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Abstract. We consider the Lagrange and the Markov dynamical spectra associated to
horseshoes on a surface with Hausdorff dimension greater than one. We show that for
a ‘large’ set of real functions on the surface and for ‘typical’ horseshoes with Hausdorff
dimension greater than one, both the Lagrange and the Markov dynamical spectra have
persistently non-empty interior.

1. Introduction

Regular Cantor sets on the line play a fundamental role in dynamical systems and
notably also in some problems in number theory. They are defined by expansive maps
and have some kind of self-similarity property: small parts of them are diffeomorphic
to big parts with uniformly bounded distortion (see precise definition in Appendix A).
Some background on the regular Cantor sets, relevant to our work, can be found in
[CF89, PT93, MY01, MY10].

A mathematical object intimately related to our work (cf. [CF89]), is the classical
Lagrange spectrum, which is defined as follows: given an irrational number α, according
to Dirichlet’s theorem, the inequality |α − p/q|< 1/q2 has infinite rational solutions p/q.
Markov and Hurwitz improved this result (cf. [CF89]), by verifying that, for all irrational
α, the inequality |α − p/q|< 1/(

√
5q2) has an infinite number of rational solutions p/q.

Meanwhile, for a fixed irrational α, better results can be expected. This leads us to
associate to each α its best constant of approximation (Lagrange value of α), given by
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k(α) = sup
{

k > 0 :
∣∣∣∣α − p

q

∣∣∣∣< 1
kq2 has infinitely many rational solutions

p
q

}
= lim sup
|p|,q→∞
p∈Z,q∈N

|q(qα − p)|−1
∈ R ∪ {+∞}.

Then we always have k(α)≥
√

5. Consider the set

L = {k(α) : α ∈ R\Q and k(α) <∞},

known as the Lagrange spectrum (for properties of L , cf. [CF89]).
In 1947, Hall (cf. [Hal47]) proved that for the regular Cantor set C(4) of the real

numbers in [0, 1], which only has the coefficients 1, 2, 3, 4 in its continued fraction,

C(4)+ C(4)= [
√

2− 1, 4(
√

2− 1)].

Let α be an irrational number expressed in continued fractions by α = [a0, a1, . . .]. Define,
for each n ∈ N, αn = [an, an+1, . . .] and βn = [0, an−1, an−2, . . .]. Using elementary
continued fraction techniques it can be proved that

k(α)= lim sup
n→∞

(αn + βn).

With this latter characterization of the Lagrange spectrum and from Hall’s result, it follows
that L ⊃ [6,+∞); the Lagrange spectrum contains a whole half-line, called Hall’s ray.

In 1975, Freiman (cf. [Fre75, CF89]) proved some difficult results showing that the
arithmetic sum of certain (regular) Cantor sets, related to continued fractions, contain
intervals, and he used them to determined the precise beginning of Hall’s ray (the biggest
half-line contained in L), which is

2221564096+ 283748
√

462
491993569

∼= 4, 52782956616 . . . .

Another interesting set is the classical Markov spectrum defined by (cf. [CF89])

M =
{

inf
(x,y)∈Z2\(0,0)

| f (x, y)|−1
: f (x, y)= ax2

+ bxy + cy2 with b2
− 4ac = 1

}
.

Both the Lagrange and Markov spectra have a dynamical interpretation. This fact is an
important motivation for our work.

Let 6 = (N∗)Z and σ :6→6, which is the shift defined by σ((an)n∈Z)= (an+1)n∈Z.
If f :6→ R is defined by f ((an)n∈Z)= α0 + β0 = [a0, a1, . . .] + [0, a−1, a−2, . . .],
then

L =
{

lim sup
n→∞

f (σ n(θ)) : θ ∈6

}
and

M =
{

sup
n∈Z

f (σ n(θ)) : θ ∈6

}
.

This last interpretation, in terms of shift, admits a natural generalization of the Lagrange
and Markov spectra in the context of hyperbolic dynamics (at least in dimension two,
which is the focus of this work).
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We will define the Lagrange and Markov dynamical spectra as follows. Let ϕ : M2
→

M2 be a diffeomorphism with 3⊂ M2 a hyperbolic set for ϕ. Let f : M2
→ R be a

continuous real function: then the Lagrange dynamical spectrum associated to ( f, 3) is
defined by

L( f, 3)=
{

lim sup
n→∞

f (ϕn(x)) : x ∈3
}
,

and the Markov dynamical spectrum associated to ( f, 3) is defined by

M( f, 3)=
{

sup
n∈Z

f (ϕn(x)) : x ∈3
}
.

The problem of finding intervals in the classical Lagrange and Markov spectra is closely
related to the study of the fractal geometry of regular Cantor sets related to the Gauss
map. Fractal geometry of Cantor sets is also the key to solving some problems about
dynamical Lagrange and Markov spectra in dimension two. In fact, using results on stable
intersections of two regular Cantor sets for which the sum of Hausdorff dimensions is
greater than one (cf. [MY01, MY10]), we prove the following theorem.

MAIN THEOREM. Let 3 be a horseshoe associated to a C2-diffeomorphism ϕ such
that H D(3) > 1. Then, arbitrarily close to ϕ, there is a diffeomorphism ϕ0 and a C2-
neighborhood W of ϕ0 such that, if3ψ denotes the continuation of3 associated toψ ∈W ,
there is an open and dense set Hψ ⊂ C1(M, R) such that for all f ∈ Hψ ,

int L( f, 3ψ ) 6= ∅ and int M( f, 3ψ ) 6= ∅,

where int A denotes the interior of A.

Remark. In the previous statement, by horseshoe we mean a compact, locally maximal,
transitive hyperbolic invariant set of saddle type (and so it contains a dense subset of
periodic orbits).

2. Preliminaries
2.1. Preliminaries from dynamical systems. If 3 is a hyperbolic set associated to a
C2-diffeomorphism, then the stable and unstable foliations F s(3) and Fu(3) are C1.
Moreover, these foliations can be extended to C1 foliations defined on a full neighborhood
of 3 (cf. [KH95, p. 604]).

Let3 be a horseshoe of ϕ and consider a finite collection (Ra)a∈A of disjoint rectangles
of M , which form a Markov partition of 3 (cf. [Shu86, p. 129]). The set B⊂ A2 of
admissible transitions consist of pairs (a0, a1) such that ϕ(Ra0) ∩ Ra1 6= ∅. We can define
the following transition matrix B, which induces the same transitions as B⊂ A2, as

bai a j = 1 if ϕ(Rai ) ∩ Ra j 6= ∅, bai a j = 0 otherwise, for (ai , a j ) ∈ A2.

Let 6A = {a = (an)n∈Z : an ∈ A∀n ∈ Z}. We can define the homeomorphism of 6A as the
shift σ :6A→6A where σ((an)n∈Z)= (an+1)n∈Z.

Let 6B = {a ∈6A : banan+1 = 1}; this set is a closed and σ -invariant subspace of 6A.
Still denote by σ the restriction of σ to 6B . The pair (6B, σ ) is called a subshift of finite
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type of (6A, σ ). Given x, y ∈ A, we denote by Nn(x, y, B) the number of admissible
strings for B of length n + 1 that begin at x and end at y. Then

Nn(x, y, B)= bn
xy .

In particular, since ϕ|3 is transitive, given x, y ∈ A, there always exists a minimum number
n(x, y) ∈ N∗ such that Nn(x,y)(x, y, B) > 0 and, putting N0 :=max{n(x, y) : x, y ∈ A}
for all x, y ∈ A, there is a word beginning at x and ending at y of length less or equal to
N0 + 1.

Subshifts of finite type also have a sort of local product structure. First, we define the
local stable and unstable sets (cf. [Shu86, Ch. 10])

W s
1/3(a) = {b ∈6B : ∀n ≥ 0, d(σ n(a), σ n(b))≤ 1/3}

= {b ∈6B : ∀n ≥ 0, an = bn},

W u
1/3(a) = {b ∈6B : ∀n ≤ 0, d(σ n(a), σ n(b))≤ 1/3}

= {b ∈6B : ∀n ≤ 0, an = bn},

where d(a, b)=
∑
∞

n=−∞ 2−(2|n|+1)δn(a, b), and δn(a, b) is zero when an = bn and one
otherwise. So, if a, b ∈6B and d(a, b) < 1/2, then a0 = b0 and W u

1/3(a) ∩W u
1/3(b) is a

unique point, denoted by the bracket [a, b] = (. . . , b−n, . . . , b−1, b0, a1, . . . , an, . . .).
If ϕ is a diffeomorphism of a surface (2-manifold), then the dynamics of ϕ on 3 is

topologically conjugate to a subshift6B defined by B: namely, there is a homeomorphism
5 :6B→3 such that the following diagram commutes.

6B
σ //

5

��

6B

5 i.e. ϕ◦5=5◦σ.
��

3
ϕ // 3

Moreover,5 is a morphism of the local product structure: that is,5[a, b] = [5(a), 5(b)]
(cf. [Shu86, Ch. 10]).

3. The Lagrange and Markov dynamical spectra
Let ϕ : M→ M be a diffeomorphism of a compact 2-manifold M and let3 be a horseshoe
for ϕ.

Remark. We have L( f, 3)⊂ M( f, 3) for any f ∈ C0(M, R).
In fact, if we let a ∈ L( f, 3), then there is x0 ∈3 such that a = lim supn→+∞

f (ϕn(x0)). Since 3 is a compact set, there is a subsequence (ϕnk (x0)) of (ϕn(x0)) such
that limk→+∞ ϕ

nk (x0)= y0 and

a = lim sup
n→+∞

f (ϕn(x0))= lim
k→+∞

f (ϕnk (x0))= f (y0).

Claim. f (y0)≥ f (ϕn(y0)) for all n ∈ Z. Otherwise, suppose there is n0 ∈ Z such that
f (y0) < f (ϕn0(y0)). Put ε = f (ϕn0(y0))− f (y0). Then, since f is a continuous function,
there is a neighborhood U of y0 such that

f (y0)+
ε

2
< f (ϕn0(z)) for all z ∈U.
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Thus, since ϕnk (x0)→ y0, there is k0 ∈ N such that ϕnk (x0) ∈U for k ≥ k0: therefore,

f (y0)+
ε

2
< f (ϕn0+nk (x0)) for all k ≥ k0.

This contradicts the definition of a = f (y0).

In the next section we give some tools to prove the Main Theorem.

3.1. The ‘large’ subset of C1(M, R). In this section we construct a ‘large’ set of
functions in C1(M, R), which will be useful in the proof of Main Theorem.

THEOREM 1. The set

Hϕ = { f ∈ C1(M, R) : #M f (3)= 1 and, for z ∈ M f (3), D fz(es,u
z ) 6= 0} (1)

is open and dense, where M f (3)= {z ∈3 : f (z)≥ f (y)∀y ∈3} and es,u
z are unit vectors

in E s,u
z of the definition of hyperbolicity, respectively.

Before proving this theorem we will present some auxiliary results.
We say that x is a boundary point of 3 in the unstable direction if x is a boundary

point of W u
ε (x) ∩3: that is, if x is an accumulation point only from one side by points in

W u
ε (x) ∩3. If x is a boundary point of 3 in the unstable direction, then, due to the local

product structure, the same holds for all points in W s(x) ∩3. So the boundary points
in the unstable direction are local intersections of local stable manifolds with 3. For
this reason, we denote the set of boundary points in the unstable direction by ∂s3. The
boundary points in the stable direction are defined similarly. The set of these boundary
points is denoted by ∂u3.

The following theorem is due to Newhouse and Palis (cf. [PT93, p. 170]).

THEOREM [PN]. For a horseshoe 3, as above, there is a finite number of (periodic)
saddle points ps

1, . . . , ps
ns

such that

3 ∩

(⋃
i

W s(ps
i )

)
= ∂s3.

Similarly, there is a finite number of (periodic) saddle points pu
1 , . . . , pu

nu
such that

3 ∩

(⋃
i

W u(pu
i )

)
= ∂u3.

Moreover, both ∂s3 and ∂u3 are dense in 3.

LEMMA 1. The set

A ′ = { f ∈ C2(M, R) : there is z ∈ M f (3) with D fz(es,u
z ) 6= 0}

is dense in C2(M, R), where es,u
z are unit vectors in E s,u

z , respectively.
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Before proving Lemma 1, we recall the definition of Morse functions. Let f : M→ R,
Cr , r ≥ 2. We say that f is a Morse function, if for all x ∈ M such that D fx = 0,

D2 f (0) : Tx M × Tx M→ R
is non-degenerate: that is, if D2 f (0)(v, w)= 0 for all w ∈ Tx M implies v = 0. Denote
this set by M . A known result says that the set of Morse functions is open and dense in
C2(M, R), r ≥ 2. Note that, in this case, the set Crit( f )= {x ∈ M : D fx = 0} is a discrete
set. In particular, since 3 is a compact set, #(Crit( f ) ∩3) <∞.

Proof of Lemma 1. It is enough to show, simply, that A ′ is dense in M (the Morse
functions). Let f1 ∈M . Then # Crit( f1) <∞, so, since int3= ∅, we can find f ∈
M C2-close to f1 such that M f (3) ∩ Crit( f )= ∅. Therefore, if z ∈ M f (3), we have
D fz(es

z) 6= 0 or D fz(eu
z ) 6= 0.

If, for some z ∈ M f (3), both D fz(es
z) and D fz(eu

z ) are non-zero, then f ∈A ′.
If otherwise, suppose that D fz(es

z)= 0 and D fz(eu
z ) 6= 0. Then there is a C2-

neighborhood V of f and a neighborhood U of z, such that, if x ∈U ∩3 and g ∈ V , then
Dgx (eu

x ) 6= 0. Let R be a Markov partition of3, such that the element Rz of R containing
z is contained in U . Without loss of generality, we can assume that U is contained in a
C2-local chart φ : Ũ ⊂ M→ V ⊂ R2 with U ⊂ Ũ and Ũ ∩ R′ = ∅ for all R′ ∈R\{Rz}.
Observe that, since D fz(es

z)= 0, z ∈ ∂s3. Therefore the possible maximum points of f
in 3 ∩ Rz are on W s

loc(z) ∩3 := K s (stable regular Cantor set), which has zero Lebesgue
measure. Consider the function ψ s

: K s
× R→ R2 defined by

ψ s(x, α)=∇( f ◦ φ−1)(φ(x))− α
(

0 −1
1 0

)
Dφx (es

x ),

where the above matrix is the orthogonal rotation. Since ψ s extends to a C1-function,
then the Lebesgue measure of ψ s(K s

× R) is zero. Therefore, there is a v ∈ R2 with
norm very small such that v /∈ ψ s(K s

× R). Put h(y)= f ◦ φ−1(y)− 〈v, y〉 for y ∈ V .
Thus D(h ◦ φ)x es

x = Dhφ(x)Dφx es
x 6= 0 for all x ∈ K s . Since v can be chosen with norm

arbitrarily small, h ◦ φ is C2-close to f and, since the function increases in the direction
of its gradient, the maximum points of h in 3 ∩ Rz still can only appear in K s . Thus h
satisfies the condition of the lemma.

The case in which D fz(eu
z )= 0 and D fz(es

z) 6= 0 is obtained analogously using a
function C2-close to f and in A ′.

This concludes the proof of the lemma. �

LEMMA 2. Let f ∈ C1(M, R) and z ∈ M f (3) such that D fz(e
s,u
z ) 6= 0. Then z ∈ ∂s3 ∩

∂u3.

Proof. Using local coordinates in z, we can assume that we are in U ⊂ R2 containing zero.
The hypothesis of the lemma implies that D fz 6= 0: that is, if f (z) is a regular value of
f , then α := f −1( f (z)) is a C1-curve transverse to W s

ε (z) and W u
ε (z) in z; moreover, the

gradient vector ∇ f (z) is orthogonal to α at the point z.
Let U be a small neighborhood of z. Then α is subdivided into two regions of U , say

U1 and U2 (see Figure 1). Now suppose that ∇ f (z) is pointing in the direction of U1. Then
in the region I, II, III, IV and V (see Figure 1), there are no points of 3.
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FIGURE 1. Localization of z ∈ M f (3).

In fact, as the function increases in the direction of its gradient, there are no points of
3 in the regions II, III and IV because z ∈ M f (3). If there were points in I of 3, then,
by the local product structure, there would be points in II of 3, which we know cannot
happen. Analogously, if there were points of 3 in V , then there would be points of 3 in
IV , which we also know cannot happen. In conclusion, the only region where there are
points of 3 is V I , so z ∈ ∂s3 ∩ ∂u3. �

Remark 1. Since Cs(M, R), 1≤ s ≤∞ is dense in Cr (M, R), 0≤ r < s, Lemma 1
implies that A ′ is dense in C1(M, R).

LEMMA 3. The set

H1 = { f ∈ C2(M, R) : #M f (3)= 1 and for z ∈ M f (3), D fz(es,u
z ) 6= 0}

is dense in C2(M, R) and therefore dense in C1(M, R).

Proof. By Lemma 1, it is enough to show that H1 is dense in A′.
Let f ∈A′, then there is z ∈ M f (3) such that D fz(e

s,u
z ) 6= 0. Take U , a small

neighborhood of z. Thus, given small ε > 0, consider the function ϕε ∈ C2(M, R) such
that ϕε is C2-close to the constant function zero. Also ϕε = 0 in M\U , ϕε(z)= ε and z is

a single maximum of ϕε . In addition, ϕε
C2
→ 0 as ε→ 0.

Define gε = f + ϕε . Clearly, gε
C2
→ f as ε→ 0. Since z ∈ M f (3), we have gε(z)=

f (z)+ ϕε(z) > f (x)+ ϕε(x)= gε(x) for all x ∈3: that is, z ∈ Mgε (3) and #Mgε (3)

= 1.
Also, D(gε)z(e

s,u
z )= D fz(e

s,u
z ) 6= 0: that is, gε ∈ H1. �

LEMMA 4. The set Hϕ defined in (1) is open.

Proof. Let f ∈ Hϕ and z ∈ M f (3) with D fz(e
s,u
z ) 6= 0, where es,u

z ∈ E s,u
z is a unit vector.

Suppose that ∂ f/∂es,u
z = 〈∇ f (z), es,u

z 〉 = D fz(e
s,u
z ) > 0 and ∇ f (z) is the gradient vector

of f at z.
Let U ⊂ C1(M, R) be an open neighborhood of f such that, for all g ∈ U , we have

∂g/∂es,u
z > 0. The set {es

z , eu
z } is basis of Tz M . Let

V = {v ∈ Tz M : v = aves
z + bveu

z , av, bv ≥ 0}.
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Also, let v ∈ V \{0}. Then ∂g/∂v(z)= Dgz(v) > 0, for any g ∈ U . Since, by Lemma 2,
z ∈ ∂s3 ∩ ∂u3, this implies that there is an open set U of z such that g(z) > g(x) for all
g ∈ U and all x ∈U ∩3\{z}.

Let ε > 0 such that | f (z)− f (x)|> ε/2 for x ∈3\U . Let

Vε/8( f )=
{

g ∈ C1(M, R) : ‖ f − g‖∞ <
ε

8
and ‖D f − Dg‖∞ <

ε

8

}
be a fundamental neighborhood of f . Then we claim that, for all g ∈ Vε/8( f ), the set
Mg(3)⊂U . In fact, if x ∈3\U , then

g(z)− g(x) = g(z)− f (z)+ f (z)− g(x)− f (x)+ f (x)

≥ f (z)− f (x)− |g(z)− f (z)| − |g(x)− f (x)|

≥
ε

2
− 2

ε

8
=
ε

4
.

In particular, g(z) > g(x) for all x ∈3\U , and so Mg(3)= {z}.
This implies that the open set U1 = U ∩ Vε/8( f ) is contained in Hϕ . �

Now we are in a position to prove Theorem 1.

Proof of Theorem 1. Since H1 ⊂ Hϕ and, by Lemma 3, the set H1 is dense in C1(M, R),
the set Hϕ ⊂ C1(M, R) is dense and open in C1(M, R). �

4. The Markov and Lagrange dynamical spectra and image of sub-horseshoes
In this section, we prove that the Lagrange and Markov dynamical spectra contain the
image of a sub-horseshoe by a real function.

Recall that the set Hϕ (see (1)) is open and dense.
Let f ∈ Hϕ and xM ∈ M f (3). Then, by Lemma 2, xM ∈ ∂s3 ∩ ∂u3. By Theorem

[PN], there are p, q ∈3 periodic points such that

xM ∈W s(p) ∩W u(q).

Assume that p and q have the symbolic representation

(. . . , a1, . . . , ar , a1, . . . , ar , . . .) and (. . . , b1, . . . , bs, b1, . . . , bs, . . .),

respectively.
So there are l symbols c1, . . . , cl such that xM is symbolically of the form

5−1(xM )= (. . . , b1, . . . , bs, b1, . . . , bs, c1, . . . , ct , . . . , cl ,

a1, . . . , ar , a1, . . . , ar , . . .),

where ct is the zero position of 5−1(xM ).
Let q

s̃
= (q−s̃, . . . , q0, . . . , qs̃) be an admissible word such that xM ∈ Rq

s̃
=⋂s̃

i=−s̃ ϕ
−i (Rqi ), as in Figure 2, and put a sub-horseshoe 3̃ :=

⋂
n∈Z ϕ

n(3\Rq
s̃
). Thus

there exists an open set U such that U ∩3=3\Rq
s̃

and

3̃ :=
⋂
n∈Z

ϕn(U ).
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FIGURE 2. Removing the point of maximum.

Take s̃ ∈ N sufficiently large so that the Hausdorff dimension of 3̃ is close to the
Hausdorff dimension of 3 (cf. Lemma 6).

Let d ∈ 3̃, and call d = (. . . , d−n, . . . , d0, . . . , dn, . . .) its symbolic representation.
Given small ε > 0, take n0 ∈ N such that

∑
|n|≥n0

2−(2|n|+1) < ε and put dn0
=

(d−n0 , . . . , dn0), which is an admissible finite word. Define the cylinder Cdn0
= {w ∈ AZ

:

wi = di for i =−n0, . . . , n0}. Then the set

Cdn0
,B :=6B ∩ Cdn0

= {w ∈6B : wi = di for i =−n0, . . . , n0}

is non-empty and contains a periodic point.
Using Nn(x,y)(x, y, B) > 0 for any x, y ∈ A, there are admissible strings e =

(e1, . . . , ek0−1) and f = ( f1, . . . , f j0−1) joining d0 with b1 and ar with d1, respectively,
with k0, j0 < N0 (cf. §2.1).

Since xM is a unique maximum point of f in 3, if ε > 0 is small enough, we can take
˜̃s > s̃ and q ˜̃s = (q−˜̃s, . . . , q0, . . . , q ˜̃s) to be an admissible word such that xM ∈ Rq ˜̃s

=⋂ ˜̃s
i=−˜̃s

ϕ−i (Rqi )⊂ Rq
s̃

and

sup f̃ |5−1(3̃)ε
< inf f̃ |5−1(Rq ˜̃s

∩3), (2)

where f̃ = f ◦5 and 5−1(3̃)ε = {x ∈6B : d(x, 5−1(3̃)) < ε}.
Let k ∈ N, k > N0 and k(s + r)+ l > ˜̃s. Then, given the words (a1, . . . , ar ) and

(b1, . . . , bs), we define the words

(a1, . . . , ar )
k
= (a1, . . . , ar , . . . , a1, . . . , ar )︸ ︷︷ ︸

k times

and
(b1, . . . , bs)

k
= (b1, . . . , bs, . . . , b1, . . . , bs)︸ ︷︷ ︸

k times

.

Define the word

α = ((b1, . . . , bs)
k, c1, . . . , ct , . . . , cl , (a1, . . . , ar )

k),

where ct is the zero position of the word α.
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So, having fixed the words e and f , we can define the following mapping, for all x ∈
Cdn0

,B , by

A(x) = (. . . , x−1, x0, e1, . . . , ek0−1, (b1, . . . , bs)
k, c1, . . . ,

ct , . . . , cl , (a1, . . . , ar )
k, f1, . . . , f j0−1, x1, x2, . . .),

where ct is the zero position of the word A(x). Given a finite word a = (a1, . . . , an), we
denote the length of the word a by |a| = n. Then, since k > N0 ≥max{k0, j0},

|e|, | f |, ˜̃s < |α| = k(s + r)+ l,

where e = (e1, . . . , ek0−1) and f = ( f1, . . . , f j0−1).
Now we may characterize supn∈Z f̃ (σ n(A(x))) for x ∈ Cdn0

,B ∩5
−1(3̃).

Observe that (σ l−t+kr+ j0−1(A(x)))+ = x+ and call τ = l − t + kr + j0 − 1. Then, by
the choice of n0, d(σ τ+n0+n(A(x)), σ n0+n(x)) < ε for all n ≥ 0. Analogously, call η =
−(t + sk + k0 − 1). Then d(σ η−n0−n(A(x)), σ−n0−n(x)) < ε for all n ≥ 0. Moreover,
since 5−1(3̃) is a σ -invariant set, if x ∈5−1(3̃), (2) implies that

f̃ (σ τ+n0+n(A(x))), f̃ (σ η−n0−n(A(x))) < inf f̃ |5−1(Rq ˜̃s
∩3) for all n ≥ 0.

The above inequality, implies that, for all x ∈ Cdn0
,B ∩5

−1(3̃), there is j ∈ {η −

n0, . . . , τ + n0} such that supn∈Z f̃ (σ n(A(x)))= f̃ (σ j (A(x))).
Put 5−1(x)= x and define the set

3̃ j := {x ∈ 3̃ ∩5(Cdn0
,B) : sup

n∈Z
f̃ (σ n(A(x)))= f (σ j (A(x)))}.

Thus,

3̃ ∩5(Cdn0
,B)=

η+n0⋃
j=η−n0

3̃ j . (3)

This implies that there is i0 ∈ {η − n0, . . . , τ + n0} such that 3̃i0 has non-empty interior
in 3̃ ∩5(Cdn0

,B): so

H D(3̃)= H D(3̃ ∩5(Cdn0
,B))= H D(3̃i0). (4)

Therefore, for x ∈5−1(3̃i0),

sup
n∈Z

f̃ (σ n(A(x)))= f̃ (σ i0(A(x))). (5)

The next goal is to show that Ã =5 ◦ A ◦5−1 extends to a local diffeomorphism.
First, we show that Ã extends to a local diffeomorphism in stable and unstable manifolds

of d, W s
loc(d) and W u

loc(d).
As3 is symbolically the product 6−B ×6

+

B (cf. Appendix A.2), we introduce the finite
word β (β = eα f ). Using the notation of Appendix A, if

xu
∈W u

loc(d) ∩3, then f u
β (x

u) ∈W u(d) ∩3

and (5−1( f u
β (x

u)))+ = β(5−1(xu))+.
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Also, if

x s
∈W s

loc(d) ∩3, then f s
β (x

s) ∈W s(d) ∩3

and (5−1( f s
β (x

s)))− = (5−1(x s))−β.

The zero position of 5−1(ϕ−|β|+1( f s
β (x

s))) is equal to (β)0 = e1: that is

(5−1(ϕ−|β|+1( f s
β (x

s))))0 = (β)0 = (5
−1( f u

β (x
u)))0.

So we can define the bracket

[5−1( f u
β (x

u)), 5−1(ϕ−|β|+1( f s
β (x

s)))] = (5−1(x s))−β(5−1(xu))+

= A[5−1(xu), 5−1(x s)].

Note that, for xu, x s sufficiently close to d , the bracket [5−1(xu), 5−1(x s)] is well
defined. As 5 is a morphism of the local product structure,

[ f u
β (x

u), ϕ−|β|+1( f s
β (x

s))] = 5([5−1( f u
β (x

u)), 5−1(ϕ−|β|+1( f s
β (x

s)))])

= 5(A[5−1(xu), 5−1(x s)])= Ã[xu, x s
]. (6)

Put Ã1(xu)= f u
β (x

u) and Ã1(x s)= ϕ−|β|+1( f s
β (x

s)): therefore, Ã[xu, x s
] = [ Ã1(xu),

Ã2(x s)]. Thus we have the following lemma.

LEMMA 5. If ϕ is a C2-diffeomorphism, then Ã extends to a local C1-diffeomorphism
defined in a neighborhood Ud of d. We may assume, without loss of generality (increasing
n0, if necessary), that Ud ⊃ 3̃ ∩5(Cdn0

,B).

Proof. As ϕ is a C2-diffeomorphism of a closed surface, then the stable and unstable
foliations of the horseshoe 3, F s(3) and F u(3) can be extended to C1 invariant
foliations defined on a full neighborhood of3. Also, if ϕ is a C2-diffeomorphism, then f s

β

and f u
β are at least C1. Then, by (6), we have the result. �

An immediate consequence of Lemma 5 and (5) is the following corollary.

COROLLARY 1. If x ∈ 3̃i0 , then supn∈Z f (ϕn( Ã(x)))= f (ϕi0( Ã(x))).

This Corollary implies that { f (ϕi0( Ã(x))) : x ∈ 3̃i0} ⊂ M( f, 3).

Remark 2. We have D fxM (e
s,u
xM ) 6= 0, so this property is true in a neighborhood of xM .

Since, for every x ∈ 3̃i0 , ϕi0( Ã(x)) belongs to a small neighborhood of xM , for every
x ∈ 3̃i0 , D f

ϕi0 ( Ã(x))(e
s,u
ϕi0 ( Ã(x)

) 6= 0. Moreover, Dϕi0
Ã(x)

(es,u
˜A(x)
) ∈ E s,u

ϕi0 ( Ã(x))
, and since, by

construction of Ã, ∂ Ã/∂es,u
x is parallel to es,u

Ã(x)
, for every x ∈ 3̃i0 we have that D( f ◦

ϕi0 ◦ Ã)x (e
s,u
x ) 6= 0.

Now we will prove the same for the Lagrange spectrum.
Let ε, n0 and ˜̃s be as above. Then, using the above notation, let x ∈ 3̃ ∩5(Cdn0

,B)

and 5−1(x)= (. . . , x−n, . . . , x0, . . . , xn, . . .). Thus there is an admissible string Ei =

(ei
1, . . . , ei

si
) joining xi with x−i and the length |Ei | = mi − 1< N0 for each i (cf. §2.1).
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So we can define the following map for all x ∈ Cdn0
,B by

A1(x) = (. . . , x3, E3, x−3, x−2, x−1, x0, β, x1, x2, E2, x−2, x−1, x0, β, x1, E1, x−1,

x0, β, x1, E1, x−1, x0, β, x1, x2, E2, x−2, x−1, x0, β, x1, x2, x3, E3, x−3, . . .),

where β = eα f , as above.
Since |Ei |< N0, then the set of words {Ei : i ∈ N∗} is finite. Therefore

{Ei : i ∈ N∗} = {D1, . . . , Dm}

for some admissible words Di with |Di |< N0. Now we can take k > N0 + 2n0 and,
if necessary, by increasing ˜̃s we have that, since |Di |< N0 for each i , there exists a
neighborhood Ui of Di for which

sup f̃ |σ r (Ui ) < inf f̃ |5−1(Rq ˜̃s
∩3) for |r | ≤ n0 + |Di |< n0 + N0. (7)

Now we may characterize lim supn→∞ f̃ (σ n(A1(x))) for x ∈ Cdn0
,B ∩5

−1(3̃).
Let m(n) ∈ N such that

(σm(n)(A1(x)))+ = x1, x2, . . . , xn En x−n, . . . , x0, . . . and n ≥ 2n0.

Let k∗ be such that n − k∗ = n0. Then, by definition of n0,

d(σm(n)+n0+ j (A1(x)), σ n0+ j (x)) < ε for all j = 0, . . . , k∗ − n0,

and

d(σm(n)+n+|En |+n0+ j (A1(x)), σ−k∗+ j (x)) < ε for all j = 0, . . . , k∗ − n0.

Moreover, since 5−1(3̃) is a σ -invariant set, if x ∈5−1(3̃), then (2) implies that

f̃ (σm(n)+n0+ j (A1(x))) < inf f̃ |5−1(Rq ˜̃s
∩3) for all j = 0, . . . , k∗ − n0

and

f̃ (σm(n)+n+|En |+n0+ j (A1(x))) < inf f̃ |5−1(Rq ˜̃s
∩3) for all j = 0, . . . , k∗ − n0.

Also,

σm(n)+k∗+s(A1(x)) ∈ σ |E
−
n |+n0−s(Ui(n)) for all s = 0, . . . , n0 + |E−n |

and
σm(n)+n+|E−n |+s(A1(x)) ∈ σ−s(Ui(n)) for all s = 0, . . . , n0 + |E+n |,

where En = E−n E+n and i(n) ∈ {1, . . . , m}. Therefore, (7) implies that

f̃ (σm(n)+k∗+s(A1(x))) < inf f̃ |5−1(Rq ˜̃s
∩3) for all s = 0, . . . , n0 + |E−n |

and

f̃ (σm(n)+n+|E−n |+s(A1(x))) < inf f̃ |5−1(Rq ˜̃s
∩3) for all s = 0, . . . , n0 + |E+n |.

Note that, if n0 ≤ n < 2n0, then k∗ < n0 and the last two cases apply. Therefore, the
last four inequalities above imply that, for all x ∈ Cdn0

,B ∩5
−1(3̃), there is j ∈ {η −

n0, . . . , τ + n0} and a sequence nk( j) with

lim sup
n→∞

f̃ (σ n(A1(x)))= sup
k

f̃ (σ nk ( j)(A1(x))) and (σ nk ( j)(A1(x)))0 = (A1(x)) j
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for all k, where η =−(t + ks + k0 − 1) and τ = (l − t + kr + j0 − 1), as above, are the
length of the negative and positive parts of the finite word β = eα f , respectively.

Put 5−1(x)= x and define the set

3′j := {x ∈ 3̃ ∩5(Cdn0
,B) : lim sup

n→∞
f̃ (σ n(A1(x)))= sup

k
f̃ (σ nk ( j)(A1(x)))}.

Then

3̃ ∩5(Cdn0
,B)=

τ+n0⋃
j=η−n0

3′j .

Therefore, there is j0 ∈ {η − n0, . . . , τ + n0} such that 3′j0 has non-empty interior in
3̃ ∩5(Cdn0

,B): so

H D(3̃)= H D(3̃ ∩5(Cdn0
,B))= H D(3′j0). (8)

Thus, for x ∈5−1(3′j0),

lim sup
n→∞

f̃ (σ n(A(x)))= sup
k

f̃ (σ nk ( j0)(A1(x))).

So there is a subsequence nkm ( j0) with nkm ( j0)→∞ as m→∞ such that

sup
k

f̃ (σ nk ( j0)(A1(x)))= lim
m→∞

f̃ (σ nkm ( j0)(A1(x))).

By construction of A1, it is true that

lim
m→∞

σ nkm ( j0)(A1(x))= σ j0(A(x)),

where A(x) is defined as before.
Therefore

lim sup
n→∞

f̃ (σ n(A1(x)))= f̃ (σ j0(A(x))).

As an immediate consequence we have the following corollary.

COROLLARY 2. If x ∈3′j0 , then

lim sup
n→∞

f (ϕn( Ã1(x)))= f (ϕ j0( Ã(x))) where Ã1 =5 ◦ A1 ◦5
−1.

This Corollary implies that { f (ϕ j0( Ã(x)) : x ∈3′j0} ⊂ L( f, 3).

5. The image of the product of two regular Cantor sets by a real function and the behavior
of the spectra

In this section we give a condition for the image of a horseshoe by a ‘typical’ real function
to have non-empty interior.

https://doi.org/10.1017/etds.2015.121 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2015.121


On the Lagrange and Markov dynamical spectra 1583

5.1. Intersections of regular Cantor sets. Assume we are given two sets of data
(A, B, 6, g), (A′, B′, 6′, g′) defining regular Cantor sets K , K ′ (see Appendix A.1 for
definitions and notations).

Let r ∈ (1,+∞]. For a ∈ A, denote by Pr (a) the space of Cr -embeddings of interval
I (a) into R, endowed with the Cr topology. The affine group Aff(R) acts by composition
on the left on Pr (a), with the quotient space being denoted by Pr

(a). We also
consider P(a)=

⋃
r>1 Pr (a) and P(a)=

⋃
r>1 P

r
(a), endowed with the inductive limit

topologies.

Remark 3. In [MY01] Pr (a) is considered for r ∈ (1,+∞], but all the definitions and
results involving Pr (a) can be obtained by considering r ∈ [1,+∞].

Let A= (θ, A), where θ ∈6− and A is now an affine embedding of I (θ0) into R. We
have a canonical map

A→ Pr
=

⋃
A

Pr (a),

(θ, A) 7→ A ◦ kθ (∈ Pr (θ0)).

We define, as before, the spaces P =
⋃

A P(a) and P ′ =
⋃

A′ P(a′).
A pair (h, h′), (h ∈ P(a), h′ ∈ P ′(a′)) is called a smooth configuration for K (a)=

K ∩ I (a), K ′(a′)= K ′ ∩ I (a′). Actually, rather than working in the product P × P ′, it is
better to go to the quotient Q by the diagonal action of the affine group Aff(R). Elements
of Q are called smooth relative configurations for K (a), K ′(a′).

We say that a smooth configuration (h, h′) ∈ P(a)× P(a′) is:
• linked if h(I (a)) ∩ h′(I (a′)) 6= ∅;
• intersecting if h(K (a)) ∩ h′(K (a′)) 6= ∅, where K (a)= K ∩ I (a) and K (a′)= K ∩

I (a′); and
• stably intersecting if it is still intersecting when we perturb it in P × P ′ and we

perturb (g, g′) in �6 ×�6′ .
All these definitions are invariant under the action of the affine group, and therefore make
sense for smooth relative configurations.

As before, we can introduce the spaces A, A′ associated to the limit geometries of
g, g′, respectively. We denote by C the quotient of A×A′ by the diagonal action on
the left of the affine group. An element of C, represented by (θ, A) ∈A, (θ ′, A′) ∈A′,
is called a relative configuration of the limit geometries determined by θ , θ ′. We have
canonical maps

A×A′ → P × P ′,
C → Q,

which allow us to define linked, intersecting and stably intersecting configurations at the
level of A×A′ or C.

We consider the following subset V of�6 ×�6′ . A pair (g, g′) belongs to V if, for any
[(θ, A), (θ ′, A′)] ∈A×A′, there is a translation Rt (in R) such that (Rt ◦ A ◦ kθ , A′ ◦
k′θ
′

) is a stably intersecting configuration.
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THEOREM. (Cf. [MY01]) (1) V is open in �6 ×�6′ , and V ∩ (�∞6 ×�
∞

6′
) is dense

(for the C∞-topology) in the set {(g, g′), H D(K )+ H D(K ′) > 1}.
(2) Let (g, g′) ∈ V . There exists d∗ < 1 such that, for any (h, h′) ∈ P × P ′, the set

Is = {t ∈ R, (Rt ◦ h, h′) is a stably intersecting smooth configuration for (g, g′)}

and is (open and) dense in

I = {t ∈ R, (Rt ◦ h, h′) is an intersecting smooth configuration for (g, g′)}.

Moreover, H D(I− Is)≤ d∗. The same d∗ is also valid for (g̃, g̃′) in a neighborhood
of (g, g′) in �6 ×�6′ .

Keeping the previous notation, we have the following theorem.

THEOREM 2. Let K and K ′ be two regular Cantor sets defined by expanding map g, g′.
Suppose that H D(K )+ H D(K ′) > 1 and (g, g′) ∈ V . Let f be a C1-function f :U → R
with K × K ′ ⊂U ⊂ R2 such that, in some point of K × K ′, its gradient is not parallel to
any of the two coordinate axis. Then

int f (K × K ′) 6= ∅.

Proof. By hypothesis, and by continuity of d f , we find a pair of periodic points p1, p2

of K and K ′, respectively, with addresses a1 = a1a1a1 . . . and a2 = a2a2a2 . . ., where a1
and a2 are finite sequences such that d f (p1, p2) is not a real multiple of dx nor of dy.
There are increasing sequences of natural numbers (mk) and (nk) such that the intervals
Ia

mk
1

and I ′
a

nk
2

, defined by the finite words amk
1 and ank

2 , satisfy

|Ia
mk
1
|

|I ′
a

nk
2
|
∈ (C−1, C) for some C > 1.

Thus we can assume that |Ia
mk
1
|/|I ′

a
nk
2
| → λ ∈ [C−1, C] as k→∞, and define λ̃ :=

−((∂ f/∂x(p1, p2))/(∂ f/∂y(p1, p2)))λ.
As (K , K ′) ∈ V , there is t ∈ R such that (λ̃ka1 + t, k′a2) is a stably intersecting

configuration. So there are x̃ ∈ I ((a1)0) and ỹ ∈ I ((a2)0) such that x0 = ka1(x̃) and
y0 = ka2(ỹ) with λ̃x0 + t = y0, where (ai )0 is the zero position of the finite word ai
for i = 1, 2. Moreover, x̃ = gmk |a1|−1(x̄) and ỹ = (g′)nk |a2|−1(ȳ) for some x̄ ∈ Ia

mk
1

and

ȳ ∈ I ′
a

nk
2

.

Taking k large enough, we can assume that d f (x̄, ȳ) is not a real multiple of dx nor of
dy. In particular, if ∂ f/∂y(x̄, ȳ) 6= 0, then, by the local submersion theorem, there exists a
C1-diffeomorphism H(x, y)= (x, g(x, y)), defined in neighborhood of (x̄, ȳ), such that
f (H(x, y))= y. Without loss of generality, we can suppose that H is defined in Ia

mk
1
×

I ′
a

nk
2

. Put gs(x) := g(x, s); if s0 is such that f (x̄, ȳ)= s0, then gs0(x̄)= ȳ. Also, observe

that s ∈ f ((K ∩ Ia
mk
1
)× (K ′ ∩ I ′

a
nk
2
)) is equivalent to gs(K ∩ Ia

mk
1
) ∩ (K ′ ∩ I ′

a
nk
2
) 6= ∅.

Thus, our problem reduces to proving that gs(K ∩ Ia
mk
1
) and K ′ ∩ I ′

a
nk
2

have non-empty

intersection for s close to s0 = f (x̄, ȳ).
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Denote by Bk : I ′ank
2
→ [0, 1] and Tk : Ia

mk
1
→ [0, 1] the orientation-preserving

affine maps given by Bk(x)= 1/(b′k − a′k)(x − a′k)= 1/|I ′
a

nk
2
|(x − a′k) and Tk(x)=

1/(bk − ak)(x − ak)= 1/|Ia
mk
1
|(x − ak), where Ia

mk
1
= [ak, bk] and I ′

a
nk
2
= [a′k, b′k].

Then, by definition of limit geometries (cf. Appendix A.1), Bk(K ′ ∩ I ′
a

nk
2
) converges to

ka2(K ′) and Tk(K ∩ Ia
mk
1
) converges to ka1(K ) as regular Cantor sets.

Also, Bk(gs0(K ∩ Ia
mk
1
))= Bk ◦ gs0 ◦ T−1

k (Tk(K ∩ Ia
mk
1
)).

Claim. The map Bk ◦ gs0 ◦ T−1
k converges to λ̃x + t in the C1 topology.

In fact, if we call εk = bk − ak = |Ia
mk
1
| and ε′k = b′k − a′k = |I

′

a
nk
2
|,

Bk ◦ gs0 ◦ T−1
k (x) =

1
ε′k
(gs0(εk x + ak)− a′k)

=
1
ε′k
(gs0(ak)+ g′s0

(ak)εk x + r(εk x)− a′k)

= Bk(gs0(ak))+ g′s0
(ak)

εk

ε′k
x +

εk

ε′k

r(εk x)
εk

. (9)

Since gs0(x̄)= ȳ, Bk(gs0(x̄))= Bk(ȳ)= Bk ◦ (g′)−(nk |a2|−1)(ỹ) and the definition of limit
geometries implies that Bk(gs0(x̄)) converges to ka2(ỹ)= y0 = λ̃x0 + t and Tk(x̄)= Tk ◦

g−(mk |a1|−1)(x̃) converges to ka1(x̃)= x0. Therefore, by (9),

Bk ◦ gs0(x̄)= Bk ◦ gs0 ◦ T−1
k (Tk(x̄))= Bk(gs0(ak))+ g′s0

(ak)
εk

ε′k
Tk(x̄)+

εk

ε′k

r(εk Tk(x̄))
εk

.

So, if k→+∞, the left-hand side of the equation above converges to λ̃x0 + t
and, since g′s0

(ak)→−((∂ f/∂x(p1, p2))/(∂ f/∂y(p1, p2))), εk/ε
′

k→ λ, Tk(x̄)→ x0 and
(r(εk Tk(x̄)))/εk→ 0, by definition of λ̃ and the above equation,

Bk ◦ gs0(ak)→ λ̃x0 + t − λ̃x0 = t. (10)

Thus, by (9) and (10),
lim

k→+∞
Bk ◦ gs0 ◦ T−1

k (x)= λ̃x + t.

Moreover, since gs0 is a C1-function,

(Bk ◦ gs0 ◦ T−1
k )′(x)=

1
ε′k

g′s0
(T−1

k (x)) · εk→−
∂ f/∂x(p1, p2)

∂ f/∂y(p1, p2)
λ= λ̃.

This concludes the proof the claim.
Therefore,

Bk(gs0(K ∩ Ia
mk
1
))= Bk ◦ gs0 ◦ T−1

k (Tk(K ∩ Ia
mk
1
))→ λ̃ka1(K )+ t,

and
Bk(K ′ ∩ I ′

a
nk
2
)→ ka2(K ′).
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Since (λ̃ka1 + t, ka2) is a stably intersecting configuration, and this property is open
(cf. Remark 3) and gs(·) is C1-close to gs0(·) for s close to s0, for large enough k, the
Cantor sets Bk(gs(K ∩ Ia

mk
1
)) and Bk(K ′ ∩ I ′

a
nk
2
) have non-empty intersection. Therefore

gs(K ∩ Ia
mk
1
) and K ′ ∩ I ′

a
nk
2

have non-empty intersection. �

The following example shows that the property V in the Theorem 2 is fundamental.

Example. Consider the regular Cantor set Kα :=
⋂

n≥0 ψ
−n(I1 ∪ I2), where

ψ(x)=


2

1− α
x if x ∈ I1 :=

[
0,

1− α
2

]
,

−
2

1− α
x +

2
1− α

if x ∈ I2 :=

[
1+ α

2
, 1
]
.

Hence H D(Kα)=−((log 2)/(log((1− α)/2))) (cf. [PT93]). If α < 1/2, then
H D(Kα) > 1/2, and for 1/3< α < 1/2 it holds that Kα − Kα has measure zero
(cf. [Mor99]).

Moreover, H D(Kα × Kα) > 1 and f (x, y)= x − y, which satisfies the hypothesis of
Theorem 2. But, for 1/3< α < 1/2,

int f (Kα × Kα)= ∅.

COROLLARY 3. Let ϕ be a C2-diffeomorphism, and 3 a horseshoe associated to ϕ.
Suppose that K s , K u satisfy the hypotheses of Theorem 2 above. Let

A3 = { f ∈ C1(M, R) : ∃z = (zs, zu) ∈3 such that D f (z) · es,u
z 6= 0}.

Then, for all f ∈A3, int f (3) 6= ∅.

It is easy to prove that A3, given the above Corollary, is an open and dense set in
C1(M, R).

6. The Main Theorem
The following theorem is a fundamental result, due to Moreira and Yoccoz in [MY10],
on the existence of elements in V associated to the pairs of regular Cantor sets (K s, K u)

defined by gs, gu , where gs describes the geometric transverse of the unstable foliation
W u(3, R) and gu describes the geometric transverse of the stable foliation W s(3, R), as
given in Appendix A.2.

THEOREM. (Cf. [MY10]) Suppose that the sum of the Hausdorff dimensions of the regular
Cantor sets K s, K u , defined by gs, gu , is greater than one. If the neighborhood U of ϕ0 in
Diff∞(M) is sufficiently small, there is an open and dense U∗ ⊂ U such that, for ϕ ∈ U∗,
the corresponding pair of expanding applications (g, g′) belongs to V .

We use the above result to show that the Markov and Lagrange spectra have typically
non-empty interior in this context.
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Recall that, given a horseshoe 3 associated to a diffeomorphism ϕ, we defined, for
f ∈ Hϕ , the sub-horseshoe 3̃ in §4 as 3̃ :=

⋂
n∈Z ϕ

n(3\Rq
s̃
).

The following lemma shows that the H D(3̃) does not change much compared to
H D(3). This is given more precisely in the following lemma.

LEMMA 6. If 3 is a horseshoe associated to a C2-diffeomorphism ϕ and H D(3) > 1,
then H D(3̃) > 1 provided s̃ is large enough.

Assuming Lemma 6, (4) and (8) imply the following corollary.

COROLLARY 4. The sets 3̃i0 and 3′j0 satisfy H D(3̃i0), H D(3′j0) > 1.

Recalling that, as ϕ is a C2-diffeomorphism, 3 is locally the product of stable and
unstable regular Cantor sets K s

× K u . Then the previous lemma will be a consequence of
the following lemma.

Let K be a regular Cantor set with expanding map ψ and Markov partition R=
{I1, . . . , Ik} so that K =

⋂
n≥0 ψ

−n(
⋃k

i=1 Ii ). Consider the transition matrix A =
(ai j )k×k associated to the partition R, defined by

ai j =

{
1 if ψ(Ii )⊃ I j ,

0 if ψ(Ii ) ∩ I j = ∅.

To each admissible finite word of length m, b = (b1, . . . , bm) such that abi bi+1 = 1
for all i < m, we associate the interval Ib = Ib1 ∩ ψ

−1(Ib2) ∩ ψ
−2(Ib3) · · · ∩

ψ−(m−1)(Ibm ).

LEMMA 7. Let K be a regular Cantor set with expanding map ψ and Markov partition
R= {I1, . . . , Ik} so that K =

⋂
n≥0 ψ

−n(
⋃k

i=1 Ii ). Given ε > 0, there is a positive
integer m0 such that, for every m ≥ m0 and for every admissible finite word of length
m, b = (b1, . . . , bm),

H D(Kb)≥ H D(K )− ε where Kb =
⋂
n≥0

ψ−n
( k⋃

i=1

Ii

∖
Ib

)
.

Proof. Let Rn denote the set of connected components of ψ−(n−1)(Ii ), Ii ∈R. Let Bn

be the set of admissible words of length n, so that Rn
= {Ib, b ∈ Bn

}. Fix ĩ, j̃ ≤ k such
that a j̃ ĩ = 1. Let Xn

= {b = (b1, . . . , bn) ∈ Bn
: b1 = ĩ, bn = j̃}. For any positive integer

r and b1, b2, . . . , br ∈ Xn , we have b1b2 · · · br ∈ Xnr
⊂ Bnr . Let R̃n

= {Ib, b ∈ Xn
}.

For R ∈Rn take 3n,R = sup |(ψn)′
|R
|. By the mixing condition, there is c1 > 0 such

that ∑
R∈R̃n

(3n,R)
−d
≥ c1

∑
R∈Rn

(3n,R)
−d for all d ≥ 0, n ≥ 1.

On the other hand, from [PT93, pp. 69–70], it follows that, if we define dn implicitly by∑
R∈Rn

(3n,R)
−dn = 1,

then lim dn = H D(K ), so in, particular, for large n, dn > H D(K )/2. Notice, also, that
there is λ1 > 1 such that 3n,R ≥ λ

n
1 for all n ≥ 1.
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Let n be large so that dn > H D(K )− ε/2 and λ
nε/2
1 > 2/c1, and let m0 = 2n −

1. Given m ≥ m0 and an admissible finite word of length m, b = (b1, . . . , bm), we
define words c j = (b j , b j+1, . . . , b j+n−1) ∈ Bn, 1≤ j ≤ n. Let Ln

= {c j : 1≤ j ≤ n}

and R̂n
= {Ic : c ∈ Xn

\Ln
}. Then∑

R∈R̂n

(3n,R)
−dn ≥

∑
R∈R̃n

(3n,R)
−dn − nλ−ndn

1 ≥

∑
R∈R̃n

(3n,R)
−dn − nλ−nH D(K )/2

1

≥ c1
∑

R∈Rn

(3n,R)
−dn − nλ−nH D(K )/2

1 = c1 − nλ−nH D(K )/2
1 > c1/2,

and so ∑
R∈R̂n

(3n,R)
−(H D(K )−ε) >

∑
R∈R̂n

(3n,R)
−(dn−ε/2) > 1.

We may define the regular Cantor set (with expanding map ψn) as

K̃ :=
⋂
r≥0

ψ−nr
( ⋃

Î∈R̂n

Î
)
.

The previous estimate implies that∑
R∈Rnr

(3nr,R)
−(H D(K )−ε)

≥

( ∑
R∈R̂n

(3n,R)
−(H D(K )−ε)

)r

> 1,

where Rnr
= {Ic1c2···cr , c j ∈ Xn

\Ln, ∀ j ≤ r}. Thus we conclude (as before) that

H D(K̃ )≥ H D(K )− ε.
For any positive integer r and b1, b2, . . . , br ∈ Xn

\Lnn, the sequence (a1, a2, . . . ,

anr )= b1b2 · · · br satisfies that, for all j, 1≤ j ≤ nr − m + 1, (a j , a j+1 . . . , a j+m−1) 6=

b, and so K̃ ⊂ Kb. In particular, H D(Kb)≥ H D(K̃ )≥ H D(K )− ε. �

Proof of Lemma 6. Apply the previous Lemma to K s and K u and then use the fact that
the Hausdorff dimension of the Cartesian product of regular Cantor sets is the sum of the
Hausdorff dimensions of the Cantor sets. �

Note that, by Lemma 6 and the local structure of 3̃, H D(3̃ ∩Ud)= H D(3̃) > 1,
where Ud is the small neighborhood of d given by Lemma 5.

6.1. Proof of the Main Theorem. Given a pair (ϕ, 3) of a diffeomorphism ϕ and a
horseshoe associated to ϕ with H D(3) > 1, we defined in §3.1 (cf. Lemma 4, Theorem 1
and (1)) the open dense set Hϕ in C1(M, R). Recall that 3̃ is a sub-horseshoe of 3, as in
Lemma 6, with H D(3̃ ∩Ud)= H D(3̃) > 1. Then, by the theorem from [MY10] which
we discussed above, there is a diffeomorphism ϕ0 close to ϕ, a horseshoe30 associated to
ϕ0 and a sub-horseshoe 3̃0 ⊂30 with H D(3̃0) > 1 such that 3̃0 satisfies the hypotheses
of Theorem 2 (we use the theorem to perturb the sub-horseshoe).

Given f ∈ Hϕ0 , we can define a local diffeomorphism Ãϕ0( f ); in coordinates given by
the stable and unstable foliation, we can write, Ãϕ0( f )(x, y)= ( Ã1

ϕ0
( f )(x), Ã2

ϕ0
( f )(y)),

as in §4 (see (6)).
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Let i0 be such that Corollary 1 and (5) and (4) hold for (ϕ0, 3̃0). For f ∈ Hϕ0 , Remark 2
implies that, for every x ∈ 3̃0,i0 , D( f ◦ ϕi0

0 ◦ Ãϕ0( f ))x (ẽ
s,u
x ) 6= 0, where ẽs,u

x are the unit
vectors in stable and unstable bundles of hyperbolic set 3̃0, respectively (here 3̃0,i0

is defined as in (4) but for 3̃0 instead of 3̃). So the function f ◦ ϕi0
0 ◦ Ãϕ0( f ) ∈A3̃0

.
Therefore, by Corollary 3,

int( f ◦ ϕi0
0 ◦ Ãϕ0( f ))(3̃0) 6= ∅. (11)

Then, as in Corollary 1,

sup
n∈Z

f (ϕn
0 ( Ãϕ0( f )(x)))= ( f ◦ ϕi0

0 ◦ Ãϕ0( f ))(x)

for all x ∈ 3̃0,i0 . This implies that ( f ◦ ϕi0
0 ◦ Ãϕ0( f ))(3̃0,i0)⊂ M( f, 30). Thus, by (11),

int M( f, 30) 6= ∅.
Using Corollary 2 instead of Corollary 1, we get the analogous result for the Lagrange

spectrum. This concludes the proof of the Main Theorem. �

A. Appendix
A.1. Regular Cantor sets and limit geometries. Let A be a finite alphabet, B a subset
of A2 and 6B the subshift of finite type of AZ with allowed transitions B. We will always
assume that 6B is topologically mixing, and that every letter in A occurs in 6B.

An expansive map of type 6B is a map g with the following properties:
(i) the domain of g is a disjoint union

⋃
B I (a, b), where, for each (a, b), I (a, b) is a

compact subinterval of I (a) := [0, 1] × {a}; and
(ii) for each (a, b) ∈ B, the restriction of g to I (a, b) is a smooth diffeomorphism onto

I (b) satisfying |Dg(t)|> 1 for all t .
The regular Cantor set associated to g is the maximal invariant set

K =
⋂
n≥0

g−n
(⋃

B
I (a, b)

)
.

Let 6+B be the unilateral subshift associated to 6B. There exists a unique homeomorphism
h :6+B → K such that

h(a) ∈ I (a0) for a = (a0, a1, . . .) ∈6
+

B and h ◦ σ = g ◦ h,

where, σ+ :6+B →6+B is defined as σ+((an)n≥0)= (an+1)n≥0. For (a, b) ∈ B, let

fa,b = [g|I (a,b)]−1.

This is a contracting diffeomorphism from I (b) onto I (a, b). If a = (a0, . . . , an) is a
word of 6B, we put

fa = fa0,a1 ◦ · · · ◦ fan−1,an .

This is a diffeomorphism from I (an) onto a subinterval of I (a0) that we denote by I (a).
It has the property that, if z in the domain of fa ,

fa(z)= h(ah−1(z)).
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Let r > 1 be a real number or r =+∞. The space of Cr expansive maps of type 6,
endowed with the Cr topology, will be denoted by �r

6 . The union �6 =
⋃

r>1 �
r
6 is

endowed with the inductive limit topology.
Let 6− = {(θn)n≤0, (θi , θi+1) ∈ B for i < 0}. We equip 6− with the following

ultrametric distance: for θ 6= θ̃ ∈6−, set

d(θ, θ̃)=
{

1 if θ0 6= θ̃0,

|I (θ ∧ θ̃ )| otherwise,

where θ ∧ θ̃ = (θ−n, . . . , θ0) if θ̃− j = θ− j for 0≤ j ≤ n and θ̃−n−1 6= θ−n−1.
Now, let θ ∈6−; for n > 0, let θn

= (θ−n, . . . , θ0) and let B(θn) be the affine map
from I (θn) onto I (θ0) such that the diffeomorphism kθn = B(θn) ◦ fθn is orientation
preserving.

This well-known result (cf. [Sul87]) follows.

PROPOSITION. Let r ∈ (1,+∞), g ∈�r
6 .

(1) For any θ ∈6−, there is a diffeomorphism kθ ∈ Diffr
+(I (θ0)) such that kθn converges

to kθ in Diffr ′
+(I (θ0)) uniformly in θ , for any r ′ < r . The convergence is also uniform

in a neighborhood of g in �r
6 .

(2) If r is an integer or r =+∞, kθn converge to kθ in Diffr
+(I (θ0)). More precisely, for

every 0≤ j ≤ r − 1, there is a constant C j (independent of θ ) such that

|D j log D[kθn ◦ (kθ )−1
](x)| ≤ C j |I (θn)|.

It follows that θ→ kθ is Lipschitz in the following sense: for θ0 = θ̃0,

|D j log D[k θ̃ ◦ (kθ )−1
](x)| ≤ C j d(θ, θ̃).

A.2. Expanding maps associated to a horseshoe. Let 3 be a horseshoe associated to a
C2-diffeomorphism ϕ on a surface M and consider a finite collection (Ra)a∈A of disjoint
rectangles of M , which are a Markov partition of 3. Consider the sets

W s(3, R)=
⋂
n≥0

ϕ−n
(⋃

a∈A
Ra

)
,

W u(3, R)=
⋂
n≤0

ϕ−n
(⋃

a∈A
Ra

)
.

There is r > 1 and a collection of Cr -submersions (πa : Ra→ I (a))a∈A satisfying the
property that if z, z′ ∈ Ra0 ∩ ϕ

−1(Ra1) and πa0(z)= πa0(z
′), then

πa1(ϕ(z))= πa1(ϕ(z
′)).

In particular, the connected components of W s(3, R) ∩ Ra are the level lines of πa .
Then we define a mapping gu of class Cr (expansive of type 6B) by the formula

gu(πa0(z))= πa1(ϕ(z))

for (a0, a1) ∈ B, z ∈ Ra0 ∩ ϕ
−1(Ra1). The regular Cantor set K u , defined by gu , describes

the geometric transverse of the stable foliation W s(3, R). Moreover, there exists a unique
homeomorphism hu

:6+B → K u such that

hu(a) ∈ I (a0) for a = (a0, a1, . . .) ∈6
+

B and hu
◦ σ+ = gu

◦ hu,

where σ+ :6+B →6+B is defined as σ+((an)n≥0)= (an+1)n≥0.
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Given a finite word a = (a0, . . . , an), define f u
a , as in the previous section, such that

f u
a (z)= hu(a(hu)−1(z)).

Analogously, we can describe the geometric transverse of the unstable foliation W u(3, R),
using a regular Cantor set K s defined by a mapping gs of class Cr (expansive of type6B).

Moreover, there exists a unique homeomorphism hs
:6−B → K s such that

hs(a) ∈ I (a0) for a = (. . . , a1, a0) ∈6
−

B and hs
◦ σ− = gs

◦ hs,

where σ− :6−B →6−B is defined as σ−((an)n≤0)= (an−1)n≤0.
Given a finite word a = (a−n, . . . , a0), define f s

a , as in the previous section, such that

f s
a (z)= hs((hs)−1(z)a).

Also, the horseshoe 3 is locally the product of two regular Cantor sets K s and K u . So the
Hausdorff dimension of 3, H D(3), is equal to H D(K s

× K u) but, for regular Cantor
sets, H D(K s

× K u)= H D(K s)+ H D(K u). Thus H D(3)= H D(K s)+ H D(K u)

(cf. [PT93, Ch. 4]).
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