
J. Fluid Mech. (2010), vol. 665, pp. 99–119. c© Cambridge University Press 2010

doi:10.1017/S0022112010003861

99

A streamwise constant model of turbulence
in plane Couette flow

D. F. GAYME1†, B. J. McKEON1,
A. PAPACHRISTODOULOU2, B. BAMIEH3

AND J. C. DOYLE1

1Division of Engineering and Applied Science, California Institute of Technology,
Pasadena, CA 91125, USA

2Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
3Department of Mechanical Engineering, University of California, Santa Barbara,

CA 93106, USA

(Received 21 October 2009; revised 14 July 2010; accepted 14 July 2010;

first published online 19 October 2010)

Streamwise and quasi-streamwise elongated structures have been shown to play a
significant role in turbulent shear flows. We model the mean behaviour of fully
turbulent plane Couette flow using a streamwise constant projection of the Navier–
Stokes equations. This results in a two-dimensional three-velocity-component (2D/3C)
model. We first use a steady-state version of the model to demonstrate that its
nonlinear coupling provides the mathematical mechanism that shapes the turbulent
velocity profile. Simulations of the 2D/3C model under small-amplitude Gaussian
forcing of the cross-stream components are compared to direct numerical simulation
(DNS) data. The results indicate that a streamwise constant projection of the Navier–
Stokes equations captures salient features of fully turbulent plane Couette flow at
low Reynolds numbers. A systems-theoretic approach is used to demonstrate the
presence of large input–output amplification through the forced 2D/3C model. It is
this amplification coupled with the appropriate nonlinearity that enables the 2D/3C
model to generate turbulent behaviour under the small-amplitude forcing employed
in this study.

Key words: nonlinear dynamical systems, turbulence modelling, turbulent boundary
layers

1. Introduction
The Navier–Stokes equations (NS) provide a complete dynamical description of

the three velocity components and pressure for simple canonical flows under the
sole modelling assumption that all important physical phenomena are captured by
these equations. Unfortunately, these infinite-dimensional algebraically constrained
equations are analytically intractable. They have, however, been extensively studied
computationally and numerical solutions do exist. For plane Couette flow, the first
numerical solution was computed by Nagata (1990). Gibson, Halcrow & Cvitanović
(2009) provide a detailed discussion of other work related to a full range of numerical
plane-Couette-flow solutions. Ever increasing computing power will continue to allow
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progress towards understanding these local properties. However, a full mathematical
understanding of NS even in simple parallel flow configurations remains elusive, hence
considerable effort has been applied to the search for more analytically tractable flow
models.

In contrast, the linearized Navier–Stokes equations (LNS) can be analysed using
well-developed tools from linear systems theory. For wall-bounded shear flows, one
particular property of the LNS that has been extensively studied is disturbance
amplification (see e.g. Farrell 1988; Gustavsson 1991; Reddy & Henningson 1993;
Farrell & Ioannou 1993b; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005). Large
disturbance amplification is common in these flows because the linear operators
governing them are non-normal (i.e. the operator A is such that A∗A �= AA∗).

The LNS are thought to capture the energy production of the full nonlinear system.
Henningson & Reddy (1994) showed that non-normality and linear mechanisms are
necessary conditions for subcritical transition to turbulence and it is widely believed
that energy amplification is due to coupling terms that remain in linearized models
(see e.g. Trefethen et al. 1993). In smooth wall-bounded shear flows, the linear
coupling between the Orr–Sommerfeld and Squire equations associated with non-
zero spanwise wavenumber has been shown to be required for the generation of
the wall layer streaks that are necessary to maintain turbulence (Butler & Farrell
1993; Kim & Lim 2000). In this context, the term ‘streak’ describes the ‘well-defined
elongated region of spanwise alternating bands of low and high speed fluid’ (Waleffe,
Kim & Hamilton 1991). The LNS have also been used by Jovanović & Bamieh (2001)
to predict certain second-order statistics of turbulent channel flow. The above results
and a host of others illustrate the power of the LNS as a model for wall-bounded
shear flows. There is, however, one fundamental flow feature that linear models are
unable to capture, the change in the mean velocity profile as the flow transitions
from laminar to turbulent. In addition, linear analysis can only give local information
regarding the full (nonlinear) system.

Empirical models have been shown to be useful in capturing key aspects of many
flows. For example, proper orthogonal decomposition (POD) has been successfully
used to construct accurate low-dimensional ordinary differential equation models (see
e.g. Lumley 1967; Smith, Moehlis & Holmes 2005). However, the preceding analysis
utilizes existing experimental or numerical data, a limitation also applicable to eddy
viscosity models. In general, data-driven or heuristic models can be said to suffer
from a lack of connection, of varying degree, to the governing equations of the
problem.

The model studied herein is an attempt to merge the benefits of studying a
physics-based set of equations such as NS, with the analytical tractability of a
simplified model, such as the LNS. It is developed based on the assumption that
certain aspects of fully developed turbulent flow can be reasonably modelled as
homogeneous in the streamwise direction, here denoted ‘streamwise constant’. The
idea that a streamwise constant model is sufficient to capture mean profile changes
from laminar to turbulent is strongly supported by the work of Reddy & Ioannou
(2000), who showed that nonlinear interaction between the (kx, kz) = (0, ±N) modes,
where kx, kz are the streamwise and spanwise wavenumbers, is the primary factor
in determining the turbulent mean velocity profile in Couette flow. Further, as was
discussed in Orlandi & Jiménez (1994), this type of model may be adequate to
capture many of the effects associated with the generation of turbulent wall friction.
A two-and-a-half-dimensional model along similar lines has also been developed for
the viscous wall layer. Tullis & Pollard (1993), for example, use such a model to
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study flow over riblets in this region. The physical and analytical basis for assuming
homogeneity in the streamwise direction is discussed in the following section.

1.1. Streamwise coherence

A growing body of work supports the notion that turbulence in wall-bounded shear
flows is characterized by dynamically significant coherent structures, particularly
features with streamwise and quasi-streamwise alignment. Near-wall streaks (Kline
et al. 1967), for example, have been shown to play a key role in energy production
through the ‘near-wall autonomous cycle’ discussed by Waleffe (1990), Hamilton,
Kim & Waleffe (1995), Waleffe (1997) and Jiménez & Pinelli (1999). This cycle is
generally agreed to be an important mechanism in determining the low-order statistics
of turbulent flows in the buffer region and viscous sublayer, i.e. y+ � 30 (Schoppa &
Hussain 2002).

More recent high-Reynolds-number studies have focused on the identification and
characterization of streamwise coherence in the core (see e.g. Kim & Adrian 1999;
Morrison et al. 2004; Guala, Hommema & Adrian 2006; Hutchins & Marusic 2007a).
These motions have been called large-scale and very-large-scale motions (LSMs and
VLSMs, respectively). They appear to have a similar signature to the near-wall streaks
(Hutchins & Marusic 2007b; Chung & McKeon 2010), but tend to be longer in extent,
from one to ten times the outer length scale, δ. There is experimental evidence to
suggest that at high Reynolds numbers (e.g. Reτ > 7300), VLSMs contain more energy
than the near-wall structures (Morrison et al. 2004; Hutchins & Marusic 2007a , b).
In turbulent boundary layers, they have also been shown to modulate the near-wall
turbulence (see e.g. Hutchins & Marusic 2007b; Mathis, Hutchins & Marusic 2009),
suggesting that they may play an important role in flow dynamics across a range of
scales.

In Couette flow, structures reminiscent of VLSMs have long been observed in
the core through direct numerical simulation (DNS) of turbulent plane Couette flow
(Lee & Kim 1991; Bech et al. 1995). Although some studies raised the concern that the
structures were numerical artifacts, recent DNS at higher resolution and with longer
box sizes (Komminaho, Lundbladh & Johansson 1996; Tsukahara, Kawamura &
Shingai 2006) has confirmed the existence of long streamwise alternating high- and
low-speed streaky structures at the centreline. In experiments, VLSMs were first
identified through observations of a noticeable peak in the Fourier energy spectrum
of the turbulence intensity at low frequencies (Komminaho et al. 1996; Kitoh & Umeki
2008). The Couette flow experiments of Tillmark & Alfredsson (1998) found further
evidence of very long structures in the form of long autocorrelations Ruu(τ ) and
two-point correlations Ruu(�x) as well as periodic variation of spanwise correlations
Ruu(�z) in the core. The streamwise extent of these correlations was longer than those
generally seen in other wall-bounded flows. Komminaho et al. (1996) also found that
in contrast to other flows, the streamwise correlations for Couette flow are larger at
the centre than near the wall. At the channel centre, the zero-cross distance of Ruu(τ )
and Ruu(�x) have been observed to be three times that of the corresponding structures
in Poiseuille flow (Kitoh, Nakabyashi & Nishimura 2005). This makes Couette flow
an ideal candidate to test the applicability of a streamwise constant model.

Streamwise constant, kx = 0, perturbations to the LNS also produce the largest
input–output response for both laminar (Farrell & Ioannou 1993b, 1998; Bamieh &
Dahleh 2001; Jovanović & Bamieh 2001) and turbulent (del Álamo & Jiménez 2006)
base velocity profiles. In addition, streaks of streamwise velocity naturally arise from
the set of initial conditions that produce the largest energy growth (Butler & Farrell
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Rew
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Figure 1. Flow geometry. Streamwise and spanwise boundaries are periodic, the bottom wall
is stationary and the top wall moves in the x direction with a velocity Uw . The channel
half-height is denoted δ and the full channel height is denoted h.

1992; Farrell & Ioannou 1993a), namely streamwise vortices. Even in linearly unstable
flows, studies have shown that the amplitude of streamwise constant structures can
exceed that of the linearly unstable modes (Gustavsson 1991; Jovanović & Bamieh
2004). For channel flows, Bamieh & Dahleh (2001) explicitly showed that streamwise
constant disturbances produce energy growth of the order of Re3 whereas streamwise
varying disturbances grow as a function of Re3/2.

In the present work, we employ a streamwise constant model based on the
previously discussed experimental and analytical evidence of the importance of
streamwise homogenous features. This so-called two-dimensional three-(velocity)-
component (henceforth 2D/3C), model for plane Couette flow is simulated under
small-amplitude Gaussian forcing. The results demonstrate the ability of this model
to capture some important features of fully developed turbulent flow. In particular,
it is demonstrated that (i) the nonlinear terms in the 2D/3C model capture the
momentum redistribution mechanism involved in creating the shape of the turbulent
velocity profile, (ii) a stochastically forced 2D/3C model can reproduce the appropriate
turbulent mean velocity profile and Reynolds number trends and (iii) this model
produces amplification of small disturbances that is consistent with input–output
studies of the LNS. The work is organized as follows: §§ 2 and 3 describe the model
and simulation approach. Results and discussion follow in § 4, including a comparison
between the model and a DNS dataset, before final conclusions.

2. The two-dimensional three-velocity-component model
The 2D/3C model discussed herein is obtained by setting streamwise (x direction)

velocity derivatives in the full NS equations describing Couette flow to zero (Bobba
2004). This can be thought of as a projection of the NS into the streamwise constant
space. One can explicitly show that for Couette flow this 2D/3C formulation also
results in a system with zero streamwise pressure gradient.

The velocity field is decomposed such that u = [U + u′
sw; V + v′

sw, W + w′
sw]; where

U = U (y) = y, V = W = 0 is the laminar Couette flow and (u′
sw, v′

sw, w′
sw) are the

corresponding time-dependent deviations from laminar in the streamwise constant
sense. The flow geometry is shown in figure 1. The Reynolds number employed is
Rew =Uwh/ν, where Uw is the velocity of the top plate, h is the channel height
and ν is the kinematic viscosity of the fluid. All distances and velocities are,
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respectively, normalized by h and Uw . In the sequel, we will use (u′
sw, v′

sw, w′
sw)

to denote (u′
sw/Uw, v′

sw/Uw, w′
sw/Uw), and explicitly indicate the scaling only in the

figure labels.
A stream function

v′
sw =

∂ψ

∂z
, w′

sw = −∂ψ

∂y
(2.1)

forces the appropriate 2D continuity. This results in the following model:

∂u′
sw

∂t
= −∂ψ

∂z

∂u′
sw

∂y
− ∂ψ

∂z

∂U

∂y
+

∂ψ

∂y

∂u′
sw

∂z
+

1

Rew

�u′
sw,

∂�ψ

∂t
= −∂ψ

∂z

∂�ψ

∂y
+

∂ψ

∂y

∂�ψ

∂z
+

1

Rew

�2ψ.

⎫⎪⎪⎬
⎪⎪⎭ (2.2)

No-slip boundary conditions at the wall and periodic boundary conditions in the
spanwise direction are applied (without loss of generality they can also be used for
the stream function equation since v′

sw =w′
sw = 0 ⇒ ∂ψ/∂z = ∂ψ/∂y = 0 ⇒ ψ = const).

This model retains many of the important flow features lost in a purely 2D model by
maintaining all three velocity components. Equations (2.2) are an improvement over
linear models because it is hypothesized that it is the nonlinearity in the u′

sw(y, z, t)
equation that provides the mathematical mechanism for the redistribution of the
fluid momentum. This redistribution creates larger streamwise velocity gradients in
the wall-normal direction and changes the plane Couette velocity profile from linear
to its characteristic turbulent ‘S-shape’. Meanwhile, the important features of the
LNS are maintained. Linearization of (2.2) around the laminar profile produces a
non-normal operator with a coupling term analogous to the one in the LNS.

The laminar flow solution of (2.2) was previously shown to be globally, i.e.
nonlinearly, stable for all Reynolds numbers (Bobba, Bamieh & Doyle 2002), and
therefore the laminar flow constitutes a unique solution. Consequently, any transition
mechanisms associated with bifurcations, escape from the basin of attraction of the
laminar solution or the like are not possible. So, any complications associated with
these nonlinear phenomena can be eliminated from the analysis of these particular
equations. Global asymptotic stability of the laminar solution also implies that without
forcing, perturbations will eventually decay, in agreement with the results of Orlandi &
Jiménez (1994) who found that after an initial perturbation a 2D/3C model decays
(back to laminar) with time. The fact that one can analytically prove that the unforced
2D/3C model has a unique solution suggests that it is far more analytically tractable
than NS. We do not pursue analytical studies of the 2D/3C model in the current
work, but instead concern ourselves with showing the applicability of the model
in describing important features of the flow field. However, the fact that global
statements about these equations can be made implies that future analytical studies
are promising.

As with any model, there are assumptions built into the 2D/3C model, and it
is important to understand how these relate to the physical phenomena associated
with turbulent flows. Most obviously, small-scale three-dimensional turbulent activity,
including the specifics of several structures that are known to exist in the full flow,
is not captured. While this makes appropriate scaling relationships more difficult
to determine, it does not diminish the potential of the model for predicting and
understanding key aspects of turbulence in plane Couette flow. The challenge lies
in extending the 2D/3C model to incorporate aspects of the streamwise variation
associated with three-dimensional turbulent flow.
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Model

�

Figure 2. A robust control block diagram for a model subject to uncertainty. Generally, a
norm bound on � specifies the amount of uncertainty that a model can have before a desired
property is lost (i.e. if the model is stable for ‖�‖ � 1, this implies robust stability).

2.1. Modelling framework

No model is a perfect representation of reality. In addition to modelling assumptions,
parameter errors or external influences on the system in question are often ignored.
Inaccurate parameter estimates or linearization of a nonlinear system may change the
model’s ability to predict behaviour. Environmental conditions that affect (or disturb)
the system may also play an important role in its dynamics. This role is not captured
by a typical model.

Robust control theory has historically been used to analyse models in the presence
of such modelling errors (‘uncertainty’) (Doyle, Francis & Tannenbaum 1991; Zhou,
Doyle & Glover 1996). One typically represents all of the uncertainties using an
uncertainty operator �. The block diagram of figure 2 is then used to depict a model
subject to this uncertain set �. Generally, robust control tools provide a bound on
‖�‖, below which a desired property can be maintained. Robust control tools do not
require a detailed model of the particular uncertainty. This makes them appealing in
situations where there are unknown (or hard-to-model) environmental influences on
the system, or when one can only specify the range on a parameter, rather than an
exact value. However, since the uncertainty is generally specified through a bound
that includes the worst-case scenario, the results of this type of analysis may be very
conservative. One way to mitigate this is to ‘structure’ or shape the uncertainty, a
process which relies on some understanding of the implicit modelling errors.

In the context of a system comprising a wall-bounded shear flow, many disturbances
can be modelled through the � block in figure 2. These sources of modelling errors
(uncertainties) can arise from assumptions on the boundary conditions or unmodelled
dynamics. External sources of model uncertainty that are not captured in the NS
equations, include phenomena such as acoustic noise and thermal fluctuations in
an experiment, or the build-up of numerical error in simulations. In addition the
uncertain set includes terms excluded by the modelling assumptions, namely the
kx �= 0 modes in the 2D/3C model, or the nonlinear terms for the LNS model. See
Bobba (2004) for a full characterization of the types of uncertainties present in shear
flow problems. Obviously, the latter class of perturbations are strictly bound to satisfy
the NS equations, while others are less constrained. Distributed wall roughness (i.e.
surface imperfections present in any real surface), wall vibration, imperfect alignment
of the walls or other parameter estimates may be captured through either stochastic
or other forcing.

In the present work, the framework of robust control is employed in a non-
traditional manner. Instead of providing an upper bound on ‖�‖ (i.e. a robustness
guarantee) we describe the extent to which the laminar flow state is ‘fragile’ (i.e. unable
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2D/3C model
Zero-mean

noise

Figure 3. The approximation for illustrating the 2D/3C model’s lack of robustness. The
zero-mean noise is used as an approximation for the modelling errors and uncertainty. The
noise acts as an additive ‘uncertainty’ at each time step.

to be maintained in the face of infinitesimal disturbances). One can think of this as an
inverse robustness (or ‘fragility’) problem, i.e. a discussion of a lack of robustness. In
order to study the disturbance response of the 2D/3C model the system of figure 2 is
abstracted into the simplified setting of figure 3. We further simplify by linearizing the
�ψ(y, z, t) equation, which is equivalent to recognizing that advection terms in the
stream function equation play a lesser role in redistributing momentum. The forcing
and henceforth ψ are constrained to be small such that the nonlinear terms are at
least an order of magnitude smaller than the linear ones in all cases studied here.
This small-amplitude noise assumption is very important in the development of this
work because of the focus on the effect of small-amplitude disturbances on a fragile
system and because larger-amplitude forcing can change the dynamics of the model.

For all of the numerical studies described herein, we simulate

∂u′
sw

∂t
= −∂ψ

∂z

∂u′
sw

∂y
− ∂ψ

∂z

∂U

∂y
+

∂ψ

∂y

∂u′
sw

∂z
+

1

Rew

�u′
sw + du,

∂�ψ

∂t
=

1

Rew

�2ψ + dψ,

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

with the same boundary conditions as in (2.2). A short simulation study comparing
low-order streamwise velocity statistics supports the use of linearization in the ψ

equation.
Approximating the full three-dimensional (3D) system using the interconnection in

figure 2 would involve nonlinear mixing modes. In order to approximate the range of
frequencies associated with the full 3D system in the framework of figure 3, zero-mean
stochastic forcing was applied to the 2D/3C model. In particular, the inputs du(y, z, t)
and dψ (y, z, t) in (2.3) are small-amplitude and Gaussian, as in Gayme et al. (2009).
The input amplitudes are defined using the standard deviation, σnoise . Note that under
these assumptions there is no coupling from the streamwise components (u) back to
the cross-stream components (the �ψ equation). The plausibility of modelling the type
of disturbances common to experimental conditions in this manner is confirmed by
results from stochastic forcing of the LNS equations, which leads to flows dominated
by streamwise elongated streaks and vortices that are strikingly similar to those
observed in experiments (Farrell & Ioannou 1993b), as well as by the results of
the simulation study discussed in § 4.3. Further development of the model would be
required to address this effective feedback mechanism.

3. Approach
Time-dependent simulations of the full coupled system (2.3) were carried out using a

basic second-order central difference scheme in both the spanwise (z) and wall-normal
(y) directions. Periodic boundary conditions in z and no-slip boundary conditions in
y were applied. Simulations using the spectral methods of Weideman & Reddy
(2000) were also performed for comparison. The pseudospectral simulations employ
a Chebyshev interpolant for the wall-normal direction and a Fourier method for the
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spanwise derivatives. The aspect ratio in all of the simulations was greater than 12
to 1 (spanwise to wall-normal) in order to eliminate box size effects; specifically the
usual computational box size was Ly × Lz =h × 12.8h with 75 × 100 grid points. A
spanwise extent of 12.8h was selected to provide a direct comparison to the full field
DNS data from Tsukahara et al. (2006).

In this study, the response of the streamwise velocity, u′
sw , to forcing of the

cross-stream velocity components, v′
sw and w′

sw , was examined. A forcing input of
zero-mean small-amplitude Gaussian noise evenly applied at each y–z plane grid point
was selected for dψ . The other input forcing, du, was set to zero based on previous
studies of the LNS, which showed that the response to streamwise body forcing
is significantly smaller than the response to spanwise/wall-normal plane forcing
(Jovanović & Bamieh 2005). These studies used an order of magnitude argument to
conclude that the difference in response scales as 1/Re2. Furthermore, it is energy
redistribution by streamwise vorticity (i.e. �Ψ ) that is thought to be the primary
effect governing the shape of the turbulent velocity profile (Hamilton et al. 1995). The
response in the streamwise velocity component to this forcing may have a non-zero
mean because of the nonlinearity in the u equation.

The different discretization techniques naturally provide a comparison of different
noise forcing distributions. For example, the Chebyshev grid results in a higher
concentration of noise forcing near the walls. Throughout the present work it is
assumed that significant numerical errors are not introduced by the methods of
discretization, i.e. the introduction of significant noise arises only through the d terms
of (2.2).

The time evolution of �ψ in (2.3) can be seen to be a stochastically forced heat
equation, i.e. a linear stochastic partial differential equation which can be solved
analytically (see e.g. Swanson 2007 or Luo 2006 and the references therein). This is
not pursued here because a simulation is a much simpler way to demonstrate the
efficacy of the model. An exposition on Itô calculus and Wiener chaos expansions
is beyond the scope of this paper. Future work may involve pursuing analytical
solutions to both the linear approximation to ψ and the full nonlinear system (2.2).

4. Results and discussion
The results are divided into three main sections. First, the DNS data of Tsukahara

et al. (2006) are analysed in the light of the 2D/3C model to determine the extent
to which the model’s assumptions can be adduced through this data. Following that,
a time-independent version of the model (2.2) is studied to verify the implicit model
filter between ψ and u. Finally, results from full simulations of (2.3) are presented
and compared to the DNS data.

4.1. Comparison of DNS data with 2D/3C modelling assumptions

Full details of the DNS dataset can be found in Tsukahara et al. (2006); a brief
review of key aspects is given here. Three Reynolds numbers were considered, Rew =
3000, 8600 and 12 800, all with computational domain size Lx × Ly × Lz = 44.8h ×
h × 12.8h, 1024 × 96 × 512 grid points, and a sampling time (tUw/Lx) of 91. The
fourth-order finite difference scheme proposed in Morinishi (1995) was employed for
the x and z directions. A second-order finite difference method was used for the
y direction.

The friction coefficient, Cf = 9.59 × 10−3, is somewhat higher than in other studies,
such as Robertson & Johnson (1970). Filling this friction factor into the relationship
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Component Total energy norm Per cent of total energy
‖ · ‖ in x-averaged norm

u 0.5334 99.1
u − U 0.1686 90.2

v 0.0279 19.0
w 0.0412 15.0

Table 1. Energy content in the x-averaged DNS velocity components at Rew = 3000.

developed by Robertson (1959),√
Cf

2
=

G

log10

(
1
4
Rew

) , where Cf =
τw

1
2
ρ

(
1
2
Uw

)2
, (4.1)

with τw used to denote shear stress at the wall, leads to an experimental constant
G = 0.199. Other values reported in the literature include G =0.19 and G =0.174,
both from Robertson (1959), and based on the data of Reichardt and Robertson,
respectively, and G =0.182, from the experimental study of El Telbany & Reynolds
(1982).

The turbulent mean velocity profiles, turbulence intensities, Reynolds stresses and
budgets of u′

iu
′
j from this DNS show good agreement with the experimental results

of Tillmark (1995) and the spectral DNS study of Komminaho et al. (1996), which
used a larger box. The two-point correlations in u indicate that the box lengths used
in both the streamwise, Ruu(�x), and spanwise, Ruu(�z), directions are sufficient to
eliminate any boundary condition-related spurious effects.

In what follows, a streamwise constant projection of the DNS data is approximated
through a streamwise (x) average over the box length, which will highlight streamwise
coherence of the order of the box length. The x-averaged DNS data are denoted
uxave

= (u′
xave

+ U (y), v′
xave

, w′
xave

) to distinguish it from true streamwise constant data.

Time averages are indicated by an overbar, ( ).
The ratio of the energy contained in the x-averaged DNS to that of the full

field provides a quantitative measure of the extent to which the DNS data can be
approximated as streamwise constant. For this comparison, the squared 2-norm is
used to approximate the energy in each 2D x-averaged velocity component:

‖β‖2 =

∫
Z

∫ 1

0

β(y, z)2 dy dz

≈ �z

2LyLz

Nz−1∑
k=1

⎛
⎝Ny−1∑

j=1

�yj+1

2
[β2(yj+1, zk+1) + β2(yj , zk+1)

+ β2(yj+1, zk) + β2(yj , zk)]

)
, (4.2)

where Z is the spanwise extent, �z = z2 − z1 is the spanwise distance between z grid
points and trapezoidal approximations are used for the inhomogeneous y grid.

Table 1 shows the total energy (based on the full DNS field at Rew = 3000) and
the percentage contained in each of the x-averaged velocity components (u, v, w) as
well as in the deviation from laminar (denoted u − U ). This latter quantity is most
representative of the energy associated with the differences in the mean velocity profile
for a turbulent versus a laminar flow. The computations show that the x-averaged

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

38
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003861


108 D. F. Gayme, B. J. McKeon, A. Papachristodoulou, B. Bamieh and J. C. Doyle

z+

500 1000 1500 2000 2500 3000 3500 4000 4500

200

400

600

800

1000

1200

x+

Figure 4. A z–x plane contour plot of the streamwise velocity, u, from the DNS field, (bottom
up view) at y+ = 29. Light-coloured contours denote the regions of higher velocity and dark
contours indicate lower velocity regions.
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Figure 5. y–z plane contour plots of the x-averaged (as an approximation for streamwise
constant) DNS deviations from laminar (u′

xave
) (a) averaged over 25 % of the streamwise box

length and (b) averaged over the full streamwise box length.

streamwise velocity contains 99 % of the (u) energy, whereas the corresponding
deviation from laminar contains 90 %. As expected, the x-averaging results in a
larger loss of information in the spanwise and wall-normal velocity components.

An examination of the DNS streamwise velocity field at y+ = 29, close to the
outer edge of the region affected by the near-wall cycle, reveals the signature of
streamwise elongated, large-scale streaks in the streamwise/wall-normal plane of the
full field (figure 4). These streaks are also visible in figures 5(a) and 5(b) which depict
contour plots of the deviation from laminar flow, u′

xave
= uxave

− U , when averaged
over 25 % of the streamwise field and the full field, respectively. Clearly, increasing
the averaging length acts as a filter on structures of different streamwise extent. The
average over the full box length retains strong evidence of structures across the entire
spanwise/wall-normal plane. In particular, the strongest signature near the wall is
in qualitative agreement with the near-wall model of energetic structures centred
around y+ ≈ 15 with a statistical diameter of y+ ∼ 30. Another important feature
of figure 5(b) is that the maximum deviations from laminar flow, which are out of
spatial phase with one another, top to bottom, are associated with large-scale rolling
motions which reach across the channel height.
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The above analysis shows that there is good agreement between the DNS data and
our assumptions. In the next section, this data is used to suggest a time-independent
model for ψ(y, z) in order to study a steady-state version of the streamwise velocity
in (2.2). This is followed by simulation of the full system (2.3).

4.2. Time-independent streamwise velocity equation

The response of (2.2) to a stream function that is independent of time, ψss (y, z), is of
interest for two reasons: (i) the forced solution for the streamwise velocity permits
investigation of whether the 2D/3C model filters an appropriately shaped ψss (y, z)
towards the expected shape of the turbulent velocity profile, and (ii) it gives insight
into the mathematical mechanisms that create the momentum (energy) transfer that
generates the blunted profile. The analysis constitutes a weakly nonlinear analysis, in
which the time-independent forcing takes the form ψss = ψss0

+ εψss1
+ · · · .

In Barkley & Tuckerman (2007), it was shown that laminar–turbulent flow patterns
in plane Couette flow could be reproduced using a stream function of the form
ψ(y, z) = ψ0(y)+ψ1(y) cos(kzz)+ψ2(y) sin(kzz). We use this study as guidance but set
the zeroth-order term ψ0 to zero because a non-zero ψ0 produces a non-zero mean
spanwise flow w′

ss , which is not representative of the velocity field we are interested in
studying. The DNS field (Tsukahara et al. 2006) was also used as a guide to ensure
that the first-order term ψss1

as well as the corresponding wall-normal and spanwise
velocities, respectively v′

ss1
and w′

ss1
, contained representative features. For ease of

computation and analysis, a simple analytic model for ψss1
(y, z) was selected, namely

a doubly harmonic model which matches the boundary conditions

ψss = εψss1
(y, z) = ε sin2 (πy) cos

(
2π

λz

z

)
. (4.3)

This corresponds to

v′
ss1

(y, z) = −2π

λz

sin2 (πy) sin

(
2π

λz

z

)
and w′

ss1
(y, z) = −π sin (2πy) cos

(
2π

λz

z

)
.

(4.4)

The size of the perturbation, ε, is a free variable to be explored, while the spanwise
wavelength, λz, is fixed to a value determined using the DNS data.

Streamwise averages of both v(x, y, z) and w(x, y, z) from the DNS data permit an
estimate of ψss (y, z) (to within some constant), for that particular field. A contour plot
of the approximation based on w′

xave
(y, z) is shown in figure 6(a). The value of λz ≈ 1.8h

was chosen to match the results from a fast Fourier transform (FFT) of this data while
maintaining the same box size (12.8h) employed for the DNS. This value is also in the
range of the spanwise wavenumber corresponding to maximum amplification of the
linear operator (optimal spanwise spacing), kz ∈ [2.8, 4] (λz ∈ [1.6, 2.2]h), reported in
the literature (Gustavsson 1991; Butler & Farrell 1992; Farrell & Ioannou 1993b). An
initial perturbation amplitude of ε = 0.00675 was selected based on the approximate
values obtained by integrating v′

ave(y, z) and w′
ave(y, z). The estimated amplitude is

very small, in agreement with the idea of using a nominal model plus an uncertainty
dψ which is amplified through the coupling in the linear operator in a manner that is
described and quantified in studies such as Trefethen et al. (1993) and Jovanović &
Bamieh (2005).

A contour plot reflecting these parameter values is provided in figure 6(b). It
shows good qualitative agreement, in particular, with the region of strongest signal
in the DNS streamwise average (figure 6a). The latter wall-normal variation is
complicated (and Reynolds-number-dependent), but a simple harmonic variation gives
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Figure 6. (a) Contour plot of the x-averaged DNS (as a streamwise constant, 2D/3C
approximation) spanwise velocity deviations integrated to obtain the stream function,
ψxave

(y, z) = −∂w′
xave

/∂y. (b) Contour plot of the simple harmonic model for ψss (y, z) =
0.00675 sin2(πy) cos(2π/1.8z) with amplitude and wavelengths that approximate DNS data.
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Figure 7. Contour plot of the 2D/3C (streamwise constant) velocity deviation, u′
swss

,
obtained using the steady-state estimate for ψss (y, z) in (4.5) with ε = 0.00675 and λz = 1.8143.

a reasonable representation. The velocity vector field implied by (4.3) is consistent
with low-speed fluid being lifted up from the stationary wall and higher-speed fluid
being pushed down from the moving wall, and as such supports the notion that the
mechanisms of interest can be modelled using a single harmonic in both y and z.

The stream function of (4.3) with the selected ε and λz was applied to the time-
independent form of (2.3), yielding(

−∂ψss

∂z

∂

∂y
+

∂ψss

∂y

∂

∂z
+

1

Rew

�

)
u′

swss
=

∂ψss

∂z

∂U

∂y
. (4.5)

A contour plot of the resulting u′
swss

(y, z) is depicted in figure 7. This figure shows
a u′

swss
(y, z) with near-wall rolls that are out of spanwise phase with one another

similar to those seen in the x-averaged DNS data of figure 5(b). The increased
coherence associated with the steady-state model relative to the DNS data manifests
as an increased variation in the deviation from laminar (amplitude of the surface)
particularly at the centre of the channel. This effect is emphasized through comparison
of the surface plots of figures 8(a) and 8(b). Note the different vertical axis scales for
the two plots.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

38
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010003861


A streamwise constant model of turbulence in plane Couette flow 111

0 2 4 6 8 10 121.0 0.8 0.6 0.4 0.2 0

−0.4
−0.3
−0.2
−0.1

0
0.1
0.2
0.3(a) (b)

y/h y/hz/h 2 4 6 8 10 12

z/h

u′ x a
v
e  

 U
w

−0.5

−0.3

−0.1

0.1

0.3

0.5

u′ sw
ss

  U
w

1.0
0.60.8

0.4
0 00.2

Figure 8. Surface plots of (a) u′
xave

(y, z) from DNS data at Rew =3000 and (b) u′
swss

(y, z),

obtained using the steady-state estimate ψss (y, z) = 0.00675 sin2(πy) cos(2π/1.8143z) at Rew =
3000. Note the vertical axis scale difference between (a) and (b).
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Figure 9. (a) Variation of the 2D/3C (streamwise constant) velocity deviations, u′
swss

with
perturbation amplitude (ε); estimates are obtained using ψss (y, z) = ε sin2(πy) cos(2π/1.8143z).
(b) Variation in the velocity gradient at the wall ∂u/∂y|wall with perturbation amplitude, ε.

Averages across the span of u′
swss

(y, z) for ε = 0.00675 as well as for four additional
ε values are compared to a similar average of u′

xave
from the DNS in figure 9(a).

Clearly, using ψss from (4.3) as an input to (4.5) produces streamwise velocity profiles
whose shapes are consistent with u′

xave
≈ u − U from the DNS. The peaks are, however

located at different wall-normal positions. An amplitude that exactly matched both
the magnitude and location of the DNS peaks was not found even when different
values of kz were studied. This is not unexpected because of the simplicity of the
wall-normal variation in the steady-state model, as well as the streamwise constant
and steady-state assumptions (clearly, the full turbulent field is neither streamwise
constant nor time-independent). However, this type of model clarifies the nonlinear
role of cross-stream flow features in redistributing energy in the flow field. These
results suggest that the phenomenon that is responsible for blunting of the velocity
profile in the mean sense is a direct result of the interaction between rolling motions
caused by the y–z stream function and the laminar profile. In other words, this
study provides strong evidence that the nonlinearity needed to generate the turbulent
velocity profile comes from the nonlinear terms that are present in the u′

sw(y, z, t)
equation of the 2D/3C model (2.2).
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Squared norm of
Case Reynolds number σnoise Ly × Lz Ny × Nz the noise input

1 3000 0.01 h × 12.8h 75 × 100 0.0565
2 3000 0.0125 h × 12.8h 75 × 100 0.0882
3 3000 0.004 h × 12.8h 75 × 100 0.009
4 8600 0.004 h × ∼16.5h 75 × 130 0.0092
5 12 800 0.004 h × ∼16.5h 75 × 130 0.0092
6 12 800 0.001 h × ∼16.5h 75 × 130 5.77 × 10−4

Spec 1 3000 0.001 h × ∼14.5h 40 × 81 −
Spec 2 3000 0.002 h × ∼14.5h 40 × 81 −

Table 2. Computation details.
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Figure 10. (a) Contour plot of u′
sw(y, z, t) obtained from the 2D/3C model for case 1 with

the same contour levels as in figure 7. (b) The surface plot corresponding to (a).

The magnitude of forcing applied to the system is reflected in the amplitude of
ψss (y, z), which in turn affects the friction Reynolds number, Reτ through the skin
friction arising due to the resultant mean velocity gradient at the wall. Increasing
the amplitude (ε) in (4.3) is analogous to increasing the magnitude of the model
uncertainty. These effects are emphasized in figure 9(b) which provides a plot of ε

versus the velocity gradient at the wall. This behaviour will be discussed in more
detail in § 4.3.

4.3. Time-dependent 2D/3C model

Time-dependent simulations of (2.3) were carried out using the basic second-order
central difference scheme and pseudospectral approaches described earlier. Table 2
lists the Reynolds number and forcing amplitude combinations considered. The
window used for time averaging was �t =100 000(h/Uw).

The initial simulation (case 1, in table 2) was carried out at Rew = Uwh/ν =3000 with
dψ (x, y, t) drawn from a zero-mean Gaussian distribution with standard deviation
(noise amplitude) σnoise = 0.01 applied at every point in the mesh.

A comparison of figures 5(b) and 10(a) shows that contours of constant streamwise
velocity deviation from laminar from the DNS and the 2D/3C simulation are in good
qualitative agreement. In particular, the spanwise offset in spatial phase between peaks
from top to bottom is reproduced. While the dominant wavelength from the 2D/3C
simulation is somewhat longer than the λz ≈ 1.8 of the DNS (frequency analysis of u′

sw
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Figure 11. (a) Comparison of mean velocity profile from the 2D/3C model case 1, usw(y, z, t),

with u(x, y, z, t) from DNS. (b) Inner scaled velocity profiles comparison of cases 1 and 2 to
the DNS data with Reτ ≈ 52 for all datasets.

indicates that most of the energy resides in wavelengths between 4 � λz � 6.1) there
is also a significant contribution from λz ≈ 2. There is noticeably better agreement
between the time-dependent model and the DNS (figures 10b and 8a, respectively)
than for the steady-state analysis (figure 8b), likely a consequence of the broadband
stochastic, i.e. less coherent and time-dependent, forcing.

4.3.1. Mean velocity profile

Averaging the streamwise velocity field obtained for case 1 in table 2 leads to
the mean velocity profile (i.e. usw) shown in figure 11(a). The mean profile can also
be plotted in inner units (figure 11b) with the use of (4.1) (with G =0.1991 from
Tsukahara et al. 2006) to estimate the friction velocity, uτ . There is good agreement
between the DNS and the case 1 simulation, even with the assumption of a friction
velocity that corresponds to the full flow. However, it is clear that below y+ ≈ 20 the
2D/3C model underestimates the expected velocity profile (maximum error 7.4 %),
and above that it overshoots it (maximum error 2.4 %). There are two obvious first-
order interpretations of these discrepancies. First, for cases 1–6, the noise is modelled
as being evenly distributed across the grid while, in reality, the noise is likely higher
in the buffer region due to the proximity of the wall, and lower in the overlap layer.
An improved noise model might improve the agreement. A second interpretation is
that further from the wall the flow is better modelled by the streamwise constant
approximation, while streamwise variation is more important in the dynamics of the
near-wall region (in agreement with the known variation of the spectral distribution
of streamwise energy in the full flow).

A second (constant) noise amplitude at the same Reynolds number, case 2, is also
shown in figure 11(b). The agreement with the DNS is certainly improved below
y+ =20 (maximum error 6.19 % at y+ = 19), but at the expense of larger error further
from the wall (∼5–6 % between 20< y+ < 30). These results further support the idea
that a non-uniform noise forcing with increased noise near the wall versus that at the
channel centre may more accurately reflect the conditions in a real flow field. This
idea is further explored in § 4.3.3.

It should be noted that uτ can also be computed directly from the velocity gradient
at the wall. In both cases, Reτ is underestimated by around 10 % compared to the
estimate from (4.1). Because of the limited number of points near the wall, the friction
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Figure 12. (a) usw(y, z, t) from 2D/3C model for cases 2–5 in table 2 and (b) a comparison
of u+ versus y+ for cases 4 and 5 with Reτ computed based on the values used in Tsukahara
et al. (2006).

relationship from the full flow was preferred, with the understanding that this would
only be correct if the 2D/3C model with σnoise exactly reproduced the mean flow
behaviour.

4.3.2. Reynolds number and noise amplitude trends

Four additional Reynolds number and σnoise amplitudes pairs were considered. The
details for each of the cases 3–6, along with the computational domain and spatial
resolution, are provided in table 2. Respective values of the norm ‖ · ‖2, as computed
in (4.2), of the noise input computed over the box are also reported, since this is a
more appropriate measure of the forcing when the box size varies.

It is useful to introduce a normalized version of (2.2) through the change of
variables τ = t/Re and Ψ = Reψ . This creates new expressions for the forcing in
(2.3), Du = Re du(= 0) and DΨ = Re2dψ . The expression DΨ = Re2dψ indicates that an
increase in noise produces a similar effect to an increase in Reynolds number (actually√

Re), as observed in the increased deviation from laminar observed with increasing
noise amplitude in figure 9(a). This is especially clear when considering the variation
of Reτ because an increase in noise amplitude directly corresponds to increased
velocity gradients at the wall due to the no-slip boundary conditions. Increased profile
‘blunting’ with both increasing σnoise (noise input energy) and Reynolds number in
cases 2–5 can be observed in figure 12(a).

For the higher Reynolds numbers (but constant noise amplitude) in case 4
and 5, figure 12(b) shows a worsening agreement in inner units with the DNS
data from Tsukahara et al. (2006) at Reτ = 128.5 and Reτ = 181.3, respectively.
The underestimation below y+ ≈ 30 (in the buffer layer) is more pronounced, but
the agreement above y+ > 30 remains of similar magnitude (max error ∼4.94 %
for Reτ = 128.5 and 8.39 % for Reτ = 181.3). We hypothesize that this worsened
agreement may be representative of the increasing scale separation with increased
Reynolds number. Near-wall motions that can effectively be modelled as streamwise
constant at low Reynolds numbers have an increasingly short streamwise wavelength
relative to the motions that scale with outer length scale δ. That the zero-error location
consistently occurs around y+ = 20–30, commonly thought to be the upper boundary
of the buffer layer, is consistent with this scale separation argument. For the same
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Figure 13. (a) Comparison of u+ versus y+ from 2D/3C model using Chebyshev spacing
in y with DNS data at Rew = 3000 based on G = 0.1991 (Reτ ≈ =52). (b) Comparison of
usw(y, z, t) from 2D/3C model at for case 1 (Rew = 3000 with σnoise =0.01, energy = 0.0882),
and case 6 (Rew = 12 800 with σnoise = 0.001, energy = 5.77e − 04) same grid and box size.

reason, the lack of model resolution in the near-wall region will be exacerbated with
increasing Rew . In robust control terms, this points once again to an increase in
the model uncertainty near the wall versus the channel centre. Once again, a better
uncertainty model could be accomplished through the use of a ‘structured uncertainty’
which would include an increase in σnoise in the near-wall region.

4.3.3. Varying noise amplitude and distribution

A preliminary effort to introduce a non-uniform distribution of noise was carried
out by repeating the simulation using a pseudospectral scheme with a Chebyshev
interpolant for the wall-normal direction. This scheme naturally produces increased
noise near the walls. Case specs 1 and 2 in table 2 are two such simulations, both at
Rew =3000, with σnoise = 0.001 and σnoise = 0.002, respectively. Figure 13(a) shows the
resulting mean velocity profiles. Clearly, the noise level is too low for spec 1; however,
for spec 2 the maximum error occurs in the buffer layer and is of the order 5–6 %.
The results of the spectral simulations indicate that by further noise shaping one
could improve the agreement throughout the profile and across a range of Reynolds
numbers.

As previously discussed, there is a strong relationship between the friction Reynolds
number and σnoise . As an illustration of this, figure 13(b) shows that one can obtain
similar mean velocity profiles at two different Reynolds numbers simply by adjusting
the noise amplitude, i.e. a higher Reynolds number requires a smaller (uniform) noise
amplitude to develop a mean velocity profile that is similar to that of a lower Reynolds
number case with higher noise amplitude. This result is consistent with observations of
higher transitional Reynolds number associated with ‘quiet’ experiments compared to
ones with high background disturbance levels. Alternatively, a fixed amplitude noise
produces a larger response (more blunting) at higher Re than lower ones because
disturbance amplification increases with increasing Reynolds number. This example
makes it clear that the noise amplitude and the friction Reynolds number are tightly
coupled, while giving further evidence that Reynolds-number-dependent wall-normal
shaping of the noise would be required to get a better model representation of the
turbulent mean velocity profiles.
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4.3.4. Characterization of the (small) disturbance amplification

The results described herein indicate that a very small amount of stochastic noise
forcing limited to the cross-stream components produces a very large response, which
corresponds to a behaviour that is not a solution of the unforced equations. The
ability of our model (see (2.2)), which has a unique solution in the unforced case,
to produce a new flow condition due to such a forcing supports the notion that the
model is not robust to small disturbances/uncertainty. The potential for disturbance
amplification is not new; in fact, it comes directly from the features of the LNS
previously discussed; however, the creation and maintenance of the new flow state is
different and cannot come through the use of a linear model. A simple characterization
of the amplification maintained through the forced response of (2.3), or the lack of
robustness (‘fragility’) of the system, can be formulated as follows.

Defining the squared 2-norm of the streamwise component of (2.3) (i.e. ‖u′
sw‖2)

to be the increase in streamwise energy from the base (laminar) flow, a so-called
amplification factor is given by

Γu =
‖u′

sw‖2

‖σnoise‖2
, (4.6)

which is a measure of the output energy for a given input (noise forcing amplitude).
Γu is a nonlinear analogue of the ‘ensemble energy density’ described in previous
studies of the input–output response of the LNS (see e.g. Bamieh & Dahleh 2001;
Jovanović & Bamieh 2005). Those investigations showed that the coupling between the
Orr–Sommerfeld and Squire modes enables very large Reynolds-number-dependent
disturbance amplification. The amplification factor for cases 3–5, which all have
approximately the same input energy, are, respectively, Γu ≈ 680, Γu ≈ 2200 and
Γu ≈ 2920. These trends are consistent with the low-Reynolds-number scaling trends
based on the Orr–Sommerfeld–Squire equations. This agreement reflects the effective
restriction of the streamwise constant assumption to amplification of the kx =0 modes
(most amplified in the linear equation) as well as the source of the amplification in
the 2D/3C model: a coupling in a similar linear operator, given by

∂

∂t

[
ψ

u′
sw

]
=

⎡
⎢⎢⎢⎣

�−1

(
1

Rew

��

)
0

−∂U

∂y

∂

∂z

1

Rew

�

⎤
⎥⎥⎥⎦

[
ψ

u′
sw

]
. (4.7)

In this way, computing Γu from the simulation of (2.3) is analogous to studying
the steady-state nonlinear response to the most amplified 3D mode (i.e. the kx = 0
mode).

Equivalent amplification relationships between the cross-stream velocity
components and σnoise could similarly be investigated.

5. Conclusions
Structures with long streamwise coherence have long been shown to have a

significant role in both transition and fully developed turbulent flows. Based on
these observations we study a streamwise constant projection of the Navier–Stokes
equations for plane Couette flow, the 2D/3C model. Simulation of this model under
small-amplitude Gaussian forcing captures the turbulent mean velocity profile at low
Reynolds numbers. Appropriate Reynolds number trends are also reproduced.
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A weakly nonlinear steady-state analysis demonstrates that 2D stream functions can
produce appropriate mean velocity distributions when they are nonlinearly coupled
to the 2D/3C streamwise velocity. This indicates that ‘swirling motions’ in the y–z

plane produce features consistent with the mean characteristics of fully developed
turbulence. It also provides evidence that the nonlinear coupling in the 2D/3C model
is responsible for creating the well-known characteristic S-shaped turbulent velocity
profile.

The use of small-amplitude stochastic forcing as an input to the 2D/3C (nominal)
model is based on ideas from robust control. Experimental observations are used to
simplify the NS equations to form this nominal model and the noise forcing is used to
capture both uncertain parameter values and unmodelled effects. The resulting forced
2D/3C model allows one to isolate phenomena that can not be decoupled from a
full simulation of NS while maintaining a sufficiently rich description of the physics
that govern turbulent flow. Our physics-based model should provide greater insight
into the dynamics of the system than an empirical technique. Such a model may also
allow a better control design.

The linearized 2D/3C model (4.7) maintains the properties responsible for large
disturbance amplification which have also been linked to subcritical transition. Main-
tenance of these linear mechanisms is critical to the success of this approach. It is the
combination of these linear processes along with the momentum transfer from the two
nonlinear terms in the streamwise velocity equation that enable the model to capture
the blunted turbulent velocity profile. This line of inquiry provides a complementary
perspective to transient growth and structurally based models, in that the 2D/3C
model offers some improvement in analytic tractability at the expense of streamwise
detail. The results are especially promising because the computational and analytical
tractability of this model makes it well suited to higher-Reynolds-number studies.

A natural extension of the present work would be the development of a more
appropriate model for the noise distribution. It is common in the control theory
literature for a system to have a so-called structured uncertainty which is based on
the physics of a particular system. In this work, the limitation of noise to only the �ψ

equation represents a first level of such an approach. Knowledge of the physics, for
example that the near-wall region is under-resolved in the 2D/3C model, is a first step.
Numerical or experimental studies aimed at characterizing true spatial noise forcing
patterns would further help in determining the correct model for noise distribution.

The authors would like to thank H. Kawamura and T. Tsukahara for providing us
with their DNS data. This research is sponsored in part through a grant from the
Boeing Corporation. B.J.M. gratefully acknowledges support from NSF-CAREER
award number 0747672 (programme managers W. W. Schultz and H. H. Winter).
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