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Limit theory with stochastic integrals plays a major role in time series economet-
rics. In earlier contributions on weak convergence to stochastic integrals, the lit-
erature commonly uses martingale and semi-martingale structures. Liang, Phillips,
Wang, and Wang (2016) (see also Wang (2015), Chap. 4.5) currently extended weak
convergence to stochastic integrals by allowing for a linear process or a α-mixing
sequence in innovations. While these martingale, linear process and α-mixing struc-
tures have wide relevance, they are not sufficiently general to cover many econo-
metric applications that have endogeneity and nonlinearity. This paper provides new
conditions for weak convergence to stochastic integrals. Our frameworks allow for
long memory processes, causal processes, and near-epoch dependence in innova-
tions, which have applications in a wide range of econometric areas such as TAR,
bilinear, and other nonlinear models.

1. INTRODUCTION

In econometrics with nonstationary time series, it is usually necessary to rely on
convergence to stochastic integrals. This result is particularly vital to unit root
testing linear and nonlinear cointegrating regression. To illustrate, in Section 5,
we investigate an application of the limit theorems involving stochastic integrals
in nonlinear cointegrating regression. For more examples, we refer to Park and
Phillips (2000, 2001), Chang, Park, and Phillips (2001), Chan and Wang (2015),
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Wang and Phillips (2009a, 2009b, 2016), Wang (2015, Chap. 5) and the references
therein.

Let (uj ,v j )j≥1 be a sequence of random vectors on Rd × R and Fk =
σ(uj ,v j , j ≤ k). Write

xnk = 1

dn

k∑
j=1

uj , ynk = 1√
n

k∑
j=1

v j ,

where 0< d2
n → ∞. As a benchmark, the basic result for convergence to stochas-

tic integrals is given as follows (See, e.g., Kurtz and Protter, 1991):

THEOREM 1.1. Suppose

A1 (vk,Fk) forms a martingale difference with supk≥1 Ev2
k <∞;

A2 {xn,�nt	, yn,�nt	} ⇒ {Gt ,Wt } on DRd+1[0,1] in the Skorohod topology.

Then, for any continuous functions g(s) and f (s) on Rd , we have{
xn,�nt	, yn,�nt	,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk)vk+1

}

⇒
{

Gt , Wt ,

∫ 1

0
g(Gt)dt,

∫ 1

0
f (Gt )dWt

}
, (1.1)

on DR2d+2 [0,1] in the Skorohod topology.

Kurtz and Protter (1991) [also see Jacod and Shiryaev (2003)] actually estab-
lished a result with ynk as a semi-martingale rather than A1. Toward a general re-
sult beyond the semi-martingale, Liang et al. (2016) and Wang (2015, Chap. 4.5)
investigated an extension to linear process innovations and provided a conver-

gence result for sample quantities
n−1∑
k=0

f (xnk)wk+1 to functionals of stochastic

processes, where

wk =
∞∑

j=0

ϕj vk− j , (1.2)

with ϕ =
∞∑

j=0
ϕj �= 0 and

∞∑
j=0

j |ϕj |<∞, and vk being defined as in A1. Liang et al.

(2016) and Wang (2015, Chap. 4.5) further considered an extension to α-mixing
innovations. For other related results, we refer to Ibragimov and Phillips (2008),
De Joon (2004), Chang and Park (2011), and Lin and Wang (2015).

While these results are elegant, they are not sufficiently general to cover many
econometric applications that have endogeneity and more general innovation pro-
cesses. In particular, the linear structure in (1.2) or a α-mixing sequence consid-
ered in Liang et al. (2016) is well-known to be restrictive and fails to include
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many important practical models such as threshold, nonlinear autoregressions,
and so on. The aim of this paper is to fill this gap by providing new general results
for the convergence to stochastic integrals in which there are some advantages in
econometric applications. Explicitly, our frameworks consider the convergence of

Sn :=
n−1∑
k=0

f (xnk)wk+1, where wk has the form:

wk = vk + zk−1 − zk, (1.3)

with zk satisfying certain regularity conditions specified in the next section and
vk being defined as in A1. The {wk}k≥1 in (1.3) is usually not a martingale dif-

ference, but
n∑

k=1
wk =

n∑
k=1

vk + z0 − zn provides an approximation to a martingale.

Martingale approximation has been widely investigated in the literature. For cur-
rent developments, we refer to Borovskikh and Korolyuk (1997). As shown in
Section 3, these existing results for martingale approximation provide important
technical support for the purpose of this paper.

This paper is organized as follows. In Section 2, we establish two frameworks
for the convergence of Sn . Theorem 2.1 covers the case in which uk is a long
memory process, while Theorem 2.2 addresses the case where uk is a short mem-
ory process. The section shows that, for a short memory uk , the additional term zk

in (1.3) has an essential impact on the limit behaviors of Sn , but this is not the case
when uk is a long memory process under minor natural conditions in zt . Section 3
provides three corollaries to our frameworks on long memory processes, causal
processes and near-epoch dependence, which capture the most popular mod-
els in econometrics. More detailed examples, including linear processes, non-
linear transformations of linear processes, nonlinear autoregressive time series,
and GARCH model are given in Section 4. We consider nonlinear cointegrating
regression in Section 5, where the focus is the impact of endogeneity and non-
linearity to asymptotic behaviors of the parametric estimators. We conclude in
Section 6. Proofs of all theorems are given in Section 7.

Throughout the paper, we denote constants by C,C1,C2, . . . , which may differ
at each appearance. DRd [0,1] denotes the space of càdlàg functions from [0,1] to

R
d . If x = (x1, . . . ,xm), we use the notation ||x || =

m∑
j=1

|xj |. For a sequence of in-

creasing σ -fields Fk , we write Pk Z = E(Z |Fk)− E(Z |Fk−1) for any E |Z |<∞,
and Z ∈ Lp(p > 0) if 〈Z〉p = (E |Z |p)1/p <∞. For a real function f (x) on Rd ,
f (x) is said to satisfy a local Lipschitz condition if, for any K > 0, there exists a
constant CK such that, for all ||x ||+ ||y||< K ,

| f (x)− f (y)| ≤ CK

d∑
j=1

|xj − yj |.

Where there is no confusion, we generally use the index notation xnk(ynk) for
xn,k(yn,k). All other notation is standard.
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2. MAIN FRAMEWORKS

In this section, we establish the frameworks for convergence to stochastic in-
tegrals. Except for those mentioned explicitly, the notation is the same as in
Section 1.

THEOREM 2.1. In addition to A1–A2, suppose that supk≥1 E
(||zk uk||

)
<∞

and d2
n/n → ∞. Then, for any continuous function g(s) in Rd , and any function

f (x) in Rd satisfying a local Lipschitz condition, we have{
xn,�nt	, yn,�nt	,

1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk)wk+1

}

⇒
{

Gt , Wt ,

∫ 1

0
g(Gt)dt,

∫ 1

0
f (Gs)dWs

}
. (2.1)

As Liang et al. (2016) note, the local Lipschitz condition is a minor requirement
and holds for many continuous functions. If supk≥1 E

(||uk||2 + |zk |2
)
< ∞, it

is natural to have supk≥1 E
(||zk uk ||

)
< ∞ by Hölder’s inequality. Theorem 2.1

indicates that, when d2
n/n → ∞, the additional term zk in (1.3) does not modify

the limit behaviors under minor natural conditions of zk and f (x).
The condition d2

n/n → ∞ usually holds when the components of ut are long
memory processes (see Section 3.1 for example). The situation becomes very
different if d2

n/n → σ 2 < ∞ for a constant σ , which generally holds for short
memory processes ut . In this case, as the following theorem shows, zt has an
essential impact on the limit distributions.

Let D f (x) = ( ∂ f
∂x1
, . . . , ∂ f

∂xd

)′
. The development of our theory requires the fol-

lowing additional assumptions:

A3 D f (x) is continuous in Rd and for any K > 0,

||D f (x)− D f (y)|| ≤ CK ||x − y||β, for some β > 0,

for max{||x ||, ||y||} ≤ K , where CK is a constant depending only on K .

A4 (i) supk≥1 E ||uk||2 <∞ and supk≥1 E |zk |2+δ <∞ for some δ > 0;

(ii) Ezkuk → A0 = (A10, . . . , Ad0), as k → ∞;

Set λk = zkuk − Ezkuk .

(iii) supk≥2m ||E(λk | Fk−m
)|| = oP(1), as m → ∞; or

(iii)′ supk≥2m E ||E(λk | Fk−m
)|| = o(1), as m → ∞.

THEOREM 2.2. Suppose d2
n/n → σ 2, where σ 2 > 0 is a constant. Suppose

A1–A4 hold. Then, for any continuous function g(s) on Rd , we have
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1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk )wk+1

⎫⎬⎭
⇒
⎧⎨⎩Gt , Wt ,

∫ 1

0
g(Gt )dt,

∫ 1

0
f (Gs )dWs +σ−1

d∑
j=1

Aj0

∫ 1

0

∂ f

∂xj
(Gs)ds

⎫⎬⎭ .
(2.2)

Remark 1. Condition A3 is similar to that in previous studies (see, e.g., Wang,
2015; Liang et al., 2016). We require the moment condition supk≥1 E |zk |2+δ <∞
for some δ > 0 in A4 (i) to remove the effect of higher orders from zk . In terms
of the convergence in (2.2), supk≥1 E |zk |2 <∞ is essential. It is not clear at the
moment if we can reduce δ in A4 (i) to zero.

Remark 2. If wk satisfies (1.2), we may write wk = ϕvk + zk−1 − zk, where

zk =
∞∑

j=0
ϕ̄j vk− j with ϕ̄j =

∞∑
m= j+1

ϕm, i.e., we can denote wk as in the structure

of (1.3) (see, e.g., Phillips and Solo, 1992). For this wk , Theorem 4.9 in Wang
(2015) [also see Liang et al., 2016] established a result similar to (2.2) by assum-
ing (among other conditions) that, for any i ≥ 1,

∞∑
j=0

ϕ̄j E
(
uj+ivi | Fi−1

)= A0, a.s., (2.3)

where A0 is a constant. Since this is required for all i ≥ 1, (2.3) is difficult to
verify when uk is a nonlinear stationary process, such as uk = F(εk,εk−1, . . .),
even in the case that (εk ,vk) are independent and identically distributed (i.i.d.)
random vectors. In comparison, we can easily apply A4 (ii) and (iii) [or (iii)′] to
stationary causal processes and mixing sequences, as in Section 3.

Remark 3. We have 1√
n

n∑
k=1

wk = 1√
n

n∑
k=1

vk + 1√
n
(z0 − zn), indicating that

1√
n

n∑
k=1

wk provides an approximation to the martingale 1√
n

n∑
k=1

vk under given

conditions. However, 1√
n

n∑
k=1

wk is not a semi-martingale since we do not require

the condition supn≥1
1√
n

n∑
k=1

E |zk−1 − zk |<∞. Consequently, Theorems 2.1–2.2

provide an essential extension for the convergence to stochastic integrals, rather
than a simple corollary to previous works. For related results on convergence to
stochastic integrals, we refer to Kurtz and Protter (1991), Phillips (1988a), Jacod
and Shiryaev (2003), Ibragimov and Phillips (2008), and Lin and Wang (2015).

3. THREE USEFUL COROLLARIES

This section investigates direct applications of Theorems 2.1 and 2.2. Section 3.1
considers the case where uk is a long memory process andwk is a stationary causal
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process. Section 3.2 contributes to convergence for both uk and wk as stationary
causal processes. Finally, in Section 3.3, we investigate the impact of near-epoch
dependence in convergence to stochastic integrals. A detailed verification of as-
sumptions for more practical models such as GARCH and nonlinear autoregres-
sive time series will be given in Section 4.

3.1. Long Memory Process

Let (εi ,ηi )i∈Z be i.i.d. random vectors with zero means and Eε2
0 = Eη2

0 = 1.
Define a long memory linear process uk by

uk =
∞∑

j=1

ψjεk− j ,

where ψj ∼ j−μh( j), 1/2< μ < 1, and h(k) is a function that is slowly varying
at ∞. Let F be a measurable function such that

wk = F(. . . ,ηk−1,ηk), k ∈ Z,

is a well-defined stationary random variable with Ew0 = 0 and 0 < Ew2
0 <∞.

The wk is a stationary causal process that is discussed extensively in Wu (2005,
2007) and Wu and Min (2005).

Define xnk = 1
dn

k∑
j=1

uj and ynk = 1√
n

k∑
j=1
wj , where d2

n = var(
n∑

j=1
uj ). To in-

vestigate the convergence of 1√
n

n−1∑
k=0

f (xnk)wk+1, we first introduce the following

notation.

Write Fk = σ(εi ,ηi , i ≤ k) and assume
∞∑

i=1
i 〈P0wi 〉2 <∞. The latter condition

implies that E(v2
k + z2

k) <∞, where

vk =
∞∑

i=0

Pkwi+k , zk =
∞∑

i=1

E(wi+k |Fk).

See Lemma 7 of Wu and Min (2005), namely, (35) in the cited paper. All processes
wk,vk , and zk are stationary and satisfy the decomposition:

wk = vk + zk−1 − zk . (3.1)

We next let ρ = Eε0v0 =
∞∑

i=0
Eε0wi , 
=

(
1 ρ

ρ Ev2
0

)
, (B1t ,B2t ) be a bivariate

Brownian motion with covariance matrix 
 · t and Bt is a standard Brownian
motion independent of (B1t ,B2t ). We further define a fractional Brownian motion
BH (t) depending on (Bt ,B1t ) by

BH (t)= 1

A(d)

∫ 0

−∞

[
(t − s)d − (−s)d

]
d Bs +

∫ t

0
(t − s)dd B1s,
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where

A(d)=
(

1

2d + 1
+
∫ ∞

0

[
(1 + s)d − sd

]2
ds

)1/2

.

After these notations, a simple application of Theorem 2.1 yields the following
result for the case where uk is a long memory process andwk is a stationary causal
process:

THEOREM 3.1. Suppose
∞∑

i=1
i〈P0wi 〉2 <∞ and, for some ε > 0,

∞∑
i=1

i1+ε E |wi −w∗
i |2 <∞, (3.2)

where w∗
k = F(. . . ,η∗−1,η

∗
0,η1, . . .c,ηk−1,ηk), and {η∗

k }k∈Z is an i.i.d. copy of
{ηk}k∈Z and independent of (εk,ηk)k∈Z. Then, for any continuous function g(s)
and any function f (x) satisfying a local Lipschitz condition, we have{

xn,�nt	, yn,�nt	,
1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk)wk+1

}

⇒
{

B3/2−μ(t),B2t ,

∫ 1

0
g
[
B3/2−μ(t)

]
dt,

∫ 1

0
f
[
B3/2−μ(t)

]
d B2t

}
. (3.3)

We remark that condition
∞∑

i=1
i〈P0wi 〉2 <∞ is nearly necessary. As shown in

the proof of Theorem 3.1 (see Section 6), we can replace condition (3.2) by

E

[ ∞∑
i=0

Pk(wi+k −w∗
i+k)

]2

→ 0, as k → ∞.

This condition or (3.2) is required to remove the correlation between ε− j and v j

for j ≥ 1 so that we can define a bivariate process (BH (t),B2t ) depending on
(Bt ,B1t ,B2t ) on DR2 [0,1]. Without this condition or its equivalent, the limit dis-
tribution in (3.3) may have a different structure. Condition (3.2) is quite weak
and satisfied by most common models. Section 4 will provide examples, includ-
ing nonlinear transformations of linear processes, nonlinear autoregressive time
series, and GARCH.

3.2. Causal Processes

As in Section 3.1, suppose that (εi ,ηi )i∈Z are i.i.d. random vectors with zero
means and Eε2

0 = Eη2
0 = 1. In this section, we let

uk = F1(. . . ,εk−1,εk); wk = F(. . . ,ηk−1,ηk), k ∈ Z,

where F1 and F are measurable functions such that both uk and wk are well-
defined stationary random variables with Eu0 = Ew0 = 0, Eu2

0 > 0,Ew2
0 > 0

and Eu2
0 + Ew2

0 <∞; that is, both uk and wk are stationary causal processes.
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Write Fk = σ(εi ,ηi , i ≤ k),

v1k =
∞∑

i=0

Pkui+k , z1k =
∞∑

i=1

E(ui+k |Fk),

vk =
∞∑

i=0

Pkwi+k , zk =
∞∑

i=1

E(wi+k |Fk).

We use the following assumption in this section.

A5. (i)
∞∑

i=1
i〈P0ui 〉2 <∞; (ii)

∞∑
i=1

i〈P0wi 〉2+δ <∞, for some δ > 0;

Set λ̃k = ukzk − Eukzk .

(iii) supk≥2m |E (̃λk | Fk−m
)| = oP(1), as m → ∞; or

(iii)′ supk≥2m E |E (̃λk | Fk−m
)| = o(1), as m → ∞.

As in Section 3.1, all uk,wk, z1k , zk , v1k and vk are stationary with decompo-
sitions of:

uk = v1k + z1,k−1 − z1k, wk = vk + zk−1 − zk . (3.4)

Furthermore, A5 (i) [(ii), respectively] implies that E
(
v2

10 + z2
10

)
< ∞

[E
(|v0|2+δ+|z0|2+δ)<∞, respectively]. Consequently, it follows that

E |ukzk |<∞ and A0 := Eu0z0 =
∞∑

i=1

E(u0wi ) <∞.

Now let 
 =
(

1 σ−1 Ev10v0

σ−1 Ev10v0 Ev2
0

)
, where σ 2 = Ev2

10, and (B1t ,B2t )

be a bivariate Brownian motion with covariance matrix 
 · t . An application of
Theorem 2.2 gives the following result.

THEOREM 3.2. Suppose that A3 (with d = 1) and A5 holds. Then, for any
continuous function g(s), we have{

xn,�nt	, yn,�nt	,
1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk)wk+1

}

⇒
{

B1t , B2t ,

∫ 1

0
g(B1s)ds,

∫ 1

0
f (B1s)d B2s + A0

∫ 1

0
f ′[B1s]ds

}
, (3.5)

where xnk = 1√
nσ

k∑
j=1

uj and ynk = 1√
n

k∑
j=1
wj .
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Theorem 3.2 provides a rather general result for both ut and wt as causal pro-
cesses. In related research using a quite complicated technique from Jacod and
Shiryaev (2003), Lin and Wang (2015) considered the case in which ut = wt .
In comparison, by using Theorem 2.2, our proof is quite simple, as shown in
Section 6. Furthermore, our condition A5 is easy to verify. The following corol-
lary provides an illustration that investigates the case where uk is a short memory
linear process and wk is a general stationary causal process.

COROLLARY 3.1. Suppose that ut =
∞∑

j=0
ϕjεt− j , where

∞∑
i=1

i |ϕi | < ∞ and

ϕ =
∞∑

j=0
ϕj �= 0. Result (3.5) holds true with σ = ϕ and A0 =

∞∑
j=0

∞∑
i=1
ϕj Eε− jwi ,

if, in addition to A3 (with d = 1),
∞∑

k=1

k
〈
wk −w′

k

〉
2+δ <∞, for some δ > 0, (3.6)

where w
′
k = F(. . . ,η−1,η

∗
0 ,η1, . . . ,ηk), and {η∗

k }k∈Z is an i.i.d. copy of {ηk}k∈Z
and independent of (εk,ηk)k∈Z.

We require Condition (3.6) to establish A5 (ii). When ut =
∞∑

j=0
ϕjεt− j with

∞∑
i=1

i |ϕi | < ∞, A5 (iii) can be established under the less restrictive condition:

∞∑
k=1

k〈wk −w′
k〉2 < ∞ as seen in the proof of Corollary 3.1 in Section 6. Some

examples for wk satisfying (3.6), including nonlinear transformations of linear
processes, nonlinear autoregressive time series, and GARCH are discussed in
Section 4.

3.3. Near-epoch Dependence

Let {Ak}k≥1 be a sequence of random vectors whose coordinates are measurable
functions of another random vector process {ηk}k∈Z. Define F t

s = σ(ηs , . . . ,ηt )
for s ≤ t and denote by Ft for F t−∞. As in Davidson (1994), {Ak}k≥1 is said to
be near-epoch dependent on {ηk}k∈Z in LP -norm for p > 0 if〈
At − E

(
At | F t+m

t−m

)〉
p ≤ dt ν(m),

where dt is a sequence of positive constants, and ν(m)→ 0 as m → ∞. In short,
{Ak}k≥1 is said to be LP -NED of size −μ if dt ≤ 〈At 〉p and ν(m) = O(m−μ−ε)
for some ε > 0.

For k ≥ 1, let xnk = 1√
n

k∑
j=1

uj and ynk = 1√
n

k∑
j=1
wj , where (uk,wk)k≥1 de-

fined in Rd+1 is a stationary process. This section investigates the convergence of
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1√
n

n−1∑
k=0

f (xnk)wk+1 in the following conditions:

A6 (i) ηk = (ηk1, . . . ,ηkm ),k ∈ Z, is α-mixing of size −6;1

(ii) (uk)k≥1 is L2-NED of size −1 and uk is adapted to Fk ;

(iii) (wk)k≥1 is L2+δ-NED of size −1 for some δ > 0;

(iv) E(u0,w0)= 0 and E
(||u0||4 +|w0|4

)
<∞.

Due to the stationarity of (uk,wk)k≥1, it follows easily from A6 that


 := lim
n→∞

1

n

n∑
i, j=1

E(M ′
i Mj )=

(

1 ρ
ρ′ 
2

)
, (3.7)

where Mk = (uk,wk) and


1 = Eu
′
0u0 + 2

∞∑
i=1

Eu
′
0ui , 
2 = Ew2

0 + 2
∞∑

i=1

Ew0wi ,

ρ = Eu
′
0w0 +

∞∑
i=1

(Eu
′
0wi + Eu

′
iw0).

In terms of (3.7) and A6, Corollary 29.19 in Davidson (1994, Page 494) yields, as
n → ∞,(
xn,[nt ], yn,[nt ]

)⇒ (B1t ,B2t ), (3.8)

where (B1t ,B2t ) is a d +1-dimensional Brownian motion with covariance matrix

 · t . Now, by using Theorem 2.2, we have the following theorem.

THEOREM 3.3. Suppose A3 and A6 hold. For any continuous function g(s)
in Rd , we have{

xn,�nt	, yn,�nt	,
1

n

n∑
k=1

g(xnk),
1√
n

n−1∑
k=0

f (xnk)wk+1

}

⇒
{

B1t , B2t ,

∫ 1

0
g(B1s)ds,

∫ 1

0
f (B1s)d B2s +

∫ 1

0
A0 D f [B1s]ds

}
, (3.9)

where A0 =
∞∑

i=1
E(u0wi ).

Theorem 3.3, under less moment conditions, extends Liang et al.’s (2016)
Theorem 3.1 [see also Theorem 4.11 in Wang (2015)] from a α-mixing sequence
to near-epoch dependence. We mention that the NED approach also allows the use
of our results in many important practical models, such as the bilinear, GARCH,
threshold autoregressive models, and so on. For details, we refer to Davidson
(2002).
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4. EXAMPLES: VERIFICATIONS OF (3.2) AND (3.6)

As in Sections 3.1 and 3.2, define a stationary causal process by

wk = F(. . . ,ηk−1,ηk), k ∈ Z,

where ηi , i ∈ Z, are i.i.d. random variables with Eη0 = 0 and Eη2
0 = 1. F is a

measurable function such that Ew0 = 0 and 0< Ew2
0 <∞.

In this section, we verify (3.2) and (3.6) for some important practical examples,
including linear processes, nonlinear transformations of linear processes, nonlin-
ear autoregressive time series, and GARCH model. We mention that, when wt is
generated by a GARCH model, asymptotic behaviors in Theorems 3.1 and 3.2
can also be considered by Theorem 1.1 with certain modifications since, in this
situation, wt forms a martingale difference.

The examples considered in this section partially come from Wu (2005) and
Wu and Min (2005). For convenience and except where mentioned explicitly, we
use the same notation as in Section 3; in particular, recall that {η∗

k }k∈Z is an i.i.d.
copy of {ηk}k∈Z and independent of (εk,ηk)k∈Z, and

w∗
k = F(. . . ,η∗−1,η

∗
0,η1, . . . ,ηk−1,ηk) and

w′
k = F(. . . ,η−1,η

∗
0,η1, . . . ,ηk−1,ηk).

We mention that due to the stationarity of wk and the i.i.d. properties of ηk ,

E |P0wn |p ≤ E |wn −w′
n|p

≤ Cp
(
E |wn −w∗

n|p + E |wn+1 −w∗
n+1|p), (4.1)

for any p ≥ 1, where Cp is a constant depending only on p. Thus, both (3.2) and
(3.6) hold if we can prove

E |wn −w∗
n |2+δ ≤ C n−4−3δ, (4.2)

for some δ > 0 and all sufficiently large n.

4.1. Linear Process and its Nonlinear Transformation

Consider a linear process wk defined by wk =
∞∑

j=0
θjηk− j with Eη0 = 0. Routine

calculation shows that wk −w′
k = θk(η0 − η∗

0) and wk −w∗
k =

∞∑
j=0
θj+k(η− j −

η∗− j ). Hence,

• if
∞∑

j=1
j |θj |<∞,

∞∑
j=1

j2+δθ2
j <∞ and E |η0|2+δ <∞ for some δ > 0,

then (3.2) and (3.6) hold true.
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Indeed, (3.6) follows from
∞∑

k=1
k〈wk −w′

k〉2+δ ≤
∞∑

k=1
k · |θk| · 〈η0 − η∗

0〉2+δ < ∞;
and (3.2) from

∞∑
i=1

i1+δ〈wi −w∗
i 〉2

2 =
∞∑

i=1

i1+δE[
∞∑
j=i

θj (ηi− j −η∗
i− j )]

2

≤
∞∑

i=1

i1+δ
∞∑
j=i

θ2
j E[(η0 −η∗

0)]
2 ≤ C

∞∑
j=1

j2+δθ2
j <∞.

We can easily extend the result above to a nonlinear transformation of wk . To
illustrate, let

hk = G(wk)− EG(wk),

where G is a Lipschitz continuous function, i.e., there exists a constant C < ∞
such that

|G(x)− G(y)| ≤ C|x − y|, for all x, y ∈ R. (4.3)

It is readily apparent that (3.2) and (3.6) still hold true when replacingwk with hk

using the following facts:

|hk − h′
k| ≤ C|wk −w′

k| and |hk − h∗
k | ≤ C|wk −w∗

k |.

4.2. Nonlinear Autoregressive Time Series

Let wn be generated recursively by

wn = R(wn−1,ηn), n ∈ Z, (4.4)

where R is a measurable function of its components. Let

Lη0 = sup
x �=x ′

|R(x,η0)− R(x ′,η0)|
|x − x ′|

be the Lipschitz coefficient. Suppose that, for some q > 2 and x0,

E(log Lη0) < 0 and E(Lq
η0

+|x0 − R(x0,η0)|q) <∞. (4.5)

Lemma 2(i) of Wu and Min (2005) proved that there exist C = C(q) > 0 and
rq ∈ (0,1) such that, for all n ∈ N,

E |wn −w∗
n |q ≤ Crn

q . (4.6)

Since (4.6) implies (4.2), the wn defined by (4.4) satisfies (3.2) and (3.6).
We mention that thewn defined in (4.4) is a nonlinear autoregressive time series

and we can easily verify the condition (4.5) using many popular nonlinear models,
such as the threshold autoregressive (TAR), bilinear autoregressive, ARCH, and
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exponential autoregressive (EAR) models. The following illustrations come from
Examples 3–4 in Wu and Min (2005).

TAR Model: wn = φ1 max(wn−1,0)+φ2 max(−wn−1,0)+ηn . Simple calcu-
lation implies that if Lη0 = max(|φ1|, |φ2|) < 1 and E(|η0|q) <∞ for some q > 0,
then (4.5) is satisfied.

Bilinear Model: wn = (α1 + β1ηn−1)wn−1 + ηn, where α1 and β1 are real
parameters and E(|η0|q) < ∞ for some q > 0. Note that Lη0 = |α1 + β1η0|.
(4.5) holds only if E(Lq

η0) < 1.

4.3. GARCH Model

Let {wt }t≥1 be a GARCH(l,m) model defined by

wt =√htηt and ht = α0 +
m∑

i=1

αiw
2
t−i +

l∑
j=1

βj ht− j , (4.7)

where ηt ∼ i.i.d. with Eη1 = 0 and Eη2
1 = 1, α0 > 0, αj ≥ 0 for 1 ≤ j ≤ m,

βi ≥ 0 for 1 ≤ i ≤ l, and h0 = Op(1). If
m∑

i=1
αi +

l∑
j=1
βj < 1, then wt is a stationary

process with the following representation (see, e.g., Theorem 3.2.14 in Taniguchi
and Kakizawa (2000)):

Yt = Mt Yt−1 + bt with Mt = (θη2
t ,e1, . . . ,em−1,θ,em+1, . . . ,el+m−1)

T ,

where Yt = (w2
t , . . . ,w

2
t−m+1,ht , . . . ,ht−l+1)

T and bt = (α0η
2
t ,0, . . . ,0,

α0,0, . . . ,0)T and θ = (α1, . . . ,αm ,β1, . . . ,βl)
T ; ei = (0, . . . ,0,1,0, . . . ,0)T is

the unit column vector with i th element being 1, 1 ≤ i ≤ l + m.

Suppose that E |η0|4 < ∞ and ρ[E(M
⊗

2
t )] < 1, where ρ(M) is the largest

eigenvalue of the square matrix M and
⊗

is the usual Kronecker product. Propo-
sition 3 in Wu and Min (2005) implies that for some C <∞ and r ∈ (0,1),
E(|wn −w∗

n |4) ≤ Crn . (4.8)

Since (4.8) implies (4.2), the wn defined in (4.7) satisfies (3.2) and (3.6).

5. NONLINEAR COINTEGRATING REGRESSION

There are extensive applications in econometrics for the limit theorems involving
stochastic integrals such as those given in Theorems 3.1 and 3.2 (or Corollary
3.1). They arise frequently in time series regressions with integrated and near in-
tegrated processes, unit root testing and nonlinear co-integration theory. See, for
instance, Park and Phillips (2000, 2001), Chang et al. (2001), Chan and Wang
(2015), Wang and Phillips (2009a, 2009b, 2016) and Wang (2015). As noticed
in Liang et al. (2016), using the theorems given in that paper, previous results
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may be extended to a wider class of generating mechanisms such as those in-
volving nonlinear functions and long memory innovations. The following non-
linear cointegrating regression model illustrates the use of the methods discussed
in this paper. As in Liang et al. (2016), we focus on the impact of endogeneity
and nonlinearity to the asymptotics, rather than the generality of the model. More
applications will be considered in subsequent researches.

As in Section 3.1, suppose that (εi ,ηi )i∈Z are i.i.d. random vectors with zero
means and Eε2

0 = Eη2
0 = 1. Let

wk = F(. . . ,ηk−1,ηk), k ∈ Z,

where F is a measurable function such that wk is a well-defined stationary causal
process with Ew0 = 0 and 0 < Ew2

0 < ∞. Let uk be a linear process defined

by uk =
∞∑

j=0
ϕjεk− j , with coefficients ϕj , j ≥ 0, satisfying one of the following

conditions:

C1. ϕj ∼ j−μρ( j), where 1/2 < μ < 1 and ρ(k) is a function slowly varying
at ∞.

C2.
∞∑

i=1
i |ϕi |<∞ and ϕ ≡

∞∑
j=0
ϕj �= 0.

We consider the nonlinear in variables cointegrating model:

yt = α+βh(xt)+wt+1, (5.1)

where xt =∑t
k=1 uk and h(x) is an asymptotically homogeneous real function,

i.e., there exist real functions ν(λ) > 0, H (x) and R(λx) (negligible when λ→ ∞
or λx → ∞) so that

h(λx)= ν(λ)H (x)+ R(λx). (5.2)

Under given conditions, there exist endogeneity and nonlinearity in the model
(5.1) and the regressor xt is driven by short (under C2) or long (under C1) memory
innovations uk . We may write the least square estimators (LSE) of α and β as

β̂ =
∑n

t=1 yt h(xt )− n−1∑n
t=1 h(xt )

∑n
t=1 yt∑n

t=1 h(xt )2 − n−1[
∑n

t=1 h(xt )]2

= β+
∑n

t=1wt
[
h(xt )− n−1∑n

t=1 h(xt )
]∑n

t=1 h(xt )2 − n−1[
∑n

t=1 h(xt )]2
, (5.3)

α̂ = 1

n

n∑
t=1

yt − β̂

n

n∑
t=1

h(xt )

= α+ 1

n

n∑
t=1

wt − β̂−β
n

n∑
t=1

h(xt ). (5.4)
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The asymptotics of α̂ and β̂ clearly depend on the structure of wt , endogeneity
and nonlinearity in the model (5.1), which can be considered by using some mod-
ifications of Theorem 3.1 and Corollary 3.1. To show this, we need the conditions
imposed on wt as in Theorem 3.1 and Corollary 3.1, and further conditions on
h(x) having a representation of (5.2).

For convenience of reading, we use the notation as in Section 3.1, i.e., we write

vk =
∞∑

i=0

Pkwi+k , zk =
∞∑

i=1

E(wi+k |Fk), 
=
(

1 ρ

ρ Ev2
0

)
,

where ρ = Eε0v0 =
∞∑

i=0
Eε0wi . We further let (B1t ,B2t ) be a bivariate Brown-

ian motion with covariance matrix 
 · t and define a fractional Brownian motion

BH (t) as in Section 3.1. We always assume
∞∑

i=1
i 〈P0wi 〉2 < ∞, indicating that

E(v2
0 + z2

0) <∞. We also use the following assumption on h(x).

A7 (i) H (x) satisfies a local Lipschitz condition;

(ii) H ′(x) is continuous on R and

|H ′(x)− H ′(y)| ≤ CK |x − y|β,
for some β > 0 and all max{|x |, |y|} ≤ K , where CK is a constant
depending only on K ;

(iii) There exists an a(λ) so that |R(λx)| ≤ a(λ)(1+|x |γ ) for some γ > 0
and

|R(λx)− R(λy)| ≤ a(λ) |x − y|,
whenever x and y are in a compact set;

(iv) As λ→ ∞, limλ→∞ a(λ)/ν(λ)= 0.

The following results provide the asymptotics of α̂ and β̂.

THEOREM 5.1. Suppose that (3.2), A7(i) and (iii) hold. If uk =
∞∑

j=0
ϕjεk− j ,

with coefficients ϕj , j ≥ 0, satisfying C1, then

ν(dn)
√

n
(
β̂n −β)→D

∫ 1
0 H [B3/2−μ(t)]d B2t − B2t

∫ 1
0 H [B3/2−μ(t)]dt∫ 1

0 H 2[B3/2−μ(t)]dt − [∫ 1
0 H [B3/2−μ(t)]dt

]2 , (5.5)

where d2
n = cμn3−2μρ2(n) for some cμ > 0. If, in addition ν(λ)→ ∞, then

√
n
(
α̂n −α)→D N(0,Ev2

0 ). (5.6)
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THEOREM 5.2. Suppose that (3.6), A7(ii) and (iii) hold. If uk =
∞∑

j=0
ϕjεk− j ,

with coefficients ϕj , j ≥ 0, satisfying C2, then

ν(
√

nϕ)
√

n
(
β̂n −β)→D

∫ 1
0 H(B1t)d B2t + A0

∫ 1
0 H ′(B1t )dt − B2t

∫ 1
0 H(B1t )dt∫ 1

0 H2(B1t )dt − [∫ 1
0 H(B1t )dt

]2 , (5.7)

where A0 =
∞∑

j=0

∞∑
i=1
ϕj Eε− jwi . If, in addition ν(λ)→ ∞, then

√
n
(
α̂n −α)→D N(0,Ev2

0 ). (5.8)

By virtue of (5.2), the proofs of Theorems 5.1 and 5.2 follow easily from
Theorem 3.1 and Corollary 3.1, respectively, together with the continuous map-
ping theorem and the following proposition. We omit the details.

PROPOSITION 5.1. Suppose that R(x) satisfying A7(iii). Then, for ut and
wt satisfying the conditions of Theorems 5.1 or 5.2, we have

1

a(d̃n)
√

n

n∑
t=1

R(xt )wt+1 = OP (1), (5.9)

where d̃n =
{

dn, under the conditions of Theorem 5.1,√
nϕ, under the conditions of Theorem 5.2.

6. CONCLUSION

On weak convergence to stochastic integrals, we show that it is possible to ex-
tend the common martingale and semi-martingale structures to include long mem-
ory processes, causal processes, and near-epoch dependence in innovations. Our
frameworks apply to the TAR, bilinear, and other nonlinear models. As illus-
trated in Section 5, asymptotics with non-stationary time series in economet-
rics usually rely on convergence to stochastic integrals. The authors hope the
results derived in this paper prove useful in related areas, particularly in non-
linear cointegrating regressions where endogeneity and nonlinearity play major
roles.

7. PROOFS

This section provides the proofs for all theorems. Except where mentioned ex-
plicitly, the notation used in this section is the same as in the previous sections.

https://doi.org/10.1017/S0266466617000408 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466617000408


1148 JIANGYAN PENG AND QIYING WANG

Proof of Theorem 2.1. We may write

1√
n

n−1∑
k=1

f (xnk)wk+1 = 1√
n

n−1∑
k=1

f (xnk)(vk+1 + zk − zk+1)

= 1√
n

n−1∑
k=1

f (xnk)vk+1 + 1√
n

n−1∑
k=1

[
f
(
xnk
)− f

(
xn,k−1

)]
zk + op(1)

= 1√
n

n−1∑
k=1

f (xnk)vk+1 + Rn + oP(1), say. (7.1)

Let 
K = {xni : max1≤i≤n ||xni || ≤ K }. Since f satisfies the local Lipschitz
condition, it is readily seen from supk E ||zkuk ||<∞ that, as n → ∞,

E |Rn |I (
K )≤ CK
1√
ndn

n∑
k=1

E ||zkuk || ≤ CK (n/d
2
n )

1/2 → 0.

This implies that Rn = oP(1) because P(
K ) → 1, as K → ∞. Theorem 2.1
follows from Theorem 1.1. �

Proof of Theorem 2.2. We may write

1√
n

n−1∑
k=1

f (xnk)wk+1 = 1√
n

n−1∑
k=1

f (xnk)(vk+1 + zk − zk+1)

= 1√
n

n−1∑
k=1

f (xnk)vk+1 + 1√
n

n−1∑
k=1

[
f
(
xnk
)− f

(
xn,k−1

)]
zk +op(1)

= 1√
n

n−1∑
k=1

f (xnk)vk+1 + 1√
n

n−1∑
k=1

(xnk − xn,k−1)D f (xn,k−1)zk + R1(n)+op(1)

= 1√
n

n−1∑
k=1

f (xnk)vk+1 + 1√
ndn

n−1∑
k=1

E(zkuk)D f (xn,k−1)+ R1(n)+ R2(n)+op(1),

(7.2)

where the remainder terms are

R1(n)= 1√
n

n−1∑
k=1

zk [ f (xnk)− f (xn,k−1)− (xnk − xn,k−1)D f (xn,k−1)]

R2(n)= 1√
ndn

n−1∑
k=1

[zkuk − E(zkuk)]D f (xn,k−1).

By virtue of Theorem 1.1, to prove (2.2), it is sufficient to show that

Ri (n)= oP(1), i = 1, 2. (7.3)
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To prove (7.3), let 
K = {xni : max1≤i≤n ||xni || ≤ K }. Note that A3 implies
that, for any K > 0 and max{||x ||, ||y||} ≤ K , ||D f (x)|| ≤ CK and

| f (x)− f (y)− (x − y)D f (x)| ≤ CK ||x − y||1+β ′
,

where β ′ = min{δ/(2 + δ),β} for δ > 0 given in A4(i). Then,

E |R1(n)|I
(

K
)≤ CK√

n

n∑
k=1

E
(||xnk − xn,k−1||1+β ′ |zk |

)
≤ CK n−(1+β ′/2)

n∑
k=1

E(||uk||1+β ′ |zk |)= O(n−β ′/2), (7.4)

where we use the fact that, due to A4(i),

sup
k≥1

E(||uk||1+β ′ |zk |)≤ sup
k≥1

(
E ||uk||2

)(1+β ′)/2 sup
k≥1

(
E |zk |2+δ)1/(2+δ)

<∞.

This implies that R1(n)= OP (n−β ′/2) because P(
K )→ 1 as K → ∞.
It remains to show R2(n) = oP(1). To this end, let m = mn → ∞ and mn ≤

logn. By recalling λk = zkuk − E(zkuk), we have

R2(n)= 1

nσ

2m∑
k=1

λkD f (xn,k−1) + 1

nσ

n−1∑
k=2m

λkD f (xn,k−m−1)

+ 1

nσ

n−1∑
k=2m

λk
[
D f (xn,k−1)−D f (xn,k−m−1)

]= R21(n)+ R22(n)+ R23(n).

As in the proof of (7.4), it is clear from A3 that

E |R21(n)|I
(

K
)≤ CK mn−1 sup

k≥1
E ||λk || ≤ CK n−1 logn,

E |R23(n)|I
(

K
)≤ CK n−1

n∑
k=1

E
(||xn,k−1 − xn,k−m−1||β ′ ||λk||

)
≤ CK n−1−β ′/2

n∑
k=1

k−1∑
j=k−m

E(||uj ||β ′ ||λk||)≤ CK n−β ′/2 logn,

where β ′ = min{δ/(2 + δ),β}. Hence, R21(n) + R23(n) = oP(1) because
P(
K )→ 1 as K → ∞. To estimate R22(n), let

I R1(n)= 1

nσ

n−1∑
k=2m

[
λk − E(λk | Fk−m−1)

]
x∗

k ,

I R2(n)= 1

nσ

n−1∑
k=2m

E(λk | Fk−m−1)x
∗
k ,
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where x∗
k = D f (xn,k−m−1)I (max1≤ j≤k−m−1 ||xnj || ≤ K ). Since A4 (iii) and A3,

|I R2(n)| ≤ CK

n

n∑
k=1

||E(λk | Fk−m−1)|| ≤ sup
k≥2m

||E(λk | Fk−m−1)|| = oP(1).

Similarly, if A4 (iii)′ and A3 hold, then

E |I R2(n)| ≤ CK

n

n∑
k=1

E ||E(λk | Fk−m−1)|| ≤ sup
k≥2m

E ||E(λk | Fk−m−1)|| = o(1),

which yields |I R2(n)| = oP(1). On the other hand, we have

I R1(n)=
m∑

j=0

I R1 j (n),

where

I R1 j (n)= 1

nσ

n−1∑
k=2m

[
E(λk | Fk− j )− E(λk | Fk− j−1)

]
x∗

k .

Let λ1k( j)= [E(λk | Fk− j )− E(λk | Fk− j−1)
]
x∗

k . Note that, for each j ≥ 0,

I R1 j (n)= 1

nσ

n−1∑
k=2m

λ1k( j)

is a martingale with supk≥1 E ||λ1k( j)||1+δ ≤ C supk≥1 E ||λk ||1+δ <∞ for some
δ > 0. The classical result from the strong law for martingales (see, e.g., Hall and
Heyde (1980, Thm. 2.21, Page 41)) yields

I R1 j (n)= oa.s(log−2 n),

for each 0 ≤ j ≤ m ≤ logn, implying I R1(n)=
m∑

j=0
I R1 j (n)= oP(1).

We now have R22(n) = oP(1) because P(
K )→ 1 as K → ∞, and the fact
that, on 
k,

R22(n)= 1

nσ

n−1∑
k=2m

λk x∗
k = I R1(n)+ I R2(n)= oP(1).

Combining these results, we prove R2(n) = oP(1) and also complete the proof
for (2.2). �

Proof of Theorem 3.1. First, note that

d2
n = var

⎛⎝ n∑
j=1

uj

⎞⎠∼ cμ n3−2μh2(n), with cμ = 1

(1−μ)(3−2μ)

∫ ∞

0
x−μ(x +1)−μdx,
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i.e., d2
n/n → ∞. (See, e.g., Wang, Lin, and Gullati, 2003). By recalling (3.1) and

using Theorem 2.1, Theorem 3.1 will follow if we verify A2, i.e., on DR2 [0,1],⎛⎝ 1

dn

[nt ]∑
j=1

uj ,
1√
n

[nt ]∑
j=1

wj

⎞⎠⇒ (
B3/2−μ(t),B2t

)
. (7.5)

We next prove (7.5). Since {(εk,vk),Fk}k≥1 forms a stationary martingale dif-
ference with covariance matrix 
. Applying the classic martingale limit theorem
[see, e.g., Theorem 3.9 in Wang (2015)], yields⎛⎝ 1√

n

[nt ]∑
j=1

εj ,
1√
n

[nt ]∑
j=1

v j

⎞⎠⇒ (B1t ,B2t ) , (7.6)

on DR2 [0,1]. Recall that, for k ≥ 1,

w∗
k = F(. . . ,η∗

−1,η
∗
0,η1, . . . ,ηk−1,ηk),

where {η∗
k }k∈Z is an i.i.d. copy of {ηk}k∈Z and independent of (εk,ηk)k∈Z. Let

v∗
k =

∞∑
i=0

Pkw
∗
i+k . Note that ε−i is independent of (εi ,v

∗
i ) for i ≥ 1. If we have the

condition:

1√
n

max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

(v j − v∗
j )

∣∣∣∣∣∣= oP(1), (7.7)

it follows from (7.6) that⎛⎝ 1√
n

[nt ]∑
j=1

ε− j ,
1√
n

[nt ]∑
j=1

εj ,
1√
n

[nt ]∑
j=1

v j

⎞⎠⇒ (
Bt ,B1t ,B2t

)
, (7.8)

on DR3 [0,1], where Bt is a standard Brownian motion independent of
(
B1t ,B2t

)
.

Note that

max
1≤k≤n

∣∣∣∣∣∣ 1√
n

k∑
j=1

wj − 1√
n

k∑
j=1

v j

∣∣∣∣∣∣≤ max
1≤k≤n

|zk |/√n = oP(1).

Result (7.8) implies that⎛⎝ 1√
n

[nt ]∑
j=1

ε− j ,
1√
n

[nt ]∑
j=1

εj ,
1√
n

[nt ]∑
j=1

wj

⎞⎠⇒ (
Bt ,B1t ,B2t

)
,

on DR3 [0,1]. Thus, (7.5) follows from the continuous mapping theorem and sim-
ilar arguments to those in Wang et al. (2003).
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It remains to show that (3.2) implies (7.7). In fact, by noting {vk − v∗
k ,Fk}k≥1

forms a martingale difference, the martingale maximum inequality clearly shows
that, for any ε > 0,

P

⎛⎝ max
1≤k≤n

∣∣∣∣∣∣
k∑

j=1

(v j − v∗
j )

∣∣∣∣∣∣≥ ε
√

n

⎞⎠≤ 2

nε2

n∑
j=1

E(v j − v∗
j )

2

≤ 2

nε2

n∑
k=1

E

[ ∞∑
i=0

Pk(wi+k −w∗
i+k)

]2

. (7.9)

By Hölder’s inequality and (3.2), we have

E

[ ∞∑
i=0

Pk(wi+k −w∗
i+k)

]2

≤
∞∑

i=0

(i + k)−1−ε
∞∑

i=0

(i + k)1+ε E
[Pk(wi+k −w∗

i+k)
]2

≤ C
∞∑

i=k

i1+ε E(wi −w∗
i )

2 → 0,

as k → ∞. Taking this estimate into (7.9), we have (7.7), and complete the proof
of Theorem 3.1 in addition. �

Proof of Theorem 3.2. As in the proof for Theorem 3.1, by recalling (3.4) and
using Theorem 2.2, we need only verify A2, i.e., on DR2 [0,1],(

1√
n

[nt ]∑
k=1

uk,
1√
n

[nt ]∑
k=1

wk

)
⇒ (B1t ,B2t ). (7.10)

In fact, by noting that
{
(v1k,vk),Fk

}
k≥1 forms a stationary martingale difference

with E
(
v2

10 +v2
0

)
<∞, the classical martingale limit theorem [see, e.g., Theorem

3.9 in Wang (2015)] yields(
1√
nσ

[nt ]∑
k=1

v1k,
1√
n

[nt ]∑
k=1

vk

)
⇒ (B1t ,B2t ),

on DR2 [0,1], where (B1t ,B2t )t≥0 is a 2-dimensional Gaussian process with zero
means, stationary and independent increments, and covariance matrix


t = lim
n→∞

1

n

[nt ]∑
k=1

cov

[(
σ−1v1k

vk

)(
σ−1v1k,vk

)]=
 t .

Consequently, we have

(
xn,[nt ], yn,[nt ]

) =
(

1√
nσ

[nt ]∑
k=1

v1k,
1√
n

[nt ]∑
k=1

vk

)
+ Rn,t

⇒ (B1t ,B2t ),
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by recalling E(|z10|2 +|z0|2) <∞,

sup
0≤t≤1

||Rn,t || ≤ max
1≤k≤n

(|z1k |+ |zk|)/
√

n = oP(1).

This yields (7.10), and also completes the proof of Theorem 3.2. �

Proof of Corollary 3.1. We need only verify A5. First, a simple calculation

shows that Pkui+k = ϕiεk . Thus,
∞∑

i=1
i 〈P0ui 〉2 <∞; that is, A5 (i) holds.

Because (4.1), A5 (ii) is implied by (3.6). It remains to show that A5 (iii) holds

if
∞∑

t=1
t 〈wt −w′

t 〉2 <∞, as the latter is a consequence of (3.6). In fact, by letting

j∑
i=k

= 0 if j < k, we may write

E
(
λ̃k | Fk−m

) =
k−m∑

j=−∞
Pj (uk zk)=

∞∑
i=0

ϕi

∞∑
j=m

Pk− j (εk−i zk)

=
∞∑

i=0

ϕi

⎛⎝max{m,i}∑
j=m

+
∞∑

j=max{m,i}+1

⎞⎠P0(εj−i z j )

=
∞∑

i=0

ϕi

max{m,i}∑
j=m

P0(εj−i z j )+
∞∑

i=0

ϕi

∞∑
j=max{m,i}+1

∞∑
t=1

P0(εj−iwt+ j )

:= A1m + A2m . (7.11)

It is readily seen from E |zk |2 = E |z0|2 <∞ that

E |A1m | ≤ 2
∞∑

i=m

i |ϕi |(Eε2
0 )

1/2 (Ez2
0)

1/2 → 0,

as m → ∞. As for A2m , by noting P0(εj−iwt+ j ) = E
[
εj−i (wt+ j −w′

t+ j ) | F0
]

when j > i , we have

E |A2m | ≤
∞∑

i=0

|ϕi |
∞∑

j=m+1

∞∑
t=1

E |εj−i (wt+ j −w′
t+ j )|

≤ C
∞∑

j=m+1

∞∑
t=1+ j

〈wt −w′
t 〉2

≤ C
∞∑

t=m

t 〈wt −w′
t 〉2 → 0,

as m → ∞. Taking these estimates into (7.11), we obtain

E

[
sup

k≥2m
|E( λ̃k | Fk−m

)|]≤ E |A1m|+ E |A2m| → 0,

implying A5 (iii). �
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Proof of Theorem 3.3. First note that, under A6, it follows from Theorem 17.5
in Davidson (1994) thatwk,k ∈ Z, is a stationary L2+δ-mixingale of size −1 with
constant 〈w0〉4,

〈E(wk | Fk−m)〉2+δ ≤ C 〈w1〉4 m−γ , (7.12)

〈wk − E(wk | Fk+m)〉2+δ ≤ C 〈w1〉4 m−γ , (7.13)

hold for all k, m ≥ 1, and some γ > 1. Furthermore, by Theorem 16.6 in Davidson
(1994), we may write

wk = vk + zk−1 − zk,

where, as in Section 3.2,

vk =
∞∑

i=0

Pkwi+k , zk =
∞∑

i=1

E(wi+k |Fk).

We clearly see that both vk and zk are stationary and (vk,Fk)k≥1 forms a martin-
gale difference with Ev2

1 ≤ 2Ew2
1 + 4Ez2

1 < ∞, since, by (7.12), the following
result holds (implying Ez2

1 <∞):

〈zk, j 〉2+δ ≤
∞∑

i= j+1

〈E(wi |F0)〉2+δ ≤ C〈w1〉4

∞∑
i= j+1

i−γ <∞, (7.14)

for any j ≥ 0, where zk, j =
∞∑

i= j+1
E(wi+k |Fk). By (7.12) and (7.13), for any

k ≥ 1, we also have

|E(w1wk)| ≤ E
(|w1 −w∗

1| |wk |
)+ E

[|w∗
1 | |E(wk | Fk/2)|

]
≤ 〈w1〉2

{〈w1 −w∗
1〉2 +〈E(wk | Fk/2)〉2

}
≤ C 〈w1〉2〈w1〉4 k−γ , (7.15)

where w∗
1 = E(w1 | Fk/2). We use the result (7.15) later.

Note that wk has structure (1.3) with the vk satisfying A1; (3.8) implies A2;
and A6 (iii) and (7.14) with j = 0 imply A4 (i). Using Theorem 2.2, Theorem 3.3
will follow if we prove (3.7) and

sup
k≥2m

E ||E(λk | Fk−m
)|| → 0, (7.16)

where λk = zkuk − Ezkuk , as m → ∞.
By recalling the stationarity of (uk,wk)k≥1, to prove (3.7), it suffices to show

that
1,
2 and ρ are finite. In fact, (7.15) implies that |
2| ≤ Ew2
0 +C

∞∑
j=1

j−γ <

∞. Similarly, we may prove that (uk)k≥1 is a stationary L2-mixingale of size −1
with constant 〈u0〉4. Thus, the same argument yields |
1|<∞ and |ρ|<∞.
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To prove (7.16), let z∗
k = zk − zk,αm =

αm∑
i=1

E(wi+k |Fk),

λk,1 = z∗
k uk − Ez∗

kuk, λk,2 = zk,αm uk − Ezk,αm uk,

where αm → ∞ and zk,αm is given as in (7.14). Because (7.14), we have

E ||E(λk,2 | Fk−m
)|| ≤ E ||λk,2|| ≤ 2 〈zk,αm 〉2 〈u0〉2 → 0, (7.17)

as m → ∞, uniformly for any k ≥ 2m and any integer sequence αm → ∞. By
recalling that uk is adapted to Fk and Fk−m ⊂ Fk , we may write

E ||E(λk,1 | Fk−m
)|| ≤

αm∑
i=1

E ||E(Ak | Fk−m
)||,

where Ak = ukwi+k − Eukwi+k . Since both uk and wk are L2-NED of size −1,
Corollary 17.11 in Davidson (1994) implies that Ak is L1-NED of size −1. Con-
sequently, as in the proof of (7.12), there exists a sequence of vm such that vm → 0
and

E ||E(Ak | Fk−m
)|| ≤ C vm .

Hence, uniformly for k ≥ 2m,

E ||E(λk,1 | Fk−m
)|| ≤ C αmvm → 0,

as m → ∞, by taking αm as an integer sequence in which αm → ∞ and αmvm →
0. This, together with (7.17), yields

sup
k≥2m

E ||E(λk | Fk−m
)|| ≤ C (αmvm + 2 〈zk,αm 〉2 〈u0〉2)→ 0,

as m → ∞, as required. The proof of Theorem 3.3 is now complete. �

Proof of Proposition 5.1. Recalling wk = vk + zk−1 − zk , we may write

n∑
k=1

R(xk)wk+1 =
n∑

k=1

R(xk)(vk+1 + zk − zk+1)

=
n∑

k=1

R(xk)vk+1 +
n∑

k=1

[
R
(
xk
)− R

(
xk−1

)]
zk + R(xn)zn+1 − R(x0)z1

=�1n +�2n +�3n, say. (7.18)

For some K > 0, let x̃k = xk I (|xk |/d̃n ≤ K ),

�̃1n =
n∑

k=1

R(x̃k)vk+1 and �̃2n =�2n I ( max
1≤i≤n

|xi |/d̃n ≤ K ).
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Under A7 (iii), it is readily seen from supk E |zkuk |<∞ that, for any K > 0,

E |�̃2n| ≤ a(d̃n)

d̃n

n∑
k=1

E ||zkuk || ≤ C
na(d̃n)

d̃n
,

implying�2n = OP
[√

n a(d̃n)
]

because, again as K → ∞,

P(�2n �= �̃2n)≤ P( max
1≤i≤n

|xi |/d̃n > K )→ 0.

Similarly, �2n = OP
[√

n a(d̃n)
]
. As for �1n , by noting that �1n forms a martin-

gale, it follows from A7 (iii) again that

E�̃2
1n ≤

n∑
k=1

E R2(x̃k) ≤ na2(d̃n)(1 + Cγ
K ),

indicating that �1n = OP
[√

n a(d̃n)
]

because, as K → ∞,

P(�1n �= �̃1n)≤ P( max
1≤i≤n

|xi |/d̃n > K )→ 0.

Combining all these facts, we prove
∑n

k=1 R(xk)wk+1 = OP
[√

n a(d̃n)
]
, as

required. �

NOTE

1. For a definition of α-mixing, we refer to Davidson (1994, Chap. 14).
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