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We propose the new concept of Krivine ordered combinatory algebra (KOCA) as foundation

for the categorical study of Krivine’s classical realizability, as initiated by

Streicher (2013).

We show that KOCA’s are equivalent to Streicher’s abstract Krivine structures for the

purpose of modeling higher-order logic, in the precise sense that they give rise to the same

class of triposes. The difference between the two representations is that the elements of a
KOCA play both the role of truth values and realizers, whereas truth values are sets of

realizers in AKSs.

To conclude, we give a direct presentation of the realizability interpretation of a higher

order language in a KOCA, which showcases the dual role that is played by the elements of

the KOCA.

1. Introduction

Classical realizability was introduced in the mid 90’s by Krivine as a complete reformula-

tion of the principles of Kleene’s (intuitionistic) realizability (see Kleene (1945)), to take

into account the connection between control operators and classical reasoning discovered

by Griffin (in Griffin (1990)). Initially developed in the framework of classical second-

order Peano arithmetic (see Krivine (1994)), classical realizability was quickly extended

to Zermelo-Fraenkel set theory in Krivine (2001b) using model-theoretic constructions

reminiscent both to the construction of generic extensions in forcing and to the construc-

tion of intuitionistic realizability models of intuitionistic set theories, see Myhill (1973),

Friedman (1973), McCarty (1983). In particular, Krivine showed in Krivine (2003) how

to interpret the (classical) axiom of dependent choice in this framework. More recently,

he also showed in Krivine (2001a) how to combine classical realizability with the method

of forcing (in the sense of Cohen), in the very spirit of iterated forcing.
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‡ This author would like to thank M. Guillermo and the uruguayan government agency ANII, for making
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Actually, Krivine’s realizability (particularly in its most recent developments) was mostly

developed independently of the long-standing tradition of intuitionistic realizability. And,

as mentioned in Streicher (2013), it was dificult to see how Krivine’s work could fit into

the structural approach to realizability as initiated in Hyland (1982) and fully described

in van Oosten (2008). One problem comes from the fact that the only realizability topos

that validates classical logic is the one based on the trivial partial combinatory algebra

(PCA), and thus, is equivalent to Set, a fact that suggested for a long time that realizability

and classical logic were incompatible.

To resolve this paradox, Streicher proposed in Streicher (2013) a categorical model

for Krivine’s realizability, still using the standard method that consists to combine the

construction of a realizability tripos with the well known tripos-to-topos construction

(see van Oosten (2008)). However, Streicher’s construction of the realizability tripos

departs from the standard construction from a PCA in several aspects.

First, Streicher does not use a PCA, but a particular form of ordered combinatory

algebra (OCA), that is built from an abstract Krivine structure (AKS) that provides the

computational ingredients of Krivine realizability.

Second, the elements of the considered OCA (induced by the underlying AKS) are not

used as realizers, but directly as truth values, using the fact that the considered OCA
has a meet-semilattice structure. In this way, Streicher can skip the step that consists in

taking the powerset to define truth values, and more generally relations (as one would do

if working with a PCA).

A third ingredient of Streicher’s construction is the introduction of a specific notion of

filter, to distinguish the truth values that actually capture the notion of truth/provability.

In practice, this filter is naturally defined from the pole of the AKS and the corresponding

notion of proof-like terms.

Two warnings here concerning notations: following the usual trends we use sometimes

the expression quasi–proof following the original french quasi–preuve instead of proof-like

term; also the reader should be aware that the notion of filter used in this context is due

to Hofstra (see Hofstra (2006)) and is different from the usual one.

In this paper, we revisit Streicher’s work by showing that his construction can be

performed working directly from a particular form of OCA, which we call KOCA, whose

elements can be indifferently used as realizers (or conditions) and as truth values, similarily

to the elements of a complete Boolean algebra in forcing.

In particular, we emphasize that complete Boolean algebras are particular cases of
KOCA’s (see Example 3.9), and that the realizability models represented by the associated

triposes are essentially equivalent to ‘Boolean valued models’ known from set theory.

In this sense the concept of KOCA can be seen as the common generalization of

classical realizability and Cohen forcing. Since realizability over KOCA’s is such a

comprehensive notion, we can not expect it to always validate the existence and dis-

junction properties, which are often associated to realizability interpretations (see Remark

5.9).

Elaborating the analogy to the standard approach to categorical realizability we present

the tripos construction starting from a slightly more general structure of IOCA that does

not assume anything about the logic being classical.
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Outline of the paper

In Section 2 we recall the definition of abstract Krivine structures (AKSs), as defined

in Streicher (2013), emphasizing the properties of the lattice of falsity values and their

relationships with the ortogonality map.

In Section 3, we introduce our notion of implicative ordered combinatory algebra (IOCA)

as a particular case of an OCA, as well as the notion of Krivine ordered combinatory algebra

(KOCA), the classical particular case of IOCA. Both structures of IOCA and KOCA come

with a complete meet-semilattice structure whose ordering intuitively represents subtyping,

and with a (specific notion of) filter that captures both the notion of pole and the notion

of proof-like terms in Krivine’s realizability.

In Section 4, we show that the filter associated to each IOCA (KOCA) induces an

ordering of entailment that is weaker than the primitive ordering of subtyping. Although

application and implication in the IOCAs and KOCAs are related by a weak adjunction,

the entailment preorder induced by the filter is a Heyting preorder (i.e.: the meet and the

implication are related by a full adjunction).

In Section 5 we define the indexed entailment preorders, that lead to the construction of

a tripos from an arbitrary IOCA, and compare them with the corresponding construction

based on Streicher’s AKS . In particular we show that considering all sets of stacks (as

we do here) or restricting to the sets of stacks that are equal to their biortogonal (as

Streicher does) amounts to the same, up to equivalence of indexed preorders. In this way,

we get a tripos from the starting IOCA, that happens to be classical in the case where

the considered IOCA is a KOCA.

The rest of section 5 is devoted to the comparison with Streicher’s work. For that, we

show that every AKS induces a KOCA (which is in fact the OCA built by Streicher) and

prove that the tripos constructed using our method is isomorphic to the one constructed

using Streicher’s method. Conversely, we prove that any tripos constructed from a KOCA
using our method is actually equivalent to a tripos constructed using Streicher’s method

from a particular AKS that can be deduced from the initial KOCA. Thus, our (more

algebraic method) and Streicher’s method (that is closer to the calculus) are essentially

equivalent to give a categorical characterization of classical realizability.

In Section 6, we present the internal classical realizability associated to a KOCA. We

prove that this realizability is adequate w.r.t. higher-order classic arithmetic. The salient

feature of this definition of realizability is that it treats realizers and truth values at the

same level, namely: as elements of the same KOCA. For this reason we think that KOCAs

can be used as the basic building bricks in order to define classical realizability from a

categorical perspective.

2. Streicher’s Abstract Krivine Structures

As motivation for the introduction of the concept of Krivine ordered combinatory algebra

(KOCAs), we recapitulate the definitions and basic ideas in Streicher (2013), regarding the

notion of Abstract Krivine Structure (AKS). These ideas were introduced by J.L. Krivine

https://doi.org/10.1017/S0960129515000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000432


KOCAs and realizability 23 431

and reformulated categorically by T. Streicher –see Krivine (2008) and Streicher (2013)

respectively–.

2.1. Polarities

Recall the definition of a polarity associated to a triple (Λ,Π,⊥⊥) where Λ and Π are sets

and ⊥⊥ ⊆ Λ×Π is a subset or a relation (see (Birkhoff 1955, Chapter V, Section 7)).

In our context of realizability, the elements of Λ and of Π are called respectively terms

and stacks and the elements of Λ ×Π are called processes. The processes are written as

t � π. Moreover if t � π ∈ ⊥⊥, we write t ⊥ π, and say that “t is orthogonal to π” or that “t

realizes π”. If P ⊆ Π and t ⊥ π for all π ∈ P we say that “t realizes P” and write t ⊥ P .

Definition 2.1. Given a triple as above we define the following maps and sets:

(1)

( )⊥ : P(Λ) −→ P(Π)

Λ ⊇ L �−→ L⊥ = {π ∈ Π| ∀t ∈ L, t � π ∈ ⊥⊥} = {π ∈ Π| L× {π} ⊆ ⊥⊥} ⊆ Π;

⊥( ) : P(Π) −→ P(Λ)

Π ⊇ P �−→ ⊥P = {t ∈ Λ| ∀π ∈ P , t � π ∈ ⊥⊥} = {t ∈ Λ| {t} × P ⊆ ⊥⊥} ⊆ Λ.

The maps are called the polar maps and the subsets L⊥ and ⊥P are called the polars

–or perpendiculars– of L and P respectively.

(2) The maps L �→ ⊥(L⊥) and Π �→ (⊥Π)⊥ are called the closure operations associated to

the polarity, and the family of closed subsets associated to these closure operations

(see (Birkhoff 1955, Chapter V, Section 7, Theorem 19)) are denoted as:

P⊥(Λ) = {L ⊆ Λ : ⊥(L⊥) = L} ⊆ P(Λ), P⊥(Π) = {P ⊆ Π : (⊥P )⊥ = P } ⊆ P(Π).

Remark 2.2. See (Birkhoff 1955, Chapter V, Section 7) for the considerations that follow:

(1) The maps L → L⊥ and P → ⊥P are antitonic with respect to the order given by the

inclusion of sets and for Pi ⊆ Π, Li ⊆ Λ, i ∈ I we have:

⊥( ⋂
i∈I
Pi

)
⊇

⋃
i∈I

⊥Pi ,
⊥( ⋃

i∈I
Pi

)
=

⋂
i∈I

⊥Pi;
( ⋂
i∈I
Li

)⊥ ⊇⋃
i∈I
L⊥i ,

( ⋃
i∈I
Li

)⊥
=

⋂
i∈I
L⊥i .

(2) For an arbitrary L ∈ P(Λ) and P ∈ P(Π), one has that ⊥(L⊥) ⊇ L and (⊥P )⊥ ⊇ P . For

an arbitrary L ∈ P(Λ) and P ∈ P(Π), one has that (⊥(L⊥))⊥ = L⊥ and ⊥((⊥P )⊥) = ⊥P .

(3) The maps ( )⊥ : P(Λ)→ P(Π) and ⊥( ) : P(Π)→ P(Λ) when restricted respectively

to P⊥(Λ) and P⊥(Π) are order reversing isomorphisms inverse to each other. This pair

of maps is the polarity associated to the triple (Λ,Π,⊥⊥).

(4) The following completeness properties hold. If X is a subset of X ⊆ P⊥(Π), we let:

sup(X ) =
(
⊥( ⋃

{P : P ∈ X }
))⊥

, inf(X ) =
⋂
{P : P ∈ X }.
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In particular, sup(X ) and inf(X ) are the supremum and infimum of the set X in P⊥(Π)

with respect to the order given by the inclusion of sets. Moreover with respect to the

order given by the inclusion, Λ⊥ and Π; ⊥Π and Λ are the minimal and maximal

elements of P⊥(Π) and P⊥(Λ) respectively.

The only relevant structure at this point is the lattice structure in the sets P⊥(Λ) and

P⊥(Π), where we take the (set theoretical) inclusion as the order, the intersection as “meet”

and the union followed by taking double orthogonals as “join”.

2.2. The push map and realizability lattices

In this section we add a push map to our basic structure, thus introducing the first binary

operation that enriches the polarity. When the original structure is equipped with the new

map it is called a realizability lattice.

Definition 2.3.

(1) A map push := (·) : (t, π) �→ t · π : Λ×Π → Π will be called a push map.

(2) We extend the push map to (L, P ) �→ L · P : P(Λ) × P(Π) → P(Π) where L · P =

{t · π : t ∈ L, π ∈ P }.
(3) The pair of lattices P(Λ),P(Π) together with the push map, is called the realizability

lattice associated to (Λ,Π,⊥⊥, (·)). The family of realizability lattices is abbreviated as

RL.

(4) For L ⊆ Λ, P ⊆ Π we define,

(�) : (L, P ) �→ L� P : P(Λ)× P(Π)→ P(Π)

as L � P = {π ∈ Π : L · π ⊆ P } ⊆ Π. The subset L � P ⊆ Π is called the right

conductor of L into P .

Remark 2.4. For L and P as above: L · P ⊆ Q if and only if P ⊆ L� Q.

The above constructions of L� P and L.P combined with the operators ( )⊥ and ⊥( )

yield natural binary operations in P⊥(Π) that are basic ingredients of the OCA associated

to the AKS à la Streicher.

We define the following binary operations between subsets of Π.

Definition 2.5. Let P ,Q ⊆ Π then:

P ◦ Q := ⊥Q� P ⊆ P ◦⊥ Q := (⊥(⊥Q� P ))⊥, (1)

P ⇒ Q := ⊥P · Q ⊆ P ⇒⊥ Q := (⊥(⊥P · Q))⊥ ∈ P⊥(Π). (2)

Remark 2.6. The remark 2.4 can be written as: P ◦ Q ⊇ R if and only if P ⊇ Q ⇒ R.

Hence, it follows that there is a full adjunction between ◦ and ⇒.

Once the above definitions are established, we can deduce a crucial “half adjunction

property” relating the operations ◦⊥ and ⇒⊥ in P⊥(Π).

https://doi.org/10.1017/S0960129515000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000432


KOCAs and realizability 23 433

Theorem 2.7. [Half adjunction property] Assume that P ,Q, R ∈ P⊥(Π). If Q ⇒⊥R ⊆ P ,

then R ⊆ P ◦⊥ Q. In particular: P ⊆ (Q⇒⊥P ) ◦⊥ Q.

Proof. The following inclusions are equivalent: Q ⇒⊥ R ⊆ P , (⊥(⊥Q · R))⊥ ⊆ P ,
⊥Q ·R ⊆ P and R ⊆ ⊥Q� P . The last inclusion implies that R ⊆ (⊥(⊥Q� P ))⊥ = P ◦⊥Q.

2.3. Abstract Krivine structures

Next, –compare with Streicher (2013)– we complete the process of introducing the

operations into a realizability lattice to obtain the concept of Abstract Krivine Structure

abbreviated as AKS . For that, we introduce the usual application map for terms, a store

map from stacks to terms, the combinators K ,S , and a distinguished term CC that is a

realizer of Peirce’s law. We introduce also a set of terms that we call quasi-proofs and

assume that the three combinators above are quasi proofs.

Definition 2.8. An Abstract Krivine Structure (frequently written as K) consists of the

following data:

(1) A realizability lattice (Λ,Π,⊥⊥, push),

(2) Functions

(a) app : Λ× Λ→ Λ is a function: (t, u) �→ app(t, u) = tu,

(b) store : Π → Λ is a function: π �→ store(π) = kπ ,

(3) A set QP ⊆ Λ of “quasi–proofs”, which is closed under application,

(4) Elementary combinators K ,S ,CC ∈ QP.

(5) The above elements are subject to the following axioms.

(S1) If t ⊥ s · π, then ts ⊥ π.

(S2) If t ⊥ π, then for all s ∈ Λ we have that K ⊥ t · s · π.

(S3) If tu(su) ⊥ π, then S ⊥ t · s · u · π.

(S4) If t ⊥ kπ · π, then CC ⊥ t · π.

(S5) If t ⊥ π, then for all π′ ∈ Π we have that kπ ⊥ t · π′.

Here –and in the rest of this paper– the product-like operations will not be associative

and we assume that when parentheses are omitted, we associate to the left.

The elements of the structure above, named as:

store : π �→ kπ : Π → Λ and CC ∈ Λ,

have a very special role in the sense they can be used to make the realizability theory

classical as CC realizes Peirce’s law. In this sense in the presence of the mentioned elements

and the corresponding axioms (S4) and (S5), the AKS is classical.

Definition 2.9. For a general AKS we introduce the following definitions:

(1) For L,M ⊆ Λ we define LM = {tu| t∈L and u∈M}, which is app(L×M).

(2) For L,M ⊆ Λ we define L⇒M = {t ∈ Λ : tL ⊆M},
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(3) For P ,Q ⊆ Π, P 
 Q :=
(
(⊥P )(⊥Q)

)⊥ ∈ P⊥(Π).

(4) I := S K K ,B := S (K S )K ,E := S (K I ) ∈ QP.

Lemma 2.10. In an AKS , for P ,Q ∈ P⊥(Π), we have that condition (S1) in Definition

2.8, implies any of the two equivalent conditions below.

(1) P ◦⊥ Q ⊆ (⊥P⊥Q)⊥ = P 
 Q
(2) If t ⊥ P and s ⊥ Q, then ts ⊥ P ◦⊥ Q.

Proof. It is evident that the two conditions above are equivalent. Assuming (S1), we

want to prove that for all P ,Q then: {π ∈ Π : ⊥Q.π ⊆ P } ⊆ (⊥P⊥Q)⊥.

In other words we want to show that if π ∈ Π is such that ⊥Q.π ⊆ P then, for all

s ⊥ P , t ⊥ Q we have that st ⊥ π. It is clear that from the hypothesis ⊥Q.π ⊆ P and

s ⊥ P , t ⊥ Q, that s ⊥ t.π and in this case the original condition (S1) implies that st ⊥ π.

Lemma 2.11. For P ,Q, R ∈ P(Π), t, u, v ∈ Λ, and π ∈ Π, we have:

(1) t ⊥ P ⇒⊥ Q, u ⊥ P implies tu ⊥ Q;

equivalently: t ⊥ P ⇒ Q, u ⊥ P implies tu ⊥ Q;

(2) t ⊥ (P ⇒⊥ Q)⇒⊥ R if and only if t ⊥ (P ⇒ Q)⇒ R.

Also if t ⊥ P ⇒⊥ (Q⇒⊥ R) then t ⊥ P ⇒ (Q⇒ R).

(3) t ⊥ π implies that I ⊥ t·π;

(4) t ⊥ uv·π implies that B ⊥ t·u·v·π;

(5) tu ⊥ π implies that E ⊥ t·u·π.

Proof. (1) – and (2) – follow immediately from the fact that taking orthogonals three

times is the same than taking them once. In particular, observe that t ⊥ P ⇒⊥ Q is

equivalent to t ⊥ P ⇒ Q.

(3) – and (4) – are direct verifications.

(5) – The following chain of implications proves that tu ⊥ π implies E := S (K I ) ⊥ t·u·π:

tu ⊥ π by (2.11) implies I ⊥ tu · π by (S2) implies K ⊥ I · u · tu · π
by (S1) implies K Iu(tu) ⊥ π by (S3) implies S ⊥ K I · t · u · π

which finally, by (S1), implies E := S (K I ) ⊥ t · u · π.

Next, we deduce some consequences or equivalent formulations of the basic axioms for

an AKS in terms of elements of P(Π) and the operations ⇒, ⇒⊥ and 
.

Lemma 2.12. For P ,Q, R ∈ P(Π), t, u, v ∈ Λ, and π ∈ Π, we have:

(1) K ⊥ P ⇒ Q⇒ P ;

(2) S ⊥ (P ⇒ Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R;

(3) CC ⊥ ((P ⇒⊥ Q)⇒⊥ P ) ⇒⊥ P or equivalently

CC ⊥ ((P ⇒ Q)⇒ P )⇒ P ;

(4) I ⊥ P ⇒⊥ P ;
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(5) B ⊥ (Q⇒ R)⇒ (P ⇒ Q)⇒ P ⇒ R;

(6) E ⊥ P ⇒ (Q⇒ (P 
 Q)).

Proof. (1) – Let t ∈ ⊥P , u ∈ ⊥Q, π ∈ P . We have to show that K⊥t·u·π. By (S2), it is

sufficient to show t ⊥ π, which follows from the definition of ⊥P .

(2) – Let t ∈ ⊥(P ⇒ Q ⇒ R), u ∈ ⊥(P ⇒ Q), v ∈ ⊥P , π ∈ R. By lemma 2.11 (2.11) we

deduce tv(uv) ∈ ⊥R and thus tv(uv) ⊥ π. Axiom (S3) implies S ⊥ t·u·v·π, as required.

(3) – Let t ∈ ⊥((P ⇒⊥ Q) ⇒⊥ P ) and π ∈ P . We have to show that CC ⊥ t·π, and by

(S4) it is sufficient to show that t ⊥ kπ·π. This would follow from kπ ∈ ⊥(P ⇒⊥ Q), so it

remains to prove the latter.

Let u ∈ ⊥P , π′ ∈ Q. We have to show that kπ ⊥ u·π′, and by (S5) it is sufficient to show

that u ⊥ π, which is true since u ∈ ⊥P by assumption.

(4) – and (5) – are directly derived respectively from lemma 2.11, (3) and (4).

(6) – For all t ⊥ P , u ⊥ Q and π ∈ P 
 Q = (⊥P⊥Q)⊥, we have that tu ⊥ π and using

2.11(5) we deduce that E ⊥ t·u·π, that is what we wanted to prove.

Theorem 2.13. Let P ,Q, R ∈ P⊥(Π). If P ◦⊥ Q ⊇ R then {E}⊥ ◦⊥ P ⊇ (Q⇒⊥ R)

Proof. Using the hypothesis and 2.10 we deduce that R ⊆ P 
 Q. By the monotony of

⇒ in the right argument it follows that P ⇒ (Q ⇒ R) ⊆ P ⇒ (Q ⇒ (P 
 Q)) and by

applying Lemma 2.12 (6) we get that {E}⊥ ⊇ P ⇒ (Q ⇒ R). Applying the adjunction

property 2.6, we obtain that {E}⊥ ◦ P ⊇ Q ⇒ R. Finally, taking orthogonals twice, we

conclude that {E}⊥ ◦⊥ P ⊇ Q⇒⊥ R.

Definition 2.14. In an AKS as above, the combinator E ∈ QP is called an adjunctor.

Remark 2.15. Items (1)-(3) of Lemma 2.12 resemble the Hilbert style axiomatization of

the implicational fragment of classical propositional logic. Using this analogy, it is easy

to show the following:

Assume that ϕ[X1, . . . , Xn] is a propositional formula built up from propositional

variables X1, . . . , Xn and implication. For arbitrary subsets P1, . . . , Pn ⊆ Π denote by

ϕ[P1, . . . , Pn] ⊆ Π the evaluation of ϕ[X1, . . . , Xn] where P1, . . . , Pn are substituted for

the variables, and implication is interpreted by the operation ⇒ from Definition 2.5.

If ϕ[X1, . . . , Xn] is provable in the Hilbert calculus then ϕ[P1, . . . , Pn] contains a quasi-

proof, namely the element of QP obtained by evaluating the proof-term of ϕ[X1, . . . , Xn]

in Λ.

3. Implicative and Krivine ordered combinatory algebras

In Streicher (2013), the author presented a construction of an ordered combinatory algebra

(OCA) (see (van Oosten 2008, Section 1.8)) out of an AKS , from which he constructed a

tripos whose predicates are functions with values in the OCA (rather than in its powerset,

which would be the usual approach in categorical realizability). However, Streicher’s

https://doi.org/10.1017/S0960129515000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000432


W. Ferrer Santos, J. Frey, M. Guillermo, O. Malherbe and A. Miquel 436

construction (where the elements of the OCA are directly used as truth values) does

not give rise to a tripos in general, but only for some OCAs – in particular for those

induced by AKSs. The notion of implicative ordered combinatory algebra abbreviated

as IOCA, is an axiomatization of the additional structure that we use in an OCA in

order to guarantee that the induced indexed preorder is a tripos. The tripos will be

classical in case the IOCA has an additional combinator, called c, that realizes Peirce’s

law.

In this section we focus our attention on implicative ordered combinatory algebras:
IOCAs and the modification consisting in adding the combinator c that produces

a Krivine ordered combinatory algebra: KOCA. The main features added to the usual

structure of an ordered combinatory algebra –compare with Hofstra (2006)– are the

following: a) we assume the existence of a distinguished element, that we call ad-

junctor; b) we assume that the IOCA is inf-complete; c) we have an implication

mapping denoted as →. These additions are present in the OCAs that come from

AKSs, and will be crucial ingredients in the construction of the associated tripos,

that we build up directly from the IOCA –compare with Streicher (2013)–. See for

example Hofstra et al. (2004) and van Oosten (2008) for the standard approach to the

subject.

3.1. Ordered combinatory algebras

Definition 3.1.

(1) An ordered combinatory algebra (OCA) is a quintuple A = (A,�, app, k, s) –written

frequently as A– where (A,�) is a partial order,

app : A× A→ A, (a, b) �→ ab

is a monotone function, and k, s are elements of A satisfying

(a) kab � a

(b) sabc � ac(bc)

for all a, b, c ∈ A.

(2) A filter in an OCA –called A– is a subset Φ ⊆ A which contains s and k and is closed

under application. A pair (A,Φ) is called a filtered OCA.

Remark 3.2. Here –and in the rest of this paper– the product–like operations will not be

associative and we assume that when parenthesis are omitted, we associate to the left.

In what follows, we will recall how to program directly in this OCA, using the standard

codifications in the combinatory algebras.

Definition 3.3. Let A be an OCA and take a denumerable set of variables: V = {x1, x2, . . .}
and consider A(V) –called the set of terms over A– that is the set of formal expressions

given by the following grammar: p1, p2 ::= a | x | p1p2 where a ∈ A and x ∈ V .

As usual A(x1, . . . , xk) is the set of terms over A containing only the variables x1, . . . , xk .

One can naturally extend the order in A to an order in A(V) in such a way that: if
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p1 R p2, q1 R q2 ∈ A(V) then p1q1 R p2q2 and if p1, p2 ∈ A(V) then k p1p2 R p1 and if

p1, p2, p3 ∈ A(V) then s p1p2p3 R p1p3(p2p3).

We can prove that (A(V), R, j) where j is the concatenation is an OCA and (A,�, app)

is a sub-OCA of (A(V), R, j).

It is customary to denote the relation R as � and the operation j as ◦ or as the

concatenation of the factors. In this situation we say that (A(V),�, ◦) is an extension of

(A,�, ◦).
The following result is well known:

Theorem 3.4 (Combinatory completeness). For any finite set of variables {x1, . . . , xk, y},
there is a function λ∗y : A(x1, . . . , xk, y) → A(x1, . . . , xk) satisfying the following property:

If t ∈ A(x1, . . . , xk, y) , and u ∈ A(x1, . . . , xk) then (λ∗y(t)) ◦ u � t{y := u}.

Moreover if X ⊆ A is an arbitrary subset and t is a term with all its coefficients in X,

then λ∗y(t) is a term with all its coefficients in 〈X〉, the closure of X by application. In

particular if all the coefficients of t are in the filter Φ, then λ∗y(t) is a polynomial with all

the coefficients in Φ. Occasionally we write λ∗y(t) = λ∗y.t.

Proof. The function λ∗y is defined recursively: i) If y �= x, then λ∗y(x) := k x; ii)

λ∗y(y) := s k k ; iii) if p, q are polynomials, then: λ∗y(pq) := s (λ∗y(p))(λ∗y(q)). From the

fact that 〈X〉 contains k , s and it is closed under applications, we deduce the condition

on the coefficients of λ∗y(t).

We use combinatory completeness to define some combinators that we will use later.

Definition 3.5. Let A be an OCA, we can define the following combinators or combinatorial

functions that are elements of Φ, or functions with codomain and domain Φ.

b = λ∗xλ∗yλ∗z(x(yz)), i = λ∗x(x), c = λ∗xλ∗yλ∗z(xzy), w = λ∗xλ∗y(xyy);

t = λ∗xλ∗y(x), f = λ∗xλ∗y(y), p = λ∗xλ∗yλ∗z(zxy), p0 = λ∗x(x t), p1 = λ∗x(x f).

a : Φ× Φ→ Φ a(r, s) = λ∗x(p(rx)(sx)) d : Φ→ Φ d(f) = λ∗x(f(p0x)(p1x)).

Lemma 3.6. If A is an OCA, the above definitions ensure that:

babc � a(bc) ; ia � a ; cabc � acb ; wab � abb ; p0(pab) � a ; p1(pab) � b;

rc � a, sc � b⇒ a(r, s)c � pab ; d(f)� � f(p0�)(p1�).

for all a, b, c, � ∈ A.

3.2. Implicative ordered combinatory algebras

Definition 3.7. An implicative ordered combinatory algebra –a IOCA–, consists of an

inf-complete partially ordered set (A,�) equipped with:
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(1) binary operations

app : A× A→ A, (a, b) �→ ab

called application, monotone in both arguments, and

imp : Aop × A→ A, (a, b) �→ a→ b

called implication, antitonic in the first argument and monotone in the second;

(2) a subset Φ ⊆ A (called filter) which is closed under application;

(3) distinguished elements s, k,e ∈ Φ such that the following holds for all a, b, c ∈ A.

(PK) kab � a;

(PS) sabc � ac(bc);

(PA) a � b→ c ⇒ ab � c;

(PE) ab � c ⇒ ea � b→ c.

3.3. Krivine ordered combinatory algebras

Definition 3.8. A Krivine ordered combinatory algebra –a KOCA–, consists of an IOCA
equipped with a distinguished element c ∈ Φ such that for all a, b ∈ A,

(PC) c � ((a→ b) → a) → a.

Example 3.9. Any complete Boolean algebra (B,�) (see e.g. (Gierz et al. 2003, O-2.6))

gives rise to a KOCA by defining

ab = a ∧ b a→ b = ¬a ∨ b Φ = {�} s = k = e = c = �.

We will comment on the realizability models associated to KOCA’s of this form in

Remark 5.9.

Next we show that in the definition of a KOCA (and also of a IOCA) some of its

elements are superfluous and can be obtained from the others. Here we present a minimal

setup for the concept.

Definition 3.10. A quadruple Q = (A,�,→,Φ) where

(1) The relation � is a partial order in A with the property that each X ⊆ A has an

infimum.

(2) The map →: A× A→ A –implication– is antitonic in the first variable and monotone

in the second.

(3) Φ ⊂ A –a filter– is a subset of A.

is said to be proper if Φ satisfies the following conditions:

(1) The set Φ is closed under the application: app(Φ,Φ) ⊂ Φ.

(2) The elements k , s ,e , c ∈ Φ.

Where the above maps and elements are defined as follows:
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(1) an application map: app : A × A → A defined for all a, b ∈ A as app(a, b) = ab :=

inf{c : a � (b→ c)}.
(2) k := inf{a→ (b→ a) : a, b ∈ A}.
(3) s := inf{a→ (b→ (c→ (ac)(bc))) : a, b, c ∈ A}.
(4) e := inf{a→ (b→ ab) : a, b ∈ A}.
(5) c := inf{(((a→ b) → a) → a) : a, b ∈ A}.
then

Theorem 3.11. If Q = (A,�,→,Φ) is proper (Definition 3.10), then AQ = (A,�,
→,Φ, app, k , s ,e , c ) is a KOCA.

Proof. To prove the half adjunction property, assume that for a, b, c ∈ A, a � (b→ c) as

ab is the infimum of the elements c with the above property, it is clear that in this situation

ab � c (condition (PA) of Definition 3.8: the “half adjunction property”). The fact that the

application (a, b) �→ ab is monotone in both variables follows directly from the definition

by using the monotonicity properties of the implication. If a, b, c ∈ A are such that ab � c,
by definition we know that e � a → (b → ab) and then that e � a → (b → c). Applying

the half adjunction property ((PA) in the previous definition) we obtain that e a � (b→ c).

The satisfaction by k , s of the required properties follows by a direct application of (PA)

and the condition for c is evidently satisfied.

4. Indexed preorders and triposes

4.1. Preorders, meet semi-lattices and Heyting preorders

Definition 4.1. We denote by Ord the category of preorders and monotone maps. A

preorder (D,�) is a set D with a reflexive and transitive relation �. If d � d′ and d′ � d,
we say that d and d′ are isomorphic, and write d ∼= d′.

Definition 4.2. Let (C,�) and (D,�) be two preorders.

(1) For monotone maps f, g : (C,�) → (D,�), we define f � g :⇔ ∀d ∈ D . f(d) � g(d)

and say that f and g are isomorphic (written f ∼= g) if f � g and g � f.
(2) A monotone map f : (C,�) → (D,�) is called an equivalence, if there exists a

monotone map g : (D,�) → (C,�) such that g ◦ f ∼= idD , and f ◦ g ∼= idE and g is

called a weak inverse of f. In this situation we say that (C,�) and (D,�) are equivalent

(written (D,�) � (E,�)).

(3) Given monotone maps f : (C,�) → (D,�), g : (D,�) → (C,�), we say that ‘f is left

adjoint to g’, or ‘g is right adjoint to f’, and write f � g, if idC � g ◦ f and f ◦ g � idD .

Remark 4.3. The following assertions are easy to prove.

(1) A monotone map f : (C,�) → (D,�) is an equivalence if and only if it is order

reflecting and essentially surjective, i.e.

(a) ∀c, c′ ∈ D . f(c) � f(c′)⇒ c � c′, and

(b) ∀d ∈ D ∃c ∈ C . f(c) ∼= d.

(2) Let f : (C,�) → (D,�), g : (D,�) → (C,�) be monotone maps between preorders.
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(a) f is left adjoint to g, if and only if ∀c ∈ C, d ∈ D . f(c) � d⇔ c � g(d).

(b) Adjoints are unique up to isomorphism, i.e. when f � g and f � g′, then g ∼= g′

(and similarly for left adjoints).

Definition 4.4. A meet semi-lattice is a preorder (D,�) equipped with a binary operation

∧ and a distinguished element � such that for all a, b, c ∈ D:

(1) a ∧ b � a;
(2) a ∧ b � b;
(3) c � a and c � b⇒ c � a ∧ b;
(4) a � �.

Remark 4.5. If (D,�) is a meet semi-lattice, then the function (d, d′) �→ d∧d′ is a monotone

map of type D × D → D, which is right adjoint to the diagonal map δ : D → D × D,

d �→ (d, d).

Definition 4.6. SLat is the category of meet semi-lattices, and meet preserving monotone

maps, i.e. monotone maps f : (D,�)→ (E,�) such that

(1) f(d) ∧ f(d′) ∼= f(d ∧ d′) for all d, d′ ∈ D
(2) f(�) ∼= �.

Definition 4.7. We define HPO, the category of Heyting preorders and morphisms.

(1) A Heyting preorder is a meet semi-lattice (A,�) with a binary operation

→: A× A→ A (called Heyting implication) satisfying

a ∧ b � c if and only if a � b→ c (3)

for all a, b, c ∈ A.

(2) A morphism of Heyting preorders is a monotone map f : (A,�) → (B,�) such that

(a) f(�) ∼= �
(b) f(a ∧ b) ∼= f(a) ∧ f(b)
(c) f(a→ b) ∼= f(a) → f(b)

for all a, b ∈ A.

Remarks 4.8.

(1) The term ‘Heyting preorder’ is not standard, but it is the same as a ‘posetal Cartesian

closed category’, or equivalently a preorder whose poset reflection is a ‘Heyting semi-

lattice’ (Johnstone 2002, Part A1.5).

(2) A Heyting preorder with finite joins is what is called a Heyting prealgebra, e.g. in van

Oosten (2008). The anti-symmetric version is the well known concept of Heyting

algebra.

(3) Also, we don’t have to demand Heyting implication to be monotone – it follows from

its definition that it is antitonic in the first, and monotonic in the second variable.
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4.2. Preorders associated to AKSs, OCAs and IOCAs

AKS

Definition 4.9. Let K = (Λ,Π, . . .) be an abstract Krivine structure. We define the relation

� in P(Π) as follows:

P ,Q ∈ P(Π) , P � Q :⇔ ∃t ∈ QP t⊥P⇒Q (4)

for P ,Q ∈ P(Π). An element t ∈ Φ as above is said to be “a realizer of the relation”

P � Q”.

Remark 4.10. Notice that the relation above, could have been defined using the arrow

⇒⊥. Indeed, t ⊥ P ⇒ Q if and only if t ⊥ P ⇒⊥ Q.

Lemma 4.11. Let K be an abstract Krivine structure, then the relation � is a preorder on

P(Π).

Proof. The combinator I is a realizer of P � P for any P ∈ P(Π), thus � is reflexive.

For transitivity, assume that P ,Q, R ∈ P(Π), and that t, u ∈ QP are realizers of P � Q

and Q � R, respectively. Then B tu is a realizer of P � R.

Lemma 4.12. The canonical inclusion P⊥(Π) ↪→ P(Π) is an equivalence of preorders with

respect to �.

Proof. By Remark 4.3 it is suffices to show that the inclusion is order reflecting and

essentially surjective. Since the order on P⊥(Π) is defined as restriction of the order on

P(Π) the first assertion is clear.

To prove that the inclusion is essentially surjective, we show that P � (⊥P )⊥ and

(⊥P )⊥ � P for all P ∈ P(Π). This holds since I ⊥ ⊥((⊥P )⊥) ·P = ⊥P ·P and I⊥⊥P ·(⊥P )⊥,

for all P ⊆ Π. Both relations are realized by I as follows directly from Lemma 2.12, (2.12)

applied in the cases of P and (⊥P )⊥, respectively.

OCA

Definition 4.13. Let (A,Φ) be a filtered OCA with maximum element � ∈ Φ. We define:

(1) The relation �Φ in A as follows: a �Φ b, if and only if ∃f ∈ Φ such that fa � b.
(2) A map ∧ : A× A→ A as a ∧ b := pab –see Definition 3.5.

Usually we omit the subscript Φ in the notation of the relation �Φ and write a � b,

also an element f as above is said to be “a realizer of the relation a � b” and write this

assertion as f �� a � b.

We establish some properties that will be of later use.

Lemma 4.14. If (A,Φ) is a filtered OCA then in the notations of Definition 3.5 we have

that:

(1) p0 �� a ∧ b � a

(2) p1 �� a ∧ b � b
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(3) If r �� c � a and s �� c � b then a(r, s) �� c � a ∧ b
(4) kk �� a � �.

Hence, (A,∧,�) is a meet-semi-lattice.

Proof. All the assertions follow directly from Lemma 3.6.

IOCA

Next we show that in the case of the existence of an adjunctor, more precise assertions

can be proved concerning the meet and the order �.

Theorem 4.15. If (A,Φ) is a IOCA then:

(1) If a, b ∈ A then a � b if and only if there is an element f ∈ Φ such that f � a→ b.

(2) If a, b, c ∈ A:

a ∧ b � c⇔ a � (b→ c).

In other words (A,�,∧,→) is a Heyting preorder.

Proof.

(1) Assuming that f � a → b and using the half adjunction property we deduce that

fa � b i.e. that a � b. In case that a � b, first we deduce that ga � b for some g ∈ Φ.

Using the adjunctor we deduce that e g � a→ b.

(2) To see that the map → gives a Heyting implication on (A,�), we have to check that

a ∧ b � c ⇔ a � (b→ c)

where a ∧ b = pab.
If the right inequality holds, there exists an element f ∈ Φ such that fa � b → c,

and Definition 3.8, (PA) gives fab � c. In accordance with Lemma 3.6 there exists

a function d : Φ → Φ such that d(f)� � f(p0�)(p1�) for all � ∈ A, and this gives

(substituting � by pab)

d(f)(a ∧ b) = d(f)(pab) � fab � c.

Conversely, assume that the left hand side holds, i.e. there exists an f ∈ Φ such that

f(p ab) � c. Then we can produce the following chain of deductions:

f(p ab) � c⇒ bf(p a) b � c⇒ b(bf)p ab � c⇒ e(b(bf)p a) � b→ c

⇒be(b(bf)p) a � b→ c,

hence be(b(bf)p) is a realizer of a � b→ c.

For future use we prove the following property of the combinator c in the case that the
IOCA is equipped with one.

Lemma 4.16. Let A be a IOCA and c an element of A such that c � ((a→ b) → a) → a

for all a, b ∈ A, then c �� ((a→ ⊥) → ⊥) � a for all a ∈ A.
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Proof. For a ∈ A we have the following chain of implications: c � ((a→ ⊥) → a) → a

⇒ c((a→ ⊥) → a) � a⇒ c((a→ ⊥) → ⊥) � c((a→ ⊥) → a) � a⇒ c �� ((a→ ⊥) → ⊥)

� a

4.3. Indexed preorders and indexed meet-semi-lattices

Definition 4.17.

(1) An indexed preorder is a functor D : Setop → Ord.

(2) An indexed meet-semi-lattice is a functor A : Setop → SLat.

(3) An indexed Heyting preorder is a functor P : Setop → HPO.

We only present the following definitions in the case of preorders, in the case of indexed

meet-semilattices the concepts are similar.

Remarks 4.18.

(1) Indexed preorders (in particular triposes, defined below) can be used as categorical

models of predicate logic. With this in mind, we often call their elements predicates –

more precisely, if D is an indexed preorder, I is a set, and ϕ ∈ D(I), we say that ϕ is

a predicate on I .

(2) If D is an indexed preorder and f : J → I is a function, applying the functor to f

gives us a monotonic map D(f) : D(I) → D(J). We call this function reindexing along

f, and usually abbreviate it by f∗. Thus, if ϕ is a predicate on I , then its reindexing

f∗(ϕ) along f is a predicate on J . Semantically, reindexing corresponds to substitution

and context extension.

(3) There are more general concepts of indexed preorder, one is that of a pseudofunctor

of type Setop → Ord. Another generalization of indexed preorders is to replace Set by

another category. We do not need these levels of generality.

(4) Preorders are a special case of indexed categories, which are functors C : Setop → Cat.

The link between indexed categories and logic was discovered by Lawvere in the

60ies Lawvere (1969, 1970) (‘quantifiers as adjoints’), and is at the heart of categorical

logic.

Definition 4.19. Given indexed preorders D, E : Setop → Ord, an indexed monotonic map

σ : D → E is a family

σI : D(I)→ E(I) (I ∈ Set)

of monotonic functions, such that we have

σJ(f
∗(ϕ)) ∼= f∗(σI (ϕ)) (5)

for all functions f : J → I and predicates ϕ ∈ D(I).

Remarks 4.20.

(1) Indexed monotonic maps are special cases of pseudo-natural transformations Lack

(2010). If we have equality in (5), we speak of a strict indexed monotonic map, which

is an instance of a 2-natural transformation.
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(2) Indexed preorders and indexed monotonic maps form a category, which wedenote by

IOrd. Composition of indexed monotonic maps C σ→ D τ→ E is defined by (τ◦σ)I (ϕ) =

τI (σI (ϕ)) for ϕ ∈ C(I). The identity idD of an indexed preorder D is defined by

idD,I(ϕ) = ϕ for all ϕ ∈ D(I).

Definition 4.21. Let D, E be indexed preorders.

(1) For indexed monotonic maps σ, τ : D → E , we define

σ � τ :⇔ ∀I ∈ Set . σI � τI .

We say that σ and τ are isomorphic, and write σ ∼= τ, if σ � τ and τ � σ.

(2) An indexed monotonic map σ : D → E is called an equivalence, if there exists a indexed

monotonic map τ : E → D such that τ ◦ σ ∼= idD , and σ ◦ τ ∼= idE . In this case, τ is

called an (indexed) weak inverse of σ.

(3) We say that D and E are equivalent, and write D � E , if there exists an equivalence

σ : D → E .

Lemma 4.22. An indexed monotonic map σ : D → E is an equivalence, if and only if

for every set I , the monotonic map σI : D(I) → E(I) is order reflecting and essentially

surjective.

Proof. By Remark 4.3, (1), every σI has a weak inverse τI : E(I)→ D(I). Together these

τI give rise to an indexed weak inverse of σ.

4.4. Triposes

Next we consider a special kind of indexed Heyting preorders, called triposes, see Hyland

et al. (1980).

Definition 4.23. A tripos is a functor P : Setop → HPO such that

(1) For every function f : J → I , the reindexing map f∗ : P(I)→ P(J) has a right adjoint

∀f : P(J) → P(I).

(2) If

P
q
−→ K

↓p ↓g
J

f
−→ I

(6)

is a pullback square of sets and functions, then ∀q(p∗(ϕ)) ∼= g∗(∀f(ϕ)) for all ϕ ∈ P(J)

(this is the Beck-Chevalley condition).

(3) P has a generic predicate, i.e. there exists a set Prop, and a tr ∈ P(Prop) such that for

every set I and ϕ ∈ P(I) there exists a (not necessarily unique) function χϕ : I → Prop
with ϕ ∼= χ∗ϕ(tr).

Remark 4.24.

(1) ∀f : P(J) → P(I) is not required to preserve meets or implication.
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(2) The statement that the above square is a pullback, means explicitly that

∀j ∈ J, k ∈ K . f(j) = g(k) ⇔
(
∃!x ∈ P . p(x) = j ∧ q(x) = k

)
.

(3) To interpret disjunction we want joins in triposes, but we don’t have to postulate

disjunction (nor ∃), since they can be encoded in terms of the other connectives in

second order logic.

(4) A simple example of the functor ∀f is furnished by considering a Heyting algebra H

that is complete with respect to the order relation. In this case, the tripos is defined as

a functor T : Setop →HPO where over objects T is defined by T (X) := [X,H] = HX .

Thus, given an arrow f : A → B, we have a reindexing map f∗ : [B,H] → [A,H]

whose right adjoint is ∀f : [A,H] → [B,H], given by the expression

∀f(φ)(y) =
∧

f(x)=y
φ(x)

Intuitively, ∀f(φ)(y) is the meaning in H of the universal quantification of φ(x), where

x ranges over the f-preimages of y.

Lemma 4.25. Let D and P be indexed preorders, and assume that σ : D → P and

τ : P → D form an equivalence. If P is a tripos, then so is D.

Proof. This is because all the defining properties of a tripos are stable under equivalence,

and can be transported along σ and τ. In particular:

(1) for any set I , τI (�) is a greatest element in D(I);

(2) meets in D(I) are given by ϕ ∧ ψ = τI (σI (ϕ) ∧ σI (ψ));

(3) Heyting implication in D(I) is given by ϕ→ ψ = τI (σI (ϕ) → σI (ψ));

(4) universal quantification in D is can be defined by ∀f(ϕ) = τI (∀f(σJ(ϕ))) for f : J → I

and ϕ ∈ D(J);

(5) a generic predicate for D is given by τProp(tr) where tr ∈ P(Prop) is the generic

predicate of P .

5. Constructing triposes from ordered structures

In this section we show how to construct triposes –or weaker structures such as indexed

meet-semilattices or indexed preorders– from ordered combinatory algebras or abstract

Krivine structures. We also consider the relations between the different constructions.

5.1. From AKSs to indexed preorders

Definition 5.1. Let K = (Λ,Π, . . .) be an abstract Krivine structure, and let I be any set.

The entailment relation � in P(Π)I is defined by

ϕ,ψ ∈ P(Π)I , ϕ � ψ :⇔ ∃t ∈ QP ∀i ∈ I . t ⊥ ϕ(i)⇒ ψ(i) (7)

for ϕ,ψ : I → P(Π). An element t ∈ Φ as above is said to be “a realizer of the entailment

ϕ � ψ”.
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Remark 5.2. Notice that the entailment relation above, could have been defined using the

arrow ⇒⊥, because t ⊥ ϕ(i)⇒ ψ(i) if and only if t ⊥ ϕ(i)⇒⊥ ψ(i), compare with Remark

4.10.

Lemma 5.3. Let K be an abstract Krivine structure.

(1) For any set I , the entailment relation � is a preorder on P(Π)I .

(2) For any function f : J → I , precomposition defines a monotonic map

f∗ : (P(Π)I ,�) → (P(Π)J ,�), ϕ �→ ϕ ◦ f.

(3) The preceding constructions give an indexed preorder

P(K) : Setop → Ord, I �→ (P(Π)I ,�), f �→ f∗.

Proof. (1) – This is proved in the same way as Lemma 4.11.

(2) – Let ϕ,ψ : I → P(Π). If t ∈ Φ is a realizer of ϕ � ψ, then it is also a realizer of

ϕ ◦ f � ψ ◦ f, thus f∗ is monotonic.

(3) – We check the functoriality condition, i.e. g∗ ◦ f∗ = (f ◦ g)∗ and id∗I = idAI for

K
g
→ J

f
→ I . This follows from associativity and unit laws for composition.

Definition 5.4. The indexed preorder P⊥(K) : Setop → Ord is defined by

P⊥(K)(I) = (P⊥(Π)I ,�), f �→ f∗

where the order on P⊥(Π)I is the restriction of the entailment order on P(Π)I to predicates

with values in P⊥(Π).

Lemma 5.5. The canonical inclusion P⊥(K) ↪→ P(K) is an equivalence of indexed

preorders.

Proof. By Lemma 4.22 it is suffices to show that the inclusion

(P⊥(Π)I ,�) ↪→ (P(Π)I ,�)

is an equivalence for all sets I and this is proved in the same way as Lemma 4.12.

5.2. From OCAs to indexed meet-semilattices

We now give the construction of indexed meet-semilattices out of OCAs, which will turn

out to produce triposes in case the OCA is an IOCA.

Definition 5.6. Let (A,Φ) be a filtered OCA. The entailment relation � ⊆ AI × AI is

defined by

ϕ � ψ :⇔ ∃r ∈ Φ ∀i ∈ I . r(ϕ(i)) � ψ(i) (8)

for ϕ,ψ : I → A. An element r ∈ Φ as above is said to be “a realizer of the entailment

ϕ � ψ”.

Lemma 5.7. Let (A,Φ) be a filtered OCA.

https://doi.org/10.1017/S0960129515000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000432


KOCAs and realizability 23 447

(1) For any set I , the entailment relation � is a preorder on AI , and (AI,�) is a meet-

semi-lattice with the following definitions: � : I → A; �(i) = � = k and ϕ ∧ ψ of two

functions ϕ,ψ : I → A is (ϕ ∧ ψ)(i) = ϕ(i) ∧ ψ(i).

(2) For any function f : J → I , precomposition with f defines a meet preserving monotonic

map

f∗ : (AI,�) → (AJ,�), ϕ �→ ϕ ◦ f.
(3) The preceding constructions define an indexed meet-semi-lattice

P(A) : Setop → SLat, I �→ (AI,�), f �→ f∗.

Proof. (1) – We use in the proof of this assertion the realizers exhibited in Lemma 4.14.

(2) – Let ϕ,ψ : I → A. If r ∈ Φ is a realizer of ϕ � ψ, then it is also a realizer of

ϕ ◦ f � ψ ◦ f, thus f∗ is monotonic. For meets, we have

((ϕ ∧ ψ) ◦ f)(j) = p(ϕ(fj)ψ(fj)) = ((ϕ ◦ f) ∧ (ψ ◦ f))(j)

for all j ∈ J , which means f∗(ϕ ∧ ψ) = f∗(ϕ) ∧ f∗(ψ). Preservation of � is shown in the

same way.

(3) – It remains to check functoriality, i.e. g∗◦f∗ = (f◦g)∗ and id∗I = idAI for K
g
→ J

f
→ I .

This follows from associativity and unit laws for composition.

5.3. From IOCAs to triposes

Next we show that if the OCA considered above has the necessary additional structure

to make it a IOCA, the indexed meet semi-lattice just constructed is in fact a tripos.

For any IOCA, A = (A,�, app, imp,Φ, k, s,e), the quintuple (A,�, app, k, s) is an OCA
–that we also call A–, and Φ is a filter on it. Thus, we can construct the indexed

meet-semi-lattice P(A) from Definition 5.6.

Theorem 5.8. If A = (A,�, app, imp,Φ, k, s,e) is a IOCA, then P(A) is a tripos. Moreover,

if the IOCA is a KOCA –with combinator c ∈ Φ–then ¬¬ϕ � ϕ, with ¬ϕ := ϕ→ ⊥.

Proof. We know that P(A) is an indexed meet-semi-lattice, and it remains to be shown

that it has implication, universal quantification, and a generic predicate.

For ϕ,ψ : I → A, we define ϕ→ ψ by

(ϕ→ ψ)(i) = ϕ(i)→ ψ(i)

To see that this gives a Heyting implication on (AI,�), we have to check that

ϕ � ψ → θ ⇔ ϕ ∧ ψ � θ

where (ϕ ∧ ψ)(i) = pϕ(i)ψ(i). In a similar manner as before, the assertion can be proved

along the lines of reasoning of Theorem 4.15.
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The universal quantification of a predicate ψ : J → A along a function f : J → I is

defined by:

∀f(ψ)(i) = inff(j)=iψ(j)

With this definition it follows directly that for any ϕ : I → A and r ∈ Φ we have

∀j ∈ J . r ϕ(f(j)) � ψ(j)

⇔ ∀i ∈ I . r ϕ(i) � ∀f(ψ)(i),

which means that f∗ϕ � ψ if and only if ϕ � ∀fψ (with the same realizer), hence Remark

4.3, (2) implies that ∀f is right adjoint to f∗.

For the Beck-Chevalley condition, consider the pullback square (6) in Definition 4.23,

and let ϕ : J → I . For k ∈ K we have:

g∗(∀f(ϕ))(k) = inf{ϕ(j) : j ∈ J, fj = gk} and ∀q(p∗(ϕ))(k) = inf{ϕ(p(x)) : x ∈ P , qx = k}.

In the first case, the infimum is taken over the set {j ∈ J | f(j) = g(k)}, and in the second

case over the set {j ∈ J | ∃x ∈ P . p(x) = j, q(x) = k}. These two sets are equal since the

square is a pullback (thus the Beck Chevalley condition holds even up to equality).

Finally, a generic predicate for P(A) is given by idA ∈ P(A)(A).

The fact that ¬¬ϕ � ϕ for all predicates ϕ, follows directly from Lemma 4.16.

Remark 5.9. For a KOCA named A constructed from complete Boolean algebras (B,�)

as in Example 3.9, the entailment relation (Definition 5.6) on predicates ϕ,ψ : I → B on

a set I reduces to

ϕ � ψ ⇔ ∀i ∈ I . ϕ(i) � ψ(i),

i.e. the ordering on predicates is simply the pointwise ordering. This implies that the

induced triposes P(A) are ∀-standard in the terminology of Hyland et al. (1980), which

means essentially that the associated realizability model is equivalent to a Boolean valued

model Bell (1977), which substantiates our claim from the introduction that realizability

in KOCA’s subsumes Boolean valued models.

This remarkable generality of realizability models over KOCA’s means that we cannot

expect the existence and disjunction properties Troelstra (1973)(1.11.32) to hold in general .

To see how the disjunction property (which says that validity of a disjunctive formula ϕ∨ψ
implies validity of either ϕ or ψ) can fail, consider the Boolean algebra B = {⊥, �, r,�}
with � and r incomparable, and least and greatest elements ⊥ and �. If L and R are two

propositional constants denoting � and r respectively, then L ∨ R is valid, but neither of

L and R is valid.

The previous argument also shows that the existence (or ‘witness’) property does not

hold in general, since it would imply the disjunction property as is shown in loc. cit.
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5.4. From AKSs to KOCAs

Next, we recall the construction due to Streicher (see Streicher (2013)) that starting from

an AKS abbreviated as K produces a KOCA –that we call AK– and show that they

induce isomorphic indexed preorders –in fact triposes–.

Definition 5.10. Given an AKS:

K = (Λ,Π,⊥⊥, push, app, store, K ,S ,CC ,QP)

define

AK = (A,�, app, imp, k, s, c,e,Φ)

as follows.

(1) (A,�) = (P⊥(Π),⊇);

(2) app(P ,Q) = P ◦⊥ Q = (⊥(⊥Q� P ))⊥, imp(P ,Q) = P ⇒⊥ Q = (⊥(⊥P ·Q))⊥;

(3) k = {K}⊥, s = {S}⊥, c = {CC}⊥, e = {E}⊥ , where E = S (K (S K K ));

(4) Φ = {P ∈ P⊥(Π) | ∃t ∈ QP . t ⊥ P}.
If a, b ∈ A we write ab := app(a, b) and a → b := imp(a, b). See Definitions 2.5, 2.8 and

2.9.

We recall the following important theorem from Streicher (2013) and write down a

short proof for later use.

Theorem 5.11. Let K be an AKS and consider the structure AK presented in Definition

5.10.

(1) Then, AK is a KOCA.

(2) The associated indexed preorders P⊥(K) and P(AK) are isomorphic.

Proof.

(1) The order is clearly inf-complete as we observed in Remark 2.2. The fact that

the implication and application satisfy the monotonicity properties, is clear. The

implication → satisfies the half adjunction property: if a � (b→ c) then ab � c as was

established in Theorem 2.7.

Next we prove that k ab � a. Lemma 2.12 (2.12) guarantees that for all a, b ∈ A,

K ∈ ⊥(⊥a · (⊥b · a)). This assertion means that {K} ⊆ ⊥(⊥a · (⊥b · a)) and then

k ⊇
(⊥(⊥a · (⊥b ·a)))⊥ ⊇ ⊥a · (⊥b ·a) that can be written as ⊥a� k ⊇ ⊥b ·a. Moreover,

from Definition 2.5, (1) we deduce that k ◦⊥ a ⊇ ⊥a� k ⊇ ⊥b ·a, i.e. k ◦⊥ a � (b→ a)

–compare with Definition 2.5–. Using the half adjunction property (Theorem 2.7), we

deduce that k ab � a.
The condition s abc � (ac)(bc) can be proved as follows. Take t ⊥ a, s ⊥ b,

u ⊥ c. Using Lemma 2.10 we deduce that (su) ⊥ bc and (tu) ⊥ ac and also that

(tu)(su) ⊥ (ac)(bc) and if π ∈ (ac)(bc) is an arbitrary element we have that (tu)(su) ⊥ π.
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Then by the Definition 2.8, (S3) we conclude that S ⊥ t · s · u · π. Hence we have

proved that S ⊥ ⊥a · ⊥b · ⊥c · (ac)(bc) or S ∈ ⊥(⊥a · ⊥b · ⊥c · (ac)(bc)) or equivalently

that s ⊇ ⊥a · ⊥b · ⊥c · (ac)(bc).
Assume now that we have a situation as follows: x, y ∈ A, z ⊆ Π with ⊥x·z ⊆ y,

clearly it follows from Remark 2.4 that z ⊆ ⊥x� y

If we apply repeatedly the above observation to ⊥a · ⊥b · ⊥c · (ac)(bc) ⊆ s we deduce

that (ac)(bc) ⊆ s abc, and the proof of this part is finished.

The proof that e as introduced in Definition 5.10, is an adjunctor is the content of

Theorem 2.13.

The proof that Φ ⊆ A is a filter that contains k , s ,e is the following. The subset

Φ is closed under application because if f, g ∈ Φ, i.e. if we have tf ∈ ⊥f ∩ QP and

tg ∈ ⊥g ∩ QP then tftg ∈ ⊥f⊥g ∩ QP ⊆ ⊥(f ◦⊥ g) ∩ QP (Lemma 2.10). Moreover,

k , s ,e ∈ Φ because K ∈ ⊥k ∩QP, S ∈ ⊥s ∩QP and E ∈ ⊥e ∩QP.

Finally, as we took c = {CC}⊥, it is clear that: CC ∈ ⊥c ∩QP. Moreover, we proved

in Lemma 2.12 that CC ∈ ⊥(((a→ b) → a) → a), that implies that c ⊇ (⊥(((a→ b) →
a) → a))⊥ = (((a→ b) → a) → a), i.e. c � (((a→ b) → a) → a).

(2) In both cases the predicates on a set I are functions ϕ,ψ : I → P⊥(Π), so we only have

to check that the two definitions of entailment coincide. The entailment in P(AK) is

given by: ∃P ∈ Φ ∀i ∈ I . Pϕ(i) � ψ(i), which using the adjunctor and substituting P

by eP can be formulated equivalently as: ∃P ∈ Φ ∀i ∈ I . P � ϕ(i)→ ψ(i).

As to the equivalence we have that:

∃P ∈ Φ ∀i ∈ I . P � ϕ(i)→ ψ(i)

⇔ ∃t ∈ QP ∀i ∈ I . {t}⊥ ⊇ (⊥(⊥ϕ(i)·ψ(i)))⊥

⇔ ∃t ∈ QP ∀i ∈ I . t ⊥ (⊥(⊥ϕ(i)·ψ(i)))⊥

⇔ ∃t ∈ QP ∀i ∈ I . t ⊥ ⊥ϕ(i)·ψ(i)

⇔ ∃t ∈ QP ∀i ∈ I . t ⊥ ϕ(i)⇒ ψ(i)

and the last line is the definition of entailment in P⊥(K).

5.5. From KOCAs to AKSs

In order to complete our program to set up the foundations of realizability in terms

of KOCAs, we reverse the construction presented in Subsection 5.4 and show how to

construct from a KOCA called A, an AKS named as KA. Then, we prove that the

corresponding triposes are equivalent.

Definition 5.12. Given a KOCA

A = (A,�, appA, imp, k, s, c,e,Φ)

we define the structure:

KA = (Λ,Π,⊥⊥, push, app, store, K , S , CC ,QP)

as follows.
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(1) Λ = Π := A

(2) ⊥⊥ :=�, i.e. s ⊥ π :⇔ s � π
(3) push(s, π) := imp(s, π) = s→ π, app(s, t) := appA(s, t) = st, store(π) := ¬π
(3) K := e(bek), S := e(b(be(be))s), CC := ec
(4) QP := Φ

Here, b is an abbreviation for s(ks)k, which has the property that babc � a(bc) for all

a, b, c ∈ A, and ¬π is a shorthand for π → ⊥ and ⊥ := inf(A).

Theorem 5.13. In the notations of Definition 5.12 the structure KA is an AKS .

Proof. It is clear that QP is closed under application and contains K ,S ,CC , and it remains

to check the axioms about the orthogonality relation (see Definition 2.8). Substituting the

above definitions, these axioms become:
(S1) t � u→ π ⇒ tu � π
(S2) t � π ⇒ e(bek) � t→ u→ π

(S3) tv(uv) � π ⇒ e(b(be(be))s) � t→ u→ v → π

(S4) t � ¬π → π ⇒ ec � t→ π

(S5) t � π ⇒ ¬π � t→ π′, ∀π′
(S1) follows from Definition 3.8, (PA), and (S5) follows from monotonicity of the arrow

in its second argument and the antitonicity in the first.

(S2) is shown by the following derivation:

t � π ⇒ ktu � π ⇒ e(kt) � u→ π ⇒ bekt � u→ π ⇒ e(bek) � t→ u→ π.

(S3) is proved using repeatedly the basic properties of b and e as follows:

tv(uv) � π ⇒ stuv � π ⇒ e(stu) � v → π ⇒ be(st)u � v → π ⇒ e(be(st))

� u→ v → π ⇒

⇒ be(be)(st) � u→ v → π ⇒ b(be(be))st � u→ v → π ⇒ e(b(be(be))s)

� t→ u→ v → π

Finally, (S4) is proved using the basic property of C –Definition 3.8, (PC), the monotony

of the application and the definition of e – as follows. Applying (PC) for a = π and b = ⊥
we obtain that c � (¬π → π) → π. Moreover, for all t we have that t � (¬π → π) and

then by the monotony of the application we deduce that: ct � ((¬π → π)→ π)(¬π → π).

Moreover, from the following implication (¬π → π) → π � (¬π → π) → π ⇒ ((¬π →
π) → π)(¬π → π) � π we obtain by transitivity that ct � π and then that ec � t→ π.

Definition 5.14. Let (D,�) be a preorder.

(1) A principal filter in D is a subset of D of the form

↑d0 := {d ∈ D | d0 � d}.

for some d0 ∈ D.
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(2) Dually, a principal ideal in D is a subset of the form

↓d0 := {d ∈ D | d � d0}.

for d0 ∈ D.

Lemma 5.15. Let A be a KOCA structure, and KA the AKS induced via the construction

in Definition 5.12.

(1) For U ⊆ A we have ⊥U = ↓(inf U), and U⊥ = ↑(supU).

(2) For a ∈ A we have inf(↑a) = a = sup(↓a)
(3) The set P⊥(Π) consists precisely of the principal filters in A, and the maps

f : A→ P⊥(Π), a �→ ↑a and g : P⊥(Π)→ A, P �→ inf P ,

are mutually inverse and establish a bijection between A and P⊥(Π).

(4) For P ,Q ∈ P⊥(Π) we have inf(P ⇒⊥ Q) = inf(P ⇒ Q) = inf P → inf Q.

Proof. (1) – ⊥U is the set of lower bounds of U, and inf U is the greatest lower bound.

An element a ∈ A is a lower bound of U if and only if it is smaller than the greatest lower

bound. The second claim is just the dual (recall that this duality is valid in a lattice).

(2) – a is a lower bound of ↑a, and since a ∈ ↑a any other lower bound must be smaller.

Thus a is the greatest lower bound. The second part is symmetric.

(3) – For P ⊆ A we have (⊥P )⊥ = (↓(inf P ))⊥ = ↑(inf P ), thus all (⊥(−))⊥-stable sets

are principal filters.

Conversely, for a principal filter of the form ↑a and using the previous parts of this

Lemma, we have that (⊥↑a)⊥ = (↓(inf(↑a)))⊥ = ↑(sup(↓(inf(↑a)))) = ↑(sup(↓a)) = ↑a.
To see that f and g are mutually inverse, take first a ∈ A. Then g(f(a)) = inf(↑a) = a.

In the other direction, let P ∈ P⊥(Π). We know that P is a principal filter, thus P = ↑a
for some a ∈ A and we have f(g(P )) = ↑(inf P ) = ↑(inf(↑a)) = ↑a = P .

(4) – The fact that inf(P ⇒⊥ Q) = inf(P ⇒ Q) follows also from the previous results.

Indeed, we have that inf(P ⇒⊥ Q) = inf
(
(⊥(P ⇒ Q))⊥

)
= inf((↓(inf(P ⇒ Q)))⊥) =

inf(↓(inf P → inf Q)⊥) = inf((↓(a → b))⊥) = inf(↑(sup(↓(a → b)))) = a → b = inf P →
inf Q = inf(P ⇒ Q). In the above computations we used that: P = ↑a, Q = ↑b and the

parts (1), (2) and (3) already proved. The last equality is proved below.

From the preceding claim we know that given P ,Q as above, there are elements a, b ∈ A
such that P = ↑a and Q = ↑b. We have

↑a⇒ ↑b = ⊥(↑a)·↑b = ↓(inf(↑a))·↑b = ↓a·↑b = {c→ d | c � a, b � d}

and thus inf(↑a⇒ ↑b) = a→ b by monotonicity of the arrow.

Theorem 5.16. The associated indexed triposes P(A) and P⊥(KA) are equivalent (see

Definitions 5.7-5.7 and in 5.3-5.3 respectively).

Proof. Let I be a set. The elements of P(A)(I) are functions ϕ : I → A, and the

elements of P⊥(KA)(I) are functions ϕ̂ : I → P⊥(Π).

Post-composition with f and g from Lemma 5.15-(3) induces a bijection between

P(A)(I) and P⊥(KA)(I), and it remains to show that this bijection is compatible with the

entailment orderings.
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Let ϕ,ψ : I → A be two predicates in P(A)(I), with corresponding predicates f ◦ϕ, f ◦ψ
in P⊥(KA)(I). Then we can reformulate the entailment f ◦ ϕ � f ◦ ψ in P⊥(KA)(I) as

follows:

f ◦ ϕ � f ◦ ψ ⇔ ∃a ∈ Φ ∀i ∈ I . a ⊥ ↑(ϕi)⇒ ↑(ψi)
⇔ ∃a ∈ Φ ∀i ∈ I ∀b ∈ [↑(ϕi)⇒ ↑(ψi)]. a � b
⇔ ∃a ∈ Φ ∀i ∈ I . a � inf[↑(ϕi)⇒ ↑(ψi)]
⇔ ∃a ∈ Φ ∀i ∈ I . a � ϕ(i)→ ψ(i),

and this is equivalent to the entailment ϕ � ψ in P(A)(I):

∃a ∈ Φ ∀i ∈ I . aϕ(i) � ψ(i)

by axioms (PA) and (PE) in Definition 3.8.

6. Internal realizability in KOCAs

We have shown that the class of ordered combinatory algebras that, besides a filter of

distinguished truth values are equipped with an implication, an adjunctor and satisfy a

completeness condition with respect to the infimum over arbitrary subsets – i.e.: KOCA
s– is rich enough as to allow the tripos construction and as such its objects can be taken

as the basis of the categorical perspective on classical realizability –à la Streicher–. In this

section we show that we can define realizability for this type of combinatory algebras,

and thus, to define realizability in higher-order arithmetic.

Definition 6.1. The language of kinds is defined by the grammar:

Kinds: σ, τ ::= c | σ → τ,

where c ranges over a fixed set of constants (base kinds) that contains at least a symbol

o representing the kind of propositions. Consider an infinite set of variables labeled by

kinds xτ. Suppose that we have infinitely many variables labeled of the kind τ for each

kind τ. Consider also a set of constants aτ, bσ, . . . labeled with a kind. The language Lω of

order ω is defined by the following grammar:

Mσ,Nσ→τ, Ao, Bo ::= xσ | aσ | (λxσ.Mτ)σ→τ | (Nσ→τMσ)τ | (Ao ⇒ Bo)o | (∀xτ.Ao)o

o represents the type of truth values. The expressions labeled by o are called “formulæ”.

The symbols → and ⇒, when iterated, are associated on the right side. On the other

hand, the application, when iterated, are associated on the left side.

Definition 6.2. Let A be a KOCA and consider a set of variables V = {x1, x2, . . .}.
A declaration is a string of the shape xi : Ao. A context is a string of the shape

x1 : Ao1, . . . , xk : Aok , i.e.: contexts are finite sequences of declarations. The contexts will

be often denoted by capital Greek letters: Δ,Γ,Σ. A sequent is a string of the shape

x1 : Ao1, . . . , xk : Aok � p : Bo where p is a polynomial of A[x1, . . . , xk]. The left side of a

sequent is a context. When we do not make the declarations of the context of a sequent
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explicit, we will write it as Γ � p : Bo. Typing rules are trees with leaves of the shape:

S1 · · · · ·Sh

Sh+1

(Rule)

where h � 0 and S1, . . . , Sh+1 are sequents.

The typing rules for Lω are the following:

(where xi : Aoi appears in Γ)

Γ � xi : Aoi
(ax)

Γ, x : Ao � p : Bo

Γ � e(λ∗x p) : (Ao ⇒ Bo)o
(→i)

Γ � p : (Ao ⇒ Bo)o Γ � q : Ao

Γ � pq : Bo
(→e)

(where xσ does not appears free in Γ)

Γ � p : Ao

Γ � p : (∀xσAo)o
(∀i)

Γ � p : (∀xσAo)o

Γ � p : (Ao{xσ := Mσ})
(∀e)

Definition 6.3. Let us consider A = (A,�, app,→,Φ, k , s ,e , c ) a KOCA. We define the

interpretation of Lω as follows:

(1) For kinds: The interpretation of a constant c is a set [[c]]. In particular, the constant

o is interpreted as the underlying set of A, i.e.: [[o]] = A. Given two kinds σ, τ, the

interpretation [[σ → τ]] is the set of functions [[τ]][[σ]].

(2) For expressions: In order to interpret expressions, we start choosing an assignment a

for the variables xσ such that a(xσ) ∈ [[σ]]. As it is usual in semantics, the substitution-

like notation {xσ := s} affecting an assignment a –or an interpretation using a–,

modifies it by redefining a over xσ as the statement a{xσ := s}(xσ) := s. We proceed

similarly for interpretations.

— For an expression of the shape xσ , its interpretation is [[xσ]] = a(xσ).

— For an expression of the shape λxσMτ, its interpretation is the function [[λxσMτ]] ∈
[[σ → τ]] defined as [[λxσMτ]](s) := [[Mτ]]{xσ := s} for all s ∈ [[σ]].

— For an expression of the shape (Nσ→τMσ)τ its interpretation is [[(Nσ→τMσ)τ]] :=

[[Nσ→τ]]
(
[[Mσ]]

)
.

— For an expression of the shape (Ao ⇒ Bo)o its interpretation is [[(Ao ⇒ Bo)o]] :=

[[Ao]]→ [[Bo]].
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— For an expression of the shape (∀xσAo)o its interpretation is [[(∀xσAo)o]] :=

inf
{
[[Ao]]{xσ := s}

∣∣ s ∈ [[σ]]
}
.

We say that A satisfies a sequent x1 : Ao1, . . . , xk : Ak � p : Bo if and only if for

all assignment a and for all b1, . . . , bk ∈ A, if b1 � [[Ao1]], . . . , bk � [[Aok]] then p{x1 :=

b1, . . . , xk := bk} � [[Bo]]. In this case we write that: A |= x1:A
o
1, . . . , xk:A

k � p:Bo.
A rule:

S1 · · · · ·Sh

Sh+1

(Rule)

is said to be adequate if and only if for every A ∈ KOCA, if A |= S1, . . . , Sh then A |= Sh+1.

Theorem 6.4. The rules of the typing system appearing in Definition 6.2, are adequate.

Proof. For (ax) is evident. For the implication rules:

(→)i Assume A |= Γ, x : Ao � p : Bo where Γ = x1 : Ao1, . . . , xk : Aok . Consider an

assignment a and b1, . . . , bk ∈ A such that bi � [[Aoi ]]. We get:

(λ∗xp){x1 := b1, . . . , xk := bk}[[Ao]]=(λ∗xp{x1 := b1, . . . , xk := bk})[[Ao]] �
p{x1 := b1, . . . , xk := bk, x := [[Ao]]}�[[Bo]]

the last inequality by the assumption A |= Γ, x : Ao � p : Bo.

Applying the adjunction property we deduce that e (λ∗xp){x1 := b1, . . . , xk := bk} �
[[(Ao ⇒ Bo)o]]. Since the above is valid for all the assignments, we conclude that

A |= Γ � e (λ∗x p) : (Ao ⇒ Bo)o.

(→)e Assume A |= Γ � p : (Ao ⇒ Bo)o and A |= Γ � q : Ao where Γ = x1 : Ao1, . . . , xk : Aok .

Consider an assignment a and b1, . . . , bk ∈ A such that bi � [[Aoi ]]. By hypothesis we

get:

p{x1 := b1, . . . , xk := bk} � [[Ao]]→ [[Bo]] and q{x1 := b1, . . . , xk := bk} � [[Ao]],

and by the monotony of the application in A we deduce that:

pq{x1 := b1, . . . , xk := bk} � ([[Ao]]→ [[Bo]]) [[Ao]] � [[Bo]].

Since the above is valid for all the assignments, we conclude that A |= Γ � pq : [[Bo]].

For the quantifiers:

(∀)i Assume A |= Γ � p : Ao and that xσ does not appear free in Γ, where Γ = x1 :

Ao1, . . . , xk : Aok .

Consider an assignment a and b1, . . . , bk ∈ A such that bi � [[Aoi ]].

Since Ao1, . . . , A
o
k does not depend upon xσ , by the assumption A |= Γ � p : Ao, we get:

p{x1 := b1, . . . , xk := bk} � [[Ao]]{xσ := s} for all s ∈ [[σ]].

Then p{x1 := b1, . . . , xk := bk} � inf{[[Ao]]{xσ := s} | s ∈ [[σ]]} = [[(∀xσAo)o]]. We

conclude as before that A |= Γ � p : (∀xσAo)o.
(∀)e Assume A |= Γ � p : (∀xσAo)o, where Γ = x1 : Ao1, . . . , xk : Aok . Consider an

assignment a and b1, . . . , bk ∈ A such that bi � [[Aoi ]]. By the assumption A |= Γ � p :
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(∀xσAo)o we deduce that:

p{x1 := b1, . . . , xk := bk} � [[Ao]]{xσ := s} for all s ∈ [[σ]]

Since [[Mσ]] ∈ [[σ]] we obtain:

p{x1 := b1, . . . , xk := bk} � [[Ao]]{xσ := [[Mσ]]} = [[Ao{xσ := Mσ}]]

We conclude as before that A |= Γ � p : Ao{xσ := Mσ}.

The language of higher-order Peano arithmetic –(PA)ω–is an instance of Lω where we

distinguish a constant of kind I and two constants of expression 0I and succI→I .

Definition 6.5. For each kind σ we define the Leibniz equality =σ as follows:

xσ1 =σ x
σ
2 :≡ ∀yσ→o

(
(yσ→oxσ1 )

o ⇒ (yσ→oxσ2 )
o
)o

The axioms of Peano arithmetic are equalities over the kind I , except for ∀xI ((succI→IxI =I

0I )⇒ ⊥)o –which we abbreviate ∀xI (succI→IxI �= 0I )o– and for the induction principle.

Definition 6.6. Fixed A ∈ KOCA , we say that a ∈ A realizes a formula Fo if a � [[Fo]].

We write a ��A Fo for “a realizes Fo”, or simply as a �� Fo, whenever it does not cause

confusion.

The theory of A is the set of closed formulæ Fo such that there is an a ∈ Φ which

realizes Fo. The theory of A is denoted by th(A).

In this presentation of Krivine’s realizability, the orthogonality is implicit in the implication

→ that is part of the structure of the KOCA.

Lemma 6.7. Let us consider an equality Mσ =σ N
σ such that [[Mσ]] = [[Nσ]]. Then the

equality Mσ =σ N
σ is realized by e(λ∗x.x).

Proof. Consider an f ∈ [[σ → o]] = A[[σ]], since [[Mσ]] = [[Nσ]] we have f([[Mσ]]) =

f([[Nσ]]). We conclude that (λ∗x.x)[[yσ→oMσ]] � [[yσ→oMσ]] = [[yσ→oNσ]] and e(λ∗x.x) �
[[yσ→oMσ ⇒ yσ→oNσ]] for every assignment of yσ→o. Hence e(λ∗x.x) ��Mσ =σ N

σ .

Proposition 6.8. In every KOCA A all axioms of Peano arithmetic but the induction

principle are in th(A).

Proof. By 6.7 all the axioms which are equalities are realized by e(λ∗x.x). Moreover,

the axiom which say that 0 is not a successor is also realized: It is easy verify that

[[∀xI [succI→IxI =I 0I ⇒ ⊥]]] =

[[� ⇒ ⊥]]⇒ [[⊥]].

By monotonicity [[� ⇒ ⊥]]s � [[� ⇒ ⊥]][[�]] � [[⊥]]. Thus [[� ⇒ ⊥]]s � [[⊥]] and hence

e(λ∗x.xs) �� [[∀xI [succI→IxI =I 0I ⇒ ⊥]]]

Definition 6.9. The formula N(zI ) is defined as:

∀xI→o(∀yI ((xI→oyI )o ⇒ (xI→o(succI→IyI ))o ⇒ ((xI→o0I )o ⇒ (xI→ozI )o)o
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Remark 6.10. Since the equational axioms of Peano arithmetic and the axiom

∀xI [succI→IxI =I 0I ⇒ ⊥] are universal formulæ, therefore imply their relativization

to N. The relativization of the induction principle to N is ∀xI (N(xI ) ⇒ N(xI )), which is

realized by means of e(λ∗x.x). Thus, relativizing to N all proofs of higher-order arithmetic,

we find realizers in Φ for their theorems by means of adequacy 6.4. In other words, th(A)

contains th((PA)ω).

7. Conclusion and further work

In Section 5.5, particularly in Theorem 5.16, we completed our program to set up the

foundations of realizability. This is attained by showing that every AKS induces a KOCA
and proving that the induced tripos is isomorphic to the one constructed by Streicher.

Conversely to every KOCA, named as A, we associate an AKS , called KA, such that the

associated triposes are equivalent. It is interesting to notice that the terms and stacks of

KA are both given by the elements of A and that the realizability relation is given by the

partial order of A.

A natural development of the above work is to extend the theory of KOCAs in order

to model quantum computing; in particular one of the authors already has some work

on the categorical models of quantum lambda calculus.

Moreover, the closure relation given by double perpendicularity, that is basic in

Streicher’s construction, has the cost to introduce the adjunctor e . We believe that

this could be modifed, without trivializing the theory, in order to avoid the need for the

adjunctor.

Another interesting line of work is to extend our considerations to KOCA’s with the

operation defined partially.
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Lack, S. (2010) A 2-categories companion. In Towards higher categories, pages 105–191. Springer.

Lawvere, F.W. (1969) Adjointness in foundations. Dialectica, 23(3-4):281–296.

Lawvere, F. W. (1970) Equality in hyperdoctrines and the comprehension schema as an adjoint

functor. Applications of Categorical Algebra, 17:1–14, 1970.

McCarty, D. (1983) Realizability and recursive mathematics, Technical Report CMU-CS-84-131.

Departament of Computer Science, Carnegie-Mellon University, 1984. Report version of the

author’s PhD thesis, Oxford University.

Myhill, J.(1973) Some properties of intuitionistic Zermelo-Fraenkel set theory, Lecture notes in

mathematics 337, pp 206-231.

Sørensen, M.H. and Urzyczyn,P. Lectures in the Curry–Howard isomorphism Elsvier, Studies in Logic

and the foundations of mathematics, vol 149, 2006.

Streicher, T. (2013)Krivine’ s Classical Realizability from a Categorical Perspective, Math. Struct. in

Comp. Science. vol. 23, n 6.

A.S. Troelstra (1973) Metamathematical investigation of intuitionistic arithmetic and analysis, volume

344. Springer Science & Business Media.

van Oosten, J. (2008) Realizability, an Introduction to its Categorical Side, Elsevier.

https://doi.org/10.1017/S0960129515000432 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129515000432

