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SUMMARY
In this paper, an analytical study of the kinematics and
dynamics of Stewart platform-based machine tool structures
is presented. The kinematic study includes the derivation of
closed form expressions for the inverse Jacobian matrix
of the mechanism and its time derivative. An evaluation
of a numerical iterative scheme for an on-line solution of the
forward kinematic problem is also presented. Effects of
different configurations of the unpowered joints on the
angular velocities and accelerations of the links are
considered. The Newton-Euler formulation is used to derive
the rigid body dynamic equations. Inclusion of models for
actuator dynamics and joint friction is discussed.

KEYWORDS: Stewart platform; Machine tools; Kinematics and
dynamics.

1. INTRODUCTION
In recent years, the Stewart Platform mechanism has
attracted considerable attention in view of its application to
6 degree-of-freedom machine tool structures. Such an
application has been motivated by the excellent mechanical
characteristics of the mechanism in terms of its higher
rigidity and strength-to-weight ratio when compared to
serial link manipulators, and its greater maneuverability
when compared to conventional machine tool structures.

The Stewart Platform, also known as the “Gough-
Stewart” Platform, was first introduced by Gough in 1956 as
a tire testing machine,1 and then by Stewart in 1965 as an
aircraft simulation mechanism.2 Since then, it has attracted
considerable research interest in the context of manufactur-
ing and robotic applications. Hunt suggested using the
platform as an in-parallel robot arm.3 Geng and Haynes
experimentally explored the Stewart Platform as a vibration
isolation device.4 Recently, a number of commercial
machine tools have been introduced based on the Stewart
platform mechanism. Examples include the Ingersoll Hex-
apod, the Hexel and the Variax machining centers. As
depicted in Figure 1, the Stewart Platform comprises a
payload platform to which six linear actuators or struts are
attached. The other ends of the struts are attached to the
base. Each of the struts is attached to the platform and to the
base by either a three degrees-of-freedom joint and a two
degree-of-freedom joint, or by two three degrees-of-

freedom joints. The linear extension and retraction of the six
actuators gives the platform six degrees-of-freedom posi-
tioning capabilities, consisting of three translational and
three rotational degree-of-freedom. The linear actuation
could be provided either hydraulically or electrically, and
usually includes a ballscrew-nut mechanism to convert
motor shaft rotation to strut extension or retraction.

Fully parallel link mechanisms, which include the
Stewart Platform, show kinematic characteristics different
from those of serial link mechanisms. The inverse kinematic
problem for Stewart Platforms, that is, determination of the
joint space position or the six link lengths given the
position/orientation of the platform or the Cartesian space
position, is straightforward to perform. The forward kine-
matic problem, viz. the determination of the Cartesian space
position for a given joint space position, is more demanding
computationally. Both closed form solutions and numerical
iterative schemes are employed, simpler closed form
solutions being possible for special arrangements.5 The
forward rate kinematic and forward acceleration kinematic
problems, on the other hand, are linear, requiring solution of
linear system of equations involving the inverse Jacobian
matrix and its time derivative. Closed form expressions for
these matrices are necessary for transforming dynamic
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equations between joint space and Cartesian space coor-
dinates.

Unlike serial link manipulators, dynamic models for
Stewart Platforms as a class of fully parallel link mecha-
nisms have not been fully developed. In the reported
literature on the dynamic modeling of Stewart Platforms,
both the Newton-Euler formulation6–8 and the Lagrangian
formulation9–11 have been used. These works primarily
consider the rigid body dynamics of Stewart Platform
mechanisms. Most of these works used simplifying assump-
tions, and none have considered the effects of the types of
strut end joints on the kinematic and dynamic analysis of the
struts. Ji,7 and Dasgupta and Mruthyunjaya,8 did take note of
such effects in their dynamic analysis using the Newton-
Euler formulation. However, their assumption that there is
no axial rotation of the strut when a universal joint is used
for the base joint is only an approximation.

In this paper, we present a kinematic and dynamic
analysis of a Stewart Platform machine tool structure using
the Newton-Euler formulation. The machine tool structure
is closely related to the Octahedral Hexapod manufactured
by Ingersoll. The kinematic study includes determination of
closed form expressions for the inverse Jacobian matrix and
its time derivatives. The effects of having different config-
urations of strut end joints on the kinematics and dynamics
of the mechanism are more accurately modeled. The
inclusion of actuator dynamics and joint friction in the
derived rigid body dynamic equations is also discussed.

2. COORDINATE SYSTEM ASSIGNMENT
The moving platform of the Stewart Platform mechanism is
a rigid body that possesses six degrees of freedom.
Therefore, to fully describe its position and orientation, six
coordinates are needed. Three of these coordinates are
positional displacements that locate the position of a
reference point in the moving platform with reference to a
fixed coordinate system. The other three coordinates are
angular displacements that describe the orientation of the
moving platform with reference to a nonrotating coordinate
system. Euler angles are widely used to represent rigid body
kinematics and dynamics. In this work, we use a set of Euler
angles (�, �, �) which uniquely determine the orientation
of a rigid body after the following sequence of rotations (see
Figure 2):

• a rotation � about the Z�-axis of the moving coordinate
system.

• rotation � about the x�-axis of the moving coordinate
system.

• a rotation � about the z�-axis of the moving coordinate
system.

The frame X�Y�Z� in Figure 2 is a nonrotating coordinate
system that translates with the rigid body while frame xyz is
a body coordinate system that both rotates and translates
with the rigid body. Frames x�y�z� and x�y�z� are inter-
mediate coordinate systems which are useful in performing
the analysis in the next section. From the figure, we see that
� is always the angle between the z and Z� axes. Also, with
this representation, a rotation with angle � will be a
redundant degree of freedom in 5-axis machining applica-

tions, if axis z of the platform frame is chosen to coincide
with the axis of the spindle of the machine tool.

Since each of the six links of the Stewart Platform is
attached to the base and the moving platform at known
points, the joint space kinematics of the mechanism are
easily determined if the moving platform position and
orientation are known. This explains the simplicity of the
inverse kinematic problem for this type of mechanism. To
describe the kinematics of the moving platform, we will
need two coordinate systems as depicted in Figure 1. The
world coordinate frame W is fixed to the base while the
coordinate frame P is attached to the moving platform at a
reference point po. The position of frame P is specified with
reference to frame W by a vector x=(X, Y, Z)T which gives
the coordinates of point po with reference to frame W. The
orientation of frame P is described with reference to frame
W by a rotation matrix W RP =(r1, r2, r3), where r1, r2 and r3

are, respectively, 3� 1 unit vectors along the axes of frame
P and described with reference to frame W. The rotation
matrix W RP is derived in term of the three Euler angles in
the next section.

We define a generalized coordinate vector q, whose
elements are the six variables chosen to describe the
position and orientation of the platform, as

q=(X, Y, Z, �, �, �)T (1)

The joint space coordinate vector l is defined as

l=(l1, l2, l3, l4, l5, l6)
T (2)

where li for i=1, . . . , 6 are the lengths of the six numbered
links of the Stewart Platform. In the following sections, the
mapping between these two sets of coordinates and their
time derivatives will be presented.

3. KINEMATICS OF THE MOVING PLAFFORM
The mapping between the x-y-z coordinates (or the platform
coordinate frame P) and the X�-Y�-Z� coordinates is

Fig. 2. Euler angles z-x-z.
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achieved through a 3� 3 rotation matrix W RP involving the
three Euler angles �, �, �. W RP is given for the used Euler
angle representation as

W RP =
c�c��c�s�s�

c�s�+c�c�s�

s�s�

�s�c��c�s�c�

�s�s�+c�c�c�

c�s�

s�s�

�s�c�

c�

(3)

where c and s denote cosine and sine respectively.
Before proceeding to the inverse kinematic problem, it is

useful to express the angular velocity 	=(	X, 	Y, 	Z)
T and

angular acceleration 
=(
X, 
Y, 
Z)
T of the moving platform

with reference to frame W as functions of the first and
second time derivatives of the Euler angles (�̇, �̇, �̇) and (�̈,
�̈, �̈). Referring back to Figure 2, the moving platform has
an angular velocity component �̇ along the Z� axis, an
angular velocity component �̇ along the x� axis, and an
angular velocity component �̇ along the z� axis. Resolving
these components along the axes of frame W we obtain

	=
	X

	y

	Z

=

0
0
1

c�

s�

0

s�c�

�c�s�

c�

�̇

�̇

�̇

(4)

The angular acceleration of the moving platform is obtained
by differentiating (4)
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(5)

4. INVERSE KINEMATICS
The inverse kinematic problem of the Stewart Platform is
concerned with the determination of the displacements of
the six links and their time derivatives corresponding to a
given Cartesian pose of the moving platform in terms of
three positional displacements and three Euler angular
displacements and their time derivatives. In the following
sections, closed form solutions for the inverse position, rate
and acceleration kinematics are presented.

4.1. Inverse position kinematics
Referring back to Figure 1, the coordinates of the ith
attachment point ai on the moving platform, given with
reference to frame P as P ai = (xai, yai, zai )

T, are obtained
with reference to the world coordinate system W by using

ai =x+ W RP
Pai (6)

Once the position of the attachment point ai is determined,
the vector Li of link i is simply obtained as

Li =ai �bi (7)

where bi is a known 3-vector that represents the coordinates
of the base attachment point bi with reference to frame W.
The length li of link i will be simply computed from

li =�Li · Li (8)

Equations (6)–(8) represent the solution of the inverse
position kinematic problem which involves determination of
the six link lengths for a given Cartesian coordinate vector
q representing the position and orientation of the moving
platform. The unit vector along the axis of the prismatic
joint of link i is computed from

ni =Li /li (9)

4.2. Inverse rate kinematics
The velocity of point ai is obtained by differentiating
Equation (6) with respect to time

ȧi = ẋ+	�
W RP

Pai (10)

The projection of this velocity vector on the axis of the
prismatic joint of link i yields the extension rate of link i

l̇i = ȧi · ni = ẋ · ni +	� (W RP
Pai ) · ni (11)

or

l̇i = ẋ · ni +	 · (W RP
Pai )� ni (12)

where, for a triple scalar product a� b · c, the dot and cross
products can be interchanged yielding a · b� c, as long as
the order of the vectors is not changed. For the purpose of
deriving the inverse Jacobian matrix of the Stewart Plat-
form, it is useful to write Equation (12) for the six links, in
matrix form, as

l̇=J�1
1 � ẋ

	� (13)

where

J�1
1 =

nT
1

�
nT

6

(W RP
Pa1� n1)

T

�
W RP

Pa6� n6)
T

(14)

Now substituting Equation (4) into Equation (13) yields

l̇=J�1
1 J�1

2 q̇=J�1 q̇ (15)

where

J�1
2 =

I3� 3

O3� 3

0
0
1

O3� 3

cos �

sin �

0

sin � sin �

�cos � sin �

cos �

(16)

Equation (16) presents the solution to the inverse rate
kinematic problem. J�1 =J�1

1 J�1
2 is the inverse Jacobian

matrix of the machine.
The mechanism is in a singular position when

det(J�1)=0. Such a condition will occur when either J�1
1 or

J�1
2 are singular. The conditions for which J�1

1 is singular
are difficult to find analytically for the general class of
Stewart Platform mechanisms, since an analytical expres-
sion for the determinant of J�1

1 is not available. On the other
hand, J�1

2 is singular for �=0, �, . . . , n�. These two types
of singularities are the configuration and formulation
singularities respectively, as noted by Ma and Angeles.12
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The formulation singularity is associated with the Euler
angle formulation used. As we mentioned earlier, for the z-
x-z Euler formulation, the formulation singularity will occur
when J2 is singular or �=0, , . . . , n�. For the coordinate
system assignment of Figure 3a, and the z-x-z Euler angle
formulation, this type of singularity will occur for all
horizontal positions of the platform. Since this situation can
not be allowed in this application, this problem can be
solved by either changing the Euler angle formulation or by
changing the coordinate system assignment. The latter
solution will be used here since the z-x-z Euler angle
formulation enables us to directly identify the redundant
orientation direction as discussed before. By changing the
orientation of the fixed coordinate system W, as shown in
Figure 3b, the formulation singularity will occur now when
the platform is in a vertical position. This is far removed
from normal operational configurations of the machine and
will therefore not be encountered in practice.

4.3. Inverse acceleration kinematics
The acceleration of point ai is obtained by differentiating
Equation (10) with respect to time

äi = ẍ+
�
W RP

P ai +	� (	�
W RP

P ai ) (17)

Now, l̈i is simply obtained by differentiating l̇i = ȧi · ni with
respect to time

l̈i = äi · ni + ȧi · ṅi (18)

where ṅi is given by

ṅi =	i� ni (19)

where 	i for i=1, . . . , 6 are the angular velocities of the
links, expressions for which will be derived in Section 6. It
is possible to avoid computing 	i for i=1, . . . , 6, in order to
evaluate Equation (19), since ṅi can also be determined by
differentiating Equation (9) with respect to time, to obtain

ṅi = (Li � l̇i ni )/li (20)

Now, li in Equation (20) is found by differentiating Equation
(8) with respect to time which results in

l̇i =
Li · L̇i

li

(21)

and L̇i is found by differentiating Equation (7) with respect
to time and substituting Equation (10) to yield

L̇i = ẋ+	�
W RP

P ai (22)

An alternative solution for the inverse acceleration kine-
matic problem in terms of the inverse Jacobian matrix is
obtained by differentiating Equation (15) with respect to
time

l̈=J�1 q̈+
d J�1

dt
q̇ (23)

The time derivative of the inverse Jacobian matrix in
Equation (23) is given by

d J�1

dt
=

d J�1
1

dt
J�1

2 +J�1
1

d J�1
2

dt
(24)

where the time derivative matrices 
d J�1

1

dt
and 

d J�1
2

dt
are

obtained by differentiating J�1
1 and J�1

2 with respect to time
as

d J�1
1

dt
=

(	1 �n1)
T

�
(	6 �n6)

T

((	� W RP
P a1 )�n1 + W RP

P a1 � (	1 �n1))
T

�
((	� W RP

P a6 )�n6 + W RP
P a6 � (	6 �n6))

T

(25)

d J�1
2

dt
=

O3� 3

O3� 3

0

0

0

O3� 3

��̇s�

�̇c�

0

�̇c�s�+ �̇s�c�

�̇s�s���̇c�c�

��̇s�

(26)

Furthermore, we can replace 	i� ni by ṅi which can be
computed from Equations (20)–(22).

5. FORWARD KINEMATICS
The forward kinematic problem can be stated as follows:
For a given joint space coordinate vector l, find the
corresponding Cartesian coordinate vector q. Unlike the
inverse kinematic problem, the forward kinematic problem
is much more difficult for the general class of Stewart
Platforms. This is because there are many solutions, the
number of solutions corresponding to the number of
configurations the mechanism can be assembled into, for a
given set of link lengths. The inverse kinematic solution
represented by Equations (6)–(8) can not be inverted to find
q for a given l, since q does not occur explicitly in Equations
(6)–(8). For the general class of Stewart Platforms, it has
been shown that there are at most 40 possible solutions for
the forward kinematic problem.13,14 Only one solution,
however, corresponds to the actual pose of a physical
machine. A simple method that would take advantage of the
availability of an estimate of this solution is needed.

In this section, we will evaluate the use of a numerical
iterative technique, based on the Newton-Raphson method,
to solve the forward kinematic problem. The Newton-
Raphson method can be used to find the roots of single as
well as multiple variable equations.15 In the following, the
presented procedure yields accurate results depending on
the tolerance specified. This will be demonstrated by a
numerical example.

Fig. 3. Coordinate system assignments.
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For a certain position of the mechanism, we will define a
function F(q ) as

F(q )= l (q )� lgiven (27)

where l(q ) is the joint space coordinate vector computed
from the inverse kinematic solution using a Cartesian space
coordinate vector q, and lgiven is the known joint space
coordinate vector. If q is the required forward kinematic
solution, l(q ) will be equal to lgiven, and F(q ) will be zero. A
numerical solution using the Newton-Raphson method is
given by

q̃i = q̃i�1 ���F(q̃i�1)
�q ��1

F(q̃i�1) (28)

where q̃i is the approximate solution obtained after the ith

iteration. It can be shown that the matrix 
�F(q̃i�1)

�q
is same as

the inverse Jacobian matrix J�1(q̃i�1) given by Equation
(15). Hence, Equation (28) may be written as

q̃i = q̃i�1 �J(q̃i�1)(l(q̃i�1)� lgiven) (29)

Starting with an initial guess q̃O, Equation (29) is used in an
iterative fashion until an acceptable solution is reached.
Since there are many solutions, it is very important to start
with an initial guess close to the actual pose of the platform.
Such an initial guess could be either the known desired
Cartesian pose, or the pose of a previous point on the
trajectory a short time interval in the past.

Numerical Example: In this example, a computer pro-
gram is written to implement the Newton-Raphson

procedure developed. For the kinematic parameters of the
Stewart Platform based machining center in Tables I and II,
let the platform be in the Cartesian pose

q=(0.2, 0.3, –0.4, 0.1, –1.4, 0.1)T (30)

where the linear displacements are stated in meters and the
angular displacements are in radians. The inverse position
kinematics computations result in a joint space coordinate
vector

l=(3.0508, 3.2324, 3.2997, 3.4560, 3.5797, 3.6935)T (31)

where all the joint lengths are stated in meters. We assume
now that l is given by Equation (31), presumably from joint
space measurements, and that we need to find an approx-
imate numerical solution for q. Applying the numerical
technique presented in this section with an initial guess

qO =(0.25, 0.25, –0.45, 0.07, –1.7, 0.07)T (32)

and a tolerance of l� 10–6 as the stopping criterion,
convergence is reached after three iterations as shown in
Table III.

6. KINEMATICS OF THE LINKS AND JOINTS
Before proceeding to the dynamics of the Stewart Platform
mechanism, we need first to determine expressions for the
link angular velocities and accelerations. These expressions,
together with expressions for the link extension rates and
accelerations, are needed for the development of the rigid
body dynamic equations subsequently in the paper. Unlike
the link extension rates and accelerations, the angular
velocities and accelerations of the links depend on the
specific types of the joints at the two ends of the struts. We
will assume first that the struts are attached to the platform

Table I. Attachment points on the moving platform with reference to Frame P.

a1(m) a2(m) a3(m) a4(m) a5(m) a6(m)

x 0.225 0.1125 –0.1125 –0.225 –0.1125 0.1125
y 0.0 0.1949 0.1949 0.0 –0.1949 –0.1949
z –0.228 –0.228 –0.228 –0.228 –0.228 –0.228

Table II. Attachment points on the base with reference to Frame W.

b1(m) b2(m) b3(m) b4(m) b5(m) b6(m)

X 1.7580 1.6021 –1.7580 –1.6021 0.0 0.0
Y 2.8 3.07 2.8 3.07 2.8 3.07
Z –1.015 –0.925 –1.015 –0.925 2.03 1.85

Table III. Results of using Newton-Raphson method to solve the forward kinematic problem.

X(m) Y(m) Z(m) �(rad) �(rad) �(rad)

0 0.25 0.25 –0.45 0.07 –1.7 0.07
1 0.1933094 0.3077386 –0.4089530 0.1126940 –1.404225 0.1023974
2 0.2000163 0.2999979 –0.4000039 0.0999466 –1.400029 0.0999672
3 0.2000000 0.3000000 –0.4000000 0.1000000 –1.400000 0.1000000
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through three degree-of-freedom spherical joints, and to the
base through two degree-offreedom universal joints.

For a given motion of the moving platform, the motions
of the attachments points of the links to the platform can be
determined as discussed in the previous sections. ai, ȧi and
äi for point ai are computed from Equations (6), (10)
and (17), respectively, for a known platform Cartesian
position, velocity and acceleration vectors. On the other
hand, ai, ȧi and äi can also be written in term of the motion
of link i. First, ai is given by

ai = li ni +bi (33)

By differentiating Equation (33) with respect to time, we get
ȧi as

ȧi =	i� li ni + l̇i ni (34)

where the 	i is the angular velocity of the link i and will be
defined shortly. By differentiating Equation (34) with
respect to time, we get äi as

äi =
i� li ni +	i� (	i� li ni )+2	i� l̇i ni + l̈i ni (35)

where 
i is angular acceleration of link i.
The extension rate of the ith link is simply obtained by

taking the dot product of the two sides of Equation (34) with
ni, which yields

l̇i = ȧi · ni (36)

However, even with knowledge of l̇i, we still cannot solve
Equation (34) for 	i since the 3� 3 system of linear
equations that results from expanding Equation (34) is not
full rank. In some references,7,8 the relation 	i · ni =0 is
used, which is an approximation and true only at the instant
when ni is normal to the fixed axis of the universal joint. An
exact solution can be obtained by explicitly considering the
kinematic model of the universal joint.

Figure 4 shows a typical Stewart Platform strut with a 2
degree-of-freedom universal joint at the base attachment

point, and a 3 degree-of-freedom spherical joint at the
platform attachment point. The unit vector ui along the axis
of the fixed revolute joint of the universal joint is
determined from the geometry of the mechanism. The unit
vector vi along the axis of the other revolute joint rotates in
a plane normal to ui, and since it is also normal to ni, it is
simply computed from

vi =
ui� ni

� ui� ni �
(37)

The angular velocity 	i of link i can be resolved into two
components along the revolute joint axes ui and vi of the
universal joint, and therefore we can write

	i =	ui ui +	vi vi (38)

The magnitudes of these two components can be obtained
by substituting Equation (38) into Equation (34), and taking
the dot product of the two sides of the resulting equation
with vi to solve for 	ui and with ui to solve for 	vi

	ui =� (ȧi � l̇i ni ) · vi / (li ni · ci ) (39)

	vi = (ȧi � l̇i ni ) · ui / (li ni · ci ) (40)

where ci is defined as

ci =ui� vi (41)

Link i has zero angular velocity component along the
direction of ci, since it is always normal to the two axes of
rotation of link i, ui and vi.

The acceleration of point ai is given in terms of the
variables related to the motion of link i by Equation (35).
Taking the dot product of both sides with ni, we get the
extensional acceleration of link i as

l̈i = äi · ni � li(	i� (	i� ni )) · ni (42)

As before, even with the knowledge of l̈i, we still can not
solve the linear system of Equations (35) for 
i, and we
would again need to use the universal joint kinematic
model. Differentiating Equation (38) with respect to time,
we get


i =
ui ui +
vi vi +	ui 	vi ci (43)

In the last equation, we used u̇i =0 and v̇i =	ui ui� vi, which
is obtained from the fact that the position vector vi is
rotating with an angular velocity of 	ui ni. Substituting
Equation (43) into Equation (35) will yield


ui =� ä�i · vi / (li ni · ci) (44)


vi = ä�i · ui / (li ni · ci) (45)

where

ä�i = äi �	ui 	vi li ci� ni � l̈i ni �2 l̇i 	i� ni � li 	i� (	i� ni )
(46)

In the previous analysis in this section, we assumed that a 2
degree-of-freedom universal joint is used at the base end
and a 3 degree-of-freedom spherical joint is used at the
moving platform end. If, instead, the spherical joint is used
at the base end and the universal joint is used at the platform
end, the derivation for the angular velocities and accelera-Fig. 4. A Stewart platform strut.
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tions of the links will be slightly different. For the angular
velocity, the previous procedure can be used to determine l̇i,
	ui, and 	vi. However, in this case, we should compute ui

from ui =
W RP

P ui where P ui is the unit vector of the
revolute joint fixed to the platform and is given with
reference to frame P. In addition to the two velocity
components of Equation (38), a third angular velocity
component will be transmitted from the platform to link i
through the 2 degree-of-freedom joint along the ci direction.
Therefore, the angular velocity of link i should be written
for this case as

	i =	ui ui +	vi vi + (	 · ci)ci (47)

For the angular acceleration, we can use the same
procedure. However, the equation corresponding to Equa-
tion (43) will have more terms which come from
differentiating Equation (47) with respect to time. In
particular, note that u̇i is not zero, and neither is ċi.

Taking into consideration these details, the angular
acceleration of link i can be obtained for this case as


i =
ui ui +
vi vi + (
 · ci )ci +	ui	vici �2	ui(	 · vi )ci

�	vi(	 · ci )ui + (	 · vi )(	 · ui)ci + (	 · ci )(	 · vi )ui

(48)

Finally, if two spherical joints are used at the two ends of the
links, kinematic redundancy results. Hence, exact values for
the angular velocities and accelerations of the links are not
obtainable from kinematic considerations alone. For the
case of an electromechanically actuated strut with spherical
joints at both ends, shown in Figure 5, electromagnetic

torque generated at the motor rotates the rotor in one
direction while an equal reaction torque will be exerted on
the stator in the opposite direction. The electromagnetic
torque on the rotor will be transmitted to the ballscrew and
to the nut. Since the nut and the attached inner strut tube are
constrained from rotation, the torque transmitted to the nut
will in turn be transmitted to the outer strut tube, to which
the motor stator is fixed, and therefore will cancel the
reaction torque on the stator. However, due to friction losses
in the transmission, these two opposing torque components
may not be exactly equal in magnitude. Therefore, a small
differential torque may result on the outer tube of the strut,
which could rotate the whole strut about its axis. This
rotation will be opposed only by the friction in the two
spherical joints. This rotation of the strut, however, will not
affect the relative motion between the screw and the nut
which will result in the extension (or retraction) of the link.
In an early version of the Ingersoll Octahedral Hexapod,
springs connecting each pair of struts near the base joints
are used to help the spherical joint friction in preventing
strut rotation. It has been observed that the struts do rotate
by small amounts for some maneuvers, and the restraining
springs are exercised. If this behavior is to be modeled,
models of spherical joint friction will have to be added
along with models of frictional losses in the ballscrew drive
and the spring force-deflection characteristics.

A simplifying approximation, in the case of the last
design, is to assume that there is no rotation about the axial
direction which implies that 	i is perpendicular to ni. This
assumption will greatly simplify the kinematic equations for
the angular velocity and acceleration of the strut. By taking
the cross product with ni on both sides of Equations (34) and
(35) and simplifying using the above assumption, we get

	i = (ni� ȧi )/li (49)


i = (ni� äi �2l̇i 	i )/li (50)

7. INVERSE DYNAMIC EQUATIONS
The recursive Newton-Euler formulation requires that all
the necessary kinematic variables, which include the
platform variables 	 and 
 and the strut variables li, l̇i, l̈i, ni,
	i and 
i be stated in terms of a given generalized
coordinate vector q and its first and second time derivatives.
This procedure is discussed in detail in the previous
sections. In addition, we need to determine the acceleration
vectors ai1, ai2 of the centers of mass of the moving and
stationary parts 1 and 2 of link i. Part 1, the moving part,
includes all the components that translate axially in addition
to the rotational motion of the strut. For the case of an
electromechanical strut, Part 1 includes the nut and the
output shaft, whereas Part 2, the stationary part, includes all
the remaining components that only rotate. The accelera-
tions of the centers of mass of parts 1 and 2 are given by

ai1 = (li � l1)	i� (	i� ni )+ (li � l1)
i� ni +2	i� l̇i ni + l̈i ni (51)

ai2 = l2 	i� (	i� ni )+ l2 
i� ni (52)

where l1 and l2 are the lengths between the centers of mass
of parts 1 and 2 and the attachment points ai and bi,
respectively, as shown in Figure 6.

Fig. 5. Electromechanically actuated strut with spherical joint at
both ends.
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With all the needed kinematic information available, we
can proceed to determine the dynamic equations of the
system by finding the reaction forces between the links and
the moving platform first. Let the reaction force of the
platform acting on link i be resolved into two components,
as shown in Figure 6, one component Fi

a along the prismatic
joint axis of link i, and the other component Fi

n normal to the
joint axis.7

Fi =Fi
a +Fi

n (53)

Now, assuming a 2 degree-of-freedom universal joint is
used either at the base joint or at the platform joint, a
moment component about an axis normal to the axes of the
two revolute joints of the universal joint will be transmitted
to link i from the base or the platform. This reaction
moment on the link i can be written as

Mi =mi ci (54)

where ci is a unit vector normal to the two axes of
the universal joint as previously defined, and mi is the
magnitude of this reaction moment. Link i will also be
subjected to gravitational force components m1G and m2G at
the centers of mass of the moving and stationary parts 1 and
2, respectively, where G=(0, �g, 0)T and g is the
acceleration due to gravity. The gravity field here is in
the negative Y direction since the Y-axis of the world
coordinate system W is chosen to be vertical to avoid the
formulation singularity problem associated with the chosen
Euler angles when the moving platform is horizontal.

Having established all the external force and moment
components on link i, balancing the moment components
about the base joint gives

m1(li � l1)ni� G+m2l2 ni� G+li ni� Fn
i +Mi

= (Ī1 + Ī2)
i � (Ī1 + Ī2)	i� 	i +m1(li � l1)ni� ai1 +m2l2ni� ai2

(55)

where Ī1, and Ī2 are the mass moments of inertia tensors of
parts 1 and 2 respectively, with reference to the world
coordinate system W and at the centers of mass of the two

parts. The moment components on the left hand side of
Equation (55) are due to the gravitational forces on parts 1
and 2, the normal force component at joint ai, and the
reaction moment at the universal joint either at ai or bi.
These components balance the inertial moment components
shown on the right hand side of Equation (55). By using
Equation (54), Equation (55) can be written compactly as

li ni� Fi
n +mici =Ni (56)

where Ni can be evaluated from

Ni =�m1(li � l1)ni� G�m2l2 ni� G+(Ī1 + Ī2)
i

� (Ī1 + Ī2)	i� 	i +m1(li � l1)ni� ai1 +m2l2 ni� ai2 (57)

For axisymmetric links, we can avoid computing the inertia
tensors Ī1 and Ī2 in Equation (57) by substituting the
following relations which involve the scalar quantities Īaa1,
Īaa2, Īnn1, and Īnn2 representing the mass moments of inertia
along the axial and normal directions of the links for parts
1 and 2 at the respective centers of mass.16 Details are given
in the Appendix.

(Ī1 + Ī2)
i = (Īaa1 + Īaa2)(
i · ni )ni + (Īnn1 + Īnn2)ni� (
i� ni ) (58)

(Ī1 + Ī2)	i� 	i = (Īaa1 + Īaa2 � Īnn1 � Īnn2)(	i · ni )ni� 	i (59)

Taking the dot product of both sides of Equation (56) with
ni, the term containing Fi

n will drop out since it is normal to
ni, and mi can be determined as

mi =(Ni · ni )/(ci · ni ) (60)

There is no solution for mi if ci is perpendicular to ni, which
would only occur if the strut axis coincides with the axis of
the fixed revolute joint. With proper design this position can
be avoided. If spherical joints are used at both ends of the
strut, mi will be zero. Once mi is determined, it can be
substituted into Equation (56) to get Fi

n from

Fi
n =(Ni� ni �mi ci� ni )/li (61)

For the case of frictionless spherical joints at both strut
ends, Equation (61) can be used, the term containing mi

being zero. For this case also, and referring to Equations
(58) and (59), only the term (Īnn1 + Īnn2)
i� ni will be
nonzero, among all the terms in Equations (58) and (59),
since 	i · ni =0 and 
i · ni =0. Therefore, only the moment of
inertia components Īnn1 and Īnn2 will be needed in the
equations if frictionless spherical joints are used at both
ends of each strut. Hence, the net inertial moment
component along the axial direction is zero for this case.
This is consistent with our assumption that frictionless
spherical joints do not transmit moments and hence there is
no axial rotation of the struts.

Once we have determined the normal force component Fi
n

and the reaction moment Mi transmitted through the
universal joint, we can proceed to find the axial force
component Fi

a. We take advantage of the fact that the line of
action of this force is along the prismatic joint axis of link
i and therefore we can write Fi

a in the form

Fi
a = f i

a ni (62)

where f a
i contains the magnitude and sign of Fi

a. The six
scalar quantities f a

i for i=1, . . . , 6 can be determined from
the summation of the force and moment components acting
on the platform which will result in

Fig. 6. Force components on link i for the case of two frictionless
spherical joints.
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��6

i=1

f a
i ni ��6

i=1

Fn
i +mpG=mp ẍg (63)

and

mp r̄� G��6

i=1

f a
i

W RP
P ai� ni ��6

i=1

W

RP
P ai� Fn

i ��6

i=1

Mi

= ĪP 
� ĪP	� 	+mp(r̄� ẍg ) (64)

where mp is the mass of the platform. ẍg is the acceleration
of the platform center of mass, which is determined in
terms of the platform motion variables as

ẍg = ẍ+
� r̄+	� (	� r̄) (65)

and

r̄= wRp
pr̄ (66)

where p r̄ is the 3-vector of the center of mass of the platform
with reference to the frame P. Also, the mass moments of
inertia of the platform Īp with reference to the world frame
W at the center of mass of the platform, in Equation (64), is
time varying due to the rotation of the platform. It can
be related to the constant mass moments of inertia of
the platform p Īp described with reference to frame P by the
following relation.16 Details are given in the Appendix.

Īp = w Rp
p Īp

w R T
p (67)

Equations (63) and (64) make a system of 6 linear equations
in f a

i for i=1, . . . , 6. They can be solved for f a
i as

f a
1

�
f a

6

=J T
1 C (68)

where we use the matrix J�1
1 as given by Equation (14), and

define the known vector C as

C=

mPG�mP ẍg ��6

i=1

F n
i

mP r̄�G�mp(r̄� ẍg)� ĪP
+ ĪP	�	��6

i=1

W

RP
P ai �Fn

i ��6

i=1

Mi

(69)
Note that, for a configuration with a universal joint at the
base end, the reaction moment Mi is transferred from

the base to the strut. Therefore, the term �6

i=1

Mi should not

be present in Equations (64) and (69) if a spherical joint is
used at the platform end. We see from Equation (68) that the
solution requires inverting the 6� 6 matrix J�1

1 , which can
only be done numerically since an analytical solution for
inverting J�1

1 is not available.
Once the interaction forces between the struts and the

moving platform are determined, we proceed to compute
the actuation forces fi that power the prismatic joints. This
force component will be the axial force that the ball screw

exerts on the nut for the electromechanical actuation
considered. fi is determined by summing the axial force
components acting on the inner strut tube and nut (part 1),
which results in

fi =m1 ai1 · ni � f i
a �m1 G · ni (70)

The joint space force vector F, containing the six actuation
force components fi for i=1 . . . 6, can be written as

F=(f1 . . . f6)
T (71)

Using Equation (70), F can be obtained as

F=
m1(a11 �G) · n1

�
m1(a61 �G) · n6

�J T
1 C (72)

On the other hand, the Cartesian space force/torque vector


=( fx fy fz 
� 
� 
�)T (73)

can be obtained using the Jacobian matrix J.


=J�T F (74)

or


=J�T

m1(a11 �G) · n1

�
m1(a61 �G) · n6

�J �T
2 C (75)

where J�T
2 is given by Equation (16). Equation (75)

represents a closed form solution of the inverse dynamics of
the Stewart platform mechanism in Cartesian coordinates.
The solution does not require inverting any matrix since the
Jacobian matrix is derived in its inverse form.

8. FORWARD DYNAMICS
The inverse dynamic problem for Stewart Platform mecha-
nisms can be stated as: given the generalized position,
velocity and acceleration vectors, find the corresponding
force/torque vector that results in such motion. On the other
hand, the forward dynamic problem can be stated as: given
the input force/torque vector, find the corresponding motion
in terms of Cartesian position, velocity and acceleration for
some initial position and velocity conditions.

In contrast to the Lagrangian formulation, the Newton-
Euler formulation can not be directly used to obtain a closed
form forward dynamic solution in which the generalized
acceleration vector q̈ is separated. For the purpose of
simulating the dynamics of Stewart Platform mechanisms,
however, the derived dynamic equations need to be put in
the form


=M(q)q̈+N(q, q̇)+G(q) (76)

where

M(q) is the inertia matrix of the machine.
N(q, q̇) contains the Coriolis and centrifugal force/torque
components.
G(q) contains the gravity force/torque components.

Setting h(q, q̇)=N(q, q̇)+G(q), the acceleration vector q̈ can
then be obtained from

q̈=M�1(q)(
�h(q, q̇)) (77)
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where the values of q, q̇, and 
 are assumed to be known at
each time instant. Numerical integration is then used to find
q and q̇ for the next time step. To do this, we need first to be
able to compute M(q) and h(q, q̇). Numerical procedures17

can enable us to compute these quantities numerically for
given values of q and q̇. Based on the presented Newton-
Euler formulation, a computer routine can be used to
compute the Cartesian space force/torque vector 
 for given
Cartesian space position, velocity and acceleration vectors
q, q̇, q̈. Setting q̈ equal to zero when calling the routine will
return the numerical value of the Coriolis, centrifugal, and
gravity force/torque h(q, q̇). Similarly, calling the routine
with q̈ having zero elements except the ith element which is
set to be unity, with q̇ and g being equal to zero, will return
the numerical value of the ith column of the M(q) matrix.
This procedure is repeated for i=1, . . , 6 to compute the six
columns of the M(q) matrix.

9. INCLUSION OF ACTUATOR DYNAMICS
In a previous section, we showed that the rigid body
dynamics of Stewart Platform mechanism of interest are
modeled by second order nonlinear, coupled differential
equations represented by Equation (76). We can transform
this equation to joint space using Equations (23) and (74),
yielding

Mj(q)l̈+Nj(q, q̇)+Gj(q)=F (78)

where F is the 6-vector of the input forces in joint space,

Mj(q)=JT M(q)J (79)

Nj(q, q̇)=JT N(q, q̇)�JT M(q)J
d J�1

dt
q̇ (80)

and

Gj(q)=JT G(q) (81)

Once the dynamic equations are expressed in joint space,
the actuator dynamics can be added easily.

For the six motor-ballscrew-nut drives powering the
struts, assuming identical links and viscous damping,
the actuator mechanical dynamic equation can be written in
matrix form as

Ma l̈+Va l̇+Ka F=
m (82)

where

Ma =Ma I6� 6 =
2�

np
( Js +n2 Jm)I6� 6 (83)

Va =Va I6� 6 =
2�

np
(bs +n2 bm)I6� 6 (84)

Ka =Ka I6� 6 =
p

2�n
I6� 6 (85)

Ma and Ma are the actuator inertia matrix and element, Va

and Va are the actuator viscous damping coefficient matrix
and element, and Ka and Ka are the actuator gain matrix and

element. Js and Jm are the mass moments of inertia of the
ballscrew and motor, bs and bm are the viscous damping
coefficient of the ballscrew and motor, p is the pitch of the
ballscrew, and n is the gear ratio. 
m is the vector of motor
torques.

Equation (82) can be combined with Equation (78) to
form

Mj (q)l̈+Nj (q, q̇)+Gj (q)=
m (86)

where

Mj (q)=Ka JT M(q) J+Ma (87)

Nj (q, q̇)=Ka JT N(q, q̇)+�Va �Ka JT M(q) J
d J�1

dt
J�J�1 q̇

(88)

Gj (q)=Ka JT G(q) (89)

Equation (86) presents the combined rigid body and
actuator dynamics transformed to joint space.

Equivalently, for the purpose of simulating the combined
system, Equation (86) can also be expressed in Cartesian
space as

Mc(q)q̈+Nc(q, q̇)+Gc(q)=
m (90)

where

Mc(q)=Ka JT M(q)+Ma J�1 (91)

Nc(q, q̇)=Ka JT N(q, q̇)+�Va J�1 +Ma

d J�1

dt �q̇ (92)

Gc(q)=Ka JT G(q) (93)

The actuator electrical dynamics are also formulated in joint
space and can be described by the following equations
assuming brush type DC motor


m =Kt i (94)

L
di
dt

+R i+Kb�̇m =v (95)

Kt, L, R, and Kb are the motor torque matrix, motor armature
inductance matrix, motor armature resistance matrix and
motor back emf matrix respectively. i and v are the 6-vectors
of motor currents and voltages, respectively. �̇m is the motor
angular velocity vector, and is related to joint space velocity
vector by

�̇m =
2�n

p
l̇ (96)

Using Equations (90), (94), (95) and (96), the simulation
block diagram of the system which includes the actuator
dynamics will be as shown in Figure 7. In this figure, we
assume a direct drive (n=1 in Equations (90)). The resulting
dynamic system is described by a vector third order
differential equation, with the motor voltage vector v as the
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input to the system. We use Equation (90) which describes
the system dynamics in Cartesian space, rather than
Equation (86) which describes the system dynamics in joint
space, to simulate the rigid-body dynamics to avoid using
forward kinematics to obtain q from l, q being needed for
computing the rigid body dynamics.

9.1. Simulation study
To see the significance of the different terms in the obtained
dynamic equations, computer simulation is used to compute
the inverse dynamics of the combined system including
actuator dynamics. Inertial, velocity and gravity terms of the
combined system as reflected on the machine prismatic joint
axes are evaluated. A circular trajectory of 40 cm radius
traversed in a plane tilted with respect to the X-Y plane,
with a speed of 12 m/min, is used in the evaluation. A
trapezoidal velocity profile with commanded constant
acceleration and deceleration at the beginning and end of
the trajectory is used to simulate machine motion. The
orientation of the platform is kept unchanged and horizontal
during this motion.

Figure 8 shows the results of this simulation for the six
axes of the machine. Because the traversed trajectory is a

circular one, the dynamic terms appear to vary sinusoidally.
The gravity term has a significantly larger magnitude of
variation due to the relatively large trajectory traversed and
correspondingly large change in strut inclination. The
damping term, which depends on the traversing speed,
shows significant variation also. The actuator and rigid body
inertial term variations are small compared to the previously
mentioned terms, except at the beginning and end of the
trajectory, where the acceleration components are higher.
Coriolis and centrifugal term variations were insignificant
during this trajectory.

10. INCLUSION OF JOINT FRICTION
Friction has a significant impact on the dynamics of
mechanisms in general. In conventional machine tools, low
velocity friction is important when a feed drive axis reverses
direction, and is one of the main sources of motion control
errors. The kinematics of machine tools with conventional
architectures are relatively simple as compared to those of
robotic mechanisms in general. This makes prediction of the
instants of direction reversal in machine tool feed drives
easier. For example, two dimensional circular contours on
x-y tables result in direction reversals at the beginning of
each quadrant of the circle. In contrast, for Stewart Platform
mechanisms, both powered and unpowered joints will
experience direction reversals even with simple straight-line
trajectories. Friction analysis of the different joints therefore
requires availability of accurately modeled relative motions
at the joints.

Direction reversal is easy to predict for single degree-of-
freedom (DOF) joints such as prismatic and revolute joints.
A two DOF universal joint can also be viewed as two single
DOF joints connecting three links as was presented earlier.
On the other hand, relative motion of a three DOF
unpowered spherical joint involves three-dimensional
motion. For the purpose of analyzing friction, the spherical
joint may be viewed as a revolute joint having a pure
rotation about an instantaneous screw axis.18 The instanta-
neous screw axis is represented by a unit vector s, which can
be computed from

s=
�r

� �r �
(97)

where �r is the relative angular velocity vector between the
ball and the socket.

In the following development, a Coulomb friction model
for the unpowered joints is added to the dynamic equations
of the Stewart Platform mechanism previously derived,
assuming that spherical platform and base joints are used for
each strut. We assume that the friction at the joints depends
on the relative velocities as well as on the reaction forces at
these joints. Accurate relative velocity models at the joints
were presented in the kinematic analysis section. Analysis
of the transmitted forces between the struts and the moving
platform is also presented previously.

With this knowledge of the relative velocity, and
assuming for now that the reaction forces at the joints are
known, we proceed to compute the friction torque vectors

ai and 
bi that act on the ith strut at joints ai and bi

Fig. 7. Simulation block diagram of Stewart platform mechanism
dynamics including actuator dynamics.

Fig. 8. Joint force components for tilted circular trajectory:
Radius=40 cm, Speed=12 m/min, ‘__’ rigid body inertial terms,
‘--’ actuator inertial terms, ‘-.’ Coriolis and centrifugal terms, ‘. .’
actuator damping terms, ‘-o-‘ gravity terms.
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respectively. Figure 9 shows the reaction force components
transmitted from the base/platform to the ball of the
respective spherical joint. We assume here that the ball is
rigidly attached to the strut while the socket is rigidly
attached to the base/platform. For a frictionless joint, the
reaction force R transmitted through the joint will be
oriented radially to the ball. However, as shown in Figure 9,
in the presence of a friction force component F, which is
tangent to the ball at the point of contact and normal to the
instantaneous screw axis s, R will not be radial. Instead, R
can be resolved into the friction force component F and
another normal force component N that passes through the
center of the joint.

R=F+N (98)

Assuming Coulombic friction, the magnitudes of F and N
are related by

F=� N (99)

where � is the coefficient of friction at the joint. Also, since
the magnitudes of R, F and N are related by R2 =F2 +N2, the
magnitudes of F and N, in terms of the magnitude of R and
the coefficient of friction �, are obtained as

F=
�

�1+�2
R (100)

N=
1

�1+�2
R (101)

The force system acting on the ball of the spherical joint can
be replaced by an equivalent reaction force R at the center
of the ball and a friction torque 
f. It can be shown that 
f

could be obtained from

�f =�
r
N

R� F (102)

where r is the radius of the ball. To find this friction torque

f, we need to determine the direction of the friction force
vector F. For this purpose we will define a coordinate frame
S that is aligned with the screw axis s as shown in Figure 9.

Axis s will form one axis of this frame. Axis u is defined to
be normal to the plane formed by s and k, where k is a unit
vector along the Z-axis of the world coordinate system W.
Therefore, the transformation matrix from frame S to the
world frame W is constructed as

W TS =(u v s)=� k� s
� k� s �

s�� k� s
� k� s �� s� (103)

Since the friction force F is normal to axis s, it will be in the
u-v plane and can be stated in frame S as

s F=F(cos �f , sin �f , 0)T (104)

where �f is the angle that F makes with the u-axis. Using the
transformation (103), the components of R along axes u, v
and s are determined as Ru, Rv and Rs respectively. Since F
is normal to axis s, only Ru and Rv will be contributing to F.
Hence the magnitude of F can be written as

F= � Ru cos �f +Rv sin �f � (105)

Since the magnitude of F is known from Equation (100),
Equation (105) can be solved for �f , yielding

�f =2 tan�1 Rv ±�R2
u +R2

v �F2

Ru +F
(106)

This equation indicates that there are two possible solutions.
The solution that results in a friction torque component
opposing �r is the correct one. Once S F is determined, it
can be transformed back to frame W using the transforma-
tion Equation (103), and then used to compute the friction
torque 
f using Equation (102).

Once joint friction torques are computed, 
ai and 
bi at the
platform and base respectively, they should be added to
the left hand side of the moment equation in Equation (55),
and hence subtracted from the definition of Ni in Equation
(57). Also, friction torque vectors equal and opposite to 
ai

will be acting on the platform at ai for i=1 . . . 6. Therefore,

�6

i=1


ai should be subtracted from the left hand side of

Equation (64), and hence subtracted from the lower element
of vector C in Equation (69). After adding these terms, the
dynamic equation can be rewritten as


=M(q)q̈+N(q, q̇)+G(q)+Tf (q, q̇, q̈) (107)

where Tf (q, q̇, q̈) is a 6-vector of joint friction torques and is
given by

Tf (q, q̇, q̈)=�J�T
2 Cf (108)

where Cf is given by

Cf =
��6

i=1

Nfi� ni /li

�6

i=1

(Nfi� ni /li )�
w Rp

p ai ��6

i=1


ai

(109)

and

Nfi =�
bi �
ai (110)

Fig. 9. Force components acting on the ball of a spherical joint.
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The dependence of the friction torques 
ai and 
bi on the
reaction forces at the joints will render the dynamic
equations implicit. Iterative procedures should be employed
in this case to solve the resulting equations. The reaction
force Rai at joint ai is simply obtained by adding F i

n to F i
a,

given by Equations (61) and (62), respectively. On the other
hand, the reaction force Rbi at joint bi can be obtained by
performing a force balance on strut i, which gives Rbi as

Rbi =m1 ai1 +m2 ai2 �F i
n �F i

a �m1 G�m2 G (111)

10.1. Simulation study of friction effects
In this study the rigid body dynamics as represented by
Equation (78) are simulated with and without spherical joint
friction effects. The circular trajectory considered pre-
viously is used again in this study. A friction coefficient of
0.1 is assumed in this simulation. Figure 10 shows the
actuator force requirements for the two cases of frictionless
spherical joints and spherical joints with friction. Since
actuator dynamic effects are not included in Equation (78),
the actuator forces here are mainly due to the gravity effect.
The presence of joint friction results in a maximum
difference of about 0.3 KN for some of the actuators. In one
half of the tilted trajectory, the platform is moving upward
and hence extra forces are needed in the presence of
friction. In the other half, the platform is moving downward
and hence a smaller force is needed since friction is helping
the actuators in overcoming gravity. The result shown here
indicates that friction effects are significant.

12. CONCLUSIONS
In this paper, a study of the kinematics of a Stewart Platform
mechanism has been presented. Closed form solutions for
the inverse position, rate and acceleration kinematics are
presented. As part of these solutions, the inverse Jacobian
matrix of the mechanism, and its time derivative, are
derived. Since there is no closed form solution for the
forward kinematic problem for the general class of Stewart

Platforms, we investigate also the use of a numerical
iterative solution for this problem based on the Newton-
Raphson method. It is shown, through a numerical example,
that an acceptable solution could be reached after a few
iterations, providing that an initial guess close enough to the
actual solution is available. Finally, kinematic analyses for
the angular velocities and accelerations of the links and
unpowered joints are presented. It is shown that the angular
velocities and accelerations of the links are different for
different types of unpowered joints.

A study of the dynamics of Stewart Platform mechanisms
is also presented. A dynamic model based on the Newton-
Euler formulation for a general class of Stewart Platform
mechanisms is derived. The Newton-Euler formulation
results in an efficient procedure to compute the inverse
dynamics of the mechanism. The dynamic equations
derived thus in Cartesian space are transformed to joint
space in order to add actuator dynamic effects including
actuator electricat as well as mechanical dynamics. Also,
effects of unpowered joint friction are added to the derived
rigid body dynamic model. Friction effect are seen to be
significant for realistic friction levels, suggesting that
friction compensation should be an explicit objective of
control.
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APPENDIX
The constant mass moment of inertia tensor xyz Ī of a rigid
body, stated with reference to a body coordinate frame x-y-z
at the center of mass, can be transformed to a non rotating
coordinate frame X-Y-Z as

Ī= XYZ Rxyz
xyz Ī XYZ R T

xyz (a)

where XYZ Rxyz is a rotation matrix describing the orientation
of frame x-y-z with reference to frame X-Y-Z. One way to
obtain relation (a) is by using the fact that the kinetic energy

of a rotating rigid body is the same in all coordinate
systems.

K=
1
2

xyz 	T xyz Ī xyz 	=
1
2

	T Ī 	 (b)

is the angular velocity vector of the body stated in frame
x-y-z, which can be transformed to frame X-Y-Z as
	= XYZ Rxyz

xyz 	. By recalling the orthogonal property of
XYZ Rxyz which states XYZ R�1

xyz = XYZ RT
xyz, one can verify relation

(a) quite easily.
Now, let x, y, and z be the principal axes of the rigid body,

with Īxx, Īyy, and Īzz being the mass moment of inertia
components about the principal axes, respectively, and let
XYZ Rxyz be defined as XYZ Rxyz = [n u v], where n, u, and v are
unit vectors along the x, y, and z axes, respectively, and
stated with reference to frame X-Y-Z. Equation (a) will
expand to

Ī= Īxx n nT + Īyy u uT + Īzz v vT (c)

Further, assuming an axisymmetric body, with Īxx = Īaa and
Īyy = Īzz = Īnn, we get

Ī= Īaa n nT + Īnn(I3� 3 �n nT ) (d)

where I3� 3 is the 3� 3 identity matrix. Once again we use
the orthogonal property of XYZ Rxyz which states
n nT +u uT +v vT =I3� 3.

By noting that n nT 
=(n · 
)n, and (I3� 3 �n nT )

=n� (
� n) which can be verified by expanding and
comparing terms, Ī 
, for an axisymmetric body, can be
written as

Ī 
= Īaa(n · 
)n+ Īnn n� (
 · n) (e)

Similarly, Ī 	� 	 will reduce to

Ī 	� 	=(Īaa � Īnn)(n · 	)n� 	 (f)
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