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A perfect Kt-matching in a graph G is a spanning subgraph consisting of vertex-disjoint

copies of Kt. A classic theorem of Hajnal and Szemerédi states that if G is a graph of order

n with minimum degree δ(G) � (t − 1)n/t and t|n, then G contains a perfect Kt-matching.

Let G be a t-partite graph with vertex classes V1, . . . , Vt each of size n. We show that, for

any γ > 0, if every vertex x ∈ Vi is joined to at least
(
(t − 1)/t + γ

)
n vertices of Vj for each

j �= i, then G contains a perfect Kt-matching, provided n is large enough. Thus, we verify

a conjecture of Fischer [6] asymptotically. Furthermore, we consider a generalization to

hypergraphs in terms of the codegree.

AMS 2010 Mathematics subject classification: Primary 05C65

Secondary 05C70, 05C07

1. Introduction

Given a graph G and an integer t � 3, a Kt-matching is a set of vertex-disjoint copies

of Kt in G. A perfect Kt-matching (or Kt-factor) is a spanning Kt-matching. Clearly, if

G contains a perfect Kt-matching then t divides |G|. A classic theorem of Hajnal and

Szemerédi [8] states a relationship between the minimum degree and the existence of a

perfect Kt-matching.

Theorem 1.1 (Hajnal–Szemerédi theorem [8]). Let t > 2 be an integer. Let G be a graph

of order n with minimum degree δ(G) � (t − 1)n/t and t|n. Then G contains a perfect Kt-

matching.

Let G be a t-partite graph with vertex classes V1, . . . , Vt. We say that G is balanced if

|Vi| = |Vj | for 1 � i < j � t. Write G[Vi, Vj] for the induced bipartite subgraph on vertex
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classes Vi and Vj . Define δ̃(G) to be min1�i<j�t δ(G[Vi, Vj]). Fischer [6] conjectured the

following multipartite version of the Hajnal–Szemerédi theorem.

Conjecture 1.2 (Fischer [6]). Let G be a balanced t-partite graph with each class of size n.

Then there exists an integer an,t such that if δ̃(G) � (t − 1)n/t + an,t, then G contains a

perfect Kt-matching.

Note that the +an,t term was not presented in Fischer’s original conjecture, but it was

shown to be necessary for odd t in [19]. For t = 2, the conjecture can be easily verified by

Hall’s theorem. For t = 3, Johansson [11] proved that δ̃(G) � 2n/3 +
√
n suffices for all n.

Using the regularity lemma, Magyar and Martin [19] and Martin and Szemerédi [20]

proved Conjecture 1.2 for t = 3 and t = 4 respectively for n sufficiently large, where

an,t = 1 if both t and n are odd, and an,t = 0 otherwise. For t � 5, Csaba and Mydlarz [4]

proved that δ̃(G) � ctn/(ct + 1) is sufficient, where ct = t − 3/2 + (1 + 1/2 + · · · + 1/t)/2.

In this paper, we show that Conjecture 1.2 is true asymptotically.

Theorem 1.3. Let t � 2 be an integer and let γ > 0. Then there exists an integer n0 =

n0(t, γ) such that if G is a balanced t-partite graph with each class of size n � n0 and

δ̃(G) �
(
(t − 1)/t + γ

)
n, then G contains a perfect Kt-matching.

Independently, Theorem 1.3 also has been proved by Keevash and Mycroft [13]. Their

proof involves the hypergraph blow-up lemma [12], so n0 is extremely large, whereas

our proof gives a much smaller n0. Since the submission of this paper, Keevash and

Mycroft [14] have proved Conjecture 1.2, provided n is large enough. Also, Han and

Zhao [10] gave a different proof of Conjecture 1.2 for t = 3, 4, again provided n is large

enough.

We further generalize Theorem 1.3 to hypergraphs. For a ∈ N, we refer to the set

{1, . . . , a} as [a]. For a set U, we denote by
(
U
k

)
the set of k-sets of U. A k-uniform

hypergraph, or k-graph for short, is a pair H = (V (H), E(H)), where V (H) is a finite set

of vertices and E(H) ⊂
(
V (H)
k

)
is a family of k-sets of V (H). We simply write V to mean

V (H) if it is clear from the context. For a k-graph H and an l-set T ∈
(
V
l

)
, let NH (T ) be

the set of (k − l)-sets S ∈
(

V
k−l

)
such that S ∪ T is an edge in H . Let degH (T ) = |NH (T )|.

Define the minimum l-degree δl(H) of H to be the minimal degH (T ) over all T ∈
(
V
l

)
. For

U ⊂ V , we denote by H[U] the induced subgraph of H on vertex set U.

A k-graph H is t-partite if there exists a partition of the vertex set V into t classes

V1, . . . , Vt such that every edge intersects every class in at most one vertex. Similarly, H is

balanced if |V1| = · · · = |Vt|. An l-set T ∈
(
V
l

)
is said to be legal if |T ∩ Vi| � 1 for i ∈ [t].

For I ⊂ [t], T ⊂ V is I-legal if |T ∩ Vi| = 1 for i ∈ I and |T ∩ Vi| = 0 otherwise. We write

VI to be the set of I-legal sets. For disjoint sets I, J such that I ∪ J ∈
(
[t]
k

)
and an I-legal set

T ∈ VI , denote by NH
J (T ) the set of J-legal sets S such that S ∪ T is an edge in H and write

degHJ (T ) = |NH
J (T )|. For l ∈ [k − 1] and I ∈

(
[t]
l

)
, define δ̃I (H) = min{degHJ (T ) : T ∈ VI

and J ∈
(

[t]\I
k−|I |

)
}. Finally, we set δ̃l(H) = min{δ̃I (H) : I ∈

(
[t]
l

)
}. If H is clear from the
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context, we drop the superscript of H . Note that for graphs, when k = 2, δ̃1(G) = δ̃(G) as

defined earlier.

Let Kk
t be the complete k-graph on t vertices. It is easy to see that a t-partite k-graph

H contains a perfect Kk
t -matching only if H is balanced.

Definition. Let 1 � l < k � t and n � 1 be integers. Define φk
l (t, n) to be the smallest

integer d such that every t-partite k-graph H with each class of size n and δ̃l(H) � d

contains a perfect Kk
t -matching. Equivalently,

φk
l (t, n) = min{d : δ̃l(H) � d ⇒ H contains a perfect Kk

t -matching},

where H is a t-partite k-graph H with each class of size n. Write φk(t, n) for φk
k−1(t, n).

Note that Theorem 1.3 implies that φ2(t, n) ∼ (t − 1)n/t. Various cases of φk
l (k, n)

have been studied. Daykin and Häggkvist [5] showed that φk
1(k, n) � (k − 1)nk−1/k,

which was later improved by Hán, Person and Schacht [9]. Kühn and Osthus [15]

showed that n/2 − 1 < φk(k, n) = φk
k−1(k, n) � n/2 +

√
2n log n. Aharoni, Georgakopoulos

and Sprüssel [1] then reduced the upper bound to φk(k, n) � �(n + 1)/2�. For k/2 � l <

k − 1, Pikhurko [21] showed that φk
l (k, n) � nk−l/2. The exact value of φ3

1(3, n) has been

determined by the authors in [17]. In this paper, we give an upper bound on φk(t, n) for

3 � k < t.

Theorem 1.4. For 3 � k < t and γ � 0, there exists an integer n0 = n0(k, t, γ) such that, for

all n � n0,

φk(t, n) �
(

1 −
((

t − 1

k − 1

)
+ 2

(
t − 2

k − 2

))−1

+ γ

)
n.

We do not believe the upper bound is best possible. For k = 3 and t = 4, it was shown,

independently in [16] and [13], that for any γ > 0 if H is a 3-graph (not 3-partite) with

δ2(H) = (3/4 + γ)n, then H contains a perfect K3
4 -matching, provided n is large enough.

(Moreover, in [13], Keevash and Mycroft have determined the exact value of the δ2(H)-

threshold for the existence of perfect K3
4 -matchings.) Thus, it is natural to believe that

φ3(4, n) should be 3n/4 + o(n).

Our proofs of Theorems 1.3 and 1.4 use the absorption technique introduced by Rödl,

Ruciński and Szemerédi [22]. We now present an outline of the absorption technique.

First, we remove a set U of disjoint copies of Kk
t from H satisfying the conditions of

the absorption lemma, Lemma 3.2, and call the resulting graph H ′. Next, we find a

Kk
t -matching covering almost all vertices of H ′. Let W be the set of ‘leftover’ vertices. By

the absorption property of U, there is a perfect Kk
t -matching in H[U ∪ W ]. Hence, we

obtain a perfect Kk
t -matching in H as required.

In order to find a Kk
t -matching covering almost all vertices of H ′, we follow the

approach of Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [2], who consider

fractional matchings. Let Kk
t (H) be the set of Kk

t in a k-graph H . A fractional Kk
t -

matching in a k-graph H is a function w : Kk
t (H) → [0, 1] such that for each v ∈ V we
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have ∑
{w(T ) : v ∈ T ∈ Kk

t (H)} � 1.

Then
∑

T∈Kk
t (H) w(T ) is the size of w. If the size is |H |/t, then w is perfect. We are

interested in perfect fractional Kk
t -matchings w in a t-partite k-graph H with each class

of size n. Note that |H | = tn, so if w is a perfect fractional Kk
t -matching in H , then∑

{w(T ) : v ∈ T ∈ Kk
t (H)} = 1 for v ∈ V and

∑
T∈Kk

t (H)

w(T ) = n.

Define φ
∗,k
l (t, n) to be the fractional analogue of φk

l (t, n).

Theorem 1.5. For 2 � k � t and n � 1,

�(t − k + 1)n/t� � φ∗,k(t, n) �
{

�(t − 1)n/t� for k = 2,

�
(
1 −

(
t−1
k−1

)−1)
n� + 1 for k � 3.

In particular, φ∗,2(t, n) = �(t − 1)n/t�.

Notice that Theorem 1.5 is only tight for k = 2. The upper bound on φ∗,k(t, n) given

in Theorem 1.5 is sufficient for our purpose, that is, to prove Theorems 1.3 and 1.4. In

addition, we also obtain the following result.

Theorem 1.6. Let 2 � k � t be integers. Then, given any ε, γ > 0, there exists an integer n0

such that every k-graph H of order n > n0 with

δk−1(H) � tφ∗,k(t, �n/t�) + γn

contains a Kk
t -matching T covering all but at most εn vertices.

Together with Theorem 1.5, we obtain the following corollary for general k-graphs.

Corollary 1.7. Let 3 � k � t be integers. Then, given any ε, γ > 0, there exists an integer

n0 such that every k-graph H of order n > n0 with

δk−1(H) �
(

1 −
(
t − 1

k − 1

)−1

+ γ

)
n

contains a Kk
t -matching T covering all but at most εn vertices.

Observe that Corollary 1.7 is a stronger statement than Lemma 6.1 in [16]. Thus, by

replacing Lemma 6.1 in [16] with Theorem 1.6, we improve the bounds of Theorem 1.4

in [16].

In the next section, we prove Theorem 1.5. Theorems 1.3 and 1.4 are proved simultan-

eously in Section 3. Finally, Theorem 1.6 is proved in Section 4.
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2. Perfect fractional Kk
t -matchings

In this section we are going to prove Theorem 1.5. We require the Farkas lemma.

Lemma 2.1 (Farkas lemma (see [18], p. 257)). A system of equations yA = b, y � 0 is

solvable if and only if the system Ax � 0, bx < 0 is unsolvable.

First we prove the lower bounds on φ∗,k(t, n).

Proposition 2.2. Let 2 � k � t and n � 1 be integers. There exists a t-partite k-graph H

with each class of size n with δ̃k−1(H) = �(t − k + 1)n/t� − 1 without a perfect fractional

Kk
t -matching.

Proof. We fix t, k and n. Let V1, . . . , Vt be disjoint vertex sets each of size n. For

i ∈ [t], fix a (�(t − k + 1)n/t� − 1)-set Wi ⊂ Vi. Define H to be the t-partite k-graph

on vertex classes V1, . . . , Vt such that every edge in H meets Wi for some i. Clearly,

δ̃k−1(H) = �(t − k + 1)n/t� − 1. Thus, it suffices to show that H does not contain a perfect

fractional Kk
t -matching. Let A be the matrix of H with rows representing the Kk

t (H)

and columns representing the vertices of H such that AT,v = 1 if and only if v ∈ T for

T ∈ Kk
t (H) and v ∈ V . By the Farkas lemma, Lemma 2.1, taking y = (w(T ) : T ∈ Kk

t (H))

and b = (1, . . . , 1), there is no perfect fractional Kk
t -matching in H if and only if there is

a weighting function w : V → R such that∑
v∈T

w(v) � 0, for all T ∈ Kk
t (H) and

∑
v∈V

w(v) < 0. (2.1)

Set w(v) = (k − 1)/(t − k + 1) if v ∈
⋃

i∈[t] Wi and w(v) = −1 otherwise. Clearly,∑
w(v) =

k − 1

t − k + 1
t

(⌈
(t − k + 1)n

t

⌉
− 1

)
− t

(
n −

⌈
(t − k + 1)n

t

⌉
+ 1

)
< 0.

For T ∈ Kk
t (H), T contains at least t − k + 1 vertices in

⋃
i∈[t] Wi and so

∑
v∈T w(v) � 0.

Thus, w satisfies (2.1), so H does not contain a perfect fractional Kk
t -matching.

Proof of Theorem 1.5. By Proposition 2.2 it is sufficient to prove the upper bound on

φ∗,k(t, n). Fix k, t and n. Suppose to the contrary that there exists a t-partite k-graph H

with each class of size n and

δ̃k−1(H) � δ̃

that does not contain a perfect fractional Kk
t -matching, where δ̃ is the upper bound

on φ∗,k(t, n) stated in the theorem. By an argument similar to that in the proof of

Proposition 2.2, there is a weighting function w : V → R satisfying (2.1). Let V1, . . . , Vt be

the vertex classes of H with Vi = {vi,1, . . . , vi,n} for i ∈ [t]. We identify the t-tuple (j1, . . . , jt) ∈
[n]t with the [t]-legal set {v1,j1 , . . . , vt,jt} and write w(j1, . . . , jt) to mean

∑
i∈[t] w(vi,ji). Without

loss of generality we may assume that for i ∈ [t], (w(vi,j))j∈[n] is a decreasing sequence, i.e.,
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w(vi,j) � w(vi,j′) for 1 � j < j ′ � n. By considering the vertex weighting w′ such that

w′(v) =

⎧⎪⎪⎨⎪⎪⎩
w(v) + ε if v ∈ Vi,

w(v) − ε if v ∈ Vi′ ,

w(v) otherwise,

with ε > 0, we may assume that w(vi,n) = w(vi′ ,n) for all i, i′ ∈ [t]. By (2.1), w(vi,n) is

negative as w(vi,j) � w(vi,n) = w(vi′ ,n) for all j ∈ [n] and i, i′ ∈ [t]. Thus, by multiplying

through by a suitable constant we may assume that w(vi,n) = −1 for all i ∈ [t]. We further

assume that w(v) � t − 1 for all v ∈ V , because (2.1) still holds after we replace w(v) with

min{w(v), t − 1}. Finally, we apply the linear transformation (w(v) + 1)/t for v ∈ V , which

scales w so that it now lies in the interval [0, 1], and w satisfies the following inequalities:∑
v∈T

w(v) � 1 for all T ∈ Kk
t (H) and

∑
v∈V

w(v) < n. (2.2)

For j ∈ [t], set r(j) = n −
(
j−1
k−1

)
(n − δ̃). Given a J-legal set T ∈ Kk

j (H) with J ∈
(
[t]
j

)
and

j < k, for each i ∈ [t]\J there are at least r(j + 1) vertices v ∈ Vi such that T ∪ v forms

a Kk
j+1. Note that r(j) = n for j ∈ [k − 1] and r(k) = δ̃. By the definition of δ̃, we know

that r(t) � 1. Hence, we can find a Kk
t (j1, j2, . . . , jt) with ji � r(i) for i ∈ [t].

Recall that for i ∈ [t] and 1 � j < j ′ � n, w(vi,j) � w(vi,j′). Therefore,∑
i∈[t]

w(vi,r(i)) = w(r(1), r(2), . . . , r(t)) � w(j1, j2, . . . , jt) � 1

by (2.2). By a similar argument, for any permutation σ of [t] we have∑
i∈[t]

w(vi,r(σ(i))) � 1.

Setting σ = (1, 2, . . . , t), we have∑
i∈[t]

∑
j∈[t]

w(vi,r(j)) =
∑
j∈[t]

∑
i∈[t]

w(vi,r(σj (i))) � t. (2.3)

Observe that w(vi,r(j)) � w(vi,r(j+1)) for i ∈ [t] and j ∈ [t − 1]. Since r(j) = n for j ∈ [k − 1]

and w(vi,n) = 0 for i ∈ [t],∑
i∈[t]

w(vi,r(t)) =
1

t − k + 1

∑
i∈[t]

( ∑
j∈[k−1]

w(vi,r(j)) + (t − k + 1)w(vi,r(t))

)

� 1

t − k + 1

∑
i∈[t]

∑
j∈[t]

w(vi,r(j)) � t

t − k + 1
, (2.4)

where the last inequality is due to (2.3).

Claim 2.3.∑
i∈[t]

( ∑
j∈[t−1]

(r(j) − r(j + 1))w(vi,r(j)) +
r(k) − r(t)

t − k
w(vi,r(t))

)
� t(r(k) − r(t))

t − k
.
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Proof of claim. Consider the multiset A containing (t − k)(r(j) − r(j + 1)) copies of j

for k � j � t − 1 and r(k) − r(t) copies of t. In order to prove the claim (by multiplying

though by (t − k)), it is enough to show that∑
i∈[t]

∑
j∈A

w(vi,r(j)) � t(r(k) − r(t)).

First note that ∑
k�j�t−1

(r(j) − r(j + 1)) = r(k) − r(t),

so the number of elements j (with multiplicity) in A with k � j � t − 1 is exactly (t −
k)(r(k) − r(t)). Note that r(j) − r(j + 1) =

(
j−1
k−2

)
(n − δ̃). Hence, for k � j < j ′ � t − 1, there

are more copies of j ′ than copies of j in A. Recall that A contains precisely r(k) − r(t)

copies of t. It follows that we can replace some elements by smaller elements to obtain a

multiset A′ containing each of k, . . . , t exactly r(k) − r(t) times. Since w(vi,r(j)) is increasing

in j and w(vi,r(j)) = 0 for j ∈ [k − 1], it follows that∑
i∈[t]

∑
j∈A

w(vi,r(j)) �
∑
i∈[t]

∑
j∈A′

w(vi,r(j)) = (r(t) − r(k))
∑
i∈[t]

∑
k�j�t

wvi,r(j)

= (r(t) − r(k))
∑
i∈[t]

∑
j∈[t]

w(vi,r(j)) � t(r(t) − r(k))

as required, where the last inequality is due to (2.3).

Recall that r(k) = δ̃ and r(1) = n. Since w(vi,j′) is decreasing in j ′, w(vi,j′) � w(vi,r(j)) for

r(j + 1) < j ′ � r(j) and j ∈ [t], where we take r(t + 1) = 0. Hence,∑
i∈[t]

∑
j∈[n]

w(vi,j) �
∑
i∈[t]

( ∑
j∈[t−1]

(r(j) − r(j + 1))w(vi,r(j)) + r(t)w(vi,r(t))

)
.

By Claim 2.3 and (2.4), this is at least

t(r(k) − r(t))

t − k
+

∑
i∈[t]

(
r(t) − r(k) − r(t)

t − k

)
w(vi,r(t))

� t(r(k) − r(t))

t − k
+

(
r(t) − r(k) − r(t)

t − k

)
t

t − k + 1

=
tr(k)

t − k + 1
=

tδ̃

t − k + 1
� n,

contradicting (2.2). The proof of Theorem 1.5 is completed.

Note that the inequality above suggests that for k � 3, we would have φ∗,k(t, n) = δ̃ �
�(t − k + 1)n/t�. However, our proof requires that 1 � r(t) = n −

(
t−1
k−1

)
(n − δ̃), implying

that δ̃ �
(
1 −

(
t−1
k−1

)−1)
n + 1.
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3. Proof of Theorems 1.3 and 1.4

First we need the following simple proposition.

Proposition 3.1. Let γ > 0. Let H be a balanced t-partite k-graph with partition classes

V1, . . . , Vt, each of size n with

δ̃k−1(H) �
(

1 −
((

t − 2

k − 1

)
+ 2

(
t − 2

k − 2

))−1

+ γ

)
n.

Then, for i ∈ [t] and distinct vertices u, v ∈ Vi, there are at least (γn)t−1 legal [t]\i-sets T

such that T ∪ u and T ∪ v span copies of Kk
t in H .

Proof. Let u, v ∈ V1. For 2 � i � t, we pick wi ∈ Vi such that wi ∈ N(T ) for all legal

(k − 1)-sets T ⊂ {u, v, w2, . . . , wi−1}. By the definition of δ̃k−1(H), there are at least γn

choices for each wi. The proposition easily follows.

Using Proposition 3.1, we obtain an absorption lemma. Its proof can be easily obtained

by modifying the proof of Lemma 4.2 in [17]. For the sake of completeness, it is included

in the Appendix.

Lemma 3.2 (Absorption lemma). Let 2 � k < t be integers and let γ > 0. Then, there is

an integer n0 satisfying the following. For each balanced t-partite k-graph H with each class

of size n � n0 and

δ̃k−1(H) �
(

1 −
((

t − 2

k − 1

)
+ 2

(
t − 2

k − 2

))−1

+ γ

)
n,

there exists a balanced vertex subset U ⊂ V (H) of size |U| � γt(t−1)n/(t22t+2) such that there

exists a perfect Kk
t -matching in H[U ∪ W ] for every balanced vertex subset W ⊂ V\U of

size |W | � γ2t(t−1)n/(t222t+5).

Our next task is to find a large Kk
t -matching in H covering all but at most εn vertices,

which requires a theorem of Frankl and Rödl [7] and Chernoff’s inequality. The proof

of Lemma 3.5 is based on Claim 4.1 in [2]. For constants a, b, c > 0, write a = b ± c for

b − c � a � b + c.

Theorem 3.3 (Frankl and Rödl [7]). For all t, ε � 0 and a > 3, there exists τ = τ(ε), D =

D(n), and n0 = n0(τ) such that if n � n0 and H is a t-graph of order n satisfying

(a) degH (v) = (1 ± τ)D for all v ∈ V , and

(b) Δ2(H) = maxT∈(V (H)
2 ) degH (T ) < D/(log n)a,

then Hcontains a matching M covering all but at most εn vertices.

Lemma 3.4 (Chernoff’s inequality (see, e.g., [3])). Let X ∼ Bin(n, p). Then, for 0 < λ � np,

P(|X − np| � λ) � 2 exp

(
− λ2

4np

)
and P(X � np − λ) � exp

(
− λ2

4np

)
.
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Lemma 3.5. Let 2 � k � t be integers. Then, for any given ε, γ > 0, there exists an integer

n0 such that every t-partite k-graph H with partition classes V1, . . . , Vt, each of size n > n0,

with

δ̃k−1(H) � φ∗,k(t, n) + γn

contains a Kk
t -matching T covering all but at most εn vertices.

Proof. Fix k, t and ε. If k = t = 2, then the lemma easily holds and so we may assume

that t � 3. Write φ∗ = φ∗,k(t, n)/n. We assume that n is sufficiently large throughout the

proof. Let H be a balanced t-partite k-graph H with partition classes V1, . . . , Vt, each of

size n, with δ̃k−1(H) � (φ∗ + γ)n. Our aim is to define a t-graph H∗ on vertex set V (H)

satisfying the condition of Theorem 3.3, where every edge in H∗ corresponds to a Kk
t in H .

Hence, by Theorem 3.3, there exists a matching M covering all but at most εn vertices of

H∗ corresponding to a Kk
t -matching in H .

We are going to construct H∗ via two rounds of randomization. For i ∈ [t], let Ri be

a random binomial subset of Vi with probability p = n−0.9. Let R = (R1, . . . , Rt). Then, by

Chernoff’s inequality (Lemma 3.4),

P(|Ri − n0.1| � n0.075) � 2 exp(−n0.05/2). (3.1)

For each I ∈
(

[t]
k−1

)
, each I-legal set T ⊂ R and i ∈ [t]\I ,

E(degH[R]
i (T )) � (φ∗ + γ)n × n−0.9 = (φ∗ + γ)n0.1.

Again, by Chernoff’s inequality (Lemma 3.4),

P(degH[R]
i (T ) < (φ∗ + γ/2)n0.1) � exp(−γ2n0.1/(16(φ∗ + γ))) = e−Ω(n0.1). (3.2)

Let m = n0.1 − n0.075. Let R′
i be a randomly chosen m-set in Ri and let R′ = (R′

1, . . . , R
′
t).

By (3.1) and (3.2), we have with probability 1 − e−Ω(n0.05)

δ̃k−1(H[R′]) � (c + γ/2)n0.1 − 2n0.075 � (c + γ/4)m.

Since R′
i is chosen randomly from Ri, which is also chosen randomly, a given element is

chosen in R′
i with probability m/n = n−0.9 − n−0.925 minus an exponentially small correction

term. Hence we may assume that, for v ∈ V ,

n−0.9 � P(v ∈ R′) � (1 − 2n−0.025)n−0.9.

Now, we take n1.1 independent copies of R′ and denote them by R′(1), R′(2), . . . , R′(n1.1).

For a subset of vertices S ⊂ V , let

YS = |{i : S ⊂ R′(i)}|.

Since the probability that a particular Ri (not R′(i)) contains S is n−0.9n, E(YS ) � n1.1−0.9|S |.

With probability at least 1 − 2 exp(−9n1.5/2) by Lemma 3.4, Yv = n0.2 ± 3n0.175 for every

v ∈ V , where recall that y = x ± c means x − c � y � x + c. Let Z2 = |{S ∈
(
V
2

)
: YS � 3}|,

and observe that

E(Z2) < n2
(
n1.1

)3(
n−0.9

)6
= n−0.1.
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Let Z3 = |{S ∈
(
V
3

)
: YS � 2}| and observe that

E(Z3) < n3
(
n1.1

)2(
n−0.9

)6
= n−0.2.

The latter implies that every 3-set S ∈
(
V
3

)
lies in at most one R′(i) with high probability.

In summary, there exist n1.1 vertex sets R′(1), . . . , R′(n1.1) such that

(i) for every v ∈ V , Yv = n0.2 ± 3n0.175,

(ii) every 2-set S ∈
(
V
2

)
is in at most two sets R′(i),

(iii) every 3-set S ∈
(
V
3

)
is in at most one set R′(i),

(iv) for i ∈ [n1.1], R′(i) = (R′
1, . . . , R

′
t) with R′

j ⊂ Vj and |R′
j | = m for j ∈ [t],

(v) for i ∈ [n1.1], δ̃k−1(H[R′(i)]) � (φ∗ + γ/4)m.

Fix one such sequence R′(1), . . . , R′(n1.1).

By (v) and the definition of φ∗, there exists a fractional perfect Kk
t -matching wi in

H[R′(i)] for i ∈ [n1,1]. Now we conduct our second round of random process by defining

a random t-graph H∗ on vertex classes V such that each [t]-legal set T is randomly

independently chosen with

P(T ∈ H∗) =

{
wiT (T ) if T ∈ Kk

t (H[R′(iT )]) for some iT ∈ [t],

0 otherwise.

Note that iT is unique by (iii) (as t � 3) and so H∗ is well defined. For v ∈ V , let

Iv = {i : v ∈ R′(i)} and so |Iv| = Yv = n0.2 ± 3n0.175 by (i). For every v ∈ V , let Ei
v be the

set of Kk
t in H[R′(i)] containing v. Thus, for v ∈ V , degH

∗
(v) is a generalized binomial

random variable with expectation

E(degH
∗
(v)) =

∑
i∈Iv

∑
T∈Ei

v

wi(T ) = |Iv| = n0.2 ± 3n0.175.

Similarly, for every 2-set {u, v},

E(degH
∗
(u, v)) =

∑
i∈Iv∩Iu

∑
T∈Ei

v∩Ei
u

wi(T ) � |Iv ∩ Iu| � 2,

by (ii). Hence, again by Chernoff’s inequality, Lemma 3.4, we may assume that for every

v ∈ V and every 2-set {u, v},

degH
∗
(v) = n0.2 ± 4n0.2−ε, degH

∗
(u, v) < n0.1.

Thus, H∗ satisfies the hypothesis of Theorem 3.3 and the proof is completed.

Next we prove Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Fix k and t and γ > 0. Let

d =

{
(t − 1)n/t if k = 2,(
1 −

((
t−1
k−1

)
+ 2

(
t−2
k−2

))−1)
n if k � 3.
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Note that d � φ∗,k(t, n) by Theorem 1.5. Let H be a t-partite k-graph with vertex classes

V1, . . . , Vt each of size n � n0 and δ̃k−1(H) � d + γn. We are going to show that H contains

a perfect Kk
t -matching. Throughout this proof, n0 is assumed to be sufficiently large. By

Lemma 3.2, there exists a balanced vertex set U in V of size |U| � γt(t−1)n/(t22t+2), such

that there exists a perfect Kk
t -matching in H[U ∪ W ] for every balanced vertex subset

W ⊂ V\U of size |W | � γ2t(t−1)n/(t222t+5). Set H ′ = H[V\U] and note that δ̃k−1(H
′) �

d + γn/2 � (φ∗,k(t, n) + γ/2)n. By Lemma 3.5, there exists a Kk
t -matching T in H ′ covering

all but at most εn vertices of H ′, where ε = γ2t(t−1)/(t222t+5). Let W = V (H ′)\V (T ), so

W is balanced. Since H[U ∪ W ] contains a perfect Kk
t -matching T ′ by the choice of U,

T ∪ T ′ is a perfect Kk
t -matching in H .

4. Proof of Theorem 1.6

Note that together Lemma 3.5 and the lemma below imply Theorem 1.6. Hence all that

remains is to prove Lemma 4.1.

Lemma 4.1. For integers t � k � 2, there exists n0 such that the following holds. Suppose

that H is a k-graph with n � n0 vertices with t|n. Then there exists a partition V1, . . . , Vt of

V (H) into sets of size n/t such that for every l ∈ [k − 1], every I ∈
(
[t]
l

)
, every legal I-set

T and J ∈
(
[t]\I
k−l

)
, we have

tk−l

(k − l)!
degH

′

J (T ) � degH (T ) − 2(t ln n)1/2nk−l−1/2,

where H ′ is the induced t-partite k-subgraph of H with vertex classes V1, . . . , Vt.

Proof. First set m = k − l and let U1, . . . , Ut be a random partition of V , where each

vertex appears in vertex class Uj independently with probability 1/t. For a fixed l-set

T = {v1, . . . , vl}, let NH (T ) be the link hypergraph of T . Thus, NH (T ) is an m-graph

with degH (T ) edges. We decompose NH (T ) into i0 � mnm−1 non-empty pairwise edge-

disjoint matchings, which we denote by M1, . . . ,Mi0 . To see that this is possible consider

the auxiliary graph G with V (G) = E(NH (T )), in which, for A,B ∈ NH (T ), A and B are

joined in G if and only if A ∩ B �= ∅. Since G has maximum degree at most m
(
n−1
m−1

)
, G can

be properly coloured using at most mnm−1 colours, where each colour class corresponds

to a matching.

For every edge E ∈ NH (T ), and every index set J ∈
(
[t]
m

)
, we say that E is J-good if E

is J-legal with respect to U1, . . . , Ut. Since the partition U1, . . . , Ut was chosen randomly,

we have, for fixed J ∈
(
[t]
m

)
,

P(E is J-good) = m!t−m.

Thus, for Xi,J = Xi,J(T ) = |{E ∈ Mi : E is J-good}| we have

μi,J = μi,J(T ) = E(Xi,J) =
m!

tm
|Mi|.
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Now call a matching Mi bad (with respect to U1, . . . , Ut) if there exists a set J ∈
(
[t]
m

)
such

that

Xi,J �
(

1 −
(

2(2k − 1) ln n

μi,J

)1/2)
μi,J ,

and call T a bad set if there is at least one bad Mi = Mi(T ). Otherwise call T a good set.

For a fixed Mi the events ‘E is J-good’ with E ∈ Mi are jointly independent, and hence

by Chernoff’s inequality, Lemma 3.4,

P(Mi is bad) �
(
t

m

)
exp(−(2k − 1) ln n) =

(
t

m

)
n−2k+1.

Recall that i0 � mnm−1 and m � k − 1, so we have

P(T is bad) � i0

(
t

m

)
n−2k+1 � n−k.

By summing over all l-sets T , we obtain that

P(there exists a bad l-set) � n−1.

Moreover, Chernoff’s inequality, Lemma 3.4, yields

P(|Uj | � n/t + n1/2(ln n)1/4/t) � exp(−(ln n)1/2/4t).

Thus with positive probability there is a partition U1, . . . , Ut such that all l-sets T are

good and

|Uj | � n/t + n1/2(ln n)1/4/t, for all j ∈ [t].

Consequently, by redistributing at most n1/2(ln n)1/4 vertices of the partition U1, . . . , Ut,

we obtain an equipartition V1, . . . , Vt with

|Vj | = n/t and |Uj\Vj | � n1/2(ln n)1/4/t, for all j ∈ [t].

Let H ′ be the induced t-partite k-subgraph with vertex classes V1, . . . , Vt. Note that for an

l-set I ∈
(
[t]
l

)
, an I-legal set T and an m-set J ∈

(
[t]\I
m

)
,

degH
′

J (T ) �
∑
i∈[i0]

(
1 −

(
2(2k − 1) ln n

μi,J

))
μi,J − m

n1/2(ln n)1/4

t
nm−1

�m!

tm
degHJ (T ) −

(
2(2k − 1) ln n

)1/2
∑
i∈[i0]

μ
1/2
i,J − m

n1/2(ln n)1/4

t
nm−1.

By the Cauchy–Schwarz inequality, we obtain that∑
i∈[i0]

μ
1/2
i,J �

(
i0

∑
i∈[i0]

μi,J

)1/2

�
(
mnm−1m!

tm

(
n

m

))1/2

� nm−1/2.

Therefore,

degHJ (T ) �m!

tm
degHJ (T ) − 2(k ln n)1/2nm−1/2,

as required.
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Appendix: Proof of Lemma 3.2

Proof. Throughout the proof we may assume that n0 is chosen sufficiently large. Let

H be a balanced t-partite k-graph with partition classes V1, . . . , Vt each of size n, and

δ̃k−1(H) � δ̃, where δ̃ is the lower bound on δ̃k−1(H) stated in the lemma. Let H ′ be the

t-partite t-graph on V1, . . . , Vt in which v1v2 · · · vt ∈ E(H ′) if and only if v1v2 · · · vt is a Kk
t

in H . Furthermore, set m = t(t − 1), and call a balanced m-set A an absorbing m-set for a

balanced t-set T if A spans a matching of size t − 1 in H ′ and A ∪ T spans a matching of

size t in H ′. In other words, A ∩ T = ∅ and both H ′[A] and H ′[A ∪ T ] contain a perfect

matching. Denote by L(T ) the set of all absorbing m-sets for T . Next, we show that for

every balanced t-set T there are many absorbing m-sets for T .

Claim A.1. For every balanced t-set T , |L(T )| � γm
(

n
t−1

)t
/2t.

Proof. Let T = {v1, . . . , vt} be fixed with vi ∈ Vi for i ∈ [t]. By Proposition 3.1 it is easy

to see that there exist at least (γn)t−1 edges in H ′ containing v1. Since n0 was chosen

large enough, there are at most (t − 1)nt−2 � (γn)t−1/2 edges in H ′ which contain v1 and

vj for some 2 � j � t. Fix an edge v1u2 · · · ut in H ′ with uj ∈ Vj\{vj} for 2 � j � t. Set

U1 = {u2, . . . , ut} and W0 = T . For each 2 � j � t, suppose we succeed in choosing a

(t − 1)-set Uj such that Uj is disjoint from Wj−1 = Uj−1 ∪ Wj−2 and both Uj ∪ {uj} and

Uj ∪ {vj} are edges in H ′. Then for a fixed 2 � j � t we call such a choice Uj good,

motivated by A =
⋃

j∈[t] Uj being an absorbing m-set for T .

Note that in each step 2 � j � t there are precisely t + (j − 1)(t − 1) vertices in Wj−1.

More specifically, for i ∈ [t], there are at most j � t vertices in Vi ∩ Wj−1. Thus, the

number of edges in H ′ intersecting uj (or vj respectively) and at least one other vertex

in Wj is at most (t − 1)jnt−2 < t2nt−2 � (γn)t−1/2. For each 2 � j � t, by Proposition 3.1

there are at least (γn)t−1 − (γn)t−1/2 = (γn)t−1/2 choices for Uj and in total we obtain

(γn)m/2t absorbing m-sets for T with multiplicity at most ((t − 1)!)t.

Now, choose a family F of balanced m-sets by selecting each of the
(

n
t−1

)t
possible

balanced m-sets independently with probability

p = γmn/

(
t32t+3

(
n

t − 1

)t)
.

Then, by Chernoff’s inequality, Lemma 3.4, with probability 1 − o(1) as n → ∞, the family

F satisfies the properties

|F | �γmn/(t32t+2) (A.1)

and

|L(T ) ∩ F | � γ2mn

t322t+4
, (A.2)
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for all balanced t-sets T . Furthermore, we can bound the expected number of intersecting

m-sets in F by (
n

t − 1

)t

× t(t − 1) ×
(

n

t − 2

)(
n

t − 1

)t−1

× p2 � γ2mn

t322t+6
.

Thus, using Markov’s inequality, we derive that, with probability at least 1/2,

F contains at most
γ2mn

t322t+5
intersecting pairs. (A.3)

Hence, with positive probability the family F has all properties stated in (A.1), (A.2) and

(A.3). By deleting all the intersecting balanced m-sets and non-absorbing m-sets in such

a family F , we get a subfamily F ′ consisting of pairwise disjoint balanced m-sets, which

satisfies

|L(T ) ∩ F ′| � γ2mn

t322t+4
− γ2mn

t322t+5
=

γ2mn

t322t+5

for all balanced t-sets T . Let U = V (F ′) and so U is balanced. Moreover, U is of size at

most t|V (F ′)| � t|V (F)| � γmn/(t22t+2) by (A.1). For a balanced set W ⊂ V\V (M) of size

|W | � γ2mn/(t222t+5), W can be partitioned into at most a γ2mn/(t322t+5) balanced t-set.

Each balanced t-set can be successively absorbed using a different absorbing m-set in F ′,

so there exists a perfect matching in H ′[U ∪ W ]. Hence, there is a perfect Kk
t -matching

in H[U ∪ W ].
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