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A perfect K;-matching in a graph G is a spanning subgraph consisting of vertex-disjoint
copies of K;. A classic theorem of Hajnal and Szemerédi states that if G is a graph of order
n with minimum degree 6(G) > (t — 1)n/t and t|n, then G contains a perfect K;-matching.
Let G be a t-partite graph with vertex classes Vy,..., V; each of size n. We show that, for
any y > 0, if every vertex x € V; is joined to at least ((z‘ —1)/t+ y)n vertices of V; for each
j # i, then G contains a perfect K;-matching, provided n is large enough. Thus, we verify
a conjecture of Fischer [6] asymptotically. Furthermore, we consider a generalization to
hypergraphs in terms of the codegree.
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1. Introduction

Given a graph G and an integer ¢ > 3, a K;-matching is a set of vertex-disjoint copies
of K; in G. A perfect K,-matching (or K,-factor) is a spanning K,-matching. Clearly, if
G contains a perfect K,-matching then ¢ divides |G|. A classic theorem of Hajnal and
Szemeredi [8] states a relationship between the minimum degree and the existence of a
perfect K,-matching.

Theorem 1.1 (Hajnal-Szemerédi theorem [8]). Let t > 2 be an integer. Let G be a graph
of order n with minimum degree 5(G) = (t — 1)n/t and t|n. Then G contains a perfect K-

matching.

Let G be a t-partite graph with vertex classes V1,..., V;. We say that G is balanced if
[Vil = |V;| for 1 <i< j <t Write G[V;, V;] for the induced bipartite subgraph on vertex
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classes V; and V;. Define E(G) to be mini¢i<j<; 0(G[V;, V;]). Fischer [6] conjectured the
following multipartite version of the Hajnal-Szemerédi theorem.

Conjecture 1.2 (Fischer [6]). Let G be a balanced t-partite graph with each class of size n.
Then there exists an integer a,; such that if 6(G) > (t — 1)n/t + an;, then G contains a
perfect K.-matching.

Note that the +a,, term was not presented in Fischer’s original conjecture, but it was
shown to be necessary for odd t in [19]. For t = 2, the conjecture can be easily verified by
Hall’s theorem. For t = 3, Johansson [11] proved that g(G) >2n/3 + \/ﬁ suffices for all n.
Using the regularity lemma, Magyar and Martin [19] and Martin and Szemerédi [20]
proved Conjecture 1.2 for t =3 and t =4 respectively for n sufficiently large, where
an; = 1 if both ¢ and n are odd, and a,; = 0 otherwise. For t > 5, Csaba and Mydlarz [4]
proved that g(G) > ¢mn/(cq + 1) is sufficient, where ¢, =t —3/2+ (1 +1/24+---+1/1t)/2.
In this paper, we show that Conjecture 1.2 is true asymptotically.

Theorem 1.3. Let t > 2 be an integer and let y > 0. Then there exists an integer ny =
no(t,y) such that if G is a balanced t-partite graph with each class of size n > ny and
0(G) = ((t — 1)/t +)n, then G contains a perfect K,-matching.

Independently, Theorem 1.3 also has been proved by Keevash and Mycroft [13]. Their
proof involves the hypergraph blow-up lemma [12], so ng is extremely large, whereas
our proof gives a much smaller ny. Since the submission of this paper, Keevash and
Mycroft [14] have proved Conjecture 1.2, provided n is large enough. Also, Han and
Zhao [10] gave a different proof of Conjecture 1.2 for ¢t = 3,4, again provided n is large
enough.

We further generalize Theorem 1.3 to hypergraphs. For a € N, we refer to the set
{1,...,a} as [a]. For a set U, we denote by (lkj) the set of k-sets of U. A k-uniform
hypergraph, or k-graph for short, is a pair H = (V(H), E(H)), where V(H) is a finite set
of vertices and E(H) = (V(kH)) is a family of k-sets of V(H). We simply write V' to mean
V(H) if it is clear from the context. For a k-graph H and an [-set T € (II/), let N9(T) be
the set of (k —)-sets S € (,”,) such that SU T is an edge in H. Let deg"(T) = [NH(T)|.
Define the minimum I-degree 5;(H) of H to be the minimal deg™(T) over all T & (‘I/) For
U < V, we denote by H[U] the induced subgraph of H on vertex set U.

A k-graph H is t-partite if there exists a partition of the vertex set V into t classes
Vi,..., V; such that every edge intersects every class in at most one vertex. Similarly, H is
balanced if |Vy| = --- = |V,|. An I-set T € () is said to be legal if |T N Vi| < 1 fori € [t].
Forl < [t], T <« VisI-legal if | TNV;|=1forie€l and |T N V;| = 0 otherwise. We write
V7 to be the set of I-legal sets. For disjoint sets I, J such that I U J € ( ) and an [-legal set
T €V, denote by N¥(T) the set of J-legal sets S such that S U T is an edge in H and write
deg!(T) = N¥(T)|. For I € [k —1] and I € (! ) define 6;(H) = min{deg’(T) : T € V,

and J € (t]u]‘)} Finally, we set 0(H) = min{o;(H) : I € (")}. If H is clear from the
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context, we drop the superscript of H. Note that for graphs, when k = 2, 51(G) = g(G) as
defined earlier.

Let KF be the complete k-graph on ¢ vertices. It is easy to see that a t-partite k-graph
H contains a perfect Kf-matching only if H is balanced.

Definition. Let 1 <[ <k <t and n > 1 be integers. Define q&’,‘(t, n) to be the~ smallest
integer d such that every t-partite k-graph H with each class of size n and 0;(H) > d
contains a perfect K¥-matching. Equivalently,

$X(t,n) = min{d : 5/(H) > d = H contains a perfect K*-matching],

where H is a t-partite k-graph H with each class of size n. Write ¢(t,n) for ¢’,§_1(t, n).

Note that Theorem 1.3 implies that ¢*(t,n) ~ (t — 1)n/t. Various cases of ¢¥(k,n)
have been studied. Daykin and Higgkvist [5] showed that ¢%(k,n) < (k — 1)n*~1/k,
which was later improved by Han, Person and Schacht [9]. Kithn and Osthus [15]
showed that n/2 — 1 < ¢*(k,n) = $f_,(k,n) < n/2+ /2nTogn. Aharoni, Georgakopoulos
and Spriissel [1] then reduced the upper bound to ¢*(k,n) < [(n+ 1)/2]. For k/2 <1<
k — 1, Pikhurko [21] showed that ¢f(k,n) < n*~!/2. The exact value of ¢3(3,n) has been
determined by the authors in [17]. In this paper, we give an upper bound on ¢*(t,n) for
3<k<t

Theorem 1.4. For 3 <k <t andy > 0, there exists an integer ng = ny(k,t,7) such that, for

all n > ny,
t—1 t—2\\"
¢’<(t,n)<(1—(<k_1>+2<k_2)> +y)n.

We do not believe the upper bound is best possible. For k = 3 and ¢ = 4, it was shown,
independently in [16] and [13], that for any y > 0 if H is a 3-graph (not 3-partite) with
52(H) = (3/4 + y)n, then H contains a perfect K;-matching, provided n is large enough.
(Moreover, in [13], Keevash and Mycroft have determined the exact value of the d,(H)-
threshold for the existence of perfect K;-matchings.) Thus, it is natural to believe that
¢3(4,n) should be 3n/4 + o(n).

Our proofs of Theorems 1.3 and 1.4 use the absorption technique introduced by Rodl,
Rucinski and Szemerédi [22]. We now present an outline of the absorption technique.
First, we remove a set U of disjoint copies of Kf from H satisfying the conditions of
the absorption lemma, Lemma 3.2, and call the resulting graph H’. Next, we find a
KF-matching covering almost all vertices of H'. Let W be the set of ‘leftover’ vertices. By
the absorption property of U, there is a perfect K¥-matching in H[U U W]. Hence, we
obtain a perfect KX-matching in H as required.

In order to find a KF-matching covering almost all vertices of H’, we follow the
approach of Alon, Frankl, Huang, Rodl, Rucinski and Sudakov [2], who consider
fractional matchings. Let K¥(H) be the set of Kf in a k-graph H. A fractional K}-
matching in a k-graph H is a function w : KCK(H) — [0, 1] such that for each v € V we
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have
> {w(T):ve T eKi(H)} <1

Then ZTEKk yw(T) is the size of w. If the size is [H|/t, then w is perfect. We are
interested in perfect fractional K*-matchings w in a t-partite k-graph H with each class
of size n. Note that |H| = tn, so if w is a perfect fractional K*-matching in H, then

d{w(T):veTeki(H)}=1forveVand Y wT)=n
Tekk(H)

Define ¢;*(,n) to be the fractional analogue of ¢¥(t,n).

Theorem 1.5. For 2 <k <tandn>1,

B e [(t — 1)n/t] for k=2,
= kr Dl < )g{ (1= (Dl + 1 for k>3
In particular, ¢**(t,n) = [(t — 1)n/t].

Notice that Theorem 1.5 is only tight for k = 2. The upper bound on ¢**(t,n) given
in Theorem 1.5 is sufficient for our purpose, that is, to prove Theorems 1.3 and 14. In
addition, we also obtain the following result.

Theorem 1.6. Let 2 < k < t be integers. Then, given any &,y > 0, there exists an integer ngy
such that every k-graph H of order n > ny with
Ok— 1(H) = t¢*k t, [n/t] )+ yn

contains a K¥-matching T covering all but at most en vertices.
Together with Theorem 1.5, we obtain the following corollary for general k-graphs.

Corollary 1.7. Let 3 <k <t be integers. Then, given any ¢,7 > 0, there exists an integer
ng such that every k-graph H of order n > ny with

-1
st = (1= (1) )

contains a KF-matching T covering all but at most en vertices.

Observe that Corollary 1.7 is a stronger statement than Lemma 6.1 in [16]. Thus, by
replacing Lemma 6.1 in [16] with Theorem 1.6, we improve the bounds of Theorem 1.4
n [16].

In the next section, we prove Theorem 1.5. Theorems 1.3 and 1.4 are proved simultan-
eously in Section 3. Finally, Theorem 1.6 is proved in Section 4.
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2. Perfect fractional K*-matchings

In this section we are going to prove Theorem 1.5. We require the Farkas lemma.

Lemma 2.1 (Farkas lemma (see [18], p. 257)). A system of equations yA=b, y >0 is
solvable if and only if the system Ax > 0, bx < 0 is unsolvable.

First we prove the lower bounds on ¢**(t, n).

Proposition 2.2. Let 2 <k <t and n > 1 be integers. There exists a t-partite k-graph H
with each class of size n with 5k (H) = [(t—k+ )n/t] — 1 without a perfect fractional
KF-matching. O

Proof. We fix t, k and n. Let Vi,...,V, be disjoint vertex sets each of size n. For
iet], fix a ([(t—k+ 1)n/t] —1)-set W; = V;. Define H to be the t-partite k-graph
on vertex classes Vy,...,V; such that every edge in H meets W; for some i. Clearly,
Se_1(H) = [(t — k + 1)n/¢] — 1. Thus, it suffices to show that H does not contain a perfect
fractional KF-matching. Let A be the matrix of H with rows representing the KF(H)
and columns representing the vertices of H such that Ay, =1 if and only if v € T for
T € KK(H) and v € V. By the Farkas lemma, Lemma 2.1, taking y = (w(T) : T € KF(H))
and b = (1,..., 1), there is no perfect fractional KF-matching in H if and only if there is
a weighting function w : V' — R such that

> w(v) >0, forall T € Kf(H) and Y w(v) <0. 2.1)

veT vevV

Set w(v) = (k —1)/(t —k + 1) if v € ;g Wi and w(v) = —1 otherwise. Clearly,

k=1 (t—k+1)n (t—k+1)n
Zw(u)_t_kﬂtﬂ . —‘—1)—t<n—{t—‘+l><o.

For T € K¥(H), T contains at least t —k + 1 vertices in Uiepg Wi and so 3° . w(v) > 0.
Thus, w satisfies (2.1), so H does not contain a perfect fractlonal K¥-matching. U]

Proof of Theorem 1.5. By Proposition 2.2 it is sufficient to prove the upper bound on
¢**(t,n). Fix k, t and n. Suppose to the contrary that there exists a t-partite k-graph H
with each class of size n and

Si-1(H) =6

that does not contain a perfect fractional K¥-matching, where 5 is the upper bound
on ¢*K(t,n) stated in the theorem. By an argument similar to that in the proof of
Proposition 2.2, there is a weighting function w : V' — R satisfying (2.1). Let V1,...,V; be
the vertex classes of H with V; = {v;1,...,vi,} fori € [¢]. We identify the ¢-tuple (ji, ..., ji;) €
[n]" with the [t]-legal set {vyj,, ..., v, } and write w(ji, ..., ji) to mean D, g w(vi ;). Without
loss of generality we may assume that for i € [t], (W(vi))jepn 1S a decreasing sequence, i.e.,
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w(vij) = w(vij) for 1 < j < j' < n. By considering the vertex weighting w’ such that

w)+e ifvel,
W) =14 wov)—e ifveVy,
w(v) otherwise,
with ¢ >0, we may assume that w(v;,) = w(vy,) for all i,i € [¢f]. By (2.1), w(viy,) is
negative as w(vij) = w(viy) = w(vy,) for all j € [n] and i,i’ € [t]. Thus, by multiplying
through by a suitable constant we may assume that w(v;,) = —1 for all i € [t]. We further
assume that w(v) <t —1 for all v € V, because (2.1) still holds after we replace w(v) with

min{w(v),t — 1}. Finally, we apply the linear transformation (w(v) + 1)/t for v € V, which
scales w so that it now lies in the interval [0, 1], and w satisfies the following inequalities:

> w()>1forall TeKi(H) and > w( (2.2)

veT velV

For j €[], set r(j) = n— ({=})(n — 9). Given a J-legal set T € Kh(H) with J € ([I) and
j <k, for each i € [t]\J there are at least r(j + 1) vertices v € V; such that T Uv forms
a K]Jrl Note that r(j) =n for j € [k — 1] and r(k) = 5. By the definition of 6 we know
that r(t) > 1. Hence, we can find a K¥ (ji, jp,..., i) with j; > r(i) for i € [t].

Recall that for i € [t] and 1 < j < j' < n, w(vij) = w(v;j). Therefore,

D w(vir) = w(r(1),1(2)s.., (1) = Wit ase oo i) = 1
i€[t]

by (2.2). By a similar argument, for any permutation ¢ of [¢] we have

> wvirem) = 1.

i€[t]

Setting ¢ = (1,2,...,t), we have
Z Z Ulr(] ZW 1r(<7/ i) L. (23)

Observe that w(vi,(j) < W(Ui’r(j+1)) forie [t] and j € [t — 1]. Since r(j) = n for j € [k — 1]
and w(vi,) =0 for i € [t],

ZWUHI) ;‘f‘ Z( Z W(UH‘ )+(t—k+1)W(Uzr ))

ielr] ielr] “Njelk—1]

T 2 D) > (24)

ie[t] jelt]

where the last inequality is due to (2.3).

Claim 2.3.

k) —
i€ft] Njelt—1]
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Proof of claim. Consider the multiset A containing (t — k)(r(j) — r(j + 1)) copies of j
for k < j<t—1 and r(k) — r(t) copies of t. In order to prove the claim (by multiplying
though by (t —k)), it is enough to show that

ZZw(uw > t(r(k) — r(1)).

t] jed

First note that

> )=+ 1) =rk) =),

k< j<t—1

so the number of elements j (with multlphclty) 1n Awithk<j<t—11is exactly (t—

k)(r(k) — r(t)). Note that r(j) — r(j + 1) = ( )(n — ) Hence, for k <j<j <t—1,there
are more copies of j' than copies of j in A. Recall that 4 contains premsely r(k) —r(t)
copies of t. It follows that we can replace some elements by smaller elements to obtain a
multiset A’ containing each of k,...,t exactly r(k) — r(t) times. Since w(vi,(;)) is increasing
in j and w(v;,(j)) = 0 for j € [k — 1], it follows that

ZZW(UHU ZZ w(vis(j) = (r(t) = r(k)) Z Z Woir(i

t] jeA ielt] jeA' ie[t] k<j<t
= (r(0) = r(k) D> wlvip) = 1(r(t) — r(k))
i€[t] jelt]
as required, where the last inequality is due to (2.3). U]

Recall that r(k) = 5 and (1) = n. Since w(v; ) is decreasing in j/, w(v;j) = w(viyj)) for
r(j+ 1) <j <r(j)and j € [t], where we take r(t + 1) = 0. Hence,

Z Z Uz] Z( Z (r(J) - r(] + ))W(Ulr ) + V(I)W(U” )>

ie[t] jeln] ie[t] Mjelt—1]

By Claim 2.3 and (2.4), this is at least

t—k t—k
ie(t]
t(r(k) — r(1)) r(k) —r(1) t
>~ 7 _
S () t—k Ji—k+1
tr(k) £
= n,
T i—k+1 t—k+1
contradicting (2.2). The proof of Theorem 1.5 is completed. U]

Note that the inequality above suggests that for k > 3, we would have db*k(t n) = 5 <
[(t —k + 1)n/t]. However, our proof requires that 1 < r(t) =n— ({_})(n—0), implying

that 3 > (1— ((2)) n+ 1.
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3. Proof of Theorems 1.3 and 1.4

First we need the following simple proposition.

Proposition 3.1. Let y > 0. Let H be a balanced t-partite k-graph with partition classes
Vi,..., Vi, each of size n with

s> (1= (7)) +2(72) )

Then, for i € [t] and distinct vertices u,v € V;, there are at least (yn)'~' legal [t]\i-sets T

such that T Uu and T Uv span copies of K in H. ]
Proof. Let u,v € V;. For 2 <i<t, we pick w; € V; such that w; € N(T) for all legal
(k—1)-sets T < {u,v, wz,...,w,,l}. By the definition of 51{,1( ), there are at least yn
choices for each w;. The proposition easily follows. ]

Using Proposition 3.1, we obtain an absorption lemma. Its proof can be easily obtained
by modifying the proof of Lemma 4.2 in [17]. For the sake of completeness, it is included
in the Appendix.

Lemma 3.2 (Absorption lemma). Let 2 < k <t be integers and let y > 0. Then, there is
an integer ng satisfying the following. For each balanced t-partite k-graph H with each class
of size n = ng and

s (=((3) 2 72) )

there exists a balanced vertex subset U < V(H) of size |U| < y"=Vn/(t?2!*2) such that there
exists a perfect KF-matching in H[U U W] for every balanced vertex subset W <= V\U of
size |W| < y2r(zfl)n/(t222t+5).

Our next task is to find a large Kf-matching in H covering all but at most &n vertices,
which requires a theorem of Frankl and R&dl [7] and Chernoff’s inequality. The proof
of Lemma 3.5 is based on Claim 4.1 in [2]. For constants a,b,c > 0, write a = b + ¢ for
b—c<a<sb+ec

Theorem 3.3 (Frankl and Rodl [7]). For all t,e > 0 and a > 3, there exists 1 = 1(¢), D =
D(n), and ny = ny(t) such that if n > ny and H is a t-graph of order n satisfying

(a) deg”(v) = (1 £ 1)D for all v € V, and

(b) Ap(H) = max (v deg'(T) < D/(logn)*,

then Hcontains a matching M covering all but at most &n vertices.
Lemma 3.4 (Chernoff’s inequality (see, e.g., [3])). Let X ~ Bin(n, p). Then, for 0 < A < np,

12 12
P(IX —np| > /) < Zexp(—:rlp) and P(X <np—1) < exp(—:np)
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Lemma 3.5. Let 2 < k < t be integers. Then, for any given ¢,y > 0, there exists an integer
no such that every t-partite k-graph H with partition classes Vi,...,V;, each of size n > ny,
with

Si_1(H) = o™ (t,n) +yn

contains a K¥-matching T covering all but at most en vertices.

Proof. Fix k, t and ¢. If k =t = 2, then the lemma easily holds and so we may assume
that ¢ > 3. Write ¢* = ¢**(t,n)/n. We assume that n is sufficiently large throughout the
proof. Let H be a balanced ¢-partite k-graph H with partition classes Vi,..., V;, each of
size n, with gk,l(H) > (¢" +y)n. Our aim is to define a t-graph H* on vertex set V(H)
satisfying the condition of Theorem 3.3, where every edge in H* corresponds to a KX in H.
Hence, by Theorem 3.3, there exists a matching M covering all but at most ¢n vertices of
H* corresponding to a K¥-matching in H.

We are going to construct H* via two rounds of randomization. For i € [t], let R; be
a random binomial subset of V; with probability p = n%%. Let R = (Ry,...,R;). Then, by
Chernoff’s inequality (Lemma 3.4),

P(IR; — n'| = n*°) < 2exp(—n"*/2). (3.1)
Foreach I € (k[i]l), each I-legal set T = R and i € [t]\],
E(deg/™(T)) > (¢ +y)n x 170 = (¢" +p)n"".
Again, by Chernoff’s inequality (Lemma 3.4),
P(deg"™(T) < (¢" +7/2n"") < exp(="n"! /(16(¢" + 7)) = ™. (32)

Let m = n%! —n®9%5_ Let R be a randomly chosen m-set in R; and let R’ = (R},..., R)).
By (3.1) and (3.2), we have with probability 1 — ¢~2"")

i1 (H[R']) = (¢ 4+ 7/2)n"" = 21n°%75 > (¢ + y/4)m.

Since R! is chosen randomly from R;, which is also chosen randomly, a given element is
chosen in R] with probability m/n = n=%° — n=%25 minus an exponentially small correction
term. Hence we may assume that, forv € V,

n—0.9 > ]P(U c R/) > (1 _ 2n—0.025)n—0.9.

Now, we take n!'! independent copies of R’ and denote them by R'(1), R'(2),...,R'(n'!).
For a subset of vertices S = V, let

Ys = |{i : S = R(i)}].

Since the probability that a particular R’ (not R'(i)) contains S is n= %", E(Ys) < n!170915],
With probability at least 1 —2exp(—9n'3/2) by Lemma 3.4, Y, = n®? 4+ 301> for every
v € V, whererecall thaty = x £ cmeansx —c <y < x+c. Let Z, = [{S € (}) : Y5 > 3},
and observe that

E(Z,) < n2(n1‘1)3(n_0'9)6 O
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Let Z3 =|{S € (}) : Y5 > 2}| and observe that
E(Z3) <’ (n1.1)2(n—0.9)6 — 02

The latter implies that every 3-set S € (}) lies in at most one R'(i) with high probability.
In summary, there exist n'"! vertex sets R'(1),..., R'(n"!) such that

(i) for every v € V, Y, = n%2 4 3n%173,

(ii) every 2-set S € () is in at most two sets R'(i),

(iii) every 3-set S € (%) is in at most one set R'(i),

(iv) for i € [n™'], R'(i) = (R},..., R}) with R} = V; and |R}| = m for j € [1],
(v) for i € [n"1], S (HIR'()]) > (¢" +7/4)m.
Fix one such sequence R'(1),...,R'(n'!).

By (v) and the definition of ¢*, there exists a fractional perfect KF-matching w' in
H[R'(i)] for i € [n"']. Now we conduct our second round of random process by defining
a random t-graph H” on vertex classes V' such that each [t]-legal set T is randomly
independently chosen with
wiT(T) if T € KK(H[R'(it)]) for some it € [t],

0 otherwise.

]P’(TeH*):{

Note that ip is unique by (iii) (as ¢ > 3) and so H" is well defined. For v € V, let
I, ={i:v € R(i)} and so |I,| = Y, = n®? £+ 3n®175 by (i). For every v € V, let E! be the
set of K in H[R'(i)] containing v. Thus, for v € V, degH* (v) is a generalized binomial
random variable with expectation

E(deg! (v)) = Z Z wi(T) = |I,| = n®? + 30175

i€l, TeE]

Similarly, for every 2-set {u,v},

Edeg" (o)=Y > w(I)<ILNLI<2

iel,Nl, TEEINE]

by (ii). Hence, again by Chernoff’s inequality, Lemma 3.4, we may assume that for every
v € V and every 2-set {u,v},

deg (v) = n®? + 40", deg (u,v) < n®',

Thus, H* satisfies the hypothesis of Theorem 3.3 and the proof is completed. ]
Next we prove Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Fix k and ¢t and y > 0. Let

i (t— Dn/t ifk =2,
Sl = () +2(22) T itk =3,
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Note that d > ¢**(t,n) by Theorem 1.5. Let H be a t-partite k-graph with vertex classes
Vi,..., Vi each of size n > ng and gk_l(H) > d 4 yn. We are going to show that H contains
a perfect K¥-matching. Throughout this proof, ng is assumed to be sufficiently large. By
Lemma 3.2, there exists a balanced vertex set U in V of size |U| < y'~Dn/(t?2!+2), such
that there exists a perfect K¥-matching in H[U U W] for every balanced vertex subset
W < V\U of size |W| < y2(=Dp/(222+5). Set H' = H[V\U] and note that &_;(H') >
d+yn/2 = (¢™*(t,n) + y/2)n. By Lemma 3.5, there exists a K¥-matching 7 in H' covering
all but at most en vertices of H’', where & = y>(=1 /(¢22%+3), Let W = V(H')\V(T), so
W is balanced. Since H[U U W] contains a perfect K*-matching 7’ by the choice of U,
T UT' is a perfect KF-matching in H. O

4. Proof of Theorem 1.6

Note that together Lemma 3.5 and the lemma below imply Theorem 1.6. Hence all that
remains is to prove Lemma 4.1.

Lemma 4.1. For integers t > k > 2, there exists ny such that the following holds. Suppose
that H is a k-graph with n > ngy vertices with t|n. Then there exists a partition Vy,...,V; of
V(H) into sets of size n/t such that for every | € [k — 1], every I € (), every legal I-set
T and J € ([12]7\11) we have

tk—l

(k—1)! deg](T) > deg"(T) — 2(tInn)"/2n* 17172,

where H' is the induced t-partite k-subgraph of H with vertex classes Vy,..., V.

Proof. First set m =k —1 and let Uy,..., U, be a random partition of V, where each
vertex appears in vertex class U; independently with probability 1/t. For a fixed [-set
T = {v1,...,v;}, let NA(T) be the link hypergraph of T. Thus, N(T) is an m-graph
with deg”(T) edges. We decompose N¥(T) into iy < mn™' non-empty pairwise edge-
disjoint matchings, which we denote by Mj,..., M;,. To see that this is possible consider
the auxiliary graph G with V(G) = E(NY(T)), in which, for 4,B € NH(T), A and B are
joined in G if and only if A N B # 0. Since G has maximum degree at most m(,';:ll), G can
be properly coloured using at most mn™~! colours, where each colour class corresponds
to a matching.

For every edge E € NY(T), and every index set J € ([mt]), we say that E is J-good if E
is J-legal with respect to Uy,..., U;. Since the partition Uy,..., U, was chosen randomly,
we have, for fixed J € ([t]),

m

P(E is J-good) = m!t™™.
Thus, for X;; = X;;(T)=|{E € M; : E is J-good}| we have

m!
wig = wiy(T) =E(X;y) = W‘MA'
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Now call a matching M; bad (with respect to Uy, ..., U;) if there exists a set J € ([t]) such

that
. 1/2
X, < (1 _ (2(2’<1>1n"> >MJ,
Hig

and call T a bad set if there is at least one bad M; = M;(T). Otherwise call T a good set.
For a fixed M; the events ‘E is J-good’ with E € M; are jointly independent, and hence
by Chernoff’s inequality, Lemma 3.4,

P(M; is bad) < <t> exp(—(2k — 1) Inn) = (t>n_2k+1.
m m
Recall that ip < mn™ ! and m < k — 1, so we have
P(T is bad) < i (};) A ok,

By summing over all [-sets T, we obtain that
P(there exists a bad I-set) < n~'.
Moreover, Chernoff’s inequality, Lemma 3.4, yields
P(|Uj| = n/t +n"*(Inn)/*/t) < exp(—(Inn)"/?/4¢).

Thus with positive probability there is a partition Uy,..., U; such that all [-sets T are
good and

\U;j| < n/t+n"*(Inn)/* /¢, for all j € [1].
Consequently, by redistributing at most n'/?(Inn)'/*
we obtain an equipartition Vy,..., V, with

Vil =n/t and |U\V;| <n'*(Inn)/*/t,  for all j € [1].

vertices of the partition Uy,..., U,

Let H' be the induced t-partite k-subgraph with vertex classes V7,..., V;. Note that for an
[-set I € ([;]), an I-legal set T and an m-set J € ([’]\\1),

m

' 22k — 1)1 12(1n )1/
deg? (T) =2 Z (1 — <(k)nn>)’uu _ mwnm—l

i€[io] Hig t
! 1/2(1 1/4
0 e () = (20— i) 37l e

i€[io]

By the Cauchy—Schwarz inequality, we obtain that

12 172 m! 7\ 12
Z Hig S (io Z ,Ui,J> < (mnm_ltm (m)) < 12,

i€[io] i€[io]

Therefore,
!
degl!(T) > degl!(T) — 2k nm) "1,

as required. ]
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Appendix: Proof of Lemma 3.2

Proof. Throughout the proof we may assume that ny is chosen sufficiently large. Let
H be a balanced t-partite k-graph with partition classes V1,..., V; each of size n, and
S (H) > 5, where & is the lower bound on & 1(H) stated in the lemma. Let H' be the
t-partite t-graph on Vi,...,V, in which viv,---v, € E(H') if and only if vjvs - - v, is a KF
in H. Furthermore, set m = t(t — 1), and call a balanced m-set A an absorbing m-set for a
balanced t-set T if A spans a matching of size t — 1 in H' and A U T spans a matching of
size t in H'. In other words, AN T = ) and both H'[A] and H'[A U T] contain a perfect
matching. Denote by £(T) the set of all absorbing m-sets for T. Next, we show that for
every balanced t-set T there are many absorbing m-sets for T.

Claim A.1. For every balanced t-set T, |L(T)| = y™ ([fl)t/Zt.

Proof. Let T = {vy,...,v,} be fixed with v; € V; for i € [t]. By Proposition 3.1 it is easy
to see that there exist at least (yn)~! edges in H' containing v;. Since ny was chosen
large enough, there are at most (t — 1)n'~2 < (yn)'~!/2 edges in H' which contain v; and
v; for some 2 < j < t. Fix an edge viuy - -u, in H' with u; € V;\{v;} for 2 < j <t. Set
Uy = {ua,...,u;} and Wy =T. For each 2 < j <t, suppose we succeed in choosing a
(t —1)-set U; such that U; is disjoint from W;_; = U] 1UW,_, and both U; U {u;} and
U; U {v;} are edges in H’ Then for a fixed 2 < j <t we call such a choice U; good,
motivated by A = U ciq Uj being an absorbing m- set for T.

Note that in each step 2 < j < t there are precisely ¢ + (j — 1)(t — 1) vertices in W;_;.
More specifically, for i € [t], there are at most j <t vertices in V; N W;_;. Thus, the
number of edges in H' intersecting u; (or v; respectively) and at least one other vertex

in W; is at most (t — l)Jnt 2 < n=% < (yn)~'/2. For each 2 < j < t, by Proposition 3.1
there are at least (yn)~! — (yn)~'/2 = (yn)'~1/2 choices for U; and in total we obtain
(yn)™/2' absorbing m-sets for T with multiplicity at most ((t — 1)!)t. U]

Now, choose a family F of balanced m-sets by selecting each of the ([fl)Z possible
balanced m-sets independently with probability

t
— t321+3 n )
p=7y"n/ < < F—1

Then, by Chernoff’s inequality, Lemma 3.4, with probability 1 — o(1) as n — oo, the family
F satisfies the properties

[F| <y"n/(£272) (A1)
and
/2mn
|£(T) rWF‘| = 3221‘+4’ (Az)
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for all balanced t-sets T. Furthermore, we can bound the expected number of intersecting

m-sets in F by
t —1 2m
n n n 5 . y™n
<z_1> =X <I—2>(t—1) VS s

Thus, using Markov’s inequality, we derive that, with probability at least 1/2,

ny2M

F contains at most intersecting pairs. (A.3)

322145
Hence, with positive probability the family F has all properties stated in (A.1), (A.2) and
(A.3). By deleting all the intersecting balanced m-sets and non-absorbing m-sets in such
a family F, we get a subfamily F’ consisting of pairwise disjoint balanced m-sets, which
satisfies

2m 2m 2m
/ YN yUtnoyTTn
|L(T) N F'| >t322r+4 T 302045 T (30245

for all balanced t-sets T. Let U = V(F’) and so U is balanced. Moreover, U is of size at
most t|V(F')| < t|]V(F)| < y"n/(t*2'*2) by (A.1). For a balanced set W < V\V (M) of size
|W| < y¥n/(t>2%+3), W can be partitioned into at most a y2"n/(32%%3) balanced t-set.
Each balanced t-set can be successively absorbed using a different absorbing m-set in F’,
so there exists a perfect matching in H'[U U W]. Hence, there is a perfect Kf-matching
in H{lUU W]. L]
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