
Euro. Jnl of Applied Mathematics (2010), vol. 21, pp. 441–458. c© Cambridge University Press 2010

doi:10.1017/S0956792510000136
441

Inspection games with long-run inspectors

LUCIANO ANDREOZZI
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The inspection game has been widely used as a model for crime deterrence. In this article,

we shall present a broad review of the literature and an original result. The original result

concerns the interaction between a single, long-run inspector and a population of short-

run, boundedly rational would-be criminals. This approach gives rise to an optimal control

problem that can be solved explicitly. We show that a forward-looking inspector obtains

the same payoff he would obtain if he could commit to a probability of inspection. The

consequences of this result for the economics of crime deterrence are also explored.

1 Introduction

The large literature on crime deterrence pioneered by Gary Becker [4] is mostly based

on decision theory. The standard model is based on the assumption that a rational agent

can commit a crime and faces a fixed probability of being discovered and punished. He

will commit the crime if its expected benefits are larger than the expected sanctions. Two

factors influence such a decision: the probability with which his crime will be discovered

and the severity of punishment. An increase in any of these two dimensions (a larger

probability of apprehension or harsher punishment) will reduce the probability that a

crime will be committed.

Over the years a small game-theoretic literature formed, which challenges this conclu-

sion. This approach was originally developed in a series of papers published over a short

time-span: Graetz et al. [13] Tsebelis [24, 25], Holler [18] and Wittman [27, 28]. The

common theme of these papers is that decision theory offers a poor instrument to treat

crime deterrence.1 The reason is that any criminal decision involves at least two actors: a

would-be criminal and a law enforcer. The former decides the probability of committing a

crime, the latter the probability that the crime will be discovered. As Tsebelis [24] pointed

out, both these probabilities should be treated as endogenous in crime deterrence models

and this requires a game-theoretic framework.

The game-theoretic approach to crime deterrence is based on a simple simultaneous

2 × 2 game known as inspection game. The first player (the ‘Public’) decides whether to

violate or not violate a law, while the second player (the ‘Inspector’) decides whether to

1 For example, Graetz et al. [13] notice that “the introduction of the law enforcement agency

into a game-theoretic analysis of tax compliance offers considerable opportunity for insights and

predictions that are simply not possible in the standard economic analysis of law enforcement”.

(p. 29)
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inspect the other player or not. Inspecting is assumed to be costly, so the Inspector prefers

not to inspect if he believes that no crime is going to be committed. Respecting the law

is also costly, which implies that if no inspection takes place, then the law is violated.

The inspection game has a single Nash equilibrium in mixed strategy. The early research

on this game has focused on the counter-intuitive comparative static properties of this

equilibrium. One can easily show that increasing the severity of penalties reduces the

frequency of inspections but leaves the frequency of offences unaltered. This result is

usually cited as a proof that the standard, decision-theoretic approach to crime deterrence

(which predicts the opposite effect) is flawed.

The use of the mixed strategy Nash equilibrium as a solution concept requires quite

restrictive assumptions. First, the game must be played simultaneously, meaning that each

player chooses without knowing the choice made by the other player. Second, the players

must know each other’s payoffs and be rational enough to compute their equilibrium

probabilities. Both these assumptions are questionable in most of the situations the

inspection game is supposed to model. For example, it is almost never the case that

would-be criminals know exactly the real incentives policemen have to enforce the law. A

few papers published over the following years relaxed either of the two.

A first strand of the literature gets rid of the simultaneity assumption and works with

the sequential version of the inspection game in which the Public chooses after having

observed the strategy chosen by the Inspector. This is the so-called Stackelberg version

of the game, in which the Inspector acts as the leader and can commit himself to play a

certain strategy. Bianco [5] and Hirshleifer and Rasmussen [16] study the case in which

the inspector can only commit to play a pure strategy, while Andreozzi [2] and Cox [7]

allow for the possibility that he commits to play a mixed strategy.

A second strand of the literature relaxes the assumption of rationality and relies on

evolutionary game theory instead. Cressman [8] and Andreozzi [1] present a model in

which the inspection game is played repeatedly by agents drawn randomly from two

large populations of would-be criminals and inspectors. Agents are not assumed to be

rational. Rather, they adjust their behaviour over time by switching from less profitable

to more profitable strategies. Both these papers show that the frequency of law infractions

tends to oscillate indefinitely around its equilibrium value, something which could not be

anticipated with more traditional models.

The present paper has two main objectives. We shall first propose a broad review of

the results discussed so far. Section 2 reviews the early results based on Nash equilibrium.

Section 3 presents the results on the Stackelberg version of the game and Section 4

presents the evolutionary approach.

Second, in Section 5 we shall propose an original model which is a combination of the

two main approaches explored so far. The idea of the model is that in many situations the

Inspector is a single long-run agent, such as a tax authority or a police force, who faces

a large population of small and myopic would-be criminals. This implies that there is a

fundamental asymmetry between the probability of inspection and the frequency of law

infractions. The former is decided by a single agent who considers the future consequences

of his current choices. The inspector will anticipate, for example, that if he reduces the

frequency of inspections today, there will be an increase of crime tomorrow. On the

contrary, the frequency of offences is the result of many decisions taken by a multitude
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Table 1. The inspection game

Inspect Not Inspect

Violate a11,b11 a12,b12

Not Violate a21,b21 a22,b22

of dispersed actors. Since each would-be criminal cannot influence the overall rate of law

violations, when deciding to commit a crime he will only consider his own current payoff

(see Fudenberg and Levine [10, 11] for two classical papers in this vein).

To model this kind of situation, we imagine that a single Inspector plays repeatedly

the inspection game with agents drawn randomly from a large population of identical

would-be criminals. The Inspector is assumed to be perfectly rational, meaning that he

maximizes the current value of his future stream of payoffs. Would-be criminals are not

rational. Their behaviour is described by the same dynamic adjustment process employed

in standard evolutionary models.

The inter-temporal maximization problem faced by the Inspector gives rise to an

optimal control problem that can be solved explicitly. We obtain the following results.

First, the optimal solution is of the bang-off variety. This implies that, at variance with

the standard evolutionary approach, a rational Inspector will not generate oscillations in

the enforcement of law. This result is not intuitively obvious, because one cannot exclude

on a priori ground that a rational inspector find it convenient to alternate periods with a

high frequency of inspections to periods with low frequency. This would be the case, for

example, if the solution to the control problem was of the bang-bang variety.

Second, we show that the solution to the optimal control problem approaches the

Stackelberg solution of the game as the Inspector becomes more patient. That is, a

rational, forward-looking Inspector will behave as if he could commit to a probability of

inspection. This implies that incentives for capturing criminals can have the same perverse

effects first studied by Andreozzi [2]. In particular, increasing the premium the inspector

gets for each infraction he discovers might produce a larger number of infractions in

equilibrium.

2 The inspection game

Consider the following situation. One agent, A, must decide whether to Violate or

NotViolate a given law or regulation, knowing that there is a second agent B (the

‘Inspector’) who might Inspect him or not. An agent who has been inspected when in

non-compliance suffers a penalty which is severe enough to deter the offence. Hence,

if A expects B to play Inspect , then he would comply. However, both complying and

inspecting are costly, so that if B knows that A is not going to play Violate anyway,

he will rather play Not Inspect . Similarly, if A knows that B is not going to Inspect , he

will play Violate. These assumptions are summarized in the bimatrix game in Table 1, in

which the entries fulfill the following inequalities: a21 > a11 (A prefers to play NotViolate

if B plays Inspect ); a12 > a22 (A prefers to play Violate if B plays Not Inspect ); b11 > b12
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(B prefers to play Inspect if A plays Violate); b22 > b21 (B prefers to play Not Inspect

if A plays NotViolate). Players can also employ mixed strategies. We shall indicate with

πA(p, q) and πB(p, q) A and B’s expected payoffs when A plays Violate with probability

p and B inspects with probability q.

One can easily check that, given our assumptions on aij and bij , the inspection game

has a single mixed-strategy Nash equilibrium (p∗, q∗):

(p∗, q∗) =

(
b22 − b21

b22 − b21 − b12 + b11
,

a12 − a22

a12 − a22 + a21 − a11

)
. (2.1)

The early research on the inspection game (Tsebelis [24, 25] and Wittman [27]) has

focused on the way in which the equilibrium probabilities of inspection and violation

are affected by changes in the entries of the two payoff matrices. When the severity of

penalties for a discovered crime is increased, the entry a11 is reduced. When the premium

the Inspector gets for each law infraction he discovers is increased, the entry b11 increases.

Tsebelis [24, 25] and Wittman [27] main result was that these changes in a11 and b11

affect in a counter-intuitive way the equilibrium values p∗ and q∗.

Claim 1 In the inspection game in Table 1:

(1) Increasing penalties (i.e. reducing a11), leaves the frequency p∗ of law violation un-

changed and reduces the frequency of inspections q∗;

(2) Increasing incentives for Inspectors to play Inspect (i.e. raising b11), leaves the fre-

quency of inspections q∗ unchanged and reduces the frequency of law infractions p∗.

Claim 1 is a consequence of a well-known fact in game theory. In any mixed strategy

Nash equilibrium, each player’s strategy is calculated as to make the other player indiffer-

ent between the pure strategies he employs with positive probability. In (2.1) p∗ depends

upon coefficients bij , while q∗ depends upon coefficients aij . It follows that any change in

A’s payoffs will only bring about a change in B’s equilibrium strategy and vice versa.

Claim 1 is based on the hypothesis that the appropriate concept solution for the

simultaneous, one-shot inspection game is the mixed-strategy Nash equilibrium. Not

everyone agrees on this point. Holler [18] resumed an old perplexity about mixed-strategy

Nash equilibria (see also Holler [17]). The reason for this perplexity is that mixed-strategy

Nash equilibria are never strict.2 This means that if A expects B to play his Nash

equilibrium strategy q∗, then he is indifferent between Violate, Not Violate or any mix of

these two strategies. As a consequence, there seems to be no reason for him to play the

particular mixed strategy p∗ that makes B indifferent between Inspect and Not Inspect.

The same reasoning applies to player B.

Holler [17, 18] followed Harshanyi [14, 15] in believing that in the inspection game

maximin strategies where more reasonable than Nash equilibrium strategies. Player A’s

maximin strategy is the strategy that maximizes A’s minimum payoff, that is the payoff

2 In a two player game, a pair of strategies (p∗, q∗) is a strict Nash equilibrium if each player

prefers strictly to play his Nash equilibrium strategy if she expects the other player to do the same.

A Nash equlibrium (p∗, q∗) is weak if at least one player has an alternative strategy p′ � p∗ or

q′ � q∗ such that he is not worse off if he unilaterally switches to p′ or q′.
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A obtains if B chooses the worst strategy given A′s choice. In zero-sum games Nash

equilibria always involve the use of maximin strategies. In non-zero sum games, however,

maximin strategies do not represent Nash equilibria. This implies that either A’s maximin

strategy is not a best response to B’s maximin strategy, or vice versa. So there seems to

be no reason why players should expect the maximin strategies to be the outcome of a

non-zero-sum game.

However, the inspection game belongs to a special class of games known as unprofitable

games. To see what an unprofitable game is, let π̄i be the payoff player i can guarantee

himself by playing is maximin strategy. A game is unprofitable if each player i obtains

in every Nash equilibrium a payoff which is not larger than π̄i. This implies that when

a Nash equilibrium is expected to be the outcome of an unprofitable game, each player

gets π̄i either if he plays his Nash equilibrium strategy or if he plays his maximin strategy.

There is an important difference between these two strategies, though. By using his Nash

equilibrium strategy, player i obtains π̄i only if also the other player plays his equilibrium

strategy. By playing his maximin strategy, player i guarantees himself π̄i irrespective of

the other player’s choice. This is the reason why Harshanyi [14, 15] believed that in

unprofitable games maximin strategies were more reasonable than Nash equilibria.

Lets see what maximin strategies are like in an inspection game. Player A chooses a

probability of violation p such that his payoff is the same independently of the choice

made by B. Similarly, B chooses a probability of inspection q such that he gets the same

payoff regardless of A’s choice.3 Formally, lets first define p̂+ and q̂+ as follows:

(p̂+, q̂+) =

(
a22 − a21

a11 − a12 − a21 + a22
,

b22 − b12

b11 − b12 − b21 + b22

)
. (2.2)

The two maximin strategies p+ and q+ for player A and B are thus defined as

p+ =

⎧⎪⎨
⎪⎩

0 if p̂+ < 0,

p̂+ if p̂+ ∈ [0, 1],

1 if p̂+ > 1,

q+ =

⎧⎪⎨
⎪⎩

0 if q̂+ < 0,

q̂+ if q̂+ ∈ [0, 1],

1 if q̂+ > 1.

(2.3)

One can easily see that, when p+ ∈ [0, 1], if A plays Violate with probability p+, then

he gets the same payoff regardless of B’s probability of inspection q. Also, this payoff is

the same A would get at the Nash equilibrium (p∗, q∗).

Holler’s results are summarized by the following:

Claim 2 If the two players employ their maximin strategies, and the maximin strategies

are mixed (that is if p+, q+ ∈ (0, 1)) then

(1) increasing the severity of punishment (lower a11) will reduce crime;

(2) increasing b11 will not reduce crime but will reduce the frequency with which the

Inspector plays Inspect .

3 Formally, A’s maximin strategy solves the following equation πA(p, 1) = πA(p, 0) and B’s

maximin strategy solves πB(1, q) = πB(0, q).
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Table 2. An inspection game with pure maximin strategies for both players

Inspect Not Inspect

Violate r − f, pr − c r, 0

Not Violate 0,−c 0, 0

The differences between Nash equilibrium and maximin predictions are best illustrated

by an example. Saha and Poole [22] discuss the inspection game in Table 2. An un-

discovered law infraction yields the member of the public a revenue r. However, if the

infraction is discovered a fine f > r is levied. Similarly, the Inspector pays a cost c > 0

to play Inspect , but if he discovers a law violation he gets a premium pr > c. Both

players get nothing if they play Not Violate and Not Inspect, respectively. This game

has a single mixed-strategy Nash equilibrium ( r
f
, c
pr

), in which both players get a pay-

off equal to 0. However, both players could guarantee themselves the same payoff by

simply playing their (pure) maximin strategies Not Violate and Not Inspect. Notice that

(Not Violate, Not Inspect) is not a Nash equilibrium, because if B plays Not Inspect A’s

best response is Violate.

This example clearly illustrates that both Nash equilibrium and maximin look suspicious

as predictors of how people play the inspection game. In the rest of this paper we shall

investigate some of the lines of research that have been proposed to overcome this kind

of difficulty.

3 The inspection game’s Stackelberg equilibrium

The results discussed in the previous section were based on the assumption that the game

is played only once, by a single inspector and a would-be criminal. An early criticism

to this approach (see Hirshleifer & Rasmussen [16] and Cox [7]) is that the interaction

between law enforcers and the public is seldom symmetric. While law enforcers are usually

organized into police forces and tax authorities, the public is made by a large number

of unorganized individuals. This clearly changes the nature of interaction. An organized

police force might try to build a reputation for enforcing the law. If a police force plays

consistently Inspect , for example, the public will come to expect it will use the same

strategy in the future and will eventually play Not Violate.

The simplest way to model this kind of interaction is to assume that the game is

played sequentially. (See Mailath & Samuelson [20] for a recent textbook presentation of

reputation models of this kind.) The Inspector first makes a commitment to use one of

his strategies and then the would-be criminal chooses a best response to it. This is the so

called Stackelberg version of the game, in which the Inspector acts as the leader while the

would-be criminal is the follower. A crucial difference arises whether one assumes that the

leader can commit to use a pure or a mixed strategy. Both these possibilities have been

explored in the literature, and we shall deal with them in turn.

https://doi.org/10.1017/S0956792510000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000136


Inspection games with long-run inspectors 447

3.1 Commitment to a pure strategy

Hirshleifer and Rasmussen [16] assume that the Inspector can only commit to play a

pure strategy (Inspect or Not Inspect). Since Violate is a best response to Not Inspect

and Not Violate is a best response to Inspect , there are only two admissible outcomes

of the game: (Violate, Not Inspect) and (Not Violate, Inspect). Since B chooses first, he

will commit herself to play Inspect if b21 > b12 and he will opt for Not Inspect otherwise.

Hirshleifer and Rasmussen [16] interpret this result as follows. A rational Inspector will

only enforce those laws whose cost of enforcement is worth paying (for himself). When

b21 < b12, the Inspector prefers to play Not Inspect, and allow the public to violate the

law, rather than obtaining the public’s compliance with the law at the cost of playing

Inspect.

It is worth noticing that this simple result contains another version of Tsebelis’ original

claim that punishment has no effects on crime. To see this, consider that B’s decision to

commit herself to Inspect or Not Inspect depends only upon B’s own payoffs. It follows

that one cannot reduce law infractions by increasing penalties: if b12 > b21 B will not

inspect and A will violate the law, no matter how severe the punishment for violators is.

In this respect, the sequential version of the game is no different from the simultaneous

move version.

3.2 Commitment to a mixed strategy

Andreozzi [2] consider the sequential version of the inspection game in which the Inspector

B can commit himself to play Inspect with probability q before the game is played.4 The

crucial assumption in this model is that when deciding whether to violate or not the law,

A observes B’s probability of inspection but not its actual realization.

Let BRA(q) be A’s best reply correspondence, that is A’s probability of violating the

law when he expects B to play Inspect with probability q. We have that

BRA(q) =

⎧⎪⎨
⎪⎩

1 if q < q∗,

[0, 1] if q = q∗,

0 if q > q∗.

(3.1)

A will will violate the law (BRA(q) = 1) if q < q∗ and he will not violate the law

(BRA(q) = 0) if q > q∗. When q = q∗, A is indifferent between his two pure strategies and

therefore his choice is indeterminate. However, as it is customary in this kind of literature,

one can assume that in this case the follower chooses the strategy which yields the largest

payoff to the leader. The reason is that that by choosing a mixed strategy arbitrarily close

to q∗ the leader can always make the follower strictly prefer one of his pure strategies.5

So, the leader can always induce the follower to choose the strategy which yields the

highest payoff to himself.

4 Cox [7] contains a closely related approach, with similar results. The main focus of the paper

is on situations in which the members of the public have different payoff functions. It shows that it

is not, in general, true that increasing fines has no effects on crime.
5 To see this, consider that for any ε > 0, a probability of inspection q∗ + ε will induce A to play

Not Violate, and q∗ − ε will induce A to play Violate.
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Figure 1. Computation of the Stackelberg equilibrium for two inspection games.

Let πBS (q) be B’s payoff when he can act as a leader and choose a probability of

inspection q. We have that

πBS (q) =

⎧⎪⎨
⎪⎩
q(b21 − b22) + b22 if q > q∗,

q(b11 − b12) + b12 if q < q∗,

max(q(b21 − b22) + b22, q(b11 − b12) + b12) if q = q∗.

(3.2)

The Inspector chooses q as to maximize πBS (q). Andreozzi [2] main proposition is

Proposition 3 In a general case in which q∗ � q+, the sequential version of the Inspection

Game has a single subgame perfect Nash equilibrium. This equilibrium is (0, q∗) if q∗ < q+

and (1, q∗) if q∗ > q+.

Figure 1 illustrates the content of this proposition. It shows the Inspector’s payoff

in two different games as a function of the probability q with which he inspects. The

gray lines represent B’s payoff when he inspects with probability q and A plays Violate

(πB(1, q)) and Not Violate (πB(0, q)). When q = q+, B gets the same payoff regardless of

A’s choice. q+ is thus B’s maximin strategy as defined in (2.3). The thick line represents the

Inspector’s payoff when A plays a best reply to q. The Inspector’s payoff is discontinuous

at q∗ because A plays Violate if q < q∗ and Not Violate if q > q∗.
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Player A has the same payoffs in both inspection games (a) and (b), so that B’s Nash

equilibrium strategy is the same: q∗ = 1
2
. B’s payoff differ in the two games and are

choosen so that q+ > q∗ in game (a) and q+ < q∗ in game (b). The picture shows that

in both cases the Inspector maximizes his payoff by playing q∗. However, this requires A

to play Not Violate in game (a) and Violate in game (b). The graphic should also make

clear the role of condition q∗ � q+.

Proposition 3 shows that, depending on the payoff function of the Inspector, the

sequential version of the inspection game admits two kinds of equilibria. In the first

kind of equilibrium (represented in (a)) the public respects the law. This equilibrium

has a natural economic interpretation. The Inspector plays Inspect with a probability

slightly larger than q∗, which is the smallest probability that will induce the public not

to violate the law. Notice that, since inspecting is costly, the Inspector has no reason to

use this strategy with a probability which is larger than the minimum sufficient to deter

crime.

In the second kind of equilibrium (represented in (b)) the public violates the law and

the Inspector plays Inspect with a probability slightly smaller than q∗. This probability

is strictly positive, but insufficient to deter crime. This equilibrium looks unreasonable

at first, but it has a clear intuition. It arises in those cases in which the only reason for

the Inspector to play Inspect is a premium he gets for each law infraction he discovers.

For example, it would be the equilibrium in the game in Table 2. Clearly, in a world

without law infractions the Inspector would get no premiums. Hence, he has no reason

to play Inspect frequently enough to deter crime. On the other hand, if he always plays

Not Inspect, he would not get premiums either. His optimal policy would then be to play

Inspect with the largest probability compatible with the public to play Violate, that is a

slightly smaller probability than q∗.

We now turn to comparative statics. In the Stackelberg equilibrium the public plays

Violate only if q+ < q∗, so we shall assume this to be the case.6 A change in a11 or b11

will reduce crime only if it is sufficiently large to reverse this inequality. Because of Claim

1 and 2, a decrease of a11 will reduce q∗ and leave q+ unaltered. As a consequence, if

a11 becomes sufficiently small (i.e. if penalties become sufficiently severe) then the public

will stop playing Violate in equilibrium. This result is in agreement with the standard

approach to crime deterrence. On the other hand, increasing the premiums for inspectors

(larger b11) reduces q+ and leaves q∗ unaltered. As a consequence, if initially q+ < q∗,

any increase in b11 will fail to reduce crime. This is the main result in Andreozzi [2].

One cannot control crime by giving inspectors premiums for catching criminals, if they

can control the probability of inspection. In fact, they would choose a sufficiently small

probability so that the crime is committed and they get the premium. Section 5 obtains a

similar result in a different setting.7

6 When q+ > q∗ in equiibrium p = 0 and hence the problem of crime deterrence is already

solved.
7 Friehe [9] shows that this result does not hold in a model in which the inspector’s payoffs

are correlated to the public’s payoffs. Such correlation could emerge, for example, if the possibility

of corruption is considered. See the consequences of correlations between the payoffs of the two

players is analysed also in Pradiptyo [21].
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4 The evolutionary approach

All the results presented so far were based on the assumption that players were rational

and had all the information required to compute their best response to other player’s

choices. These hypotheses are rarely satisfied in real-life situations. People are rarely aware

of other people’s payoff, and they are usually not rational enough to compute their Nash

equilibrium strategies. The evolutionary approach to game theory is based on a set of

alternative hypotheses that bypass all these difficulties. It assumes that players lack any

information concerning other people’s preferences and are not rational enough to compute

their equilibrium strategies. However, it assumes that the same game is played repeatedly

over time, which allows players to learn which strategies yield the largest payoffs and to

imitate other players who employ more successful strategies. A combination of learning

and imitation leads to a dynamic process such that those strategies which perform above

the average will tend to be played more often than less successful alternatives. (See Weibull

[26] for a thorough treatment of the evolutionary approach to game theory.)

The first treatment of the inspection game in terms of evolutionary game theory is due

to Cressmann et al. [8].8 To see how their model works, imagine two large populations

of identical agents which, with a small abuse of notation we shall denote as A and B. The

inspection game is played by pairs of agents drawn randomly, one from population A

(the Public) the other from population B (the Inspector). Each agent only employs a pure

strategy (Violate or Not Violate if a member of population A, Inspect or Not Inspect if a

member of population B). The state of the two populations is a pair (p, q), where p is the

fraction of agents who play Violate in population A and q is the fraction of agents who

play Inspect in population B.

Consider now an agent in population A who plays Violate. Since he is equally likely to be

matched with any agent in population B, his expected payoff is a11q+a12(1−q) = πA(1, q).

In other words, he gets the same payoff he would get by playing against a single B agent

who uses a mixed strategy putting probability q on Inspect . A similar definition can be

given for πB(p, 1). Within populations A and B, the average payoff will be given by

p πA(1, q) + (1 − p) πA(0, q) = πA(p, q),

q πB(p, 1) + (1 − q) πB(p, 0) = πB(p, q).

Cressmann et al. [8] model the evolution of the state of the two populations by means

of the so-called replicator dynamics:

ṗ = p(πA(1, q) − πA(p, q)), (4.1)

q̇ = q(πB(p, 1) − πB(p, q)). (4.2)

In the replicator dynamics the fraction of agents playing a pure strategy grows at a

rate proportional to the difference between the payoff obtained by that strategy and the

average payoff within the population.9 With simple algebra (see e.g. Andreozzi [1]) one

8 Arce and Gunn [3] discuss an interesting version of this model, in which there is a single

population and roles (inspector and would-be criminal) are randomly assigned.
9 The replicator dynamics was originally proposed as a model of biological evolution, but is has

frequently been employed within the social sciences (see Fudenberg and Levine [12]).
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Figure 2. (Colour online) Oscillations in law enforcement.

can put these equations into the more convenient form:

ṗ = p(1 − p)(πB
1 (q) − πB

2 (q)) = α p (1 − p)(q∗ − q), (4.3)

q̇ = q(1 − q)(πA
1 (p) − πA

2 (p, q)) = β q (1 − q)(p − p∗), (4.4)

where α ≡ −a22 + a21 + a12 − a11 > 0 and β = b22 − b21 − b12 + b11 > 0.

A steady state is a pair (p, q) such that ṗ = q̇ = 0. From (4.3) and (4.4) it is clear that

the only non-trivial steady state is the Nash equilibrium (p∗, q∗).10 It is a well known fact

in evolutionary game theory that mixed strategy Nash equilibria are not asymptotically

stable under the replicator dynamics. Figure 2 shows some orbits for an inspection game

in which (p∗, q∗) = ( 1
3
, 1

2
).

This result might be taken as a proof that comparative static exercises based on the

Nash equilibrium values are unwarranted because the frequency of law infractions will in

general be far away from its equilibrium value. However, it can be shown that on average

the frequency with which each pure strategy is played equals its Nash equilibrium value.

Let T be the period of oscillations. One can easily prove that11

1

T

∫ T

0

p(τ)dτ = p∗ and
1

T

∫ T

0

q(τ)dτ = q∗. (4.5)

It follows that evolutionary approach lends some justification to the use of the mixed-

strategy Nash equilibrium for comparative statics. Two elements must, however, be kept

10 Every state in which in both populations only one strategy is played is trivially a rest point.

This reflects the fact that the replicator dynamics cannot introduce new strategies into a population.
11 See Weibull [26], chapter 5 for a proof of this fact.

https://doi.org/10.1017/S0956792510000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000136


452 L. Andreozzi

in mind. First, evolutionary models predict that the Nash equilibrium frequencies will

only be observed on average. The actual frequencies of law infractions will oscillate over

time. This creates a kind of problem which is absent from more standard approaches

based on stronger assumptions of rationality. For example, a policy maker might be

interested in stabilizing the level of law infractions to its equilibrium value by reducing

oscillations. To the best of my knowledge, no research has been done so far on how such

a result could be obtained. Second, the evolutionary approach presented here assumes a

symmetric interaction in which both the public and the law enforcers are represented by

large populations of myopic and boundedly rational agents. As we showed in Section!3,

this hypothesis is not realistic in many applications. The next section addresses this

problem.

5 A mixed model

Consider the following situation. There is a large population A of would-be criminals and

a single law enforcer B. The inspection game in Table 1 is played repeatedly by player B

and an agent drawn randomly from population A. As in the evolutionary model discussed

in the previous section, each agent in population A adopts a pure strategy. The state of

population A at time t is represented by the fraction p(t) of agents who play Violate, and

changes over time according to the differential equation (4.3).

Player B is both rational and forward-looking. He will then choose a path for the

frequency q(t) with which he plays Inspect that maximizes the actual value of the future

stream of payoff:12

πB(p(t), q(t)) = b11 p q + b12 p (1 − q) + b21(1 − p) q + b22(1 − p)(1 − q).

Formally, player B solves the following optimal control problem:

max
q

(∫ ∞

0

e−rt πB(p(t), q(t))dt, (5.1)

s.t. ṗ = αp(1 − p)(q∗ − q), (5.2)

p(0) = p0 ∈ (0, 1), q(t) ∈ [0, 1], ∀t ∈ [0,∞
)
,

where r is B’s time discount rate.13

There are two reasons why this optimal control problem is of interest. First, from the

evolutionary approach discussed in the previous section we know that when a population

of myopic inspectors faces a population of would-be criminals, the frequency of law

violations oscillates over time. One cannot exclude that similar oscillations would be

observed even when the Inspector is a rational forward-looking player. Technically, this

would be the case if the Inspector’s optimal control problem had a bang-bang solution.

12 For the sake of a simpler notation, we replace p(t) and q(t) with p and q whenever this creates

no ambiguities.
13 Notice that the initial fraction of law infractions p0 has been restricted to the open interval

(0, 1). This is to avoid that the population gets locked in a steady state in which ṗ = 0 even if the

two pure strategies yield different payoffs.
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Second, one would want to know whether a more forward-looking Inspector (smaller r)

would induce fewer law violations than a more myopic one. Intuitively, one should expect

that a forward-looking Inspector will not stop playing Inspect when the crime rate is low,

because he anticipates that a lower frequency of inspections will bring about more crime

in the future. If this where the case, reducing the inspector’s myopia would reduce the

frequency of crime. We shall show that this is not necessarily the case and that, in fact,

the opposite effect might be observed.

The current-value Hamiltonian for the Inspector’s optimal problem is

H(p(t), q(t), m(t)) = πB(p(t), q(t)) + m(t)[αp(1 − p)(q∗ − q)]. (5.3)

The costate variable m(t) satisfies:14

ṁ = rm − ∂H

∂p
= rm − ∂π

∂p
− mα(1 − 2p)(q∗ − q)

= m(r − α(q∗ − q)(1 − 2p)) − β(q − q+), (5.4)

A stationary optimal path is a triple (p̄, q̄, m̄) such that ṗ = ṁ = 0 for p = p̄, q = q̄

and m = m̄, while for every q � q̄, H(p̄, q̄, m̄) > H(p̄, q, m̄). If initially p0 = p̄, a rational

inspector B maximizes his payoffs by setting q = q̄, so that ṗ = ṁ = 0.

Lemma 4 The optimal control problem (5.1) has a unique stationary optimal path:

q̄ = q∗, (5.5)

m̄ =
β(q∗ − q+)

r
, (5.6)

p̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(m̄α − β) +
√

(m̄α − β)2 + 4m̄αβp∗

2m̄α
if q+ < q∗,

−(m̄α − β) +
√

(m̄α − β)2 + 4m̄αβp∗

2m̄α
if q+ > q∗.

(5.7)

Proof To see that (q̄, m̄, p̄) is a stationary optimal path for the control problem (5.1)

consider first that for any p ∈ (0, 1), ṗ = 0 iff q = q∗. If q = q∗, then (5.4) reduces to

ṁ = rm − β(q∗ − q+), and hence

ṁ = 0 ⇐⇒ m =
β(q∗ − q+)

r
= m̄. (5.8)

Since q̄ = q∗ is an interior solution, we must have

∂H(p, q, m)

∂q
= β(p − p∗) − m̄αp(1 − p) = 0, (5.9)

14 Consider that it is easy (if tedious) to show that ∂π
∂p

= β(q − q+).
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Figure 3. (Colour online) Computation of the stationary optimal path.

that is, m̄αp2 + p(β − m̄α) − βp∗ = 0. The roots of this equation are

p12 =
−(m̄α − β) ±

√
(m̄α − β)2 + 4m̄αβp∗

2m̄α
. (5.10)

It can be easily shown that one of these two roots lies in the interval [0, 1]. This is the

only value of p that satisfies the optimality condition (5.9) and the restriction on the state

variable p ∈ (0, 1). This completes the first part of the proof.

To see that (p̄, q̄, m̄) is the only stationary optimal path, consider that for q� q∗ ṗ = 0

iff p = 0 or p = 1. However, if p0 ∈ (0, 1), then p cannot reach either 0 or 1 in a finite

time (because ṗ → 0 as p approaches the borders of the interval [0, 1]), so that if q � q∗

then ṗ� 0 for all t. This completes the proof. �

Figure 3 shows a graphic representation of the optimal stationary path p̄. The horizontal

line is the locus of points in the p − m space such that ṁ = 0. The curved line is the

locus where ∂H
∂q

= 0, which requires (see (5.9)) that m = β
α

p−p∗

p(1−p)
. The optimal stationary

value of p and m is where these two lines cross. Notice that m̄ > 0 (m̄ < 0) if q∗ > q+

(q∗ < q+). Also, the distance between the horizontal line ṁ = 0 and the x-axis increases

as r approaches zero, and approaches zero as r goes to infinity.

The Hamiltonian (5.3) is linear in the control variable q and has a single interior

stationary optimal path.15 This implies that the optimal control problem 5.1 in the general

case in which p0 � p̄, has a particularly simple solution: B must choose q in such a way

that the state variable p approaches its optimal stationary value p̄ in the shortest time.

This is the content of the following:

15 To see that the Hamiltonian in linear in q consider that the inspector’s payoff function πB(. , .)

is linear both in p and in q, and that RD is linear in q, although not in p.
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Proposition 5

(1) The optimal strategy S for the long run inspector B is:

(a) if p < p̄, then q = 0,

(b) if p > p̄, then q = 1,

(c) if p = p̄, then q = q∗.

(2) Under the optimal strategy S , from any initial condition p0 ∈ (0, 1) population A

reaches its stationary optimal path level p̄ in a finite time t̄. After that time, B sets

q = q∗ so that p remains fixed at p̄.

Proof (1) Because of the linearity of the Hamiltonian (5.3), the optimal path is the one

that minimizes the time spent out of the optimal stationary path (p̄, q̄, m̄). (Proofs of this

fact can be found in Kamien and Schwartz [19], Section 16, Takayama [23] and Clark

[6].) Since arg maxq(ṗ) = 0 and arg minq(ṗ) = 1, if p < p̄ (p > p̄), the optimal policy for B

is to set q = 0 (q = 1). On the other hand, if p = p̄, then q = q∗ so that ṗ = 0.

(2) Suppose that p0 < p̄ (the case p0 > p̄ can be treated similarly). In this case B will

set q = 0, so that (5.2) reduces to a simple logistic equation

ṗ = p(1 − p)q∗ (5.11)

that can be integrated

p(t) =
1

1 − exp(k − q∗t)
, (5.12)

where k = log (p0−1)
p0

. It follows that the time it takes to bring p to its optimal level p̄ is

t̄ =
1

q∗ [k − log(p̄ − 1)]. (5.13)

which is bounded away from ∞. After a time t̄, B will set q = q∗ so that ṗ = 0. �

Proposition 5 shows that population A will spend most of the time at p̄, because the

Inspector will minimize the time it spends outside this state. Hence, it is interesting to see

how changes in the police’s time discount rate r affect p̄.

Proposition 6 (a) The optimal stationary value p̄ converges to the stage game Nash equi-

librium value p̄ → p∗ as r → ∞; (b) p̄ > p∗ and p̄ → 1 as r → 0 if q∗ > q+; (c) p̄ < p∗

and p̄ → 0 as r → 0 if q∗ < q+.

Proof (a) If r → ∞, m̄ = β(q∗−q+)
r

→ 0. Recall that p̄ is a root of m̄αp2+p(β−m̄α)−βp∗ = 0,

which for m̄ → 0 reduces to pβ − p∗β = 0, whose only root is p = p∗.

(b) If r → ∞, m̄ = β(q∗−q+)
r

→ +∞ if q∗ > q+. Let us rewrite condition (5.9) as

m̄α =
−β(p − p∗)

p(1 − p)
. (5.14)
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The left-hand side approaches ∞ as m̄ → +∞ and hence p → 1 (If p → 0, then the

right hand side approaches −∞). Similarly, the left hand side approaches minus infinite

as m̄ → +∞, so that p → 0. �

Proposition 6 is the core of this paper. It proves that if the Inspector is rational, but

myopic (r → ∞), he will keep the frequency of law violations around its Nash equilibrium

value p∗. This is not surprising: if p > p∗, the Inspector gets a larger immediate payoff if

he plays Inspect . In so doing, however, he reduces the frequency of law infractions p until

it reaches the Nash equilibrium level p∗. At this point Inspect and Not Inspect yield the

same payoff for him. Similarly, if initially p < p∗, a myopic Inspector will play Not Inspect

because it yields a larger immediate payoff than Inspect . However, this will increase the

frequency of violations p until it reaches p∗.

When the Inspector becomes more forward looking, (r → 0) he will take into considera-

tion the future effects of his current choices. Since he will not play the strategy that yields

the largest immediate payoff, the optimal level of crime violations p̄ will be different from

p∗. The interesting result of this analysis is that increasing r will not necessarily reduce p̄

below p∗. Proposition 6 shows that this will happen only provided that q∗ < q+. When

the opposite inequality holds, a more forward looking Inspector (larger r) will tolerate

a larger frequency of law infractions than a short-sighted one. Notice that the condition

q∗ < q+ is the same condition that appears in Proposition 3. This means that a rational

and forward-looking inspector will behave as if he could commit to a probability of

inspection acting as a Stackelberg leader. The same conclusions we obtained in Section 3

hold also for the model presented in this section and will not be repeated here.

6 Conclusions

Many factors influence the frequency of law infractions. They range from the severity of

punishment to the incentives inspectors have to discover crimes and the rationality of the

parties involved. The inspection game proved to be a particularly sharp tool to investigate

the intricate ways in which these magnitudes interact with each other to determine the

equilibrium level of crime.

This paper has explored two classes of models. In the first class, the Inspector and the

Public play the simultaneous version of the inspection game. These models show that

higher penalties not necessarily translate into lower crime rates. They might bring about

a reduction in the frequency of inspections instead.

Models belonging to the second class introduce an asymmetry between the Inspector

and the Public. The Inspector can either be able to commit to a probability of inspection

(Section 3) or be a forward-looking, rational agent (Section 5) who faces a population of

boundedly rational would-be criminals. These models produce remarkably similar results.

In both cases, the incentives for the inspector to discover law infractions can have perverse

effects. Rewarding inspectors for discovering crimes might bring about more crime rather

than less.

There are of course many questions all the models discussed so far leave unanswered.

For example, they all assume that the inspector is in charge of preventing a single type

of crime. In many circumstances, however, a single inspector must devote his scarce

https://doi.org/10.1017/S0956792510000136 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792510000136


Inspection games with long-run inspectors 457

resources to the prevention of several crimes. He will thus face a trade-off, because an

increase in the probability of inspection for one type of crime will necessarily bring about

a reduction in the probability of inspection for other kinds of crime. If more policemen

control tourists at the airport, there will be less policemen controlling drug-dealers in the

streets. Varying the parameters of the models (e.g. the severity of punishment for different

types of crimes) is bound to have even less predictable (and more perverse) effects in this

type of setting than in the standard inspection game. This is likely to be a fertile ground

for further research on this fascinating topic.
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