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VIRTUAL ALGEBRAIC FIBRATIONS OF KÄHLER GROUPS

STEFAN FRIEDL and STEFANO VIDUSSI

Abstract. This paper stems from the observation (arising from work of

Delzant) that “most” Kähler groups G virtually algebraically fiber, that is,

admit a finite index subgroup that maps onto Z with finitely generated kernel.

For the remaining ones, the Albanese dimension of all finite index subgroups

is at most one, that is, they have virtual Albanese dimension va(G) 6 1. We

show that the existence of algebraic fibrations has implications in the study of

coherence and higher BNSR invariants of the fundamental group of aspherical

Kähler surfaces. The class of Kähler groups with va(G) = 1 includes virtual

surface groups. Further examples exist; nonetheless, they exhibit a strong

relation with surface groups. In fact, we show that the Green–Lazarsfeld sets

of groups with va(G) = 1 (virtually) coincide with those of surface groups, and

furthermore that the only virtually RFRS groups with va(G) = 1 are virtually

surface groups.

§1. Introduction

This paper is devoted to the study of some virtual properties of Kähler groups, that is,

fundamental groups of compact Kähler manifolds. (Recall that if P is a property of groups,

we say that a group G is virtually P if a finite index subgroup H 6f G is P.)

The guiding principle is to understand if some of the virtual properties of fundamental

groups of irreducible 3-manifolds with empty or toroidal boundary, recently emerged from

the work of Agol, Wise [2, 51, 52] and their collaborators, have a counterpart for Kähler

groups. Admittedly, there is no a priori geometric reason to expect any analogy. However

this approach seems to be not completely fruitless: in [25] we investigated some consequences

of the fact that both classes of groups satisfy a sort of “relative largeness” property, namely

that any epimorphism φ : G→ Z with infinitely generated kernel virtually factorizes through

an epimorphism to a free nonabelian group. (This is a nontrivial result for both classes.)

In this paper we investigate, in a sense, the opposite phenomenon, namely the existence

of epimorphisms φ : G→ Z with finitely generated kernel. Or, stated otherwise, whether G

is an extension of Z by a finitely generated subgroup. This condition has been conveniently

referred to in [32] by saying that G algebraically fibers and here we will adhere to

that terminology. Again, thanks to the recent results of Agol, Wise and collaborators

(see [4] for accurate statements and references) the emerging picture is that “most” freely

indecomposable 3-manifold groups (e.g., hyperbolic groups) virtually algebraically fiber.

This result has triggered recent interest in the study of algebraic fibration for various

classes of groups, and relevant results have appeared, including during the preparations of

this manuscript, see [24, 32, 37].

We have tasked ourselves with the purpose of understanding virtual algebraic fibrations

in the realm of Kähler groups.
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The starting point amounts to reinterpreting geometrically Delzant’s results on the Bieri–

Neumann–Strebel invariants of Kähler groups [20], and is possibly known at least implicitly

to those familiar with that result. In particular, it entails a geometric characterization of

Kähler manifolds whose fundamental group does not virtually algebraically fiber. To state

this result, recall that the Albanese dimension a(X) > 0 of a Kähler manifold is defined as

the complex dimension of the image of X under the Albanese map Alb. We define the virtual

Albanese dimension va(X) to be the supremum of the Albanese dimension of all finite covers

of X. (This definition replicates that of virtual first Betti number vb1, that will be as well

of use in what follows.) The property of having Albanese dimension equal to zero or equal

to one is determined by the fundamental group G= π1(X) alone (see e.g., Proposition 2.1);

because of that, it makes sense to talk of (virtual) Albanese dimension of a Kähler group

as an element of {0, 1, > 1}. With this in mind we have the following:

Theorem A. Let G be a Kähler group. Then either G virtually algebraically fibers, or

va(G) 6 1.

This statement is, in essence, an alternative: the intersection are groups G that have a

finite index subgroup H 6f G with b1(H) = vb1(G) = 2 such that the commutator subgroup

[H, H] is finitely generated. (Such an H appears as fundamental group of a genus 1 Albanese

pencil without multiple fibers.) We could phrase this theorem as an alternative, but the

form above fits well with what follows.

Theorem A kindles interest in identifying the class of Kähler groups with va(G) 6 1, and

in what follows we summarize what we know about this class.

To start, a Kähler group has va(G) = 0 if and only if all its finite index subgroup have

finite abelianization, or equivalently vb1(G) = 0. All finite groups fall in this class, but there

exist infinite examples as well. An example that is easy to describe is Sp(2n, Z) for n> 2

(see [50]). Also, all cocompact lattices in Hermitian symmetric spaces of higher rank belong

to this class.

The class of Kähler groups with va(G) = 1 contains some obvious examples, namely

virtual surface groups (i.e., fundamental groups of compact Riemann surfaces of positive

genus). In general, the properties of the Albanese map give a tight relation between

Kähler groups with va(G) = 1 and surface groups: when a Kähler manifold X has Albanese

dimension one, it is well known that the Albanese map has smooth image and connected

fibers (see e.g., [5, Proposition I.13.9]), hence determines a genus g = q(X) pencil f : X → Σ,

referred to as Albanese pencil. (Here q(X) := 1
2b1(X) denotes the irregularity of X.) When

G= π1(X) satisfies va(G) = 1, the Albanese pencil of X lifts to an Albanese pencil

f̃ : X̃ → Σ̃ for all finite covers X̃ →X.

Virtual surface groups do not exhaust the class of groups with va(G) = 1: it is not hard

to give further (albeit unsophisticated) examples by taking the product of a surface group

with Sp(2n, Z), n> 2. That said, we are not aware of any subtler construction that does

not hinge on the existence of Kähler groups with vb1 = 0. It would be interesting to decide

if such constructions exist.

We analyze in Section 3 the implications of the existence of algebraic fibrations in the

context of aspherical Kähler surfaces. This allows us to refine some results about coherence

of their fundamental group, which appear in [35, 36, 44]. (Recall that a group is coherent

if all its finitely generated subgroups are finitely presented.) Combining these results with

ours yields the following:

https://doi.org/10.1017/nmj.2019.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.32
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Theorem B. Let G be a group with b1(G)> 0 which is the fundamental group of an

aspherical Kähler surface X; then G is not coherent, except for the case where it is virtually

the product of Z2 by a surface group, and perhaps for the case where X is finitely covered

by a Kodaira fibration of virtual Albanese dimension one.

(A Kodaira fibration is a smooth nonisotrivial pencil of curves: in particular, fibers and

base have genera at least 3 and 2, respectively.) We are not aware of the existence of Kodaira

fibrations of virtual Albanese dimension one (Question 3.2).

The techniques used in the proof of the theorem above actually entails the existence of

Kähler groups whose second Bieri–Neumann–Strebel–Renz (henceforth BNSR) invariant is

strictly contained in the first (see Proposition 3.4) and are not a direct product. We state

here a striking instance of this:

Proposition C. Let X be one of the Kodaira fibrations described by Atiyah and

Kodaira; then the BNSR invariants of G= π1(X) satisfy

Σ2(G) ( Σ1(G) ( S(G).

This (and Proposition 3.4) may well be the first results on higher BNSR invariants of

nontrivial extensions of surface groups by surface groups: see also [30, Question 11(4)], which

raises the issue of coherence for this class of groups. Remarkably, the proof of Proposition C

uses in crucial manner the fact that G is Kähler: we are not aware of any other means to

show that Σ1(G) is nonempty for other surface bundles. Note that as we discuss in Section 3

the fundamental group of X (and other double fibered Kodaira fibrations) injects in the

mapping class groups of the once-punctured fibers.

When va(G) = 1, the relation betweenX and Σ induced by the Albanese pencil f : X → Σ

is stronger than the isomorphism of the first cohomology groups. Indeed, it entails a relation

between the Green–Lazarsfeld sets of their (orbifold) fundamental groups (whose definition

we recall in Section 3): given an Albanese pencil, we refer to the induced map on (orbifold)

fundamental groups f : G→ Γ (where G := π1(X) and Γ := πorb
1 (Σ)) as Albanese map as

well, and we have the following:

Theorem D. Let G be a group with va(G) = 1. Perhaps after going to a finite index

normal subgroup, the Albanese map f : G→ Γ induces an isomorphism of the Green–

Lazarsfeld sets

f̂ : Wi(Γ)
∼=−→Wi(G).

Proceeding in another direction, namely restricting the class of Kähler groups by imposing

residual properties that mirror those of 3-manifold groups, we obtain a refinement to

Theorem A that can be thought of as an analogue (with much less work on our side)

to Agol’s virtual fiberability result [1] for 3-manifold groups that are virtually residually

finite rationally solvable (henceforth RFRS, see Section 3 for the definition).

Theorem E. Let G be a Kähler group that is virtually RFRS. Then either G virtually

algebraically fibers, or it is virtually a surface group.

To date, the infinite Kähler groups known to be RFRS are subgroups of the direct

product of surface groups and abelian groups. This is a remarkable but not yet completely

understood class of Kähler groups; in [21, 7.5 sbc–Corollary] some conditions for a Kähler

group to be virtually of this type are presented. Further results on this class appear in [23]

and [41].
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We should add that the result of Theorem E can now be thought as a consequence of

the recent results of [37], using some standard facts on Kähler groups.

Structure of the paper

Section 2 discusses some preliminary results on the Albanese dimension of Kähler

manifolds and groups, as well as the proof of Theorem A. Section 3 is devoted to the study

of groups of virtual Albanese dimension one, and contains the proofs of Theorems B, D,

and E.

In order to keep the presentation reasonably self-contained, we included some fairly

classical results, for which we could not find a formulation in the literature suitable for our

purposes.

§2. Albanese dimension and algebraic fibrations

We start with some generalities on pencils on Kähler manifolds and the properties of their

fundamental group. The reader can find in the monograph [3] a detailed discussion of Kähler

groups, and the rôle they play in determining pencils on the underlying Kähler manifolds.

Given a genus g pencil on X (i.e., a surjective holomorphic map with connected fibers

f : X → Σ to a surface with g = g(Σ)) we can consider the homotopy-induced epimorphism

f : π1(X)→ π1(Σ). In the presence of multiple fibers, we have a factorization f : π1(X)→
πorb

1 (Σ)→ π1(Σ) through a further epimorphism onto πorb
1 (Σ), the orbifold fundamental

group of Σ associated to the pencil f , with orbifold points and multiplicities corresponding

to the multiple fibers of the pencil. Throughout this paper, we write G := π1(X) and Γ :=

πorb
1 (Σ). The factor epimorphism, that by slight abuse of notation we denote as f : G→ Γ,

has finitely generated kernel so we have the short exact sequence of finitely generated groups

1→K→G
f→ Γ→ 1

(see e.g., [17] for details of the above).

We have the following two results about Kähler manifolds of (virtual) Albanese dimension

one. These are certainly well known to the experts (at least implicitly), and we provide

proofs for completeness.

Proposition 2.1. Let X be a Kähler manifold and let G= π1(X) be its fundamental

group. If X has Albanese dimension a(X) 6 1, any Kähler manifold with isomorphic

fundamental group has the same Albanese dimension as X.

Proof. The case where a(X) = 0 corresponds to manifolds with vanishing irregularity

q(X) = 1
2b1(X) so it is determined by the fundamental group alone. Next, consider a Kähler

manifold X with positive irregularity. For any such X, the genus g(X) is defined as the

maximal rank of submodules of H1(X) isotropic with respect to the cup product. In [3,

Chapter 2] it is shown that g(X) is in fact an invariant of the fundamental group alone. As

the cup product is nondegenerate, there is a bound

g(X) 6 q(X) = 1
2b1(X) = 1

2b1(G).

By Catanese’s version of the Castelnuovo–de Franchis theorem [15], the case where X has

Albanese dimension one occurs exactly for g(X) = q(X). By the above, this equality is

determined by the fundamental group alone.
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Based on the observations above, we will refer to the Albanese dimension of a Kähler

group as an element of the set {0, 1, >1}.
Whenever G has Albanese dimension one, the kernel of the map f∗ : H1(G)→H1(Γ)

induced by the (homotopy) Albanese map, identified by the Hochschild–Serre spectral

sequence with a quotient of the coinvariant homology H1(K)Γ by a torsion group, is torsion

(or equivalently f∗ : H1(Γ)→H1(G) is an isomorphism). Note that, by universality of the

Albanese map, whenever a Kähler manifold X has a pencil f : X → Σ such that the kernel

of f∗ : H1(G)→H1(Γ) is torsion, the pencil is Albanese.

Let π : X̃ →X be a finite cover of X. Denote by H 6f G the subgroup associated to this

cover; the regular cover of X determined by the normal core NG(H) =
⋂
g∈G g

−1Hg 6f H

is a finite cover of X̃ as well. By universality of the Albanese map, the Albanese dimension

is nondecreasing when we pass to finite covers. Therefore (as happens with virtual Betti

numbers) we can define the virtual Albanese dimension of X in terms of finite regular

covers. Given an epimorphism onto a finite group α : π1(X)→ S we have the commutative

diagram (with self-defining notation)

(1)

1

��

1

��

1

��
1 // ∆

��

// H

��

// Λ

��

// 1

1 // K //

α��

G

α��

// Γ

��

// 1

1 // α(K)

��

// S //

��

S/α(K) //

��

1

1 1 1

Denote by X̃ and Σ̃ the induced covers of X and Σ, respectively (so that π1(X̃) =H and

π1(Σ̃) = Λ). There exists a pencil f̃ : X̃ → Σ̃, which is a lift of f : X → Σ; in homotopy, this

corresponds to the epimorphism f̃ : H → Λ := πorb
1 (Σ̃) appearing in (1) above.

In the next proposition, we illustrate the fact that when X has Albanese dimension

one, its Albanese pencil f : X → Σ is the only irrational pencil of X, up to holomorphic

automorphisms of Σ.

Proposition 2.2. Let X be a Kähler manifold with a(X) = 1. Then the Albanese pencil

f : X → Σ is the unique irrational pencil on X up to holomorphic automorphism of the base.

Moreover, if X satisfies va(X) = 1, any rational pencil has orbifold base with finite orbifold

fundamental group.

Proof. By assumption the Albanese pencil f : X → Σ factorizes the Albanese map Alb.

Let g : X → Σ′ be an irrational pencil, and compose it with the Jacobian map j : Σ′→
Jac(Σ′). By universality of the Albanese map we have the commutative diagram

X
f
//

g ��

Σ

h
��

// Alb(X)

��
Σ′

j
// Jac(Σ′).

https://doi.org/10.1017/nmj.2019.32 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2019.32


VIRTUAL ALGEBRAIC FIBRATIONS OF KÄHLER GROUPS 47

The map h : Σ→ Σ′ is well defined by injectivity of the Jacobian map, and is a holomorphic

surjection by universality of the Albanese map. Holomorphic surjections of Riemann surfaces

are ramified covers; however, unless the cover is one-sheeted, that is, h is a holomorphic

isomorphism, the fibers of g : X → Σ′ will fail to be connected.

This argument above does not prevent X from having rational pencils. However, if X has

also virtual Albanese dimension one, this imposes constraints on the multiple fibers of those

pencils. Recall that orbifolds with infinite πorb
1 (Σ) are those that are flat or hyperbolic, hence

admit a finite index normal subgroup that is a surface group with positive b1 (see [45] for this

result and a characterization of these orbifolds in terms of the singular points). Therefore,

if X were to admit a rational pencil g : X → Σ′ with infinite πorb
1 (Σ′), there would exist an

irrational pencil without multiple fibers g̃ : X̃ → Σ̃′ covering g : X → Σ′. We claim that the

pencil g̃ : X̃ → Σ̃′ cannot be Albanese: building from the commutative diagram in (1) we

have the commutative diagram

1 // K //

∼=

��

""

π1(X̃)

��

%%

g̃
// π1(Σ̃′) //

&&

��

1

H1(K)

��

// H1(X̃)
g̃

//

��

H1(Σ̃′)

1 // K //

##

π1(X) //

%%

πorb
1 (Σ′) // 1

H1(K) // H1(X)

The subgroup im(H1(K)→H1(X)) 6H1(X) has positive rank (it is a finite index sub-

group); hence by commutativity the image im(H1(K)→H1(X̃)) 6H1(X̃) has positive

rank. It follows that the kernel of the epimorphism g̃ : H1(X̃)→H1(Σ̃′) is not torsion,

so g̃ : X̃ → Σ̃′ is not Albanese. As X̃ has Albanese dimension one, this is inconsistent with

the first part of the statement.

We are now in a position to prove Theorem A. In order to do so, it is both practical

and insightful to use the Bieri–Neumann–Strebel invariant of a finitely presented group

G (henceforth BNS), for which we refer to [7]. This invariant is an open subset Σ1(G)

of the character sphere S(G) := (H1(G; R) \ {0})/R>0 of H1(G; R). For rational rays, the

invariant can be described as follows: a rational ray in S(G) is determined by a primitive

class φ ∈H1(G). Given such φ, we can write G as Higman–Neumann–Neumann (henceforth

HNN) extension extension G= 〈A, t|t−1Bt= C〉 for some finitely generated subgroups

B, C 6A6 Ker φ with φ(t) = 1. The extension is called ascending (descending) if A=B

(resp. A= C). By [7, Proposition 4.4] the extension is ascending (resp. descending) if and

only if the rational ray determined by φ (resp. −φ) is contained in Σ1(G).

We have the following lemma, which applied to the collection of finite index subgroups

of G, implies Theorem A:

Lemma 2.3. Let G be a Kähler group. The following are equivalent:

(1) G algebraically fibers;

(2) the BNS invariant Σ1(G)⊆ S(G) is nonempty;

(3) for any compact Kähler manifold X such that π1(X) =G either the Albanese map is a

genus 1 pencil without multiple fibers, or X has Albanese dimension greater than one.
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Before proving this lemma, let us mention that it is possible to verify directly that groups

that are virtually nonabelian surface groups cannot satisfy any of the three cases above.

Proof. We will first show (1)⇔ (2), and then ¬(2)⇔¬(3).

(1)⇒ (2): if (1) holds we can write the short exact sequence

(2) 1→Ker φ→G
φ→ Z→ 1

with Ker φ finitely generated. Hence G is both an ascending and descending HNN extension.

It follows that the rational rays determined by both ±φ ∈H1(G) are contained in Σ1(G).

(2)⇒ (1): let us assume that Σ1(G) is nonempty. As Σ1(G) is open, we can assume

that there exists a primitive class φ ∈H1(G) whose projective class is determined by a

rational ray in Σ1(G). Kähler groups cannot be written as properly ascending or descending

extensions, that is, ascending extensions are also descending and vice versa. (This was first

proven in [42]; see also [25].) But this is to say that G has the form of Equation (2) with

Ker φ finitely generated.

To show the equivalence of ¬(2) and ¬(3), we start by recalling Delzant’s description

of the BNS invariant of a Kähler group G. Let X be a Kähler manifold with G= π1(X).

The collection of irrational pencils fα : X → Σα such that the orbifold fundamental group

Γα := πorb
1 (Σ) is a cocompact Fuchsian group, is finite up to holomorphic automorphisms

of the base (see [19, Theorem 2]). (In the language of orbifolds, these are the holomorphic

orbifold maps with connected fibers from X to hyperbolic Riemann orbisurfaces.) The

pencil maps give, in homotopy, a finite collection of epimorphisms with finitely generated

kernel fα : G→ Γa. Then [20, Théorème 1.1] asserts that the complement of Σ1(G) in S(G)

(i.e., the set of so-called exceptional characters) is given by

(3) S(G) \ Σ1(G) =
⋃
α

[f∗αH
1(Γα; R)− {0}],

where we use the brackets [·] to denote the image of a subset of (H1(G; R) \ {0}) in

(H1(G; R) \ {0})/R>0. (Note, instead, that genus 1 pencils without multiple fibers do not

induce exceptional characters.)

¬(3)⇒¬(2): the negation of (3) asserts that X has either Albanese dimension zero,

in which case S(G) is empty, or it has an Albanese pencil f : X → Σ with Γ := πorb
1 (Σ)

cocompact Fuchsian, in which case f∗H1(Γ; R) =H1(G; R). In either case Σ1(G) is empty,

that is, ¬(2) holds.

¬(2)⇒¬(3): if the set Σ1(G)⊆ S(G) is empty, either S(G) is empty (i.e., b1(G) =

0) whence G has Albanese dimension zero, or by Equation (3) there exists an irra-

tional pencil f : X → Σ, with Γ := πorb
1 (Σ) cocompact Fuchsian, inducing an isomorphism

f∗ : H1(Γ; R)→H1(G; R). (The union of finitely many proper vector subspaces of H1(G; R)

cannot equal H1(G; R).) Such a pencil is then the Albanese pencil of X.

In our understanding, irregular Kähler manifolds whose Albanese dimension is smaller

than their dimension are “nongeneric”, and their study should reduce, through a sort of

dimensional reduction induced by the Albanese map, to the study of lower dimensional

spaces (see e.g., [15]). In that sense, we think of groups that, together with their finite index

subgroups, fail to satisfy the equivalent conditions (1) to (3) of Lemma 2.3 as nongeneric.

Examples of Kähler groups with a(G)> 1 obviously abound. It is less obvious to provide

examples of Kähler groups that have a jump in Albanese dimension, that is, a(G) = 1 but
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va(G)> 1. Before doing so, we can make an observation about the geometric meaning of

such occurrence. Given an irrational pencil f : X → Σ, its relative irregularity is defined as

qf = q(X)− q(Σ)

(where the irregularity of Σ equals its genus). The Albanese pencil occurs exactly when

qf = 0. The notion of relative irregularity allows us to tie the notion of virtual Albanese

dimension larger than one with the more familiar notion of virtual positive Betti number (or

more properly, in Kähler context, virtual irregularity): a Kähler group with a(G) = 1 has

va(G)> 1 if and only if there is a lift f̃ : X̃ → Σ̃ of the Albanese pencil which is irregularly

fibered, that is, qf̃ > 0.

A fairly simple class of examples comes from groups of type G= πg ×K where πg is the

fundamental group of a genus g > 1 surface and K the fundamental group of a hyperbolic

orbisurface of genus 0, so that b1(K) = 0. The group K is Kähler (e.g., it is the fundamental

group of an elliptic surface with enough multiple fibers and multiplicity), hence so is G.

As H1(G; Z) =H1(πg; Z), the Albanese dimension of G must be one. On the other hand,

K has a finite index subgroup that is the fundamental group of a genus h > 1 surface,

hence G is virtually πg × πh. The algebraic surface Σg × Σg has Albanese dimension 2,

so by Proposition 2.1 the virtual Albanese dimension of G is greater than one. (Group

theoretically, this can be seen as a consequence of [7, Theorem 7.4], which asserts that for

cartesian products of groups with positive b1 the BNS invariant is nonempty.)

Less trivial examples with a(G) = 1 but va(G)> 1 come from bielliptic surfaces. These

possess an Albanese pencil of genus 1 without multiple fibers, but their fundamental groups

are virtually Z4, hence have virtual Albanese dimension 2 (see [5, Section V.5]). More

sophisticated examples of Kähler surfaces (hence groups) with a(G) = 1 that are finitely

covered by the product of curves of genera bigger than one are discussed in [16, Theorem F].

§3. Groups with virtual Albanese dimension one

In this section, we will discuss groups with va(G) = 1. Familiar examples of Kähler groups

with va(G) = 1 are given by surface groups, and other simple examples arise as follows. We

say that a group G is commensurable to a surface group if it admits a (normal) finite index

subgroup H 6f G that admits an epimorphism f : H → Γ to a surface group Γ with finite

kernel, namely for which there exists an exact sequence

1→ F →H
f→ Γ→ 1

with Γ a surface group and F finite. The map f : H1(H)→H1(Γ) is then an epimorphism

with torsion kernel, that is, if G (hence H) is a Kähler group, f : H → Γ represents in

homotopy the Albanese map. Quite obviously, each finite index subgroup of G will also be

commensurable to a surface group, hence the virtual Albanese dimension of G equals one.

Note that when G is commensurable to a surface group, it actually admits a (normal) finite

index subgroup which is a surface group, namely they are virtually surface groups; see [34,

Proposition 3.1] for a proof.

We want to analyze the picture so far in comparison with the situation for 3-manifold

groups. The class of irreducible 3-manifolds that are not virtually fibered is limited (it is

composed entirely by graph manifolds). One may contemplate that, similarly, the Kähler

counterpart to that class contains only the obvious candidates, namely manifolds whose
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fundamental group is virtually a surface group. Proposition 3.1 guarantees that this is

not quite the case. The starting point is the existence of infinite Kähler groups (such as

Sp(2n, Z), n > 1) with vb1(G), hence va(G), equal to zero. These do not have a counterpart

in dimension 3.

Proposition 3.1. Let Γ be the fundamental group of a genus g > 0 surface and let K

be an infinite Kähler group with va(K) = 0; then va(K × Γ) = a(K × Γ) = 1 and K × Γ is

not virtually a surface group.

Proof. The projection map f : K × Γ→ Γ is the Albanese map, hence a(K × Γ) = 1. We

claim that as vb1(K) = 0, the virtual Albanese dimension of K × Γ is one. In fact, for any

normal subgroup H 6f K × Γ we have from (1)

1 // ∆ //

��

$$

H

��

&&

f̃
// Λ //

##

��

1

H1(∆) // H1(H) // H1(Λ)

1 // K // K × Γ
f

// Γ // 1.

As ∆ 6f K and vb1(K) = 0, H1(∆) is torsion, hence Ker(H1(H)→H1(Λ)) = Im(H1(∆)→
H1(H)) is torsion as well. It follows that the map f̃ : H → Λ is, in homotopy, the Albanese

map, hence a(H) = 1.

There are many ways to show that K × Γ does not have a finite index subgroup which

is a surface group; for instance a quick proof can be obtained using standard properties of

L2-Betti numbers.

The examples of Proposition 3.1 guarantee that the class of Kähler groups that do not

virtually admit an epimorphism to Z with finitely generated kernel is more variegated than

its counterpart in the 3-manifold world. We should, however, qualify this result. These

examples build on the existence of infinite Kähler groups with vb1 = 0, and leverage on the

fact that we can take products of finitely presented groups, as the class of Kähler manifolds

is closed under cartesian product. Neither of these phenomena has a counterpart in the

realm of 3-manifolds. It is perhaps not too greedy to ask for examples of Kähler groups

with va(G) = 1 in a realm where simple constructions as the one of Proposition 3.1 are

tuned out.

As we are about to see, this occurs in the case of aspherical surfaces. That is a level

playing field with irreducible 3-manifolds with b1 > 0, which are as well aspherical.

Question 3.2. Does there exist a group G with b1(G)> 0 that is the fundamental

group of an aspherical Kähler surface and does not virtually algebraically fiber?

The reason why such an example would be appealing comes from the fact that, perhaps

going to a finite index subgroup, the fundamental group G of an aspherical Kähler surface

with va(G) = 1 is a 4-dimensional Poincaré duality group whose Albanese pencil f : X → Σ

determines a short exact sequence of finitely generated groups

(4) 1→K→G→ Γ→ 1,

with Γ a surface group and K finitely generated. As remarked by Kapovich in [35], it

is a theorem of Hillman that either K is itself a (nontrivial) surface group, or it is not
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finitely presented (see e.g., [29, Theorem 1.19]). In either case, a construction like the one

in Proposition 3.1 (or a twist thereof) is excluded. Constructions of this type may not be

easy to find. For instance, Stover gives in [48, Theorem 2] an example of a Kähler group,

a cocompact arithmetic lattice in PU(2, 1), which algebraically fibers. The same is true

for the Cartwright–Steger surface [14], another ball quotient with b1(G) = 2 and whose

Albanese map (as shown in [13, Corollary 5.3]) has no multiple fiber: by the discussion in

the proof of Lemma 2.3 G itself has BNS invariant Σ1(G) equal to the entire S(G) and all

epimorphisms to Z have finitely generated kernel. (According to the introduction to [48],

this fact was known also to Stover and collaborators.)

We want now to show how Question 3.2 ties with the study of coherence of fundamental

groups of aspherical Kähler surfaces, which was initiated in [35, 36] using the aforementioned

result of Hillman, and further pursued in [44]. The outcome of these articles is that, with

the obvious exceptions, most aspherical Kähler surfaces can be shown to have noncoherent

fundamental group. (See [44, Theorem 4] for a detailed statement, which uses a notation

slightly different from ours.) Drawing in part from the same circle of ideas of these references

(as well as a minor extension of the work in [38]) we can prove the following result, which

improves on the existing results insofar as it further narrows possible coherent fundamental

groups to finite index subgroups of the fundamental group of Kodaira fibrations with virtual

Albanese dimension one. (A pencil on a Kähler surface is called a Kodaira fibration if it is

smooth and not isotrivial. Its fibers and base have genera at least 3 and 2, respectively; see

[5, Section V.14].) The new tool yielding the additional noncoherence results is the existence

of algebraic fibrations on G.

Theorem 3.3. Let G be a group with b1(G)> 0 which is the fundamental group of an

aspherical Kähler surface X; then G is not coherent, except for the case where it is virtually

the product of Z2 by a surface group, or perhaps for the case where X is finitely covered by

a Kodaira fibration of virtual Albanese dimension one.

Proof. If G has va(G)> 1, let H 6f G be a subgroup, corresponding to a finite n-cover

X̃ of X, which algebraically fibers. Let

(5) 1→Ker φ→H
φ→ Z→ 1

with Ker φ finitely generated represent an algebraic fibration. By [29, Theorem 4.5(4)]

the finitely generated group Ker φ has type FP2 if and only if the Euler characteristic

e(X̃) = ne(X) = 0. A finitely presented group has type FP2. It follows that Ker φ6G is

finitely generated but not finitely presented, hence G is not coherent, unless e(X) = 0. If

e(X) = 0 the classification of compact complex surfaces (see e.g., [5, Table 10]) entails that

X admits an irrational pencil with elliptic fibers. As e(X) = 0 the Zeuthen–Segre formula

(see e.g., [5, Proposition III.11.4]) implies that the only singular fibers can be multiple covers

of an elliptic fiber, hence X is finitely covered by a torus bundle. A holomorphic fibration

with smooth fibers of genus 1 is also isotrivial (i.e., all fibers are isomorphic), namely

a holomorphic fiber bundle, see [BHPV04, Section V.14]. We can invoke then [BHPV04,

Sections V.5 and V.6] to deduce that some finite cover of X is a product T 2 × Σg. In this

case, the fundamental group is virtually Z2 × Γ, with Γ a surface group. By [9, Theorem B]

any finitely generated subgroup L6 Z2 × Γ has a finite index subgroup that is the product

of finitely generated subgroups of each factor. As surface groups are coherent, L must be

finitely presented, hence in this case the fundamental group of X is coherent.
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Nonobvious examples of coherent groups satisfy therefore va(G) = 1, but we can further

narrow down this occurrence: if G has va(G) = 1, perhaps going to a finite index subgroup,

it is a 4-dimensional Poincaré duality group whose Albanese pencil f : X → Σ determines as

usual the short exact sequence of finitely generated groups 1→K→G→ Γ→ 1, with Γ a

surface group and K finitely generated. To deal with this case, we rely on the strategy of [35,

36]: by the aforementioned theorem of Hillman [29, Theorem 1.19], either K is not finitely

presented (and G is not coherent) or it is itself a nontrivial surface group. In the latter

case, we can follow the path of [38] (see also [28]) to complete the proof of the statement.

We first observe that the surface X, being aspherical, is homotopy equivalent to a smooth

4-manifold M4, a surface bundle over a surface F ↪→M → Σ, where π1(F ) =K, π1(Σ) = Γ.

Note that M is uniquely determined by the short exact sequence of its fundamental group,

see [29, Theorem 5.2]. Next, as X and M are homotopy equivalent, they have the same

Euler characteristic e(X) = e(M) = e(F ) · e(Σ). At this point, the Zeuthen–Segre formula

entails that the only nonsmooth fibers of the Albanese pencil could be multiple covers of an

elliptic fiber (in particular, g(F ) = 1). The assumption that K is finitely generated excludes

the presence of multiple fibers [17, Lemma 4.2]. This means that Albanese pencil f : X → Σ

is smooth (i.e., a holomorphic fibration of maximal rank), namely X is actually a surface

bundle over a surface, in particular it is diffeomorphic to M . If the pencil was isotrivial

(i.e., all fibers isomorphic), it would be a holomorphic fiber bundle, and we would conclude

as above that some finite cover of X is a product, whence va(X) = 2 and va(G)> 1. The

statement follows.

In summary, the existence of nonobvious examples of coherent fundamental groups of

aspherical Kähler surfaces hinges on an affirmative answer to Question 3.2.

Remarks.

(1) Note that the proof of the first case of Theorem 3.3 applies verbatim also in the case

of aspherical surfaces with a(G) = 1 that algebraically fiber; in particular, this entails

that the Cartwright–Steger surface and the surfaces described in [22, Theorem 1.2] have

noncoherent fundamental groups. Those groups are torsion-free lattices G6 PU(2, 1),

and the surfaces are ball quotient B2
C/G, that is, complex hyperbolic surfaces. This

was implicitly known (for slightly different reasons) also from [35]; we point out that

for the argument above we do not need to invoke [40].

(2) It is not difficult to prove the existence of Kodaira fibrations of Albanese dimension

one (which, by the Hochschild–Serre spectral sequence, are surface bundles whose

coinvariant homology of the fiber H1(K; Z)Γ has rank zero): in fact, the “generic”

Kodaira fibration arising from a holomorphic curve in a moduli space of curves has

Albanese dimension one. However, this seems to have no obvious consequences for the

discussion above: we are not aware of the existence of Kodaira fibrations of virtual

Albanese dimension one. We can add that, even if such surfaces did exist, we cannot

decide if their fundamental groups are coherent. For instance, it is not obvious whether

they may contain F2 × F2 as subgroup.

(3) The first examples of Kodaira fibrations, due to Kodaira and Atiyah, actually carry two

inequivalent structures of Kodaira fibrations, hence are guaranteed to have Albanese

dimension two. By the above, their fundamental group is not coherent. The same result

applies for the doubly fibered Kodaira fibrations constructed in [18, 39]. Note that all

doubly fibered surfaces bundles with positive signature are of type III in Johnson’s
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trichotomy (i.e., the monodromy representation ρ : π1(Σ)→Mod(F ) is injective, and

this holds for all fibrations F ↪→X → Σ), see [33]. It follows that the Kähler group

G= π1(X) injects as subgroup of the corresponding mapping class group for the once-

punctured fiber Mod(F 1). The smallest fiber genus attained equals g(F ) = 4, which is

optimal, see [39, Table 3].

It is interesting to flesh out one consequence of the proof of Theorem 3.3 that gives

some information on higher BNS-type invariants of some Kähler groups. Precisely, we will

consider the homotopical BNSR invariant Σ2(G)⊆ Σ1(G)⊆ S(G) introduced in [8]. We will

not need the definition of these invariants and we will limit ourselves to mention the well-

known fact (see e.g., [6, Section 1.3]) that, using the notation preceding Lemma 2.3, given

a primitive class φ ∈H1(G), the kernel Ker φ6G is of type F2 (namely, finitely presented)

if and only if the rational rays determined by both ±φ ∈H1(G) are contained in Σ2(G).

While we do not know a way to get complete information on the full invariant Σ2(G),

the ingredients of the proof of Theorem 3.3 are sufficient to entail the following lemma, that

per se refines the previous result of noncoherence, and is possibly one of the first results on

higher invariants of Kähler groups, besides the case of direct products:

Proposition 3.4. The fundamental group G of an aspherical Kähler surface X of

strictly positive Euler characteristic with Albanese dimension two has BNSR invariants

satisfying the inclusions

Σ2(G) ( Σ1(G)⊆ S(G).

Proof. The point of this statement is that the first inclusion is strict. For the sake of

clarity, we review the argument we used in the proof of Theorem 3.3: the condition on the

Albanese dimension implies that G algebraically fibers, for some primitive class φ ∈H1(G).

As the Euler characteristic of X is strictly positive, Hillman’s theorem [29, Theorem 4.5(4)]

entails that Ker φ is not FP2, nor a fortiori finitely presented.

Note that the same conclusion of the lemma holds, even when a(G) = 1, as long as

the fundamental group algebraically fibers, for example, for the Cartwright–Steger surface.

Perhaps more importantly, the corollary applies to the aforementioned Kodaira fibrations

defined by Kodaira and Atiyah. Topologically, these are surface bundles over a surface,

so that their fundamental groups are nontrivial extension of a surface group by a surface

group. Higher BNSR invariants of direct products of surface groups are (to an extent) well-

understood by purely group theoretical reasons. Instead, Proposition 3.4 seems to be the

first result of that type for nontrivial extensions.

Remark. The readers familiar with BNSR invariants may notice that we are just shy of

being able to conclude that the fundamental group of aspherical Kähler surfaces of positive

Euler characteristic has empty Σ2(G). We conjecture that this is true. (The conjecture holds

true whenever Σ2(G) =−Σ2(G).) We mention also that the statement of Proposition 3.4

remains true if we consider the homological BNSR invariant Σ2(G; Z) of [8].

We will discuss now a result that further ties groups with virtual Albanese dimension

one and surface groups, asserting that the Green–Lazarsfeld sets of such groups coincide

(up to going to a finite index subgroup) with those of their Albanese image.

The Green–Lazarsfeld sets of a Kähler manifold X (and, by extension, of its fundamental

group G) are subsets of the character variety of G, the complex algebraic group defined

as Ĝ :=H1(G; C∗). The Green–Lazarsfeld sets Wi(G) are defined as the collection of
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cohomology jumping loci of the character variety, namely

Wi(G) = {ξ ∈ Ĝ | rkH1(G; Cξ) > i},

nested by the depth i: Wi(G)⊆Wi−1(G)⊆ · · · ⊆W0(G) = Ĝ.

For Kähler groups the structure of W1(G) is well-understood. The projective case was

appeared in [46] (that refined previous results of [26, 27]); this result was then extended

to the Kähler case in [12] (see also [19]). Briefly, W1(G) is the union of a finite set of

isolated torsion characters and the inverse image of the Green–Lazarsfeld set of hyperbolic

orbisurfaces under the finite collection of pencils of X with hyperbolic base.

If X has Albanese dimension one, the Albanese map f : G→ Γ induces an epimorphism

f∗ : H1(G)→H1(Γ). Therefore, we have an induced isomorphism of the connected compo-

nents of the character varieties containing the trivial character

(6) f̂ : Γ̂1̂

∼=−→ Ĝ1̂,

where for a group G, we denote the connected component of the character variety containing

the trivial character 1̂ : G→ C∗ as Ĝ1̂.

The next theorem, a restatement of Theorem D, shows that if X has virtual Albanese

dimension one, then after perhaps going to a cover, the map f̂ restricts to an isomorphism

of the Green–Lazarsfeld sets.

Theorem 3.5. Let X be a Kähler manifold with va(X) = 1. Up to going to a finite

index normal subgroup if necessary, the Albanese map f : G→ Γ induces an isomorphism

f̂ :Wi(Γ)
∼=−→Wi(G)

of the Green–Lazarsfeld sets.

Proof. Up to going to a finite cover, we can assume that X admits an Albanese pencil

f : X → Σ. Moreover, as every cocompact Fuchsian group of positive genus admits a finite

index normal subgroup which is a honest surface group, we can also assume that, after going

to a further finite cover if necessary, the Albanese pencil does not contain any multiple fibers.

In particular, H1(Σ) will be torsion-free. Without loss of generality, by going to the normal

core of the associated finite index subgroup, we can always assume that the cover is regular.

Summing up, after possibly going to a finite cover the Albanese map, in homotopy, is an

epimorphism f : G→ Γ where Γ = π1(Σ) is a genus g(Γ) surface group.

The Green–Lazarsfeld sets Wi(Γ) for a surface group are determined in [31], and are

given by

(7) Wi(Γ) =


Γ̂ if 1 6 i6 2g(Γ)− 2,

1̂ if 2g(Γ)− 1 6 i6 2g(Γ),

∅ if i> 2g(Γ) + 1.

Given ρ ∈ Γ̂, surjectivity of f : G→ Γ implies by general arguments (see e.g., [31,

Proposition 3.1.3]) that f∗ : H1(Γ; Cρ)→H1(G; Cf∗(ρ)) is a monomorphism. But we will

actually need more, namely that by [10, Theorem 1.1] or [11, Theorem 1.8] f∗ is an

isomorphism, except perhaps when ρ ∈ Γ̂ is a torsion character.
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This implies that f̂ : Wi(Γ)→Wi(G) is an injective map, and it will fail to preserve the

depth (i.e., dimension of the twisted homology) only for torsion characters.

Consider the short exact sequence of groups

1−→ Ĝ1̂ −→ Ĝ
t−→Hom(TorH1(G); C∗)−→ 1,

where Ĝ1̂ refers as above to the component of Ĝ connected to the trivial character 1̂.

By [27, Theorem 0.1] all irreducible positive dimensional components of Wi(G) are inverse

images of the Green–Lazarsfeld set of the hyperbolic orbisurfaces. By Proposition 2.2, the

Albanese pencil is unique, hence f̂(Wi(Γ)) = Ĝ1̂ ⊆Wi(G) (for 1 6 i6 2q(G)− 2) is the only

positive dimensional component, that will occur if (and only if ) q(G) = g(Γ) > 2.

We now have the following claim.

Claim. For all i> 1, Wi(G) \ f̂(Wi(Γ)) is composed of torsion characters.

If q(G) = 1, this follows immediately from [12, Théorème 1.3], as in this case W1(Γ) is

torsion. If q(G) > 2, we need a bit more work: again by [12, Théorème 1.3] and the above,

we have that

W1(G) = Ĝ1̂

⋃
Z,

where Z is a finite collection of torsion characters, that we will assume to be disjoint from

Ĝ1̂. By definition Wi(G)⊆W1(G). This implies, by the aforementioned result of Brudnyi,

that:

– if 1 6 i6 2q(G)− 2 the isolated points of Wi(G) are contained in Z;

– if i> 2q(G)− 1, they are either contained in Z, or are torsion characters in Ĝ1̂. In either

case, Wi(G) \ f̂(Wi(Γ)) is composed of torsion characters as claimed. This concludes

the proof of the claim.

All this, so far, is a consequence of the fact that X has Albanese dimension one. Now we

will make use of the assumption on the virtual Albanese dimension to show that Wi(G) \
f̂(Wi(Γ)) is actually empty.

In order to prove this, recall the formula for the first Betti number for finite regular

abelian covers of X, as determined in [31]: given an epimorphism α : G→ S to a finite

abelian group, and following the notation from the diagram in (1), the finite cover H of X

determined by α has first Betti number

(8) b1(H) =
∑
i>1

|Wi(G) ∩ α̂(Ŝ)|.

This formula says that a character ξ : G→ C∗ such that ξ ∈Wi(G) contributes with

multiplicity equal to its depth to the Betti number of the cover defined by α : G→ S

whenever it factorizes via α. Similarly, the corresponding cover Λ of Σ has first Betti

number

(9) b1(Λ) =
∑
i>1

|Wi(Γ) ∩ β̂( ̂S/α(K))|.
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Consider a character ρ ∈Wi(Γ) ∩ β̂( ̂S/α(K)). We have a commutative diagram

G

α
��

f
// Γ

β
��

ρ

��

S // S/α(K)

&&
C∗

whence f∗(ρ) factorizes via α. As f̂(Wi(Γ))⊆Wi(G) this implies that f∗(ρ) ∈Wi(G) ∩
α̂(Ŝ). We deduce that for any α :G→ S any contribution to the right-hand side of Equation

(9) is matched by an equal contribution to the right-hand side of Equation (8).

Now assume that, for some i> 1, there is a nontrivial character ξ : G→ C∗ such that

ξ ∈Wi(G) \ f̂(Wi(Γ)). (The case of the trivial character 1̂ : G→ C∗ is dealt with in the

same way; we omit the details to avoid repetition.) As shown in the claim above, such

character must be torsion. Because of that, its image is a finite abelian subgroup S 6 C∗,
that is, ξ factors through an epimorphism αξ :G→ S. This character either lies in Z or it

is of the form ξ = f∗(ρ) for ρ ∈W2g(Γ)−2(Γ) (in which case i > 2g(Γ)− 2). These two cases

are treated in slightly different ways:

– If the case ξ ∈ Z holds, ξ will give a positive contribution to b1(Hξ) that is not matched

by any term in the right-hand side of Equation (9).

– If the case ξ = f∗(ρ) holds, it is immediate to verify that ρ factors through βξ : Γ→
S/αξ(K)∼= S. However, the contribution of ρ to b1(Λξ) is at least i− 2g(Γ) + 2> 0

short of the contribution of ξ = f∗(ρ) to b1(Hξ), as

dim H1(G; Cξ) > i > dim H1(Γ; Cρ) = 2g(Γ)− 2.

In either case, the outcome is that b1(Hξ)> b1(Λξ), which violates the assumption that

X has virtual Albanese dimension one.

Summing up, f̂ : Wi(Γ)→Wi(G) is a bijection. These sets coincide therefore with the

connected components of the respective character variety (for i6 i6 2g(Γ)− 2), the trivial

character (for 2g(Γ)− 1 6 i6 2g(Γ)), and are empty otherwise. Whenever nonempty, both

sets inherit a group structure as subsets of the respective character varieties. The map f̂ is

the restriction of a homomorphism between these character varieties, hence an isomorphism

as stated.

Remarks.

(1) The bielliptic surfaces mentioned in Section 2 are a clean example of the fact that

we need more than Albanese dimension one to get the isomorphism of Theorem 3.5.

These surfaces admit genus one Albanese pencils without multiple fibers, and there

exists an epimorphism α : G→ S with S abelian and H = Ker α∼= Z4 (see [5, Section

V.5]). This entails that, for some i> 1, Wi(G) is strictly larger than f̂(Wi(Z2)) (the

difference being torsion characters, contributing to the first Betti number of H).

(2) The converse of Theorem 3.5 is false: for instance, if G denotes the fundamental group

of the Cartwright–Steger surface, Wi(G) = f̂(Wi(Z2)), but va(G)> 1 (see [49]).
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We want to discuss now a result that may prevent the existence of new simple examples

of Kähler groups with va(G) = 1, under the assumption that the group satisfies residual

properties akin to those holding for most irreducible 3-manifold groups, namely being

virtually RFRS (in particular, that holds for the fundamental group of irreducible manifolds

that have hyperbolic pieces in their geometric decomposition). This class of groups was first

introduced by Agol in the study of virtual fibrations of 3-manifold groups: a group G is

RFRS if there exists a filtration {Gi|i> 0} of finite index normal subgroups Gi Ef G0 =G

with
⋂
i Gi = {1} whose successive quotient maps αi : Gi→Gi/Gi+1 factorize through the

maximal free abelian quotient:

(10)
1 // Gi+1

// Gi
''

αi // Gi/Gi+1
// 1

H1(Gi)/Tor

55

Subgroups of the direct product of surface groups and abelian groups are virtually RFRS.

The largest source of virtually RFRS group we are aware of is given by subgroups of right-

angled Artin groups (RAAGs), that are virtually RFRS by [1]. However, this class does

not give us new examples, as Py proved in [43, Theorem A] that all Kähler groups that are

subgroups of RAAGs are in fact virtually subgroups of the product of surface groups and

abelian groups.

We have the following, that combined with Lemma 2.3 gives Theorem E:

Theorem 3.6. Let G be a virtually RFRS Kähler group. Then for any Kähler manifold

X such that π1(X) =G either there exists a finite cover X̃ of X with Albanese dimension

greater than one, or G is virtually a surface group.

Proof. After going to a suitable finite cover can assume that X has RFRS fundamental

group G, with associated sequence {Gi}. From the definition above (see the sequence in

(10)) a nontrivial RFRS group has positive first Betti number. In light of this, it is sufficient

to show that if G is an RFRS group with Albanese map f : G→ Γ and virtual Albanese

dimension one, then it is a surface group. (This implies, because of the initial cover to get

G RFRS, the theorem as stated.) Recall that we have a short exact sequence

1 // K // G
f
// Γ // 1 ,

where Γ can be assumed to be a surface group and K is finitely generated. We claim that if

X has virtual Albanese dimension one, then K is actually trivial, that is, f is injective. Let

γ ∈G be a nontrivial element; the assumption that
⋂
i Gi = {1} implies that there exists

an index j such that γ ∈Gj \Gj+1. Consider now the diagram

(11)

1 // K ∩Gj // Gj
))

fj
//

αj

��

Γj //

ww
1

H1(Gj)/Tor
uu

Gj/Gj+1

��
1
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where fj : Gj → Γj is the restriction epimorphism between finite index subgroups of G and

Γ, respectively, determined by Gj EG as in the commutative diagram of (1). This map

represents, in homotopy, the pencil fj : Xj → Σj of the cover of X associated to Gj . By

assumption, this pencil is Albanese. This entails that there is an isomorphism

(fj)∗ : H1(Gj)/Tor
∼=−→H1(Γj).

Composing the inverse of this isomorphism with the maximal free abelian quotient of Γj
gives the map denoted with a dashed arrow in the diagram of Equation (11). By the

commutativity of that diagram we deduce that the quotient map αj : Gj →Gj/Gj+1 factors

through fj : Gj → Γj . As γ ∈Gj \Gj+1, the image αj(γ) ∈Gj/Gj+1 is nontrivial, hence so

is fj(γ). This implies that f(γ) = fj(γ) ∈ Γ is nontrivial, that is, f : G→ Γ is injective.
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