a− = 0.11 cm, a+ = 0.13 cm, ε = 0.1106, δ = 1.13, BFI = 1.77).
However, in the presence of sufficient dissipation, a modulational instability is not
initiated, i.e. the waves are stabilized (Segur et al. 2005). As the theoretical growth
rates of Cases SB1 and SB4 are similar (see figure 7 below), but the sideband
evolution of the two cases is different, it appears that the effect of dissipation on
the Benjamin–Feir instability depends on the perturbation frequencies. The cases with
larger initial steepness also exhibited this phenomenon (see figure 6 below).

In figure 4 it is noted that the amplitudes of the oscillations exhibited constant
fluctuation lengths, and are seemingly related to the perturbation frequencies. (A
detailed discussion on this is presented in § 4.) This phenomenon may be caused
by fifth- or higher-order wave–resonant interactions, as they are not described by the
fourth-order NLS equation (see the next section).

Figure 5 shows the measured surface elevations and the corresponding spectra for
some initial weakly disturbed cases with a larger initial steepness (ε = 0.157). These
cases exhibit an obvious development in both the time and the frequency domains.
However, in these cases, no sideband amplitude grew to exceed the amplitude of the
carrier wave (see figures 6 and 12), i.e. frequency downshift is not observed in these
cases. Additionally, there is apparent development at a−n and a+n with frequencies
(fc ± nδf ) and n > 1, that automatically occurred in the evolution process as they also
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Case SB3
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FIGURE 3. Measured surface elevations (a) and their corresponding spectra (b) for some
initial weakly modified wave trains, ε = 0.115.

satisfied the onset of the modulational instability condition. However the development
of these modes is not as obvious for the cases with higher perturbation frequency
(Case SB14).

The evolution of the measured sidebands for the cases presented in figure 4 is
clarified in figure 6. Noting the ordinate scale difference between figures 3 and 5, the
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(a) (b)
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FIGURE 4. The evolution of the measured sidebands for the initial weakly perturbed cases
with ε = 0.115; open circles: lower-sideband amplitudes; filled circles: upper-sideband
amplitudes: (a) δ = 0.44 (Case SB1); (b) δ = 0.65 (Case SB2); (c) δ = 0.87 (Case SB3);
(d) δ = 1.09 (Case SB4).

growth of the sideband amplitudes is more significant than those cases with smaller
initial steepness. This is especially true for the Case SB10, which has a similar δ
to Case SB4, where the sideband amplitudes increased downstream, even though the
growth rate is not obvious, indicating that the stabilization effect can be mitigated by
increasing the initial steepness. It is noted that the oscillation of the sidebands along
the flume is not as obvious for these cases, as the oscillation amplitudes are small
compared with the exponential growth of the sidebands.

The initial growth rates βx estimated by (2.11) for the cases with weak perturbations
are much smaller than the theoretical results (figure 7), indicating that the increase
of the sidebands for these cases is bounded by dissipation (see figure 7). The above
results show that the dissipation rates for all the cases are similar, but that the
sidebands growth varies, indicating that the effect of dissipation on the modulational
instability depends heavily on the modulational frequency. Moreover, the influence of
dissipation on the modulational instability for a lower disturbance frequency is less
than those cases with a higher disturbance frequency, even when they have a similar
theoretical growth rate. The suppression effect on the growth rate of the sidebands is
not evident for the wave trains with the smallest perturbed frequencies (1f = 0.05 Hz).
However, the evolution of the waves with perturbation frequencies close to the upper
marginal frequency is depressed completely. In addition, it is noticed that discrepancies
between the measured growth rate and the theory for the cases with larger steepness
are more significant than those cases with smaller steepness, indicating that the effect
of dissipation on larger waves is more evident than on smaller waves.
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FIGURE 5. The measured surface elevations (a) and the corresponding spectra (b) for the
initial weakly modified wave trains, ε = 0.157.

The stabilization effect on the modulation instability can be mitigated by increasing
the initial steepness (by comparing figures 4d and 6d) suggesting that increasing
the initial sideband amplitudes may remove the effect of stabilization. Likewise, the
sideband-amplitude evolution for cases with larger initial perturbations are shown in
figures 8 and 9 (note that the corresponding cases with smaller initial perturbations
are totally suppressed presumably by dissipation, and that these wave trains are
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FIGURE 6. Evolution of the measured sidebands for an initially weak perturbation, ε =
0.157; open circles: lower-sideband amplitudes; filled circles: upper-sideband amplitudes. (a)
δ = 0.32 (Case SB5), (b) δ = 0.48 (Case SB6), (c) δ = 0.64 (Case SB7), (d) δ = 0.8 (Case
SB8), (e) δ = 0.96 (Case SB9), (f ) δ = 1.11 (Case SB10).

stabilized). For these cases the sideband amplitudes do not decrease, but in fact
increase downstream, indicating that instability has developed further. However, it is
noticed that the growth of the lower sidebands is not as evident as is that of the upper
sidebands, especially at the later stage of the modulation (see figure 9). This is very
different from the previous laboratory results (Tulin & Waseda 1999; Hwung et al.
2007) in which the dissipation was negligible due to the large width of their tanks.
The previous experiments also have shown the asymmetric evolution between the
lower and the upper sidebands in the later stage of evolution, but in those experiments
the lower sidebands were always larger than the upper sidebands, and eventually
frequency downshift occurred.

3.2. Comparison between the experiments and numerical results
It is well known that the evolution of weakly nonlinear deep-water waves with narrow-
band spectra obeys the NLS equations (Zakharov 1968; Lake et al. 1977). Dysthe
(1979) derived a modified NLS with a correction term for broader bandwidths. Even
though this modified NLS equation does not have a Hamiltonian structure (Gramstad
& Trulsen 2011), it is used widely to model the evolution of the modulational
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FIGURE 7. The initial growth rates of the measured sideband amplitudes. The upper solid
curve is the theoretical result of Benjamin & Feir (1967); the lower two solid curves are
the predictions based on the reduced fourth-order interaction equation (Krasitskii 1994)
forε = 0.115 and 0.157. The dotted line is the prediction by Krasiskii’s equation minus
the mean measured decay rate for the cases with ε = 0.115, and the dashed line that for the
cases with ε = 0.157. The experimental data with error bars are also shown on the figure.
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FIGURE 8. Evolution of the measured sideband amplitudes for cases with ε = 0.115 and
larger initial amplitude modulation; open circles: lower-sideband amplitudes; filled circles:
upper-sideband amplitudes. (a) Case SB11; (b) Case SB13.

instability (Lo & Mei 1985; Islas & Schober 2011). Dysthe’s equation with a linear
damping term can be written as:

∂A

∂t
+ ω0

2k0

∂A

∂x
+ i

ω0

8k2
0

∂2A

∂x2
+ i

2
ω0k2

0|A|2A− ω0

16k3
0

∂3A

∂x3
− ω0k0

4
A2 ∂A∗

∂x

3ω0k0

2
|A|2 ∂A

∂x
+ ik0A

∂φ

∂x

∣∣∣∣
z=0

+ σA= 0, (3.1)

where A is the complex amplitude of the wave, A∗ is the complex conjugate of A, ω0

is the angular frequency of the carrier wave, k0 is the wavenumber, φ is the potential
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FIGURE 9. Evolution of the measured sideband amplitudes for cases with ε = 0.157 and
larger initial amplitude modulation; open circles: lower-sideband amplitudes, filled circles:
upper-sideband amplitudes. (a) Case SB12; (b) Case SB14.

of the induced mean current, and σ is the linear damping, which can be estimated
from the measured experimental data.

To compare the numerical results with the measured data, Lo & Mei (1985)
transformed (3.1) into a moving coordinate system with the following dimensionless
variables:

A= a0A′, φ = ω0a2
0φ
′,

εω0γ

(
2k0

ω0
x− t

)
= ξ, εk0γ z= z′,

ε2k0x= η, ελk0h= h′,

 (3.2)

where γ is scale factor which renders the computational domain of ξ into [0, 2π].
With (3.2), the normalized Dysthe’s equation with a linear damping term becomes:

∂A

∂η
+ iγ 2 ∂

2A

∂ξ 2
+ i|A|2A+ 8εγ |A|2 ∂A

∂ξ
+ 4iεγA

∂φ

∂ξ

∣∣∣∣
z=0

+ σ̃A= 0, (3.3)

σe = ε2k0σ̃ . (3.4)

For brevity, the primes in (3.3) are omitted. Without the fourth and the fifth terms,
(3.3) reverts to the NLS equation for deep water.

The initial condition used in the numerical model is:

A (ξ, 0)= 1+ S+n exp [i(ξ + ϕ+n)]+ S−n exp [i(ξ + ϕ−n)] (3.5)

where S and ϕ are the measured initial amplitude ratio and the relative phase,
respectively, between the sidebands and the carrier waves. In this study, the first two
sidebands (n = 1, 2) are used in the simulations. The detailed complex amplitudes for
each wave component measured at the first location x= 4.9 m are shown in table 2.

Following Segur et al. (2005) and Henderson et al. (2010), we assume that wave
energy decay is exponential:

E (x)= E(0) exp(−2σex). (3.6)

We will use σe to denote the dissipation rate estimated from the experimental data.
The measured data are fitted using the least-squares method. Figure 10 illustrates two
examples of the fitted curves for experimental cases. It can be seen that the decay can
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FIGURE 10. The measured E and the fitted curves: (a) Case SB2; (b) Case SB8.
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FIGURE 11. Predictions with the linear damping term from Dysthe’s equation (solid lines)
and the NLS equation (light dotted lines). The measured amplitudes (bold dots) are the results
for the initial weakly perturbed cases with the smaller steepness: (a) the carrier waves ac;
(b) the first lower sidebands a−1; (c) the first upper sidebands a+1. Cases SB1–SB4 (top to
bottom).

be described reasonably well by the exponential curve. The estimated σe for all the
experimental cases is presented in table 1. Converting σe then to σ̃ using (3.4), and
inserting its value in (3.3) completes the parameters required. According to Lo & Mei
(1985), the linear theoretical dissipation rate due to the wall boundary layer can be
written:

σD =
(
ν

πfc

)1/2 kc

B
, (3.7)
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FIGURE 12. Predictions with the linear damping term from Dysthe’s equation (solid lines)
and the NLS equation (light dotted lines). The measured amplitudes (bold dots) for the initial
weakly perturbed cases with the larger steepness: (a) the carrier waves ac; (b) the first lower
sidebands a−1; (c) the first upper sidebands a+1. Cases SB5–SB10 (top to bottom).

where B is the flume width, and, ν = 10−6 m2 s−1 is the kinematic viscosity of water.
For the present flume, B = 0.8, so that the theoretical linear dissipation rate of the
experimental cases is 0.0028 m−1, which is smaller than the measured σe. Hence, the
dissipation seen in the experiments includes contributions other than those included in
the theory, such as those due to contact lines and surface boundary layers.

Figure 11 presents comparisons between the measured amplitudes and the numerical
results for the initial weakly perturbed wave trains with ε = 0.115. The results indicate
that both Dysthe’s and the NLS equations with a linear damping term, which is
estimated from the measured data, predict well the evolution of the nonlinear wave
trains with δ < 1.0. However, for cases with δ > 1.0 (Case SB4), Dysthe’s equation
predicts the evolution well, but the NLS equation clearly overestimates the sideband
growth. As the higher sidebands for these cases do not exhibit obvious growth (see
figure 3), the comparisons for the evolution of the sideband are not illustrated here. It
is noticed that Dysthe’s equation still cannot predict the oscillations of the sidebands
downstream, suggesting that the oscillations may be caused by higher-order wave
interactions. The agreement between the measured and the numerical results indicates
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FIGURE 13. Predictions for the evolution of the second sidebands by Dysthe’s equation
(solid lines) and the NLS equation (light dotted lines) with the linear damping term. The
measured amplitudes (bold dots) for the initial weakly perturbed cases with the larger
steepness: (a) the second lower sidebands a−2; (b) the second upper sidebands a+2. Cases
SB5–SB10 (top to bottom). Here, unlike figures 11 and 12, Cases SB1–SB4 have been
omitted as they do not exhibit obvious growth.

that the dissipation effect on the modulational evolution related to the initial perturbed
frequencies can also be predicted within the framework of the NLS equation.

Comparisons of the carrier wave (fc) and the first sidebands (fc ± δf ) are shown in
figure 12 for the cases with initial weakly perturbed waves with larger initial steepness.
The corresponding comparisons for the second sidebands (fc ± 2δf ) are shown in
figure 13. The results indicate that, for the cases with obvious sideband growth,
the experimental Cases SB6 can be modelled reasonably well by the two numerical
models. For the stabilized case (SB10), which has a broad bandwidth δ = 1.11,
Dysthe’s equation predicts the evolution well, but the NLS equation overestimates
greatly the sideband evolution. It is interesting to note that for Cases SB7–SB9,
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FIGURE 14. The evolution of the integral quantity P along the flume for cases corresponding
to figure 12.

Dysthe’s equation predicts the lower sidebands well, while the NLS equation predicts
the upper sidebands better. This phenomenon also can be observed for the second-
sideband evolution (figure 13).

Segur et al. (2005) claimed that the NLS-type equations are invalid if the integral of
the ‘linear momentum’ P is not conserved. For experimental data, P can be defined as:

P= 21f
n∑

i=−n

i |ai|2. (3.8)

In this study, n is chosen as 6, indicating that only the first six sidebands are
considered. The computed P for Cases SB5–SB10 is shown in figure 14. For Cases
SB7–SB9, the values of P increase gradually along the tank, which is consistent
with the disagreement between the measured and numerical results in the theoretical
framework of Segur et al. (2005).

The comparisons between the numerical predictions and the measured data for the
cases with initial larger perturbations are shown in figure 15. Dysthe’s model predicts
fairly well the evolution for Case SB11. However, the prediction from the NLS
equation for this case is overestimated, mainly due to the initial frequency bandwidth
(δ = 1.09). For the other three cases (Cases SB12–14), both Dysthe’s and the NLS
equations are invalid. As the momentum integrals for these cases are not conserved
during the evolution (figure 16), the discrepancies between the numerical results and
the measured data are consistent with the theory of Segur et al. (2005). Similar to the
previous cases, the integral P for this case has a tendency toward positive values. This
phenomenon is caused primarily by the asymmetric growth of the lower and upper
sidebands.

4. Discussion on the oscillatory growth of sidebands
In the above discussion, the evolution of the sidebands showed an oscillatory growth

pattern, especially for the cases with the smaller steepness (figure 4). Although the
physical mechanism of this phenomenon is unknown, the oscillation is seemingly
related to the difference frequency 1f .
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FIGURE 15. Predictions with the linear damping term using Dysthe’s equation (solid lines)
and the NLS equation (light dotted lines). The measured amplitudes (bold dots) for the initial
large perturbed cases: (a) the carrier waves ac; (b) the first lower sidebands a−1; (c) the first
upper sidebands a+1. Cases SB11–SB14 (top to bottom).

From the measured data, the evolution of the sidebands can be assumed to be
composed of two parts. One part is the exponential growth/decay or trend in the data,
the other is the oscillation which is assumed to have constant amplitude. Hence, the
development of the sidebands can be modelled by:

a (kx)= a (0) exp(βxkx)+ ã cos(K̃kx), (4.1)

where ã is the oscillation amplitude and K̃k is the wavenumber of the oscillation.
Then, ã and K̃ can be estimated through fitting data to (4.1) by adopting the least-
squares method. The fitted results for the first four cases are shown in figure 17. It can
be seen that the above equation models the sideband evolution quite well.

More interestingly, table 3 presents the estimated parameters required by (4.1) where
it is found that the oscillation wavenumber multiplier K̃ is very close to K/k, where
K is the difference wavenumber. As illustrated in figure 17, by replacing K̃ in (4.1)
with K, the curves model the growth well. Thus, the second term of (4.1) can be
written approximately as ã cos(Kx), which also demonstrates the appropriateness of the
assumption that the oscillation is related to the disturbance frequency.

5. Conclusions
New experiments focused on the effects of dissipation on the Benjamin–Feir

instability have been conducted. In this study, dissipation is caused primarily by
the background environment of the tank. A number of wave trains with varying
initial steepness, perturbation frequency and initial perturbed strength are mechanically
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FIGURE 16. The evolution of the integral quantity P along the flume for cases with initial
large perturbations.

Case 1f (Hz) K/k a+1 (cm) K̃+1 a−1 (cm) K̃−1

SB1 0.05 0.10 0.0568 0.1056 0.061 0.0967
SB2 0.075 0.15 0.0265 0.1591 0.039 0.1523
SB3 0.1 0.20 0.0263 0.1954 0.023 0.2045
SB4 0.125 0.25 0.0239 0.2439 0.021 0.2409

TABLE 3. The estimated parameters required by (4.1)

generated in a long wave flume. The primary results of the present experiments show
that even though perturbations grow somewhat, the growth is bounded, confirming
the stabilization theory of Segur et al. (2005) directly. By increasing the perturbed
amplitudes, the stabilization effect can be mitigated partially, but the ability to affect
stabilization is limited, especially for the lower sidebands. It is also found that the
effect of dissipation is related closely to the perturbation frequency. Even with a
similar theoretical growth rate, wave trains with higher perturbed frequencies are
easier to stabilize in the presence of dissipation. However the physical mechanism
responsible for this phenomenon has not been determined. In addition, the growth rate
of waves with larger amplitudes is reduced further by dissipation than waves with
smaller amplitudes.

Numerical simulations have been performed using both Dysthe’s equation and the
NLS equation with a linear exponential damping term, which is estimated through
fitting the measured data. The initial condition for the numerical models is obtained
from the first measurement location. The results indicate that both equations can
predict reasonably well the evolution of the wave trains if the momentum integral of
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FIGURE 17. The fitted curves of the sideband evolution for the first four cases using (4.1)
(Cases SB1–SB4, top to bottom): bold dots represent the measured data, the solid curves are
the fitted results using (4.1), the dash dot lines represent the results by replacing K̃ with K in
(4.1). (a) The first lower sidebands a−1, (b) the first upper sidebands a+1.

the wave trains is conserved during the evolution. However Dysthe’s equation performs
better than the NLS equation for cases with higher perturbation frequency.
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