A Multipartite Version of the Hajnal-Szemerédi Theorem for Graphs and Hypergraphs

ALLAN LO^{1†} and KLAS MARKSTRÖM²

¹School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK

(e-mail: s.a.lo@bham.ac.uk)

²Department of Mathematics and Mathematical Statistics, Umeå University, S-901 87 Umeå, Sweden

(e-mail: klas.markstrom@math.umu.se)

Received 21 August 2011; revised 23 September 2012

A perfect K_t -matching in a graph G is a spanning subgraph consisting of vertex-disjoint copies of K_t . A classic theorem of Hajnal and Szemerédi states that if G is a graph of order n with minimum degree $\delta(G) \geqslant (t-1)n/t$ and t|n, then G contains a perfect K_t -matching. Let G be a t-partite graph with vertex classes V_1, \ldots, V_t each of size n. We show that, for any $\gamma > 0$, if every vertex $x \in V_i$ is joined to at least $((t-1)/t + \gamma)n$ vertices of V_j for each $j \neq i$, then G contains a perfect K_t -matching, provided n is large enough. Thus, we verify a conjecture of Fischer [6] asymptotically. Furthermore, we consider a generalization to hypergraphs in terms of the codegree.

AMS 2010 Mathematics subject classification: Primary 05C65

Secondary 05C70, 05C07

1. Introduction

Given a graph G and an integer $t \ge 3$, a K_t -matching is a set of vertex-disjoint copies of K_t in G. A perfect K_t -matching (or K_t -factor) is a spanning K_t -matching. Clearly, if G contains a perfect K_t -matching then t divides |G|. A classic theorem of Hajnal and Szemerédi [8] states a relationship between the minimum degree and the existence of a perfect K_t -matching.

Theorem 1.1 (Hajnal–Szemerédi theorem [8]). Let t > 2 be an integer. Let G be a graph of order n with minimum degree $\delta(G) \ge (t-1)n/t$ and t|n. Then G contains a perfect K_t -matching.

Let G be a t-partite graph with vertex classes $V_1, ..., V_t$. We say that G is balanced if $|V_i| = |V_i|$ for $1 \le i < j \le t$. Write $G[V_i, V_j]$ for the induced bipartite subgraph on vertex

[†] Supported by the ERC, grant 258345.

classes V_i and V_j . Define $\widetilde{\delta}(G)$ to be $\min_{1 \leq i < j \leq t} \delta(G[V_i, V_j])$. Fischer [6] conjectured the following multipartite version of the Hajnal–Szemerédi theorem.

Conjecture 1.2 (Fischer [6]). Let G be a balanced t-partite graph with each class of size n. Then there exists an integer $a_{n,t}$ such that if $\widetilde{\delta}(G) \ge (t-1)n/t + a_{n,t}$, then G contains a perfect K_t -matching.

Note that the $+a_{n,t}$ term was not presented in Fischer's original conjecture, but it was shown to be necessary for odd t in [19]. For t=2, the conjecture can be easily verified by Hall's theorem. For t=3, Johansson [11] proved that $\widetilde{\delta}(G)\geqslant 2n/3+\sqrt{n}$ suffices for all n. Using the regularity lemma, Magyar and Martin [19] and Martin and Szemerédi [20] proved Conjecture 1.2 for t=3 and t=4 respectively for n sufficiently large, where $a_{n,t}=1$ if both t and n are odd, and $a_{n,t}=0$ otherwise. For $t\geqslant 5$, Csaba and Mydlarz [4] proved that $\widetilde{\delta}(G)\geqslant c_t n/(c_t+1)$ is sufficient, where $c_t=t-3/2+(1+1/2+\cdots+1/t)/2$. In this paper, we show that Conjecture 1.2 is true asymptotically.

Theorem 1.3. Let $t \ge 2$ be an integer and let $\gamma > 0$. Then there exists an integer $n_0 = n_0(t,\gamma)$ such that if G is a balanced t-partite graph with each class of size $n \ge n_0$ and $\widetilde{\delta}(G) \ge ((t-1)/t + \gamma)n$, then G contains a perfect K_t -matching.

Independently, Theorem 1.3 also has been proved by Keevash and Mycroft [13]. Their proof involves the hypergraph blow-up lemma [12], so n_0 is extremely large, whereas our proof gives a much smaller n_0 . Since the submission of this paper, Keevash and Mycroft [14] have proved Conjecture 1.2, provided n is large enough. Also, Han and Zhao [10] gave a different proof of Conjecture 1.2 for t = 3, 4, again provided n is large enough.

We further generalize Theorem 1.3 to hypergraphs. For $a \in \mathbb{N}$, we refer to the set $\{1,\ldots,a\}$ as [a]. For a set U, we denote by $\binom{U}{k}$ the set of k-sets of U. A k-uniform hypergraph, or k-graph for short, is a pair H = (V(H), E(H)), where V(H) is a finite set of vertices and $E(H) \subset \binom{V(H)}{k}$ is a family of k-sets of V(H). We simply write V to mean V(H) if it is clear from the context. For a k-graph H and an l-set $T \in \binom{V}{l}$, let $N^H(T)$ be the set of (k-l)-sets $S \in \binom{V}{k-l}$ such that $S \cup T$ is an edge in H. Let $\deg^H(T) = |N^H(T)|$. Define the minimum l-degree $\delta_l(H)$ of H to be the minimal $\deg^H(T)$ over all $T \in \binom{V}{l}$. For $U \subset V$, we denote by H[U] the induced subgraph of H on vertex set U.

A k-graph H is t-partite if there exists a partition of the vertex set V into t classes V_1,\ldots,V_t such that every edge intersects every class in at most one vertex. Similarly, H is balanced if $|V_1|=\cdots=|V_t|$. An l-set $T\in\binom{V}{l}$ is said to be legal if $|T\cap V_i|\leqslant 1$ for $i\in[t]$. For $I\subset[t]$, $T\subset V$ is I-legal if $|T\cap V_i|=1$ for $i\in I$ and $|T\cap V_i|=0$ otherwise. We write V_I to be the set of I-legal sets. For disjoint sets I,J such that $I\cup J\in\binom{[t]}{k}$ and an I-legal set $T\in V_I$, denote by $N_J^H(T)$ the set of J-legal sets S such that $S\cup T$ is an edge in H and write $\deg_J^H(T)=|N_J^H(T)|$. For $I\in[k-1]$ and $I\in\binom{[t]}{l}$, define $\widetilde{\delta}_I(H)=\min\{\deg_J^H(T):T\in V_I \text{ and } J\in\binom{[t]\setminus I}{k-|I|}\}$. Finally, we set $\widetilde{\delta}_I(H)=\min\{\widetilde{\delta}_I(H):I\in\binom{[t]}{l}\}$. If H is clear from the

context, we drop the superscript of H. Note that for graphs, when k=2, $\widetilde{\delta}_1(G)=\widetilde{\delta}(G)$ as defined earlier.

Let K_t^k be the complete k-graph on t vertices. It is easy to see that a t-partite k-graph H contains a perfect K_t^k -matching only if H is balanced.

Definition. Let $1 \le l < k \le t$ and $n \ge 1$ be integers. Define $\phi_l^k(t, n)$ to be the smallest integer d such that every t-partite k-graph H with each class of size n and $\widetilde{\delta}_l(H) \ge d$ contains a perfect K_l^k -matching. Equivalently,

$$\phi_l^k(t,n) = \min\{d : \widetilde{\delta}_l(H) \geqslant d \Rightarrow H \text{ contains a perfect } K_t^k\text{-matching}\},$$

where H is a t-partite k-graph H with each class of size n. Write $\phi^k(t,n)$ for $\phi^k_{k-1}(t,n)$.

Note that Theorem 1.3 implies that $\phi^2(t,n) \sim (t-1)n/t$. Various cases of $\phi_l^k(k,n)$ have been studied. Daykin and Häggkvist [5] showed that $\phi_1^k(k,n) \leqslant (k-1)n^{k-1}/k$, which was later improved by Hán, Person and Schacht [9]. Kühn and Osthus [15] showed that $n/2-1 < \phi^k(k,n) = \phi_{k-1}^k(k,n) \leqslant n/2 + \sqrt{2n\log n}$. Aharoni, Georgakopoulos and Sprüssel [1] then reduced the upper bound to $\phi^k(k,n) \leqslant \lceil (n+1)/2 \rceil$. For $k/2 \leqslant l < k-1$, Pikhurko [21] showed that $\phi_l^k(k,n) \leqslant n^{k-l}/2$. The exact value of $\phi_1^3(3,n)$ has been determined by the authors in [17]. In this paper, we give an upper bound on $\phi^k(t,n)$ for $1 \leqslant k < t$.

Theorem 1.4. For $3 \le k < t$ and $\gamma \ge 0$, there exists an integer $n_0 = n_0(k, t, \gamma)$ such that, for all $n \ge n_0$,

$$\phi^{k}(t,n) \leqslant \left(1 - \left(\binom{t-1}{k-1} + 2\binom{t-2}{k-2}\right)^{-1} + \gamma\right)n.$$

We do not believe the upper bound is best possible. For k=3 and t=4, it was shown, independently in [16] and [13], that for any $\gamma>0$ if H is a 3-graph (not 3-partite) with $\delta_2(H)=(3/4+\gamma)n$, then H contains a perfect K_4^3 -matching, provided n is large enough. (Moreover, in [13], Keevash and Mycroft have determined the exact value of the $\delta_2(H)$ -threshold for the existence of perfect K_4^3 -matchings.) Thus, it is natural to believe that $\phi^3(4,n)$ should be 3n/4+o(n).

Our proofs of Theorems 1.3 and 1.4 use the absorption technique introduced by Rödl, Ruciński and Szemerédi [22]. We now present an outline of the absorption technique. First, we remove a set U of disjoint copies of K_t^k from H satisfying the conditions of the absorption lemma, Lemma 3.2, and call the resulting graph H'. Next, we find a K_t^k -matching covering almost all vertices of H'. Let W be the set of 'leftover' vertices. By the absorption property of U, there is a perfect K_t^k -matching in $H[U \cup W]$. Hence, we obtain a perfect K_t^k -matching in H as required.

In order to find a K_t^k -matching covering almost all vertices of H', we follow the approach of Alon, Frankl, Huang, Rödl, Ruciński and Sudakov [2], who consider fractional matchings. Let $\mathcal{K}_t^k(H)$ be the set of K_t^k in a k-graph H. A fractional K_t^k -matching in a k-graph H is a function $w: \mathcal{K}_t^k(H) \to [0,1]$ such that for each $v \in V$ we

have

$$\sum \{w(T) : v \in T \in \mathcal{K}_t^k(H)\} \leqslant 1.$$

Then $\sum_{T \in \mathcal{K}_t^k(H)} w(T)$ is the size of w. If the size is |H|/t, then w is perfect. We are interested in perfect fractional K_t^k -matchings w in a t-partite k-graph H with each class of size n. Note that |H| = tn, so if w is a perfect fractional K_t^k -matching in H, then

$$\sum \{w(T) : v \in T \in \mathcal{K}^k_t(H)\} = 1 \text{ for } v \in V \text{ and } \sum_{T \in \mathcal{K}^k_t(H)} w(T) = n.$$

Define $\phi_l^{*,k}(t,n)$ to be the fractional analogue of $\phi_l^k(t,n)$.

Theorem 1.5. For $2 \le k \le t$ and $n \ge 1$,

$$\lceil (t-k+1)n/t \rceil \leqslant \phi^{*,k}(t,n) \leqslant \begin{cases} \lceil (t-1)n/t \rceil & \text{for } k=2, \\ \lceil (1-\binom{t-1}{k-1})^{-1} n \rceil + 1 & \text{for } k \geqslant 3. \end{cases}$$

In particular, $\phi^{*,2}(t,n) = \lceil (t-1)n/t \rceil$.

Notice that Theorem 1.5 is only tight for k = 2. The upper bound on $\phi^{*,k}(t,n)$ given in Theorem 1.5 is sufficient for our purpose, that is, to prove Theorems 1.3 and 1.4. In addition, we also obtain the following result.

Theorem 1.6. Let $2 \le k \le t$ be integers. Then, given any $\varepsilon, \gamma > 0$, there exists an integer n_0 such that every k-graph H of order $n > n_0$ with

$$\delta_{k-1}(H) \geqslant t\phi^{*,k}(t,\lceil n/t\rceil) + \gamma n$$

contains a K_t^k -matching $\mathcal T$ covering all but at most εn vertices.

Together with Theorem 1.5, we obtain the following corollary for general k-graphs.

Corollary 1.7. Let $3 \le k \le t$ be integers. Then, given any $\varepsilon, \gamma > 0$, there exists an integer n_0 such that every k-graph H of order $n > n_0$ with

$$\delta_{k-1}(H) \geqslant \left(1 - {t-1 \choose k-1}^{-1} + \gamma\right)n$$

contains a K_t^k -matching $\mathcal T$ covering all but at most ϵn vertices.

Observe that Corollary 1.7 is a stronger statement than Lemma 6.1 in [16]. Thus, by replacing Lemma 6.1 in [16] with Theorem 1.6, we improve the bounds of Theorem 1.4 in [16].

In the next section, we prove Theorem 1.5. Theorems 1.3 and 1.4 are proved simultaneously in Section 3. Finally, Theorem 1.6 is proved in Section 4.

2. Perfect fractional K_t^k -matchings

In this section we are going to prove Theorem 1.5. We require the Farkas lemma.

Lemma 2.1 (Farkas lemma (see [18], p. 257)). A system of equations yA = b, $y \ge 0$ is solvable if and only if the system $Ax \ge 0$, bx < 0 is unsolvable.

First we prove the lower bounds on $\phi^{*,k}(t,n)$.

Proposition 2.2. Let $2 \le k \le t$ and $n \ge 1$ be integers. There exists a t-partite k-graph H with each class of size n with $\widetilde{\delta}_{k-1}(H) = \lceil (t-k+1)n/t \rceil - 1$ without a perfect fractional K_t^k -matching.

Proof. We fix t, k and n. Let V_1, \ldots, V_t be disjoint vertex sets each of size n. For $i \in [t]$, fix a $(\lceil (t-k+1)n/t \rceil - 1)$ -set $W_i \subset V_i$. Define H to be the t-partite k-graph on vertex classes V_1, \ldots, V_t such that every edge in H meets W_i for some i. Clearly, $\widetilde{\delta}_{k-1}(H) = \lceil (t-k+1)n/t \rceil - 1$. Thus, it suffices to show that H does not contain a perfect fractional K_t^k -matching. Let A be the matrix of H with rows representing the $K_t^k(H)$ and columns representing the vertices of H such that $A_{T,v} = 1$ if and only if $v \in T$ for $T \in \mathcal{K}_t^k(H)$ and $v \in V$. By the Farkas lemma, Lemma 2.1, taking $y = (w(T) : T \in \mathcal{K}_t^k(H))$ and $b = (1, \ldots, 1)$, there is no perfect fractional K_t^k -matching in H if and only if there is a weighting function $w : V \to \mathbb{R}$ such that

$$\sum_{v \in T} w(v) \geqslant 0, \text{ for all } T \in \mathcal{K}_t^k(H) \quad \text{and} \quad \sum_{v \in V} w(v) < 0.$$
 (2.1)

Set w(v) = (k-1)/(t-k+1) if $v \in \bigcup_{i \in [t]} W_i$ and w(v) = -1 otherwise. Clearly,

$$\sum w(v) = \frac{k-1}{t-k+1}t\left(\left\lceil\frac{(t-k+1)n}{t}\right\rceil-1\right)-t\left(n-\left\lceil\frac{(t-k+1)n}{t}\right\rceil+1\right)<0.$$

For $T \in \mathcal{K}^k_t(H)$, T contains at least t - k + 1 vertices in $\bigcup_{i \in [t]} W_i$ and so $\sum_{v \in T} w(v) \ge 0$. Thus, w satisfies (2.1), so H does not contain a perfect fractional K^k_t -matching.

Proof of Theorem 1.5. By Proposition 2.2 it is sufficient to prove the upper bound on $\phi^{*k}(t,n)$. Fix k, t and n. Suppose to the contrary that there exists a t-partite k-graph H with each class of size n and

$$\widetilde{\delta}_{k-1}(H) \geqslant \widetilde{\delta}$$

that does not contain a perfect fractional K_t^k -matching, where $\widetilde{\delta}$ is the upper bound on $\phi^{*,k}(t,n)$ stated in the theorem. By an argument similar to that in the proof of Proposition 2.2, there is a weighting function $w:V\to\mathbb{R}$ satisfying (2.1). Let V_1,\ldots,V_t be the vertex classes of H with $V_i=\{v_{i,1},\ldots,v_{i,n}\}$ for $i\in[t]$. We identify the t-tuple $(j_1,\ldots,j_t)\in[n]^t$ with the [t]-legal set $\{v_{1,j_1},\ldots,v_{t,j_t}\}$ and write $w(j_1,\ldots,j_t)$ to mean $\sum_{i\in[t]}w(v_{i,j_i})$. Without loss of generality we may assume that for $i\in[t]$, $(w(v_{i,j}))_{i\in[n]}$ is a decreasing sequence, i.e.,

 $w(v_{i,j}) \geqslant w(v_{i,j'})$ for $1 \leqslant j < j' \leqslant n$. By considering the vertex weighting w' such that

$$w'(v) = \begin{cases} w(v) + \varepsilon & \text{if } v \in V_i, \\ w(v) - \varepsilon & \text{if } v \in V_{i'}, \\ w(v) & \text{otherwise,} \end{cases}$$

with $\varepsilon > 0$, we may assume that $w(v_{i,n}) = w(v_{i',n})$ for all $i, i' \in [t]$. By (2.1), $w(v_{i,n})$ is negative as $w(v_{i,j}) \ge w(v_{i,n}) = w(v_{i',n})$ for all $j \in [n]$ and $i, i' \in [t]$. Thus, by multiplying through by a suitable constant we may assume that $w(v_{i,n}) = -1$ for all $i \in [t]$. We further assume that $w(v) \le t - 1$ for all $v \in V$, because (2.1) still holds after we replace w(v) with $\min\{w(v), t-1\}$. Finally, we apply the linear transformation (w(v) + 1)/t for $v \in V$, which scales w so that it now lies in the interval [0, 1], and w satisfies the following inequalities:

$$\sum_{v \in T} w(v) \geqslant 1 \text{ for all } T \in \mathcal{K}_t^k(H) \quad \text{and} \quad \sum_{v \in V} w(v) < n.$$
 (2.2)

For $j \in [t]$, set $r(j) = n - \binom{j-1}{k-1}(n-\widetilde{\delta})$. Given a J-legal set $T \in \mathcal{K}^k_j(H)$ with $J \in \binom{[t]}{j}$ and j < k, for each $i \in [t] \setminus J$ there are at least r(j+1) vertices $v \in V_i$ such that $T \cup v$ forms a K^k_{j+1} . Note that r(j) = n for $j \in [k-1]$ and $r(k) = \widetilde{\delta}$. By the definition of $\widetilde{\delta}$, we know that $r(t) \ge 1$. Hence, we can find a K^k_t (j_1, j_2, \ldots, j_t) with $j_i \ge r(i)$ for $i \in [t]$.

Recall that for $i \in [t]$ and $1 \le j < j' \le n$, $w(v_{i,j}) \ge w(v_{i,j'})$. Therefore,

$$\sum_{i \in [t]} w(v_{i,r(i)}) = w(r(1), r(2), \dots, r(t)) \geqslant w(j_1, j_2, \dots, j_t) \geqslant 1$$

by (2.2). By a similar argument, for any permutation σ of [t] we have

$$\sum_{i\in[t]}w(v_{i,r(\sigma(i))})\geqslant 1.$$

Setting $\sigma = (1, 2, ..., t)$, we have

$$\sum_{i \in [t]} \sum_{j \in [t]} w(v_{i,r(j)}) = \sum_{j \in [t]} \sum_{i \in [t]} w(v_{i,r(\sigma^{j}(i))}) \geqslant t.$$
(2.3)

Observe that $w(v_{i,r(j)}) \leq w(v_{i,r(j+1)})$ for $i \in [t]$ and $j \in [t-1]$. Since r(j) = n for $j \in [k-1]$ and $w(v_{i,n}) = 0$ for $i \in [t]$,

$$\sum_{i \in [t]} w(v_{i,r(t)}) = \frac{1}{t - k + 1} \sum_{i \in [t]} \left(\sum_{j \in [k-1]} w(v_{i,r(j)}) + (t - k + 1)w(v_{i,r(t)}) \right)$$

$$\geqslant \frac{1}{t - k + 1} \sum_{i \in [t]} \sum_{j \in [t]} w(v_{i,r(j)}) \geqslant \frac{t}{t - k + 1}, \tag{2.4}$$

where the last inequality is due to (2.3).

Claim 2.3.

$$\sum_{i \in [t]} \left(\sum_{j \in [t-1]} (r(j) - r(j+1)) w(v_{i,r(j)}) + \frac{r(k) - r(t)}{t-k} w(v_{i,r(t)}) \right) \geqslant \frac{t(r(k) - r(t))}{t-k}.$$

П

Proof of claim. Consider the multiset A containing (t-k)(r(j)-r(j+1)) copies of j for $k \le j \le t-1$ and r(k)-r(t) copies of t. In order to prove the claim (by multiplying though by (t-k)), it is enough to show that

$$\sum_{i \in [t]} \sum_{j \in A} w(v_{i,r(j)}) \geqslant t(r(k) - r(t)).$$

First note that

$$\sum_{k \leqslant j \leqslant t-1} (r(j) - r(j+1)) = r(k) - r(t),$$

so the number of elements j (with multiplicity) in A with $k \le j \le t-1$ is exactly (t-k)(r(k)-r(t)). Note that $r(j)-r(j+1)=\binom{j-1}{k-2}(n-\widetilde{\delta})$. Hence, for $k \le j < j' \le t-1$, there are more copies of j' than copies of j in A. Recall that A contains precisely r(k)-r(t) copies of t. It follows that we can replace some elements by smaller elements to obtain a multiset A' containing each of k,\ldots,t exactly r(k)-r(t) times. Since $w(v_{i,r(j)})$ is increasing in j and $w(v_{i,r(j)})=0$ for $j \in [k-1]$, it follows that

$$\sum_{i \in [t]} \sum_{j \in A} w(v_{i,r(j)}) \geqslant \sum_{i \in [t]} \sum_{j \in A'} w(v_{i,r(j)}) = (r(t) - r(k)) \sum_{i \in [t]} \sum_{k \leqslant j \leqslant t} w_{v_{i,r(j)}}$$
$$= (r(t) - r(k)) \sum_{i \in [t]} \sum_{j \in [t]} w(v_{i,r(j)}) \geqslant t(r(t) - r(k))$$

as required, where the last inequality is due to (2.3).

Recall that $r(k) = \widetilde{\delta}$ and r(1) = n. Since $w(v_{i,j'})$ is decreasing in j', $w(v_{i,j'}) \ge w(v_{i,r(j)})$ for $r(j+1) < j' \le r(j)$ and $j \in [t]$, where we take r(t+1) = 0. Hence,

$$\sum_{i \in [t]} \sum_{j \in [n]} w(v_{i,j}) \geqslant \sum_{i \in [t]} \left(\sum_{j \in [t-1]} (r(j) - r(j+1)) w(v_{i,r(j)}) + r(t) w(v_{i,r(t)}) \right).$$

By Claim 2.3 and (2.4), this is at least

$$\begin{split} &\frac{t(r(k)-r(t))}{t-k} + \sum_{i \in [t]} \left(r(t) - \frac{r(k)-r(t)}{t-k} \right) w(v_{i,r(t)}) \\ &\geqslant \frac{t(r(k)-r(t))}{t-k} + \left(r(t) - \frac{r(k)-r(t)}{t-k} \right) \frac{t}{t-k+1} \\ &= \frac{tr(k)}{t-k+1} = \frac{t\tilde{\delta}}{t-k+1} \geqslant n, \end{split}$$

contradicting (2.2). The proof of Theorem 1.5 is completed.

Note that the inequality above suggests that for $k \ge 3$, we would have $\phi^{*,k}(t,n) = \widetilde{\delta} \le \lceil (t-k+1)n/t \rceil$. However, our proof requires that $1 \le r(t) = n - \binom{t-1}{k-1}(n-\widetilde{\delta})$, implying that $\widetilde{\delta} \ge (1 - \binom{t-1}{k-1})^{-1}(n+1)$.

3. Proof of Theorems 1.3 and 1.4

First we need the following simple proposition.

Proposition 3.1. Let $\gamma > 0$. Let H be a balanced t-partite k-graph with partition classes V_1, \ldots, V_t , each of size n with

$$\widetilde{\delta}_{k-1}(H) \geqslant \left(1 - \left(\binom{t-2}{k-1} + 2\binom{t-2}{k-2}\right)^{-1} + \gamma\right)n.$$

Then, for $i \in [t]$ and distinct vertices $u, v \in V_i$, there are at least $(\gamma n)^{t-1}$ legal $[t] \setminus i$ -sets T such that $T \cup u$ and $T \cup v$ span copies of K_t^k in H.

Proof. Let $u, v \in V_1$. For $2 \le i \le t$, we pick $w_i \in V_i$ such that $w_i \in N(T)$ for all legal (k-1)-sets $T \subset \{u, v, w_2, \dots, w_{i-1}\}$. By the definition of $\widetilde{\delta}_{k-1}(H)$, there are at least γn choices for each w_i . The proposition easily follows.

Using Proposition 3.1, we obtain an absorption lemma. Its proof can be easily obtained by modifying the proof of Lemma 4.2 in [17]. For the sake of completeness, it is included in the Appendix.

Lemma 3.2 (Absorption lemma). Let $2 \le k < t$ be integers and let $\gamma > 0$. Then, there is an integer n_0 satisfying the following. For each balanced t-partite k-graph H with each class of size $n \ge n_0$ and

$$\widetilde{\delta}_{k-1}(H) \geqslant \left(1 - \left(\binom{t-2}{k-1} + 2\binom{t-2}{k-2}\right)^{-1} + \gamma\right)n,$$

there exists a balanced vertex subset $U \subset V(H)$ of size $|U| \leq \gamma^{t(t-1)} n/(t^2 2^{t+2})$ such that there exists a perfect K_t^k -matching in $H[U \cup W]$ for every balanced vertex subset $W \subset V \setminus U$ of size $|W| \leq \gamma^{2t(t-1)} n/(t^2 2^{2t+5})$.

Our next task is to find a large K_t^k -matching in H covering all but at most εn vertices, which requires a theorem of Frankl and Rödl [7] and Chernoff's inequality. The proof of Lemma 3.5 is based on Claim 4.1 in [2]. For constants a, b, c > 0, write $a = b \pm c$ for $b - c \le a \le b + c$.

Theorem 3.3 (Frankl and Rödl [7]). For all $t, \varepsilon \ge 0$ and a > 3, there exists $\tau = \tau(\varepsilon)$, D = D(n), and $n_0 = n_0(\tau)$ such that if $n \ge n_0$ and H is a t-graph of order n satisfying

- (a) $\deg^H(v) = (1 \pm \tau)D$ for all $v \in V$, and
- (b) $\Delta_2(H) = \max_{T \in \binom{V(H)}{2}} \deg^H(T) < D/(\log n)^a$,

then Hoontains a matching M covering all but at most en vertices.

Lemma 3.4 (Chernoff's inequality (see, e.g., [3])). Let $X \sim \text{Bin}(n, p)$. Then, for $0 < \lambda \le np$,

$$\mathbb{P}(|X - np| \geqslant \lambda) \leqslant 2 \exp\left(-\frac{\lambda^2}{4np}\right)$$
 and $\mathbb{P}(X \leqslant np - \lambda) \leqslant \exp\left(-\frac{\lambda^2}{4np}\right)$.

Lemma 3.5. Let $2 \le k \le t$ be integers. Then, for any given $\varepsilon, \gamma > 0$, there exists an integer n_0 such that every t-partite k-graph H with partition classes V_1, \ldots, V_t , each of size $n > n_0$, with

$$\widetilde{\delta}_{k-1}(H) \geqslant \phi^{*,k}(t,n) + \gamma n$$

contains a K_t^k -matching T covering all but at most εn vertices.

Proof. Fix k, t and ε . If k = t = 2, then the lemma easily holds and so we may assume that $t \ge 3$. Write $\phi^* = \phi^{*,k}(t,n)/n$. We assume that n is sufficiently large throughout the proof. Let H be a balanced t-partite k-graph H with partition classes V_1, \ldots, V_t , each of size n, with $\delta_{k-1}(H) \ge (\phi^* + \gamma)n$. Our aim is to define a t-graph H^* on vertex set V(H) satisfying the condition of Theorem 3.3, where every edge in H^* corresponds to a K_t^k in H. Hence, by Theorem 3.3, there exists a matching M covering all but at most εn vertices of H^* corresponding to a K_t^k -matching in H.

We are going to construct H^* via two rounds of randomization. For $i \in [t]$, let R_i be a random binomial subset of V_i with probability $p = n^{-0.9}$. Let $R = (R_1, ..., R_t)$. Then, by Chernoff's inequality (Lemma 3.4),

$$\mathbb{P}(|R_i - n^{0.1}| \ge n^{0.075}) \le 2 \exp(-n^{0.05}/2).$$
 (3.1)

For each $I \in {t \choose k-1}$, each I-legal set $T \subset R$ and $i \in [t] \setminus I$,

$$\mathbb{E}(\deg_i^{H[R]}(T)) \geqslant (\phi^* + \gamma)n \times n^{-0.9} = (\phi^* + \gamma)n^{0.1}.$$

Again, by Chernoff's inequality (Lemma 3.4),

$$\mathbb{P}(\deg_i^{H[R]}(T) < (\phi^* + \gamma/2)n^{0.1}) \leqslant \exp(-\gamma^2 n^{0.1}/(16(\phi^* + \gamma))) = e^{-\Omega(n^{0.1})}. \tag{3.2}$$

Let $m = n^{0.1} - n^{0.075}$. Let R_i' be a randomly chosen *m*-set in R_i and let $R' = (R_1', \dots, R_t')$. By (3.1) and (3.2), we have with probability $1 - e^{-\Omega(n^{0.05})}$

$$\widetilde{\delta}_{k-1}(H[R']) \geqslant (c + \gamma/2)n^{0.1} - 2n^{0.075} \geqslant (c + \gamma/4)m.$$

Since R'_i is chosen randomly from R_i , which is also chosen randomly, a given element is chosen in R'_i with probability $m/n = n^{-0.9} - n^{-0.925}$ minus an exponentially small correction term. Hence we may assume that, for $v \in V$,

$$n^{-0.9} \geqslant \mathbb{P}(v \in R') \geqslant (1 - 2n^{-0.025})n^{-0.9}$$

Now, we take $n^{1.1}$ independent copies of R' and denote them by $R'(1), R'(2), \ldots, R'(n^{1.1})$. For a subset of vertices $S \subset V$, let

$$Y_S = |\{i : S \subset R'(i)\}|.$$

Since the probability that a particular R^i (not R'(i)) contains S is $n^{-0.9n}$, $\mathbb{E}(Y_S) \leqslant n^{1.1-0.9|S|}$. With probability at least $1-2\exp(-9n^{1.5}/2)$ by Lemma 3.4, $Y_v=n^{0.2}\pm 3n^{0.175}$ for every $v\in V$, where recall that $y=x\pm c$ means $x-c\leqslant y\leqslant x+c$. Let $Z_2=|\{S\in \binom{V}{2}:Y_S\geqslant 3\}|$, and observe that

$$\mathbb{E}(Z_2) < n^2 (n^{1.1})^3 (n^{-0.9})^6 = n^{-0.1}$$

Let $Z_3 = |\{S \in \binom{V}{3} : Y_S \ge 2\}|$ and observe that

$$\mathbb{E}(Z_3) < n^3 (n^{1.1})^2 (n^{-0.9})^6 = n^{-0.2}.$$

The latter implies that every 3-set $S \in \binom{V}{3}$ lies in at most one R'(i) with high probability. In summary, there exist $n^{1.1}$ vertex sets $R'(1), \ldots, R'(n^{1.1})$ such that

- (i) for every $v \in V$, $Y_v = n^{0.2} \pm 3n^{0.175}$, (ii) every 2-set $S \in \binom{V}{2}$ is in at most two sets R'(i), (iii) every 3-set $S \in \binom{V}{3}$ is in at most one set R'(i), (iv) for $i \in [n^{1.1}]$, $R'(i) = (R'_1, \dots, R'_t)$ with $R'_j \subset V_j$ and $|R'_j| = m$ for $j \in [t]$,
- (v) for $i \in [n^{1.1}]$, $\widetilde{\delta}_{k-1}(H[R'(i)]) \ge (\phi^* + \gamma/4)m$.

Fix one such sequence $R'(1), \ldots, R'(n^{1.1})$.

By (v) and the definition of ϕ^* , there exists a fractional perfect K_t^k -matching w^i in H[R'(i)] for $i \in [n^{1,1}]$. Now we conduct our second round of random process by defining a random t-graph H^* on vertex classes V such that each [t]-legal set T is randomly independently chosen with

$$\mathbb{P}(T \in H^*) = \begin{cases} w^{i_T}(T) & \text{if } T \in \mathcal{K}_t^k(H[R'(i_T)]) \text{ for some } i_T \in [t], \\ 0 & \text{otherwise.} \end{cases}$$

Note that i_T is unique by (iii) (as $t \ge 3$) and so H^* is well defined. For $v \in V$, let $I_v = \{i : v \in R'(i)\}$ and so $|I_v| = Y_v = n^{0.2} \pm 3n^{0.175}$ by (i). For every $v \in V$, let E_v^i be the set of K_t^k in H[R'(i)] containing v. Thus, for $v \in V$, $\deg^{H^*}(v)$ is a generalized binomial random variable with expectation

$$\mathbb{E}(\deg^{H^*}(v)) = \sum_{i \in I_v} \sum_{T \in E_v^i} w^i(T) = |I_v| = n^{0.2} \pm 3n^{0.175}.$$

Similarly, for every 2-set $\{u, v\}$,

$$\mathbb{E}(\deg^{H^*}(u,v)) = \sum_{i \in I_v \cap I_u} \sum_{T \in E_v^i \cap E_u^i} w^i(T) \leqslant |I_v \cap I_u| \leqslant 2,$$

by (ii). Hence, again by Chernoff's inequality, Lemma 3.4, we may assume that for every $v \in V$ and every 2-set $\{u, v\}$,

$$\deg^{H^*}(v) = n^{0.2} \pm 4n^{0.2-\varepsilon}, \quad \deg^{H^*}(u, v) < n^{0.1}.$$

Thus, H^* satisfies the hypothesis of Theorem 3.3 and the proof is completed.

Next we prove Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. Fix k and t and $\gamma > 0$. Let

$$d = \begin{cases} (t-1)n/t & \text{if } k = 2, \\ (1 - \left(\binom{t-1}{k-1} + 2\binom{t-2}{k-2}\right)^{-1})n & \text{if } k \geqslant 3. \end{cases}$$

Note that $d \geqslant \phi^{*,k}(t,n)$ by Theorem 1.5. Let H be a t-partite k-graph with vertex classes V_1,\ldots,V_t each of size $n\geqslant n_0$ and $\widetilde{\delta}_{k-1}(H)\geqslant d+\gamma n$. We are going to show that H contains a perfect K_t^k -matching. Throughout this proof, n_0 is assumed to be sufficiently large. By Lemma 3.2, there exists a balanced vertex set U in V of size $|U|\leqslant \gamma^{t(t-1)}n/(t^22^{t+2})$, such that there exists a perfect K_t^k -matching in $H[U\cup W]$ for every balanced vertex subset $W\subset V\setminus U$ of size $|W|\leqslant \gamma^{2t(t-1)}n/(t^22^{2t+5})$. Set $H'=H[V\setminus U]$ and note that $\widetilde{\delta}_{k-1}(H')\geqslant d+\gamma n/2\geqslant (\phi^{*,k}(t,n)+\gamma/2)n$. By Lemma 3.5, there exists a K_t^k -matching $\mathcal T$ in H' covering all but at most εn vertices of H', where $\varepsilon=\gamma^{2t(t-1)}/(t^22^{2t+5})$. Let $W=V(H')\setminus V(\mathcal T)$, so W is balanced. Since $H[U\cup W]$ contains a perfect K_t^k -matching $\mathcal T'$ by the choice of U, $\mathcal T\cup \mathcal T'$ is a perfect K_t^k -matching in H.

4. Proof of Theorem 1.6

Note that together Lemma 3.5 and the lemma below imply Theorem 1.6. Hence all that remains is to prove Lemma 4.1.

Lemma 4.1. For integers $t \ge k \ge 2$, there exists n_0 such that the following holds. Suppose that H is a k-graph with $n \ge n_0$ vertices with $t \mid n$. Then there exists a partition V_1, \ldots, V_t of V(H) into sets of size n/t such that for every $l \in [k-1]$, every $I \in {[t] \choose l}$, every legal I-set T and $J \in {[t] \setminus l \choose k-l}$, we have

$$\frac{t^{k-l}}{(k-l)!} \deg_J^{H'}(T) \geqslant \deg^H(T) - 2(t \ln n)^{1/2} n^{k-l-1/2},$$

where H' is the induced t-partite k-subgraph of H with vertex classes V_1, \ldots, V_t .

Proof. First set m = k - l and let U_1, \ldots, U_t be a random partition of V, where each vertex appears in vertex class U_j independently with probability 1/t. For a fixed l-set $T = \{v_1, \ldots, v_l\}$, let $N^H(T)$ be the link hypergraph of T. Thus, $N^H(T)$ is an m-graph with $\deg^H(T)$ edges. We decompose $N^H(T)$ into $i_0 \leq mn^{m-1}$ non-empty pairwise edge-disjoint matchings, which we denote by M_1, \ldots, M_{i_0} . To see that this is possible consider the auxiliary graph G with $V(G) = E(N^H(T))$, in which, for $A, B \in N^H(T)$, A and B are joined in G if and only if $A \cap B \neq \emptyset$. Since G has maximum degree at most $m\binom{n-1}{m-1}$, G can be properly coloured using at most mn^{m-1} colours, where each colour class corresponds to a matching.

For every edge $E \in N^H(T)$, and every index set $J \in {[t] \choose m}$, we say that E is J-good if E is J-legal with respect to U_1, \ldots, U_t . Since the partition U_1, \ldots, U_t was chosen randomly, we have, for fixed $J \in {[t] \choose m}$,

$$\mathbb{P}(E \text{ is } J\text{-good}) = m!t^{-m}.$$

Thus, for $X_{i,J} = X_{i,J}(T) = |\{E \in M_i : E \text{ is } J\text{-good}\}|$ we have

$$\mu_{i,J} = \mu_{i,J}(T) = \mathbb{E}(X_{i,J}) = \frac{m!}{t^m} |M_i|.$$

Now call a matching M_i bad (with respect to U_1, \ldots, U_t) if there exists a set $J \in {[t] \choose m}$ such that

$$X_{i,J} \leqslant \left(1 - \left(\frac{2(2k-1)\ln n}{\mu_{i,J}}\right)^{1/2}\right)\mu_{i,J},$$

and call T a bad set if there is at least one bad $M_i = M_i(T)$. Otherwise call T a good set. For a fixed M_i the events 'E is J-good' with $E \in M_i$ are jointly independent, and hence by Chernoff's inequality, Lemma 3.4,

$$\mathbb{P}(M_i \text{ is bad}) \leqslant \binom{t}{m} \exp(-(2k-1)\ln n) = \binom{t}{m} n^{-2k+1}.$$

Recall that $i_0 \leq mn^{m-1}$ and $m \leq k-1$, so we have

$$\mathbb{P}(T \text{ is bad}) \leqslant i_0 \binom{t}{m} n^{-2k+1} \leqslant n^{-k}.$$

By summing over all l-sets T, we obtain that

$$\mathbb{P}(\text{there exists a bad } l\text{-set}) \leq n^{-1}.$$

Moreover, Chernoff's inequality, Lemma 3.4, yields

$$\mathbb{P}(|U_j| \ge n/t + n^{1/2}(\ln n)^{1/4}/t) \le \exp(-(\ln n)^{1/2}/4t).$$

Thus with positive probability there is a partition $U_1, ..., U_t$ such that all l-sets T are good and

$$|U_j| \le n/t + n^{1/2} (\ln n)^{1/4} / t$$
, for all $j \in [t]$.

Consequently, by redistributing at most $n^{1/2}(\ln n)^{1/4}$ vertices of the partition U_1, \ldots, U_t , we obtain an equipartition V_1, \ldots, V_t with

$$|V_j| = n/t$$
 and $|U_j \setminus V_j| \le n^{1/2} (\ln n)^{1/4} / t$, for all $j \in [t]$.

Let H' be the induced t-partite k-subgraph with vertex classes V_1, \ldots, V_t . Note that for an l-set $I \in {[t] \choose l}$, an I-legal set T and an m-set $J \in {[t] \setminus I \choose m}$,

$$\begin{split} \deg_J^{H'}(T) \geqslant & \sum_{i \in [i_0]} \left(1 - \left(\frac{2(2k-1)\ln n}{\mu_{i,J}}\right)\right) \mu_{i,J} - m \frac{n^{1/2}(\ln n)^{1/4}}{t} n^{m-1} \\ \geqslant & \frac{m!}{t^m} \deg_J^H(T) - \left(2(2k-1)\ln n\right)^{1/2} \sum_{i \in [i_1]} \mu_{i,J}^{1/2} - m \frac{n^{1/2}(\ln n)^{1/4}}{t} n^{m-1}. \end{split}$$

By the Cauchy–Schwarz inequality, we obtain that

$$\sum_{i \in [i_0]} \mu_{i,J}^{1/2} \leqslant \left(i_0 \sum_{i \in [i_0]} \mu_{i,J} \right)^{1/2} \leqslant \left(m n^{m-1} \frac{m!}{t^m} \binom{n}{m} \right)^{1/2} \leqslant n^{m-1/2}.$$

Therefore,

$$\deg_J^H(T) \geqslant \frac{m!}{t^m} \deg_J^H(T) - 2(k \ln n)^{1/2} n^{m-1/2}.$$

as required.

Acknowledgement

The authors would like to thank the anonymous referee for helpful comments.

Appendix: Proof of Lemma 3.2

Proof. Throughout the proof we may assume that n_0 is chosen sufficiently large. Let H be a balanced t-partite k-graph with partition classes V_1, \ldots, V_t each of size n, and $\widetilde{\delta}_{k-1}(H) \geqslant \widetilde{\delta}$, where $\widetilde{\delta}$ is the lower bound on $\widetilde{\delta}_{k-1}(H)$ stated in the lemma. Let H' be the t-partite t-graph on V_1, \ldots, V_t in which $v_1v_2 \cdots v_t \in E(H')$ if and only if $v_1v_2 \cdots v_t$ is a K_t^k in H. Furthermore, set m = t(t-1), and call a balanced m-set A an absorbing m-set for a balanced t-set T if A spans a matching of size t-1 in H' and $A \cup T$ spans a matching of size t in H'. In other words, $A \cap T = \emptyset$ and both H'[A] and $H'[A \cup T]$ contain a perfect matching. Denote by $\mathcal{L}(T)$ the set of all absorbing m-sets for T. Next, we show that for every balanced t-set T there are many absorbing m-sets for T.

Claim A.1. For every balanced t-set T, $|\mathcal{L}(T)| \geqslant \gamma^m \binom{n}{t-1}^t / 2^t$.

Proof. Let $T = \{v_1, \dots, v_t\}$ be fixed with $v_i \in V_i$ for $i \in [t]$. By Proposition 3.1 it is easy to see that there exist at least $(\gamma n)^{t-1}$ edges in H' containing v_1 . Since n_0 was chosen large enough, there are at most $(t-1)n^{t-2} \leq (\gamma n)^{t-1}/2$ edges in H' which contain v_1 and v_j for some $2 \leq j \leq t$. Fix an edge $v_1 u_2 \cdots u_t$ in H' with $u_j \in V_j \setminus \{v_j\}$ for $2 \leq j \leq t$. Set $U_1 = \{u_2, \dots, u_t\}$ and $W_0 = T$. For each $2 \leq j \leq t$, suppose we succeed in choosing a (t-1)-set U_j such that U_j is disjoint from $W_{j-1} = U_{j-1} \cup W_{j-2}$ and both $U_j \cup \{u_j\}$ and $U_j \cup \{v_j\}$ are edges in H'. Then for a fixed $2 \leq j \leq t$ we call such a choice U_j good, motivated by $A = \bigcup_{j \in [t]} U_j$ being an absorbing m-set for T.

Note that in each step $2 \le j \le t$ there are precisely t + (j-1)(t-1) vertices in W_{j-1} . More specifically, for $i \in [t]$, there are at most $j \le t$ vertices in $V_i \cap W_{j-1}$. Thus, the number of edges in H' intersecting u_j (or v_j respectively) and at least one other vertex in W_j is at most $(t-1)jn^{t-2} < t^2n^{t-2} \le (\gamma n)^{t-1}/2$. For each $2 \le j \le t$, by Proposition 3.1 there are at least $(\gamma n)^{t-1} - (\gamma n)^{t-1}/2 = (\gamma n)^{t-1}/2$ choices for U_j and in total we obtain $(\gamma n)^m/2^t$ absorbing m-sets for T with multiplicity at most $((t-1)!)^t$.

Now, choose a family F of balanced m-sets by selecting each of the $\binom{n}{t-1}^t$ possible balanced m-sets independently with probability

$$p = \gamma^m n / \left(t^3 2^{t+3} \binom{n}{t-1}^t \right).$$

Then, by Chernoff's inequality, Lemma 3.4, with probability 1 - o(1) as $n \to \infty$, the family F satisfies the properties

$$|F| \leqslant \gamma^m n/(t^3 2^{t+2}) \tag{A.1}$$

and

$$|\mathcal{L}(T) \cap F| \geqslant \frac{\gamma^{2m} n}{t^3 2^{2t+4}},\tag{A.2}$$

for all balanced t-sets T. Furthermore, we can bound the expected number of intersecting m-sets in F by

$$\binom{n}{t-1}^t \times t(t-1) \times \binom{n}{t-2} \binom{n}{t-1}^{t-1} \times p^2 \leqslant \frac{\gamma^{2m}n}{t^3 2^{2t+6}}.$$

Thus, using Markov's inequality, we derive that, with probability at least 1/2,

F contains at most
$$\frac{\gamma^{2m}n}{t^3\gamma^{2t+5}}$$
 intersecting pairs. (A.3)

Hence, with positive probability the family F has all properties stated in (A.1), (A.2) and (A.3). By deleting all the intersecting balanced m-sets and non-absorbing m-sets in such a family F, we get a subfamily F' consisting of pairwise disjoint balanced m-sets, which satisfies

$$|\mathcal{L}(T) \cap F'| \geqslant \frac{\gamma^{2m}n}{t^3 2^{2t+4}} - \frac{\gamma^{2m}n}{t^3 2^{2t+5}} = \frac{\gamma^{2m}n}{t^3 2^{2t+5}}$$

for all balanced t-sets T. Let U = V(F') and so U is balanced. Moreover, U is of size at most $t|V(F')| \le t|V(F)| \le \gamma^m n/(t^2 2^{t+2})$ by (A.1). For a balanced set $W \subset V \setminus V(M)$ of size $|W| \le \gamma^{2m} n/(t^2 2^{2t+5})$, W can be partitioned into at most a $\gamma^{2m} n/(t^3 2^{2t+5})$ balanced t-set. Each balanced t-set can be successively absorbed using a different absorbing m-set in F', so there exists a perfect matching in $H'[U \cup W]$. Hence, there is a perfect K_t^k -matching in $H[U \cup W]$.

References

- [1] Aharoni, R., Georgakopoulos, A. and Sprüssel, P. (2009) Perfect matchings in *r*-partite *r*-graphs. *Europ. J. Combin.* **30** 39–42.
- [2] Alon, N., Frankl, P., Huang, H., Rödl, V., Ruciński, A. and Sudakov, B. (2012) Large matchings in uniform hypergraphs and the conjectures of Erdős and Samuels. J. Combin. Theory Ser. A 119 1200–1215.
- [3] Alon, N. and Spencer, J. H. (2000) The Probabilistic Method, second edition. Wiley-Interscience Series in Discrete Mathematics and Optimization.
- [4] Csaba, B. and Mydlarz, M. (2012) Approximate multipartite version of the Hajnal–Szemerédi theorem. J. Combin. Theory Ser. B 102 395–410.
- [5] Daykin, D. E. and Häggkvist, R. (1981) Degrees giving independent edges in a hypergraph. Bull. Austral. Math. Soc. 23 103–109.
- [6] Fischer, E. (1999) Variants of the Hajnal-Szemerédi theorem. J. Graph Theory 31 275-282.
- [7] Frankl, P. and Rödl, V. (1985) Near perfect coverings in graphs and hypergraphs. *Europ. J. Combin.* **6** 317–326.
- [8] Hajnal, A. and Szemerédi, E. (1970) Proof of a conjecture of P. Erdős. In *Combinatorial Theory and its Applications II: Proc. Collog., Balatonfüred, 1969*, North-Holland, pp. 601–623.
- [9] Hàn, H., Person, Y. and Schacht, M. (2009) On perfect matchings in uniform hypergraphs with large minimum vertex degree. SIAM J. Discrete Math. 23 732–748.
- [10] Han, J. and Zhao, Y. (2012) On multipartite Hajnal-Szemerédi theorems. arXiv:1203.2667
- [11] Johansson, R. (2000) Triangle-factors in a balanced blown-up triangle. *Discrete Math.* **211** 249–254.
- [12] Keevash, P. (2011) A hypergraph blow-up lemma. Random Struct. Alg. 39 275-376.
- [13] Keevash, P. and Mycroft, R. (2011) A geometric theory for hypergraph matching. arXiv:1108.1757

- [14] Keevash, P. and Mycroft, R. (2012) A multipartite Hajnal-Szemerédi theorem. arXiv:1201.1882
- [15] Kühn, D. and Osthus, D. (2006) Matchings in hypergraphs of large minimum degree. J. Graph Theory 51 269–280.
- [16] Lo, A. and Markström, K. (2011) F-factors in hypergraphs via absorption. arXiv:1105.3411
- [17] Lo, A. and Markström, K. (2011) Perfect matchings in 3-partite 3-uniform hypergraphs. arXiv:1103.5654
- [18] Lovász, L. and Plummer, M. D. (1986) *Matching Theory*. Vol. 121 of *North-Holland Mathematics Studies*, North-Holland.
- [19] Magyar, C. and Martin, R. (2002) Tripartite version of the Corrádi-Hajnal theorem. Discrete Math. 254 289–308.
- [20] Martin, R. and Szemerédi, E. (2008) Quadripartite version of the Hajnal–Szemerédi theorem. Discrete Math. 308 4337–4360.
- [21] Pikhurko, O. (2008) Perfect matchings and K_4^3 -tilings in hypergraphs of large codegree. *Graphs Combin.* **24** 391–404.
- [22] Rödl, V., Ruciński, A. and Szemerédi, E. (2009) Perfect matchings in large uniform hypergraphs with large minimum collective degree. *J. Combin. Theory Ser. A* **116** 613–636.