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Abstract

Bifurcating Markov chains (BMCs) are Markov chains indexed by a full binary tree
representing the evolution of a trait along a population where each individual has two
children. We provide a central limit theorem for additive functionals of BMCs under L2-
ergodic conditions with three different regimes. This completes the pointwise approach
developed in a previous work. As an application, we study the elementary case of a
symmetric bifurcating autoregressive process, which justifies the nontrivial hypothesis
considered on the kernel transition of the BMCs. We illustrate in this example the phase
transition observed in the fluctuations.
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1. Introduction

Bifurcating Markov chains (BMCs) are a class of stochastic processes indexed by the reg-
ular binary tree and which satisfy the branching Markov property (see below for a precise
definition). This model represents the evolution of a trait along a population where each indi-
vidual has two children. We refer to [4] for references on this subject. The recent study of
BMC models was motivated by the understanding of the cell division mechanism (where the
trait of an individual is given by its growth rate). The first BMC model, known as the ‘symmet-
ric’ bifurcating autoregressive process (BAR) (see Section 4.1 for more details in a Gaussian
framework), was introduced by Cowan and Staudte [7] in order to analyze cell lineage data.
In [9], Guyon studied ‘asymmetric’ BAR in order to prove statistical evidence of aging in
Escherichia coli.

In this paper, our objective is to establish a central limit theorem for additive function-
als of BMCs. This will be done for the class of functions which belong to L*(w), where p
is the invariant probability measure of the Markov chain given by the genealogical evolu-
tion of an individual taken at random in the population. This paper completes the pointwise
approach developed in [4] in a very close framework. Let us emphasize that the L> approach
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is an important step toward the kernel approximation of the densities of the kernel transition
of the BMC:s and the invariant probability measure p which will be developed in a companion
paper. The main contribution of this paper, with respect to [4], is the derivation of a non-
trivial hypothesis on the kernel transition given in Assumption 2.2(i). More precisely, let the
random variable (X, Y, Z) model the trait of the mother, X, and the traits of its two children
Y and Z. Notice that we do not assume that conditionally on X, the random variables ¥ and
Z are independent or that they have the same distribution. In this setting, u is the distribution
of an individual picked at random in the stationary regime. From an ergodic point of view, it
would be natural to assume some Lz(,u) continuity in the sense that for some finite constant M
and all functions f and g,

Ex-u[f(Y)8(2)*] <M Ey~ . [f(1)*] Ez-.[f(2)*].

where Ew -, means that the random variable W has distribution 1. However, this condition is
not always true even in the simplest case of the symmetric BAR model; see the comments
in Remark 2.2 and the detailed computation in Section 4. This motivates the introduction
of Assumption 2.2(i), which allows us to recover the results from [4] in the context of the
L? approach, and in particular the three regimes: the subcritical, critical, and supercritical
regimes. Since the results are similar and the proofs follow the same steps, we provide a
detailed proof only in the subcritical case. Finally, let us mention that the numerical study
on the symmetric BAR in Section 4.2 illustrates the phase transitions for the fluctuations. We
also provide an example where the asymptotic variance in the critical regime is 0; this happens
when the function considered is orthogonal to the second eigenspace of the associated Markov
chain.

The paper is organized as follows. In Section 2, we present the model and give the assump-
tions: we introduce the BMC model in Section 2.1, we give the assumptions under which
our results will be stated in Section 2.2, and we give some useful notation in Section 2.3. In
Section 3 we state our main results: the subcritical case in Section 3.1, the critical case in
Section 3.2, and the supercritical case in Section 3.3. In Section 4, we study the special case of
the symmetric BAR process. The proof of the results in the subcritical case given in Section 5,
which are in the same spirit as [4], rely essentially on the explicit second moment computations
and precise upper bounds on fourth moments for BMCs which are recalled in Section 6.

The proof of the results in the critical case is an adaptation of the proof in the subcritical
case, in the same spirit as in [4]; the interested reader can find the details in [3]. The proof of
the results in the supercritical case does not involve the original Assumption 2.2(i); it is not
reproduced here as it is very close to its counterpart in [4].

2. Models and assumptions

2.1. Bifurcating Markov chain: the model

We denote by N the set of nonnegative integers and N* = N\ {0}. If (E, £) is a measurable
space, then B(E) (resp. Byp(E), resp. B+ (E)) denotes the set of (resp. bounded, resp. nonneg-
ative) R-valued measurable functions defined on E. For f € B(E), we set ||f|5, = sup{[f(x)],
x € E}. For a finite measure A on (E, £) and f € B(E) we shall write (A, f) for ff(x) dr(x)
whenever this integral is well defined. For p > 1 and f € B(E), we set ||fllzr) = (X, IFIPy1/P
and we define the space LP(L) = {f € BE); Ifllroy < +oo} of p-integrable functions with
respect to A. For n € N*, the product space E" is endowed with the product o-field £%".
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Let (S, %) be a measurable space. Let Q be a probability kernel on § x .; that is, Q(-, A)
is measurable for all A € ., and Q(x, -) is a probability measure on (S, .) for all x € S. For
any f € Bp(S), we set, for x € S,

(@NHx) = /Sf(y) O(x, dy). ey

We define (Qf), or simply Qf, for f € B(S) as soon as the integral (1) is well defined, and
we have Of € B(S). For n € N, we denote by Q" the nth iterate of Q, defined by Q° = I, the
identity map on B(S), and Q"*'f = Q"(Qf) for f € By(S).

Let P be a probability kernel on § x . ®2. that s, P(-, A) is measurable forall A € . ®2 and
P(x, ) is a probability measure on ($?, .#®2) for all x € S. For any g € B,(S®) and & € B,(S?),
we set, for x € S,

(Pg)(x) = /S , 806y ) P(x,dy. dz) and  (Ph)(x) = fs , 10 2) Px, dy, dz). @)

We define (Pg) (resp. (Ph)), or simply Pg for g€ B (83) (resp. Ph for he B (Sz)), as soon as
the corresponding integral (2) is well defined, and we have that Pg and Ph belong to B(S).

We now introduce some notation related to the regular binary tree. We set To = Go = {#},
Gy ={0, 1}, Ty = Uo<r<k Gr for k e N*, and T =, G,. The set Gy corresponds to the
kth generation, T} to the tree up to the kth generation, and T the complete binary tree. For
i € T, we denote by |i| the generation of i (|i] =k if and only if i € Gy), and iA = {ij;j € A}
for A C T, where ij is the concatenation of the two sequences i, j € T, with the convention that
Gi=id=i.

We recall the definition of a bifurcating Markov chain from [9].

Definition 2.1. We say a stochastic process indexed by T, X = (X;, i € T), is a bifurcating
Markov chain (BMC) on a measurable space (S, .#’) with initial probability distribution v on
(S, .#’) and probability kernel P on S x .#®? if the following hold:

o (Initial distribution.) The random variable Xy is distributed as v.

e (Branching Markov property.) For a sequence (g;, i € T) of functions belonging to
By(S3), we have, for all k > 0,

E[ l_[ gi(Xi, Xio, Xin)lo (Xj5j € Tk):| = l_[ Pgi(X:).

ieGy i€Gy

Let X =(X;, i€ T) be a BMC on a measurable space (S, .¥’) with initial probability dis-
tribution v and probability kernel P. We define three probability kernels Py, Pi, and Q on
S x & by

Po(x,A)=P(x,AxS), Pi(x,A)=Px, SxA) for (x,A)eS x ., and
1
Q=§(P0+P1)~

Notice that Py (resp. Pp) is the restriction of the first (resp. second) marginal of P to S.
Following [9], we introduce an auxiliary Markov chain Y = (¥, n € N) on (S, .%¥) with Y
distributed as Xy and transition kernel Q. The distribution of Y,, corresponds to the distribution
of Xj, where I is chosen independently from X and uniformly at random in generation G,,. We
shall write [E, when Xy = x, i.e. the initial distribution v is the Dirac mass at x € S.
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We end this section with a useful inequality and the Gaussian BAR model.

Remark 2.1. By convention, for f, g€ B(S), we define the function f® g€ B(S*) by
(f ® g)(x, y) =f(x)g(y) for x, y € S and introduce the notation

1
fOymg=7(f®g+g®f) and [ =f®f.

Notice that P(g ®sym 1) = Q(g) for g € B (S). For f e B(S),as f @ f <f? ®sym 1, we get

P(f &) =P(f &) < P(f? Ogym 1) = Q(f2). 3)

Example 2.1 (Gaussian bifurcating autoregressive process). We will consider the real-valued
Gaussian bifurcating autoregressive process (BAR) X = (X,,, u € T) where for all u € T,

X0 = aoXy + bo + &40,
Xut = a1 Xy + b1 + ey,

with ag, a1 € (—1, 1), by, b1 € R, and ((e,0, €41), u € T) an independent sequence of bivariate
Gaussian N(0, T') random vectors independent of Xy with covariance matrix as follows, where

o >0and p € R satisfy |p| < o2
2
F:(U ’;)
p o

Then the process X = (X, u € T) is a BMC with transition probability P given by

Px, dy, dz) =

1 o?
———— exp| ————— g(x. y, 2) | dvdz,
2m/ot — p? ( 2(c* = p?) )
with
8(x, v, 2) = (v — aox — bo)* — 2po ~2(y — apx — bo)(z — arx — by) + (z — arx — by)*.

The transition kernel Q of the auxiliary Markov chain is defined by

O, dy) = —— ~(mavnbo) 1202y o~ (oman) 120 4
= et ) g

2.2. Assumptions

We assume that y is an invariant probability measure for O.
We state first some regularity assumptions on the kernels P and Q and the invariant measure
w we will use later on. Notice first that by Cauchy—Schwarz we have, for f, g € L*(1),

P(fool> <P(fF 1) P(1®¢%) <49(f%) Q(¢).
so that, as u is an invariant measure of Q,
1P ® DIz <21 Q0 o 120300 <2 W lltey Ngltgo- @)

where we use Jensen’s inequality for the second inequality. Similarly, for f, g € L?(11),s

(e, P(F® Q) =2 Wfllr2euy 118N12¢u) - (5)
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We shall in fact assume that P (in fact only its symmetrized version) is in a sense an L2(w)
operator; see also Remark 2.2 below.

Assumption 2.2. There exists an invariant probability measure w for the Markov transition
kernel Q.

(i) There exists a finite constant M such that for all f, g, h € L*(1),

”P(Qf ®sym Qg)”[}(u) < M ”f”LZ(;,L) ”g“Lz(M)? (6)
”P(P(Qf ®sym Qg) ®sym Qh)”Lz(u) M ”f”Lz(p,) ”g“Lz(p,) ”h”Lz(p,)v (7
1P @oym Q)20 < M Il g2 - ®)

(ii) There exists ko € N such that the probability measure vQ* has a bounded density, say
Vo, with respect to . That is,

vQ*(dy) = vo(y)u(dy) and  |lvollae < +00.

Remark 2.2. Let ¢ be an invariant probability measure of Q. If there exists a finite constant
M such that for all f, g € L*(u),

1P ® D)2y <M IF 2 gl 20, ©)

then we deduce that (6), (7), and (8) hold. Condition (9) is much more natural and simpler
than the latter ones, and it allows us to give shorter proofs. However, Condition (9) appears to
be too strong even in the simplest case of the symmetric BAR model developed in Example
2.1 with ag = a; and by = bj. Let a denote the common value of ag and a;. In fact, according
to the value of a € (—1, 1) in the symmetric BAR model, there exists k1 € N such that for all

f gL,
[P(Q f ® Q“¢) | 12 =M Ifll2) I8ll20s (10)

with kj increasing with |a|. Since Assumption 2.2(i) is only necessary for the asymptotic nor-
mality in the case |a| € [0, 1/ \/5] (corresponding to the subcritical and critical regimes), it will
be enough to consider k; = 1 (but not sufficient to consider k; = 0). For this reason, we con-
sider (6), that is, (10) with k| = 1. A similar remark holds for (7) and (8). In a sense Condition
(10) (as well as similar extensions of (7) and (8)) is in the same spirit as Assumption 2.2(ii):
one uses iterates of Q to get smoothness on the kernel P and the initial distribution v.

Remark 2.3. Let u be an invariant probability measure of Q and assume that the transition
kernel P has a density, denoted by p, with respect to the measure u®2; that is, P(x, dy, dz) =
p(x, v, 2) u(dy)u(dz) for all x € S. Then the transition kernel Q has a density, denoted by ¢, with
respect to w; that is, Q(x, dy) = q(x, y)u(dy) for all x € § with g(x, y) = 2-1 fs px,y, 20+
p(x, z,y)) u(dz). We set

12
mw=<£amwﬂwm) . (1N

https://doi.org/10.1017/apr.2022.3 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.3

1004 S. V. BITSEKI PENDA AND J.-F. DELMAS

Assume that
1P (6 ®% )l 5, < +o0, (12)
IPP(h ®) @sym W)l 2,y < 00, (13)
and that there exists a finite constant C such that for all f € L4(,u),
1P (f @sym B)ll 20 < € Wl - (14)

Since |9f]| < Ifllz2() b, we deduce that (12), (13), and (14) imply respectively (6), (7),
and (8).

We consider the following ergodic property of Q, which in particular implies that p is
indeed the unique invariant probability measure for Q. We refer to [8, Section 22] for a detailed
account of L*(u)-ergodicity (see in particular Definition 22.2.2 on the exponentially convergent
Markov kernel).

Assumption 2.3. The Markov kernel Q has a (unique) invariant probability measure |, and
Q is L*(1) exponentially convergent; that is, there exist o € (0, 1) and M finite such that for all
fel*(w),

19" — (1, F)ll2ey < Mo 2 forallne N, (15)

We consider the stronger ergodic property based on a second spectral gap. (Notice in
particular that Assumption 2.2 implies Assumption 2.2.)

Assumption 2.4. The Markov kernel Q has a (unique) invariant probability measure |1, and
there exist a € (0, 1); a finite nonempty set J of indices; distinct complex eigenvalues {«j, j € J}
of the operator Q with |aj| = o; nonzero complex projectors {R;, j € J} defined on CL*(w),
the C-vector space spanned by L*(w), such that RjoRy=RyoR;=0 for all j#] (so
that Zje 7 Rj is also a projector defined on CL*(w)); and a positive sequence (B, n € N)

converging to 0, such that for all f € L*(w), with 0; =aj/a,

1Q"f = (. f) = @™ D 0" Ryl 2y < Bu" If 2,y forallneN. (16)
jeJ

Assumptions 2.3 and 2.4 stated in an L? framework correspond to [4, Assumptions 2.4 and
2.6] stated in a pointwise framework. The structural Assumption 2.2 on the transition kernel P
replaces the structural [4, Assumptions 2.2] on the set of functions considered.

Remark 2.4. Assume that Q has a density g with respect to an invariant probability measure
w such that h € L2(w), where b is defined in (11); that is,

/S L, ) dx)u(dy) < +oo.

Then the operator Q is a nonnegative Hilbert—Schmidt operator (and thus a compact operator)
on L*(w). It is well known that in this case, except for the possible value 0, the spectrum
of Q is equal to the set 0,(Q) of eigenvalues of Q; 0,(Q) is a countable set with 0 as the
only possible accumulation point, and for all A € 0,(Q) \ {0}, the eigenspace associated to A is
finite-dimensional (we refer for example to [2, Chapter 4] for more details). In particular, if 1 is
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the only eigenvalue of Q with modulus 1 and if it has multiplicity 1 (that is, the corresponding
eigenspace is reduced to the constant functions), then Assumptions 2.3 and 2.4 also hold. Let
us mention that g(x, y) > 0 u(dx) ® u(dy)-almost surely (a.s.) is a standard condition which
implies that 1 is the only eigenvalue of Q with modulus 1 and that it has multiplicity 1; see for
example [1].

2.3. Notation for averages of different functions over different generations

Let X = (X, u € T) be a BMC on (S, S) with initial probability distribution v and probabil-
ity kernel P. Recall that Q is the induced Markov kernel. We shall assume that y is an invariant
probability measure of Q. For a finite set A C T and a function f € B(S), we set

Ma(f) =) fXo).
icA
We shall be interested in the cases A =G, (the nth generation) and A =T, (the tree up to
the nth generation). We recall from [9, Theorem 11 and Corollary 15] that under geometric

ergodicity assumption, for f a continuous bounded real-valued function defined on S we have
the following convergences in L2(w) (resp. a.s.):

Lim (G| ™' Mg, (f) = (u.f) and  lim [Ty~ M, ()= (. /). an

Using Lemma 5.1 and the Borel-Cantelli theorem, one can prove that we also have (17) with
the L?(1) and a.s. convergences under Assumptions 2.2(ii) and 2.3.

We shall now consider the corresponding fluctuations. We will use frequently the following
notation:

F=r—uf) forfel'w.
In order to study the asymptotics of Mg, , (f), we shall consider the contribution of the
descendants of the individual i € T,_, forn > £ > 0:

Nﬁ,l(f) = |Gn|_1/2MiGn,‘i‘,g (f)v (18)
where iG,—|;j—¢ = {ij, j € Gy—jij—¢} C Gu—¢. For all k € N such that n > k 4 ¢, we have

Mg, ,(F) =V1Gal Y NE(H)=VIGal NEy().

lEGk

Let f = (f¢, £ € N) be a sequence of elements of Ll(,u). We set, forne NandieT,,

n—l|i| n—|i|
N i(F) = Z (=G 72N Mig, (). (19)
=0

We deduce that ZieGk Nui(H =1G,|~1/? Yoz (]j Mg, , (fg), which gives, for k =0,

Nuo(F) = 1Gal ™2 Y " Mg, _, (fe). (20)

=0
The notation N, gy means that we consider the average from the root ¢ to the nth generation.

Remark 2.5. We shall consider in particular the following two simple cases. Let f € L' (1) and
consider the sequence f = (fr, £ € N). If fy =f and fy = 0 for £ € N*, then we get

Nuo(H = G, * Mg, (f).
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If fy =f for £ € N, then we shall write f=(f,f,...), and we get, as |T,| =21 _ 1 and

|Gn| =2",
Ny o) = |Gl ™ 2M, (F) =v/2 = 277 [T, ="/ 2 M, (f).
Thus, we will deduce the fluctuations of M, (f) and Mg, (f) from the asymptotics of N, 4(f).

Because of Assumption 2.2(ii) (which roughly states that after ko generations, the distribu-
tion of the induced Markov chain is absolutely continuous with respect to the invariant measure
W), it is better to consider only generations k > ko for some ky € N and thus remove the first
ko — 1 generations in the quantity N, »(f) defined in (20). To study the asymptotics of N, (),
it is convenient to write, forn >k > 1,

k—1
Nao() =Gl 12 Y Mg, (fr) + ) Nui(h)- @1
r=0 ieGy
Iff=(f,f,...)istheinfinite sequence in which each term is the same function f, this becomes

N g ®) = |G| ™2 M, (F) = |Gl ™2 M, (F) + D Nai(h).

lEGk

3. Main results

3.1. The subcritical case: 20% < 1

We shall consider, when well defined, for a sequence § = (f;, £ € N) of measurable real-
valued functions defined on S, the quantities

TP (F) = Z() + 2250 (), (22)
where
B =Y 2 W)+ Y 2 (e P((QF) ©7)). 23)
>0 £>0, k=0
T30(f) = Z y—t <M,kak_£fe)+ Z yr—t <M,7D(Qrfk Reym Qk—l+rﬁ)>. (24)
0<tl<k 0<t<k
r>0

The proof of the next result is detailed in Section 5.

Theorem 3.1. Let X be a BMC with kernel P and initial distribution v such that
Assumptions 2.2 and 2.3 are in force with a € (0, 1/ \/5) We have the following convergence
in distribution for any sequence {= (f;, £ € N) that is bounded in L*(w) (that is, such that

SupeeN |Lf( ||L4(/'L) < +OO)

Nuyh = G,

where G is a centered Gaussian random variable with variance Esub(f) given by (22) which is
well defined and finite.

Notice that the variance %%U°(f) already appears in the subcritical pointwise-approach case;
see [4, (15) and Theorem 3.1]. Then, arguing similarly as in [4, Section 3.1], we deduce that
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if Assumptions 2.2 and 2.3 are in force with o € (0, 1/ «/E) then for f € L4(/L), we have the
following convergence in distribution:

- @ - 7 @
Gl ™M, (f) ——> G1 and |T,|”"*Mr, (f) —— Ga, (25)

where G and G, are centered Gaussian random variables with respective variances E(‘gb( =
U(f), with f=(f,0,0,...), and Z(f) = Z°(f)/2, with f=(f,f,...), given in [4,
Corollary 3.3], which are well defined and finite.

3.2. The critical case: 202 =1

In the critical case @ = 1/+/2, we shall denote by 'R the projector on the eigenspace associ-
ated to the eigenvalue «; with oj = 6, |6] = 1 and for j in the finite set of indices J. Since Q
is a real operator, we get that if «; is a nonreal eigenvalue, then so is &;. We shall denote by ﬁj
the projector associated to @;. Recall that the sequence (8, n € N) in Assumption 2.2 is nonin-
creasing and bounded from above by 1. For any measurable real-valued function f defined on
S, we set, when this is well defined,

F=F=Y_Ri(f) with F=f—(u.f). (26)

jeJ

We shall consider, when well defined, for a sequence f = (fz, £ € N) of measurable real-valued
functions defined on S, the quantities

=) = 2P + 2257, @7
where

k>0 k>0 jel
SR = Y 2 O PR, (29)
0<t<k

with, for k, £ € N, _
fie=Y" 0/ Ri(fi) ®sym Ry(fo).
jeJ

Notice that f*, = f;, and that f", is real-valued as

0/ Ri(fi) @ Ry(fo) =0, Ry (i) @ Ry (fo)
for j/ such that &y =@; and thus Ry =R;.

The technical proof of the next result is omitted, as it is an adaptation of the proof of
Theorem 3.1 in the subcritical case, in the same spirit as [4, Theorem 3.4] (critical case) is
an adaptation of the proof of [4, Theorem 3.1] (subcritical case). The interested reader can find
the details in [3].

Theorem 3.2. Let X be a BMC with kernel ‘P and initial distribution v such that Assumptions
2.2 (with ko € N), 2.3, and 2.4 are in force with a = 1/+/2. We have the following convergence
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in distribution for any sequence f = (f, £ € N) that is bounded in L*(u) (that is, such that
SUPyeN Hfg ||L4(M) < +OO)

1/2Nn f/)(f) —> G,

where G is a centered Gaussian random variable with variance Ecm(f) given by (27), which is

well defined and finite.

Notice that the variance S'(f) already appears in the critical pointwise-approach case; see
[4, (20) and Theorem 3.4]. Then, arguing similarly as in [4, Section 3.2], we deduce that if
Assumptions 2.2 (with kg € N), 2.3, and 2.4 are in force with o = 1/«/5, then for f € L*(1),
we have the following convergence in distribution:

(G PMe, (F) =2 Gi, and ()™M, (F) > G, (30)

where G| and G» are centered Gaussian random variables with respective variances Z“it( =
»eritf), with f=(f,0,0,...), and Z%m(f) ety /2, with f=(f,f,...), given in [4,
Corollary 3.6], which are well defined and finite.

3.3. The supercritical case 202 > 1

We consider the supercritical case o € (1/ V2, 1). This case is very similar to the super-
critical case in the pointwise approach; see [4, Section 3.3]. So we only mention the most
interesting results without proof. The interested reader can find the details in [3].

We shall assume that Assumptions 2.2(ii) and 2.4 hold. In particular we do not assume
Assumption 2.4(i). Recall (16) with the eigenvalues {&; = 6jcx, j € J} of Q, with modulus equal
to a (i.e. |6;] = 1) and the projector R; on the eigenspace associated to eigenvalue «;. Recall
that the sequence (8;, n € N) in Assumption 2.4 can (and will) be chosen to be nonincreasing
and bounded from above by 1. We shall consider the filtration H = (H,,, n € ) defined by H,, =
o(X;, i € T,). The next lemma exhibits martingales related to the projector R;.

Lemma 3.1. Let X be a BMC with kernel P and initial distribution v such that Assumptions
2.2(ii) and 2.4 are in force with a € (1/\/5, 1) in (16). Then, for all j € J and f € L*(w), the
sequence Mi(f) = (Mn,j(f), ne N), with

M, j(f) = (25) " Mg, (Ri(f)).

is an H-martingale which converges a.s. and in L%(v) to a random variable, say Moo j(f).
The next result corresponds to [4, Corollary 3.13] in the pointwise approach.

Corollary 3.1. Let X be a BMC with kernel P and initial distribution v such that Assumptions
2.2(ii) and 2.4 are in force with o € (1/\/5, 1) in (16). Assume « is the only eigenvalue of Q
with modulus equal to « (and thus J is reduced to a singleton, say {jo}). Then, for f € L*(),
we have

2a) "M, (f) n:P>OOMOO(f) and  (20)~"Mr, (F) :IP; 2

o mMoo,jo(f),

where M j,(f) is the random variable defined in Lemma 3.1.
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4. Application to the study of symmetric BAR

4.1. Symmetric BAR

We consider a particular case from [7] of the real-valued bifurcating autoregressive process
(BAR) from Example 2.1. We keep the same notation. Let a € (—1, 1) and assume that a =
ap=ay, bo =b1 =0, and p = 0. In this particular case the BAR has symmetric kernel as

P(x, dy, dz) = Q(x, dy)Q(x, dz).
We have Of (x) = E[f(ax + 0 G)] and more generally

Q"f(x) = E[f(a”x +V1- az"oaG)] ,

where G is a standard (0, 1) Gaussian random variable and o, =0 (1 — az)_l/ % The kernel
Q admits a unique invariant probability measure ., which is A/ (O, 03) and whose density, still
denoted by u, with respect to the Lebesgue measure is given by

V1= a? (1 — az)x2
M(x)—mexp Ty

The densities p (resp. g) of the kernel P (resp. Q) with respect to 1®2 (resp. 1) are given by

px, y, 2) = q(x, Y)q(x, 2)

and

2),2
g(x, y) = ; exp| — (v — ax)? . (1 —a )y _ 1 e—(az)r2+a2x2—2axy)/2a2 '
V=& 202 202 J-a

Notice that ¢ is symmetric. The operator Q (in Lz(y,)) is a symmetric integral Hilbert—Schmidt

operator whose eigenvalues are given by 0,(Q) = (a", n € N), their algebraic multiplicity is
one, and the corresponding eigenfunctions (g,(x), n € N) are defined for n € N by

&n(x) =gn (Ua_l x) s

where g, is the Hermite polynomial of degree n (gop = 1 and g1(x) = x). Let R be the orthogonal
projection on the vector space generated by gi; that is, Rf = (i, fg1) g1, or equivalently, for

xeR,
Rf(x) =0, ' xE[Gf(0,G)] . (31)
Recall § defined in (11). It is not difficult to check that
2 2y .2
_ a“(l1—a
hlx) = (1 _04) A eXP(% %) forxeR,

and b € L>(11) (that is, fRZ q(x, y)* n(x)u(y) dxdy < +oo). Using elementary computations, it
is possible to check that Qh € L*(u) if and only if |a| < 37!/% (whereas h € L*(w) if and only if
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la] < 3_1/2). As P is symmetric, we get P(b ®? ) < (Qh)? and thus (12) holds for |a| < 3~ 1/4.
We also get, using the Cauchy—Schwarz inequality, that

1P (f @sym D)1l 2,0 = QOO 20y < W Nty 12120

and thus (14) holds for |a| < 3~1/4. Some elementary computations give that (13) also holds
for |a| < 0.724 (but (13) fails for |a| > 0.725). (Notice that 271/2 < 0.724 < 371/4). As a con-
sequence of Remark 2.3, if |a| < 0.724, then (6)—(8) are satisfied and thus Assumption 2.2(i)
holds.

Notice that v QX is the probability distribution of a*Xy 4+ 0,+/1 — a?* G, with G an N(0, 1)
random variable independent of Xy;. So Assumption 2.2(ii) holds in particular if v has compact
support (with kg = 1) or if v has a density with respect to the Lebesgue measure, which we
still denote by v, such that ||v/u]| o is finite (with kg € N). Notice that if v is the probability
distribution of N’ (0, ,08), then pg > o, (resp. po < o,) implies that Assumption 2.2(ii) fails
(resp. is satisfied).

Using the fact that (g,, //nl, ne N) is an orthonormal basis of L?(x) and Parseval’s iden-
tity, it is easy to check that Assumption 2.4 holds with J = {jo}, aj, =a =a, B, =d", and
Rj,=R.

4.2. Numerical studies: illustration of phase transitions for the fluctuations

We consider the symmetric BAR model from Section 4.1 with a = « € (0, 1). Recall that o
is an eigenvalue with multiplicity one, and we denote by R the orthogonal projection on the
one-dimensional eigenspace associated to «. The expression for R is given in (31).

In order to illustrate the effects of the geometric rate of convergence « on the fluctuations,
we plot for A, € {Gy, Ty} the slope, say ba,s, of the regression line log(Var(|A,|~'Ma,(f)))
versus log(|A,|) as a function of the geometric rate of convergence «. In the classical cases (e.g.
Markov chains), the points are expected to be distributed around the horizontal line y = —1. For
n large, we have log(|A,|) >~ nlog(2), and for the symmetric BAR model, the convergences in
(25) for a < 1/+/2, (30) for @ = 1/+/2, and Corollary 3.1 for « > 1/+/2 yield that b, ~ h; (ct)
with hi(a) = log(oz2 \% 2_1)/10g(2) as soon as the limiting Gaussian random variable in (25)
and (30) or Mo (f) in Corollary 3.1 is nonzero.

For our illustrations, we consider the empirical moments of order p € {1, . . ., 4}; that is, we
use the functions f(x) = x”. As we can see in Figures 1 and 2, these curves present two trends,
with a phase transition around the rate @ = 1/ V2 for p € {1, 3} and around the rate &> = 1/+/2
for p € {2, 4}. For convergence rates o € (0, 1/ \/5), the trend is similar to that of the classical
cases. For convergence rates o € (1/ V2, 1), the trend differs from the classical cases. One
can observe that the slope by, increases with the value of the geometric convergence rate
. We also observe that for & > 1/+/2, the empirical curve agrees with the graph of h(a) =
log(a? v 271) /log(2) for f(x) = x” when p is odd; see Figure 1. However, the empirical curve
does not agree with the graph of A for f(x) = x” when p is even (see Figure 2); instead, it agrees
with the graph of the function h(«) = 10g(oc4 \Y 2_1) /log(2). This is due to the fact that for p
even, the function f(x) = x” belongs to the kernel of the projector R (which is clear from the
formula (31)), and thus M (f) = 0. In fact, in those two cases, one should take into account the
projection on the eigenspace associated to the third eigenvalue, which in this particular case is
equal to or®. Intuitively, this indeed gives a rate of order h,. Therefore, the normalization given
for f(x) = x” when p is even is not correct.
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FIGURE 1. Slope by, (empirical mean and confidence interval in black) of the regression line
log(Var A "M A, (f))) versus log(|A,|) as a function of the geometric ergodic rate o, for n =15,

A, € {Gy, Ty}, and f(x) = x” with p € {1, 3}. In this case, we have R(f) # 0, where R is the projector
defined from the formula (31). One can see that the empirical curve (in black) is close to the graph (in

red) of the function h; (a) = 1og(a2 v 2*1) Jlog(2) for « € (0, 1).

5. Proof of Theorem 3.1

In the following proofs, we will denote by C any unimportant finite constant which may
vary from line to line (in particular, C does not depend on n or on ).
Let (py, n € N) be a nondecreasing sequence of elements of N* such that

lim p,=40c0 and lim n—p,=+oc0. (32)
n—o0 n—oo

When there is no ambiguity, we write p for p;,.
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FIGURE 2. Slope by, (empirical mean and confidence interval in black) of the regression line
log( Var |A,,|_1MAH( 1) ) versus log(]A,|) as a function of the geometric ergodic rate «, for n =15,

A, € {G,, Ty}, and f(x) =x” with p € {2, 4}. In this case, we have R(f) =0, where R is the projector
defined from the formula (31). One can see that the empirical curve (in black) does not agree with the

graph (dashed line in red) of the function s;(«) = log (a2 \Y 2*1) /log(2) for 2¢% > 1, but it is close to
the graph (in blue) of the function ha(ar) = log <a4 v 2—1) /log(2) for « € (0, 1).

Remark 5.1. We stress that in the critical case (corresponding to Theorem 3.2, for which a
detailed proof can be found in [3]), the condition (32) must be strengthened as follows: for all
A>0,
pn<n, lim p,/n=1 and lim n—p, — A log(n)=-+oo.
n—oo n—oo

Let i, jeT. We write i <j if j € iT. We denote by i A j the most recent common ancestor
of i and j, which is defined as the only u € T such that if ve T and v<i, v<j, then v u.
We also define the lexicographic order i <j if either i <j or vO<i and vl Xj for v=1iAj.
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Let X =(X;,i€T) be a BMC with kernel P and initial measure v. For i € T, we define the
o -field
Fi=0{X,;u e T such that u <i}.

By construction, the o-fields (F;; i € T) are nested, as F; C F; fori <j.
For neN, ieG,_p,, and f=(f;, £ €N) a bounded sequence in L*(w), we define the
martingale increments as follows:

Ani(f) =Npi() — E[Nni(DI Fi] and  Au(f)= Z Api(f)- (33)
i€Gy—p,

Thanks to (19), we have

n

Pn
Y NaiD=1Gul "2 Y Mg, (fe) =1Gul 72 D" M (f)-
=0

l’Eanpn k=n—py
Using the branching Markov property and (19), we get for i € G,,—,,

Pn

E[N i) Fi] = E[NwiP) Xi] = G2 Y B[ Mg, ()]
£=0
We deduce from (21) with k =n — p, that
N = An() + Ro(n) + Ri(n), (34)
with
n—pp—1 B
Rom=1G,|”"* Y Mg, (fok) and Rim= Y E[N.DIF]. (35
k=0 i€Gu_p,

A quick overview of our strategy

As a first step, we prove that Ro(n) and R;(n), which appear in (34), converge in probability to
0 (see Remark 5.2 and Lemmas 5.2-5.3). Then we shall prove a central limit theorem for the
martingale A,(f) defined in (33), by first proving the convergence of its bracket V(n), which
is defined in (43) (see Lemma 5.7, which is a consequence of the technical Lemmas 5.4, 5.5,
and 5.6), and checking that Lindeberg’s condition holds using a fourth moment condition (see
Lemma 5.8). Notice that we use the condition (7) in this latter part only. Then we conclude, as
Np.g(f) and A,(f) have the same asymptotic behavior.

We first state a very useful lemma which holds in the subcritical, critical, and supercritical
cases.

Lemma 5.1. Let X be a BMC with kernel P and initial distribution v such that Assumption
2.2(ii) (with ko € N) is in force. Then there exists a finite constant C such that for all f € B4.(S)
and all n > kg, we have

Gl " EMe, (M= C gy and Gl "E[Me, (1] <€ Y25 | @2,y - G6)
k=0
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Proof. Using the first moment formula (74), Assumption 2.2(ii), and the fact that w is
invariant for Q, we get that

Gl "E[MGg, (H)] = (v, Q%) < Ivollso (12 @ 75F) = W0lloo (12 £)-

We also have

3
|
—_

Gl B[ Me, (1] = (v, (1)) + D 2* v, @ (P(@re?))

<[ @ () X (0 (@)
< (v, Q”(f2)> +n02’< <v, Q”*"((Qkff))

n—1
+ 0y 2 (v, Q"O((Q"‘k°f)2)>
k=n—ko+1
n—ko 5
<C Y 2]

k=0

where we used the second moment formula (75) for the equality, (3) for the first inequality,
Jensen’s inequality for the second, and Assumption 2.2(ii) and the fact that u is invariant for
Q for the last. O

For k € N*, we set

| (37)

e =sup full xy and () =sup | Q(£Y)| L
neN neN

As mentioned earlier, we will denote by C any unimportant finite constant, which may vary
from line to line (in particular C does not depend on »n or on f, but may depend on ko and

volloo)-

Remark 5.2. Recall kg given in Assumption 2.2(ii). Let f = (f¢, £ € N) be a bounded sequence
in L4(u). We have

ko—1
Ny = N2 + 1Gal 72> Mg, (). (38)
=0
where we set
e n—ko
NS R =1Gal 72> Mg, (7). (39)
£=0
Using the Cauchy—Schwarz inequality, we get
ko—1 ko—1
Gal ™ 2| D Mg, (far)| < CarxDIGa™ + Gl ™2 D Mg, ((fu—e)- (40)
=0 =0
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Since the sequence f is bounded in L*(w) and since ko is finite, we have, for all £ € {0, . . .,
ko — 1}, that lim,— oo |G,|~"/2Mg, (|fu—e]) = 0 a.s. and then that (using (40))

ko—1
Tim (Gul ™21 Y M, (fa-e) | =0 as.
£=0

Therefore, from (38), the study of N, (f) is reduced to that of N,[l’f%](f).

Recall that (p,, n € N) is such that (32) holds. Assume that n is large enough so that
n—p, — 1 >ko. We have

NN = An() + R () + Ry (),

where A, (f) and R (n) are defined in (33) and (35), and
n—pp—1
X B ~
R =G, "> Y~ Mg, (fas)-
k=ko
Lemma 5.2. Under the assumptions of Theorem 3.1, we have the following convergence:
lim E[R{(n)?] =0.
n—od

Proof. Assume n — p > ko. We write

n—p—1
R =G ™% 3" 3" Mg, (fas).
k=ko iEGkO
‘We have that ~ )
Z E[Min_kO (fut) ] =E[Mg,, (he.n)),
iEGkO
where

B n(x) = iy [MGk,kO (fnfk)z:l-

We deduce from Assumption 2.2(ii) (see (36)) that IE[MGkO (hk,n)] < C{u, h n). We have also
that

k
~ 2 ~ 2
(s i) =By [ Moy, (k)] = €25 D7 2 10112240
£=0
k
<C2 ([ 2% < 2k .
£=0
where we used (36) for the first inequality (notice one can take ky =0 in this case as we
consider the expectation E,,), (15) in the second, and 202 < 1 in the last. We deduce that

npl 1/2

]E[Rgo(n)z]l/zilGnl_l/z 3 Z]E[Mi@k,ko(fn_k)z] :

k=ko iEGkO
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using the triangle inequality for the L>(P) norm. As
1/2

Zaif 2ko Zalz

iEGko iEGkO

- 12
by Jensen’s inequality, we obtain, with a; = E[Min—ko (fn,k)z] , that

ki 2 172 —-1/2 & ki 172 —p/2
E[REG?] " <I1G T Y (29E[Me, ()]) T =2 Pem, @
k=ko

where we used that the sequence f is bounded in L?(1) for the last inequality. We use that
lim,—, oo p = 00 to conclude. O

We have the following lemma.

Lemma 5.3. Under the assumptions of Theorem 3.1, we have the following convergence:
mnE@umﬂ=0
n—oo
Proof. Forp>£>0,n—p=>ko,andj e Gyg,, we set

Riftm= Y E[NL (ol Fi].

iejanpfko
so that Ry (n) = Zlg:o ZjEGkO Ry j(£, n). Fori € G,_, we have
Gal B[N (Sl Fi) = E[ Mg, () i “2)
=Bx[Me, ()] = 1Gp—el @~

where we used the definition (18) of Nﬁ,i for the first equality, the Markov property of X for
the second, and (74) for the third. Using (42), we get for j € Gy,

Ryj(€, ) =G, Gyl Mics, ., (Q"0).
We deduce from the Markov property of X that E[R; ;(¢, n)2| Fil= 2—n+2(p—6) he,»(X;) with
032
hean) =Eo Mg, 4, (@)
Thanks to Assumption 2.2(ii) (see (36)), we have that

> E[Riye | =270 E[ Moy (e | = €270 (b ).

J€Gk,
We have
. n—p—ko -5
(s he) =By [Me, (@) | =C2 7 3 2 @@ il
k=0

< C2" P00 3,
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where we used (36) for the first inequality (notice one can take kp =0 in this case as we
consider the expectation E,,), (15) in the second, and 2a2 < 1 in the last. We deduce that

> B[Ryt n?] = a2,
J€Gk,
We get that
12

E[riw?] si 2 Y B[R] <Caban.

=0 J€Gy,

with the sequence (a; ,, n € N) defined by

p
ajn= (2052)17/2 Z a)~¢.

=0

The sequence (aj ,, n € N) does not depend on § and converges to 0, since lim,_, , p = 00,
202 < 1, and

p 20/Qa — 1) if 20 > 1,
Yooy t<{p+1 if 200 =1,
£=0 Qa)?/(1 —2a) if2a<1.
Then we use that § is bounded in L2(/L) to conclude. [l

2
Remark 5.3. From the proofs of Lemmas 5.2 and 5.3, we have that E[(Nr[lk%](f) - A,,(f)) ] <
ao.nc2(f), where the sequence (ag_,, n € N) converges to 0 as n goes to infinity.

We now study the central limit theorem for A, (f). First, we study the bracket of A,:
Vo= E[AnPIF]. 43)
i€Gy—p,

Using (19) and (33), we write

Pn 2
Vi) =1G,|™" Y Ex, (ZMG,,M@)) — Ra(n)
=0

i€ G"‘*Pn

=Vi(n) + 2Va(n) — Ra(n), (44)
with

Pn
Vi =G Y Y Ex[Ms, ()],

i€Gy—p, £=0

=Gl Y S Ex[Me,  (G)Me, ()]

i€Gp—p, 0<l<k=<p,

Ram= Y E[Nu(hIXi].

i€Gy—p,
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Lemma 5.4. Under the assumptions of Theorem 3.1, we have the following convergence:
lim E[Ry(n)] =
n—oo
Proof. We define the sequence (a2 ,, n € N) for n € N by
» 2
ay, =277 (Z (205)Z> :
=0

Notice that the sequence (a2, ,, n € N) converges to 0, since lim,,_, oo p = 00, 202 <1, and

» Qaytl/Qa—1) if2a>1,
Y ea)f<{p+1 if 20 =1,
=0 1/(1 — 2c) if 20 < 1.

We now compute E,[Ry(n)]:

2
EdRx(m] =G, Y E, EX[ZMIGH(;% |X}

i€Gu_p =0 i

=G Y By (iEX'[Msz(ff ])2

i€G,_p =0

2
=Gl Gyl Q"7 (Z IGp—el Qﬂ—%) )

£=0

where we used the definition of N, ;(f) for the first equality, the Markov property of X for
the second, and (74) for the third. From the latter equality, we have using Assumption 2.2(ii)
that

P 2
E[Ry ()] =G| ™" |Gyl <v, Qv (Z G| Qf""ﬁ) >

=0
) 2
<Cc27? (Z Gp—el Q" Fe ”LZ(M)> :
=0

We deduce that
E[Rx(n)] < C c3(§) az.n,

then use that § is bounded in L2(,u) to conclude. O

Remark 5.4. In particular, we have obtained from the previous proof that E[|V(n) — V|(n) —
Vo(n)|] < Cc%(f)az,n, with the sequence (a2 ,, n € N) going to 0 as n goes to infinity.

Lemma 5.5. Under the assumptions of Theorem 3.1, we have that in probability
limy— o0 Va(n) = Z5°°(f) with T5°°(f) finite and defined in (24).
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Proof. Using (76), we get
Va(n) = Vs(n) + Vs(n), (45)

with

V=167 Y Y 2 (@) o),
i€G,—p 0<l<k=<p
p—k—1

Ve(n) = |G|~ Z Z Z A=+ Qp—l—(rJrk)(p(Qr];k Beym Qkf€+r"l)> (X)),

i€Gy—p 0<l<k<p r=0
We consider the term Vg(n). We have
—1
Ve(n) = |Gy—p|~ Mg, _,(He n),

with

Hon= Y W) Ajrikep) and K" =2"" pr]fwk)(P(Qrf" Bsym QHW‘))‘

0<t<k
r>0
(46)
Define He(f) = Y 0<¢ k. r>0 Mk.c.r With
Ty =27 <u, P(Q’fk ®eym Q7 ’fe)) = (u h,ﬂ’},) .
Thanks to (5) and (15), we get that
—¢ y: k—0+r7F
li,erl < €27 | Qe 12y 19 e 12,
< C2 M I fyll 2y Wil 2 - 47)

We deduce that |/ ¢ | < C2"~“a*=*27c3(f) and, as the sum Y 0<t<k. r>0 2r—bk—t42r g
finite,
Hs(P)| < C c3(p). (48)

We write He(§) = HY' /() + Bo u(f), with

H®) = Y hier Lppkepy and Boa(= > hier Lrsazp)-

0<l<k 0<t<k
r>0 r>0

As limy_ o0 144>p) =0, we get from (47), (48), and dominated convergence that
lim,,—, o0 Bs.»(f) = 0 and thus

lim Hg'\(f) = Ho(). (49)

We set

Ao =Hon—H" D= 3 (), ~heer) Lk,

0<l<k
r>0
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so that from the definition of Vg(n), we get that
Ve(n) — HY'' () = 1Gupl ™! Mg, (Ao.n().

We now study the second moment of |(Gn,p|_1 Mg, _,(A6x(f)). Using (36), for n —p > ko
we get
n—p )
IGnpl 2 E[MGn,p(Aé,n(W] <ClGupl™ Y2 D A6n 2 -

j=0

Recall ck(f) and g (f) from (37). We deduce that

| QAenM 2y = D 191, = heerl 2 Liriap

0<l<k
r>0

S C Z 2}’—[ ap—l—(r+k)+j

0<l<k
r>0

HP(ka Qsym Qk oy ) ||L2( "

< CC%(f)O[l Z 2,.,@ apf(r+k)ak L+2r 1{r+k<p}

0<t<k
r>1

+cd Y 2tar HP(fk Rsym Q’“%)
0<l<k

< CcZ(f)c4(f) a] Z 2}’—[ ap—(r+k)ak—(i+2r 1{r+k<p}

0<t<k
r>0

{r+k<p}

1
2 P

< Cor(fea(f) o,

where we used the triangle inequality for the first inequality; (15) for the second; (6) for r > 1
and (15) again for the third; (8) for r =0 to get the c4(f) term and c2(f) < ca(f) for the fourth;
and the fact that 3 o, _; 502" Ek=t+2r i finite for the last. As Z o (202 ) is finite, we
deduce that

2
E[(vﬁ(m - H'() } = G-y 2 E[ Mg, , (Aen(D)’] = CEDGH27P. (50)

We now consider the term Vs(n) defined just after (45):
Vs(n) = Gnp| "' Mg, _,(Hs »).

with
HS,n = Z h](:% l{kfp} and hl(:,% 2276 Qpik(fkgkiefi) .

0<l<k

Define Hs() = Y g-o_g h¢ with hye=2" <M,fkgk—%>. We have using the Cauchy—
Schwarz inequality and (15) that

el < C27 " fell 2y Wil 20 < €270 C (P (51)

https://doi.org/10.1017/apr.2022.3 Published online by Cambridge University Press


https://doi.org/10.1017/apr.2022.3

CLT for BMCs 1021

As the sum ZO<Z<k 2-tak=tis finite, we deduce that

|Hs(P)| < C (). (52)

We write Hs(§) = HY' () + Bs a(f), with

HY = D ety = Y27 (k@) uspy - and

0<t<k 0<tl<k

Bsu(= Y i lysp)- (33)

0<t<k

As lim, o 1{k>p) =0, we deduce from (51) and (52) that lim;,_, o Bs ,(f) = 0 by dominated
convergence, and thus

lim H' () = H (. (54)

We set

As(D=Hsu—HOG = Y (W) — i) Lpzp).
0<t<k

so that from the definition of V5(n), we get that

Vs(n) — HY''(F) = |Gyl ™ Mg, (As.n(D)). (55)
We now study the second moment of |G,_,| ™! Mg,_, (As.x(}). Using (36), for n—p > ko
we get
_ 2 _ . .
Guepl 2 B[ Mg, (A5.()?] = C1Gupl ™" 322 1Q (As.a(D) 12, -
j=0

We also have that

” Q](AS n(f) ||L2(N«) Z ” Q]h(n) hk,@ ||L2(l/«) 1{’(5[’}

0<t<k

<C Y 2 NRQ T || o ik
0<t<k

<Cey(he, (56)

where we used the triangle inequality for the first inequality, (15) for the second, and the

Cauchy—Schwarz inequality for the last. As Z;'i

o (2¢%) is finite, we deduce that
2
E[(%(n) - HY'() ] =Gy 2 E[Mg, , (A5u(D)’ ]| s Ci27 . (57)
Since c2(f) < ca(f), we deduce from (50) and (57), as Va(n) = Vs(n) 4+ Ve(n) (see (45)), that
E[(vm - H5"1<f>)2] =Cc(M2" P with  Hy'() = Hg" () + HY' (D),

Since, according to (49) and (54), Eiub(f) = He(f) + Hs() (see (24)), we get lim,,—, Hgl](f) =
X5U0(§). This implies that lim,,—. o5 V2(n) = Z5(f) in probability. O
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We now study the limit of Vi (n).

Lemma 5.6. Under the assumptions of Theorem 3.1, we have that in probability
lim,— o Vi(n) = Z?“b(f) < +oo with Zf“b(f) finite and defined in (23).

Proof. Using (75), we get

Vi(n) = V3(n) + Va(n), (58)
with
p ~
Vam =G| ™" Y Y 2 () (X,
i€Gy—p =0

p—1 p—t—1

Vi =1G,[70 Y 30 D = (p(0ie?) ) ().

—
i€Gyp £=0 k=0
We first consider the term V4(n). We have
Va(n) = Gpl ™ Mg, _, (Ha.n).

with

H4,n = Z th])( 1{l+k<p} and ]’lzl])( = Zk_Z Qp_l_(z—i_k) (P(Qkﬁ®2>) .
£>0, k>0

Define the constant Ha(f) = Y=o y=0 he.x With he i = 2kt <u, P(Qkfe®2>>. Thanks to (3)
and (15), we have

_ ~ 2 _ _
Ihesl <2 Qe 12,y = €2 @™ el < €2 0™ ), (59)
and thus, as the sum Zezo, k=0 2k=£42k is finite,
\Hy(f)| < C (). (60)

We write Hy() = HY'\(F) + Ba_a(f), with
H'$)= Y hexdipiep and By = Y hesdierizp).
£>0, k>0 £>0, k>0

Using that lim,, o 1{¢44>p} = 0, we deduce from (59), (60), and dominated convergence that
lim,,—, oo B4 () = 0, and thus

lim Hy'() = Hy(p. (61)

We set

Asn(=Hon—H" D=3 (W= hes) Lekap),
£>0, k>0

so that from the definition of V4(n), we get that

Va(n) — HY''(F) = 1Gy—p| ™! Ma,_, (Agn().
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We now study the second moment of |(Gr,,_‘,,|_1 Mg, _,(A4,,(f)). Using (36), for n — p > ko we
get

n—p
- - i~ 2
Gnepl 2 E[ Mg, (Aan(P] = C1Gup ™ 302 | QAsn] 12 -
j=0
Using (3), we obtain that o
|PGe ®Fo)l 12,y =< 3D
We deduce that

| QA 2= Do N0 = heal 2 Lierisp)
£>0, k>0
<C Z k=t [ p—1—(E+k)+j ”P(Qkﬁ®2> ”
£>0, k>0 L
<Cafe Y 2 a0 ey
>0, k>0
j —t p—t 7 o2
+Co g >t [P(R) [, T
<Cei(e,

 fyaw
2y ()

where we used the triangle inequality for the first inequality; (15) for the second; (6) for k > 1
and (15) again for the third; and (3) as well as c2(f) < ca(f) for the last. As Zfio (20[2)] is
finite, we deduce that

2
E[(wn) — H'() ] = 1Gupl 2 E[ Mg, (AanD?] s Cd270P. (@)

We now consider the term V3(n) defined just after (58):
Vi) =1Gu_p| ' Mg, _,(H3,1).

with )
H3, = Z hﬁ") li¢<p; and h&") =2t gr-t (f}) .
=0
Define the constant H3(f) = i =2t 2\ = (n)
3() = pso he with he =27, f7) =, hy"). As he < |fell
A(f), we gt that H3 () < 2¢3(f). We write H3(§) = HY' () + B3 (), with

2 <
L2(p) =

HY G =Y hely<y and Bia(H=  helysp).
>0 >0

As limy,_, o 1{¢>p) = 0, we get from dominated convergence that lim,,_, o B3 ,,(f) = 0, and thus

lim HY'() = Hs(f). (63)

We set

As () =Hso = HY' (= Y2 (1" = he) Lpep,
>0
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so that from the definition of V3(n), we get that

Va(m) — HY () = |Gupl ™" Mg, _, (A3.u(F). (64)
We now study the second moment of |(Gn,p|_1 M@n_p(Aln(f)). Using (36), for n — p > ko
we get
n—p ‘ 5
Gepl 2 E[Me,_,(A3.n()? ] = C1Gup ™ 302 | QA3 12 -
j=0
We have that
| QA3 2y = D 191 = he] 2y Ve
=0
<C Z 2t H Q””‘%HLZW l{lfp} with g =f£2
£>0
=C Z a7 ||L2(y,) Lie<p)
£>0

<Cdhe,

where we used the triangle inequality for the first inequality and (15) for the third. As
Y70 (2?) s finite, we deduce that

2
EUW@»J#%Q]=WWMZMMmgMﬂmﬂscﬁwzmpl (65)
Since c2(f) < ca(f), we deduce from (62) and (65) that
ERW@%J#WQ?sC&@r“ﬂ>wm H'() = HY'() + H' (.

Since, according to (61) and (63), Ef“b(f) = Hu(f) + H3(J) (see (23)), we get
. [n] e\ _ ssub
Tim A = D).
This implies that lim,—, o, Vi(n) = Z?”b(f) in probability. O

The next lemma is a direct consequence of (44) and Lemmas 5.4, 5.5, and 5.6.

Lemma 5.7. Under the assumptions of Theorem 3.1, we have lim,_ o V(n) = Z5°(f) in
probability, where, with Z‘T“b(f) and E;“b(f) defined by (23) and (24), we have

=) = BP0 + 2850 ()).

We now check Lindeberg’s condition using a fourth moment condition. We set

Rsm= Y E[Anih']. (66)

i€Gu—p,
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Lemma 5.8. Under the assumptions of Theorem 3.1, we have that lim,_, oo R3(n) = 0.

Proof. We have

Rsm =16 Y B[N,

i€Gy—p

<16+ 1Y Y E[Ni()']

=0 i€G,—p

where we used that (Y _;_, ak)4 <(r+1) Y;_,af for the two inequalities (with r=1 and
r = p, respectively), as well as Jensen’s inequality and (33) for the first and (19) for the last.
Using (18), we get

E[N:(0) ] =16 2B ne(X0] . with o) =Ex[ Mg, , (7)*].
so that ,
Ry <Cn® Y Y |Gyl B [hn,e(Xp)] -

=0 i€Gy—p

Using (36) (with f and n replaced by A, ¢ and n — p), we get that

Rs(n) < Cn 277 Z]E Me, ()] (67)

=0

Now we give the main steps to get an upper bound on [E,, [MG ot (}7@)4]. Recall that

fell 2y < C calP.

We have -
Eu[Me, ()] < Ce(h forteip—2p-1,p) (68)

Now we consider the case 0 < £ <p — 3. Let the functions ¥, ¢, with 1 <j <9, be as in
Lemma 6.2, with f replaced byfg, so that for £ € {0, ..., p — 3},

9
Eu[Ms, ()] = 2t Yo (69)
j:

We now assume that p — £ — 1 > 2. We shall give bounds on {u, v/ ,_¢) based on computa-

tions similar to those in the second step in the proof of Theorem 2.1 in [6]. We set /iy = Qk-1 fg,
so that for k € N*,

Ikl 20 < Cofea® and  [1hgllag,) < C ca(h. (70)

We recall the notation f ® f = f®2. We deduce for k > 2 from (6) applied with /i = Qhy_
and for k = 1 from (4) and (70) that

a3 fork>2,

a2 g 71
[P )”L2<m ol 10) fork=1. "
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Upper bound on {u, [y p—¢|). We have
(s Yp-el) = €277 (i, @7 (72)) = 27 .

Upper bound on [{i, Y2 ,_¢)|. Using Lemma 6.3 for the second inequality and (70) for
the third, we get

p—L—1

—t—
(1 Y2} < €220 37 27 (10, QP Q1 (lP) @uym p-e+1))

k=0
—£—

<C2r7H Z 2746 Ihp—e—kllagg,
k=0

< C22P=0 .
Upper bound on (i, |3, ¢)|. Using (5), we easily get

p—L—1
(1 Y3, p-el) < €220 37 27 (1, Q@1 () @?)) = 22070 .
k=0

Upper bound on {u, [4 ,_¢)|. Using (5) and then (71) withp — £ — 1 > 2, we get
(s [ pel) = €200 (1, P[P (Ip-e1?) @7)))

<%0 HP(hp_z_@z) ?

L2()
< C24P=0 ¢4 PO 3
< 22079 &(p.
Upper bound on (u, |5 ,—¢)|. We have
p—t—1 k—1
(o s pel) <C24P70 3™ N oo pPl
k=2 r=0

with
it (@ p(p-67) 7))
Using (5) and then (71), we get

5] ok 2|12
Me,=C2 ||P(hp—5—k ® )”Lz(u)
< C27207 Y () Lpmp—e—1y + C27 P~ F) 1pgp—iy.
We deduce that (i, s ,—¢|) < C 2209 Ci(f)'

Upper bound on {u, |6 p—¢|). We have

p—t—1k—1

_ 6

(1, [Yepel) < €220 N~ N p7rpie]
k=1 r=0
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with ~

=2 e @P(Q 7 [P (hy-e-187) [ 05m @771 ())).
Using (5) and then (71), we get

[6] —k 2 —t-r=1(72

<2t [P (i) |y, 197 Pl
<2770 4D Lpmp—i—1y + C27* >0 () G(F) Lkzp—t—2y.

We deduce that (i, |6 p—¢|) < C22r=9 Cﬁ(f)-

Upper bound on [(u, Y7 ,—¢)|. We have

p—L—1k—1

(s Y7p)| < C 2300 3" oo pl,

k=1 r=0

with

M =27 (1, @ P(Q 1P Byt @ym @1 (72)) @ym hpe-+ )|
Fork<p — ¢ —2, we have

<02 Pk m @) o,

< C27F Ihp—gi— 20 | Qr=t=k=2(72) ||sz) o (Dl gzp—t—2)

< C27* PN S G Lisp-e-2).

”hp—ﬁ—r”LZ(M)

where we used (5) for the first inequality, (6) for the second, and (70) for the third. We now
consider the case k =p — £ — 1. Let g € B,.(S). As 2ba® < b’ + a* for a, b nonnegative, we get
that g ® g < g° ®sym 1, and thus

P(g ®sym g%) <20(g°). 72)

Writing A, = FIEZ] ¢—1.» We get, using (72) for the first inequality and Lemma 6 for the second,

A, =27(, P(Q2P (e @oym ) @mp-e )|
T AR P
< C27P=O4(H).
Since ¢>(f) < ca(f), we deduce that | (11, Y7, p—¢)| < C22P=9 c4(f).

Upper bound on (u, [ ,—¢|). We have

p—L—1k—1 r—1

(o W pmel) < €200 3 S N o pf8

k=2 r=1 j=0
with

=27 e IP(|@ 7P (1 8%) | @m [P (1 17) )
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Using (5) and then (71) (twice, and noticing that p — £ — r > 2), we get

P(lp-e-r?)

(-0

L2(1) L2(w)

< C27F 2 () (27 RS + FPlpp-e)

We deduce that (i, [{g ,—¢|) < C 2209 ().
Upper bound on (u, [y9 ,_¢|). We have
p—t—1k—1 r—1
(s o pely €240 3~ N N o5l
k=2 r=1 j=0
with
F/[C?ij = z—k—r <IJ«, er]D(Qr—j—l ‘,P(hpfifr Qsym Qk_r_lfp(hpfifk(gz))‘ Osym |hpf€7j|)> .

For r <k — 2, we have

[9] —k—
Fpryj=C277

= 2 et 2 |P (i)

P(hp—z_r Rsym Qkirilp(hp_z_kg)z))

L2(0) ”hp—Z—j”LZ(M)

2(1) ”hp—Z—j”LZ(M)

< C27Fr 2Pt 3 (Olz(p*ﬁ*k) (D) Likep—t—2) + (D l{k:p—é—l}) ,

where we used (5) for the first inequality; (6) asp — £ —r > 2 and k — r — 1 > 1 for the second,;
and (70) (twice) and (71) (once) for the last. For r=k — 1 and k <p — £ — 2, we have

rpl <co Hp(hp,g,k 1 ®gym p(hIF Z4{@)2))

g M-tz
< C27 pe—tll 2y p—e—k=1 172 Wp—e—5l 2
< 022k gHp—t=h) szt(f)’

where we used (5) for the first inequality; (7) as p — £ — k > 2 for the second (notice this is the

only place in the proof of Theorem 3.1 where we use (7)); and (70) (three times) for the last.
Forr=k—1=p— £ — 2, we have

N UG )

=277 |P(Qf @ym Q(FF))

<2770 &E(HaP I (),

2(0) ”hp—l—j”LZ(u)

”hp—i—j”LZ(M)

L2(u)

where we used (5) for the first inequality, (3) (with f replaced by f) for the second, and (6)
as well as (71) (with p — £ — j > 2) for the last. Taking all of this together, we deduce that
(i, [ro p—el) < C 22070 2(5) ().
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Combining all the upper bounds with (69), we deduce that for £ € {0, ..., p — 3},
Eu| M, ()] = €200k,
Thanks to (68), this inequality holds for £ € {0, . . ., p}. We deduce from (67) that
Ri(n) < Cnd 27077 ci(h). (73)

This proves that lim,_, o R3(n) = 0. O

We can now use Theorem 3.2 and Corollary 3.1 from [10, p. 58] and the remark from
[10, p. 59] to deduce from Lemmas 5.7 and 5.8 that A,(f) converges in distribution towards a
Gaussian real-valued random variable with deterministic variance -°(f) given by (22). Using
(34), Remark 5.2, and Lemmas 5.2 and 5.3, we then deduce Theorem 3.1.

6. Moments formula for BMCs

LetX = (X;, i € T) be a BMC on (S, .¥) with probability kernel P. Recall that |G, | = 2" and
Mg, ()= Ziean(X;). We also recall that 2Q(x, A) =P(x, A x S) +P(x, S x A) for A € <.
We use the convention that ) " = 0.

We recall the following well-known and easy-to-establish many-to-one formulas for BMCs.

Lemma 6.1. Let f, g € B(S), x € S, and n > m > 0. Assuming that all the quantities below are
well defined, we have

E.[Mg, (/)] = Gal Q'f(x) =2" Q"f(x), (74)
n—1
EMe,(0?]=2" @' () + Y 2 o (P(QF 0 Q) . (75)
k=0
E.[Mg,(/)Mg,,(8)] =2"Q"(gQ""f) (x) (76)
m—1
+ otk gm—k=1 (P(ng Reym Qn—m+kf>) x).
k=0

We also give some bounds on [E, [MG"( f)4]; see the proof of Theorem 2.1 in [6]. We will
use the notation

g®2=g®g.

Lemma 6.2. There exists a finite constant C such that for any f € B(S), n € N, and v a probabil-

ity measure on S, assuming that all the quantities below are well defined, there exist functions
Vjnfor 1 <j<9 such that

9

EV [MGn(f)4] = (l), wj»”%

Jj=1
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and, with hy = Q¥ Y(f) (and notice that either [l or (v, ;)| is bounded), writing
vg=(v, g),

Y10l < C2"Q"(fH),

n—1
ol < C2¥ Z 27 [ @ P(Q () @y )|

|w3n|<cz2"22 oP(Q 1 (1)e?),

?\"
O

Yanl <C2 P \P(hn_lea )&?).
Wsal < C2% "y e '@ P(Q T P(hi 8?)| @),

?\*
._.

3
|

T
—

Il
—o

T3

[We.n] < C2%"

[]

22 k— rQr

0
1

PP (hn48?) ®ym @ 1(1))]

3 >
Il
_
N

[V7.a] < C 23" pk=r

[]
[

’

vQP(Q P (i Boym @1 (1)) @y B )

3
I
Il
- o

|
- -
i

[ .l < C 2%

=~
[|

2 r

I
-

x f} 2+ QP (|Q TP (@) | @y | QP (k) )
j=0
n—1 k—1

[Woul<C2" YN

k=2 r=1

r—1
X Z 2—k—r—ij|7D(Qr_j—1 ‘P(hnfr ®sym Qk_r_lp<hn7k®2)) ®sym hnfj)‘ .
j=0
We shall use the following lemma to bound the term |vyr2 ,|.

Lemma 6.3. Let j1 be an invariant probability measure on S for Q. Let f, g € L*(1). Then, for
all r e N, we have

(i, P(QUTF @ 181)) <2 17,y 18N280) -
Proof. We have

(M,P(Q’lfl3®|gl))§< <(Q’[f|3) " o 1)>3/4 <u,7><1 ®g4>>1/4
R CONNEON.

<2 ) (o 1gn)

IA
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where we used Holder’s inequality and the fact that v@w=(1® 1) (1 ® w) for the first
inequality; the fact that P(v ® 1) <2Qv and P(1 ® v) <2Qv if v is nonnegative for the second
inequality; and Jensen’s inequality and the fact that p is invariant for Q for the last. (]
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