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A series of experiments were conducted in a wave basin (50 m long, 10 m wide
and 5 m deep) generating two waves propagating at an angle by a directional
wavemaker. When the two waves were selected from a resonant triplet, an initially
non-existing wave grew as the waves propagated down the tank. The linear growth
rate of the resonating wave agreed well with third-order resonance theory based
on Zakharov’s reduced gravity equation. Additional experiments with opposing and
coflowing mean current with large temporal and spatial variations were conducted. As
the flow rate increased, the linear growth was suppressed. As reproduced numerically
with Zakharov’s equation, the resonant interaction saturated at time scales inversely
proportional to the magnitude of the forced random resonance detuning. It is
conjectured that the resonance is detuned by the variation and not by the mean of
the current field due to wavelength-dependent Doppler shift and to the refraction of
wave rays. Further analysis of the spectral evolution revealed that while discrete peaks
appear at high frequencies as a result of dynamical cascading, a continuously saturated
spectrum develops in the background as the current speed increases. Additional
experiments were conducted studying the evolution of the random directional wave
on a dynamical time scale under the influence of current. Due to random resonance
detuning by the current, the spectral tail tended to be suppressed.

Key words: surface gravity waves, waves/free-surface flows

1. Introduction

The fundamental theories of the evolution of ocean waves were established in the
1950s and 1960s. Ocean waves are generated due to the wind and its self-similar
wave spectrum downshifts due to nonlinear wave–wave interaction (Miles 1957;
Phillips 1958; Hasselmann 1962). Numerous works extending these theories were
developed over the years. They are now implemented in wave forecasting models,
but empiricism is to a certain degree unavoidable (Cavaleri et al. 2007). The heart of
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the so-called third generation wave model is the four-wave resonance that was first
described by Phillips (1960) as a deterministic process and by Hasselmann (1962)
as a stochastic process. Zakharov (1968) independently derived an integro-differential
equation of wave evolution for spectral components and showed that Hasselman’s
solution can be rederived by randomising the wave field.

Surprisingly, however, studies validating the four-wave resonance are rather limited.
Historical experiments were conducted independently, but almost simultaneously, by
Longuet-Higgins & Smith (1966) and McGoldrick et al. (1966) using a rectangular
wave basin with wavemakers at two sides generating two waves crossing at 90◦. A
third wave will grow in space as a result of four-wave interaction in which one of the
waves is counted twice. The growth rate of the third wave agrees with the theory of
tertiary wave interaction. Tomita (1989) conducted a similar experiment and showed
that the third wave will evolve in both space and time. Alternatively, experimental
verification of the theory of four-wave resonance is possible by estimating the initial
growth rate of the Benjamin–Feir instability (e.g. Tulin & Waseda 1999).

Based on these earlier works, it is in general conceived that waves of infinitesimal
amplitude satisfying the linear dispersion relationship will form a resonant quartet in
deep water and a resonant triad in shallower water. Further extension of resonance
theory to include the finite amplitude effect was made, for example, by Madsen
& Fuhrman (2006). The so-called Phillips figure of eight diagram, representing the
resonance manifold, is modified as a result of amplitude dispersion. An interesting
consequence of the finite amplitude resonance condition is the existence of resonant
progressive short-crested waves of permanent form (Hammack, Henderson & Segur
2005; Xu et al. 2012; Liu & Liao 2014). Liao (2011) theoretically derived a solution
corresponding to this permanent short-crested wave by means of a homotopy analysis
method, and later Xu et al. (2012) showed that the derivation is consistent with
Zakharov’s theory. Experimental validation of this permanent wave form was
conducted recently by Liu et al. (2015) in a sizeable square basin. Not a lot of
study has been conducted yet on unsteady nonlinear resonant waves, but it should
be recalled that the instability of Stokes waves is indeed a consequence of the
cancellation of resonance detuning by amplitude dispersion.

Numerical validations have been conducted in both the periodic domain and the
non-periodic domain. Unlike most physical experiments in a wave basin, where waves
are left to evolve only in space, the numerical test can be made with a periodic
boundary condition in space. We can then observe the growth of waves in time.
The limitation of this approach is that the allowable wavenumber will be quantised,
and, therefore, the exact resonance condition cannot be achieved (e.g. Hirobe 2013;
W. Choi, personal communication, 2012). Fuhrman, Madsen & Bingham (2006)
have implemented a Boussinesq-type model in a non-periodic rectangular domain
including wave generating and absorbing regions at both ends of the domain with
reflecting side boundaries, thus reproducing waves in a domain similar to a narrow
flume. Short-crested instability was studied and it was successfully demonstrated that
resonance quartet interaction can occur in a closed basin.

Indirectly, the consequence of four-wave interaction can be validated, observing the
nonlinear transfer function of the random directional wave. However, the required
kinetic time scale necessary for the establishment of Hasselman’s interaction is
much longer than the time scale of laboratory experiments (e.g. Janssen 2003).
Tanaka (2001) has conducted an extensive numerical simulation of a fully nonlinear
model and showed that a Hasselman-like transfer function can be reproduced on a
dynamical time scale. Moreover, even on a dynamical time scale, an equilibrium
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tail seems to develop (Waseda, Kinoshita & Tamura 2009). They have shown that
an equilibrium tail can develop in a narrow channel, and the exponent of the tail
depends on the directional spreading. It should be noted that in both fully nonlinear
numerical simulations and tank experiments, the wavenumber spectrum is discretised
and, therefore, exact resonances cannot occur. The nonlinear energy transfer occurs
on a much faster time scale among a detuned quartet of waves.

The effect of a background current on the resonance has been studied for the
degenerate case of modulational instability of a Stokes wave, which plays a pivotal
role in freak wave generation, by Toffoli et al. (2013, 2015). They have experimentally
confirmed the foresight of Onorato, Proment & Toffoli (2011), who have shown that
the generation of rogue waves is triggered when waves enter a field of opposing
current. Onorato et al. (2011) made use of the current-modified nonlinear Schrödinger
equation derived by Hjelmervik & Trulsen (2009). Under the influence of a random
current field, linear focusing effects can enhance the generation of freak waves (White
& Fornberg 1998), and this is further strengthened by an opposing current field (Wu
& Yao 2004). Hjelmervik & Trulsen (2009) investigated the effect of nonlinearity
on the linear refraction effect, and showed that depending on the current and wave,
the probability of freak waves can either grow or decrease when the wave height
increases due to linear refraction. Although these phenomena are related to resonant
interaction of waves, it is not necessarily apparent how the exact resonance can be
affected when a background current field is present.

In this study, we will first explore experimentally the validity of the four-wave
interaction in a narrow channel. The experimental evolution of the resonant wave
system will be compared with the growth rate based on Zakharov’s theory (Zakharov
1968) augmented by Krasitskii (1994). For the case of a DIA (discrete interaction
approximation) quartet, a background current field will be added. The resulting
suppression of the resonant interaction will be numerically investigated, introducing
constant and random resonant detuning. A possible consequence of the random
detuning suppressing the resonance will be studied experimentally by the evolution of
the irregular directional wave. Dynamical cascade among free and bound waves will
be discussed as well. In § 2, the theoretical basis of the resonant interaction of tertiary
waves is given. The facility and experimental conditions of the cases presented in
this paper, together with the description of the current field with large variations, are
presented in § 3. Experimental results for the resonant wave systems are given in § 4.
The discussion section contains the result of the numerical solution and additional
experiments on the irregular directional spectrum, § 5. The conclusion follows.

2. Theoretical basis

The evolution of nonlinear surface waves interacting with each other is studied on
the basis of the Zakharov equation (Zakharov 1968). The kernels of the interaction and
the necessary canonical transformation are described in Krasitskii (1994). The four-
wave reduced equation for a pure gravity wave reads

i
∂b0

∂t
=ω0b0 +

∫
Ṽ0123b∗1b2b3δ0+1−2−3 dk123, (2.1)

where the canonical variables bi are related to the Fourier coefficients of the surface
elevation and surface potential through a cumbersome canonical transformation. The
interaction coefficient Ṽ0,1,2,3 is determined by the wavenumber vectors k0, k1, k2, k3
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and the δ0+1−2−3 = δ(k0 + k1 − k2 − k3). The details are given in the original paper
by Krasitskii (1994) or an illuminating text book by Janssen (2004). By introducing
a discrete spectrum, an integro-differential equation can be expressed as a summation
of discrete interaction terms:

i
∂b0

∂t
=ω0b0 +

∑
0+1−2−3

T0123b∗1b2b3, (2.2)

where T0,1,2,3 represents the interaction coefficient Ṽ0,1,2,3 evaluated at each four-wave
combination. In this study, we investigate the interaction of a set of four waves
(b1, b2, b3, b4) exactly in resonance or slightly off of the resonance condition,

ω1 +ω2 =ω3 +ω4 +∆1234,
k1 + k2 = k3 + k4.

}
(2.3)

The wave frequency ω and the wavenumber vector k satisfies the linear dispersion
relationship of surface gravity waves, ω2 = gk tanh (kh), where k = |k| and h is
the depth. In the following, the depth is assumed to be infinite. A straightforward
comparison of the theory with a physical experiment on four-wave interaction is not
possible because of the use of the canonical variable and the canonical transformation.
Retaining only the linear term of the canonical transformation a0 = b0 + N.L.T. and
assuming linear surface elevation and velocity potential at the free surface, i.e.
ζ (k) = i(|k|/ω(|k|))ψ(k), we obtain the following relationship which relates the
observed surface elevation to the canonical variables in (2.2):

b(k)= ζ (k)
[
ω(|k|)
2|k|

]1/2

+ iψ(k)
[ |k|

2ω(|k|)
]1/2

≈ 2c1/2
g ζ (k), (2.4)

where ζ (k) = ζ ∗(−k) and ψ(k) = ψ∗(−k) are respectively the Fourier coefficients
of the free-surface elevation and velocity potential at the free surface, and cg =
(ω(|k|)/2|k|) is the group velocity. By applying the change of variables ζi(ki, t) =
ζ̂i(ki) exp(−iωit), we obtain the evolution equation of free-surface wave amplitudes,
evaluated with physical variables, ζ̂ = |ζ̂ |e−iθ = ae−iθ/2 and η = a cos θ = ζ̂ + ζ̂ ∗ =
2|ζ̂ | cos θ ,

∂a0

∂t
=

∑
0+1−2−3

(
cg1cg2cg3

cg0

)1/2

T0123a1a2a3 sin(Θ0123 +∆0123t), (2.5a)

∂θ0

∂t
=

∑
0+1−2−3

(
cg1cg2cg3

cg0

)1/2

T0123
a1a2a3

a0
cos(Θ0123 +∆0123t), (2.5b)

where Θ0123 = θ0 + θ1 − θ2 − θ3.
The evolution equation for the quasi-resonant or near-resonant quartet, equivalent to

Benney’s equation (Benney 1962), can be obtained:

∂a0

∂t
= 2T0123

(
cg1cg2cg3

cg0

)1/2

a1a2a3 sin(Θ0123 +∆0123t), (2.6a)

∂θ0

∂t
= (T0000cg0a2

0 + 2T0101cg1a2
1 + 2T0202cg2a2

2 + 2T0303Cg3a2
3

)
+ 2T0123

(
cg1cg2cg3

cg0

)1/2 a1a2a3

a4
cos(Θ0123 +∆0123t). (2.6b)
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A variety of evolution equations can be derived from (2.6a,b). The evolution equation
for the initially infinitesimal fourth wave, when the exact resonance condition ∆1234=
0 is satisfied, reads

∂a4

∂t
= 2T1234

(
cg1cg2cg3

cg4

)1/2

a1a2a3 sinΘ1234, (2.7a)

∂θ4

∂t
= (2T1414cg1a2

1 + 2T2424cg2a2
2 + 2T3434Cg3a2

3)

+ 2T1234

(
cg1cg2cg3

cg4

)1/2 a1a2a3

a4
cosΘ1234. (2.7b)

Equation (2.7a) holds as long as the condition |a1|, |a2|, |a3| � |a4| is satisfied. The
amplitude of the three waves does not change, and only the fourth wave will grow at
the expense of the energy of the other three waves. The growth of the fourth wave is
largest when sin (Θ1+2−3−4)=1. We may then expect that the phase of the fourth wave
should satisfy θ4 = θ1 + θ2 − θ3 −π/2 for the fastest growing resonant wave. A small
difference from this condition will lead to a rapid change of the phase θ4 because of
the singularity when a4 is infinitesimal.

To the order of approximation (2.7a), the rate of growth of the fourth wave is
estimated to be

αt = 2T1234

(
cg1cg2cg3

cg4

)1/2

a1a2a3. (2.8)

The fourth wave will grow linearly in time, a4 = αtt. It is convenient to apply a
coordinate transformation x= cg4t for the fourth wave. When the wave is propagating
at an angle φ4 to the coordinate x, the linear growth rate in space along x can be
approximated as

αx = 2
cos φ4

cg4
T1234

(
cg1cg2cg3

cg4

)1/2

a1a2a3. (2.9)

This expression for the growth rate is convenient when comparing the experimental
estimate with the theory.

The evolution equation for the tertiary wave interaction can be obtained:

2ω1 =ω2 +ω3,

2k1 = k2 + k3.

}
(2.10)

Assuming that the initial amplitude of the third wave is infinitesimal, the linearised
evolution equation for the third wave can be derived from (2.5a):

∂a3

∂t
= T2311

(
cg2c2

g1

cg3

)1/2

a2
1a2 sinΘ2311, (2.11a)

∂θ3

∂t
= (2T1313cg1a2

1 + 2T2323Cg2a2
2

)+ T2311

(
c2

g1cg2

cg3

)1/2
a2

1a2

a3
cosΘ2311. (2.11b)
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The corresponding linear growth rates in time and space are

αt = T2311

(
c2

g1cg2

cg3

)1/2

a2
1a2, (2.12a)

αx = cos φ3

cg3
T2311

(
c2

g1cg2

cg3

)1/2

a2
1a2. (2.12b)

3. Facility and experimental conditions
3.1. Facility

The experiment was conducted at the Ocean Engineering Basin of the Institute
of Industrial Science, the University of Tokyo (Kinoshita Lab/Rheem Lab). The
dimension of the tank is 50 m in length, 10 m in width and 5 m in depth. The
wavemaker is located at one end of the tank with 32 plungers controlled independently.
Typically, an array of wave-wire gauges are placed at 5 m intervals 2.5 m away from
the side wall to monitor the evolution of the wave along the tank (see, e.g., Waseda
et al. 2009). The entire volume of the tank water can be circulated in both directions,
coflowing and opposing the wave propagation direction. The inlet and outlet of the
water are located beneath the wavemaker and the beach (figure 1). The inlet is 3.5 m
high and 10 m wide, the outlet 3.0 and 10 m. The inlet consists of two rows of
screens, and 1.85 m long vertical guide walls placed at one metre intervals. The
outlet has only one screen, and the vertical guide walls are 1.0 m long. The water
enters into or exits from a 3 m diameter pipe at the side. Therefore, the flow makes
an abrupt 90◦ turn behind the guide walls under the wavemaker and beneath the
beach. Because of this configuration, the mean current field is not uniform across the
tank and has a vertical shear as well (figure 1 and also Toffoli et al. 2013, 2015).
The coflowing current is better regulated than the opposite condition because of
the different inlet and outlet configurations. The waves refract as they enter into a
sheared current field (see figure 1b). At times, the refraction is strong enough to be
recognised visually.

3.2. Experimental conditions
Experimental validations of the third-order resonant wave interactions have been
conducted mostly in rectangular basins with wavemakers capable of generating waves
at 90◦ angle (Longuet-Higgins & Smith 1966; McGoldrick et al. 1966; Tomita 1989).
The so-called tertiary wave interaction (Longuet-Higgins 1962) is a special case of
the four-wave interaction where the primary wave (f1) is counted twice to satisfy the
exact resonance condition, with the longer wave normal to the primary wave (f2) and
the third wave (f3) propagating at 9.4◦ to f1. Their frequencies ω, wavenumbers k
and propagating directions φ satisfy the following conditions:

2ω1 =ω2 +ω3,

2k1 = k2 + k3,

}
ω1 = 1.7356ω2,

|k1| = 3.0113|k2|,
} φ1 = 0,

φ2 − φ1 =−90,
φ3 − φ1 =+9.4.

 (3.1a−c)

Apparently, such an experiment cannot be conducted in a narrow flume. However, it
is possible to generate f1 and f3, and let f2 naturally emerge and propagate across the
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FIGURE 1. Description of the Ocean Engineering Basin of the Institute of Industrial
Sciences, the University of Tokyo. (a) Plan view of the tank showing the configuration
of the water circulation system. (b) Vertical section of the current speed for a case with
strong mean current (over 20 cm s−1). It should be noted that this case was not used
for the experiments in this study. (c) Vertical velocity profile for a case of surface mean
current around 12 cm s−1.

tank. The first test case (case 1, see table 1) was designed such that the wavelength
of the secondary wave was 2/3 of the tank width, so that the sloshing wave mode
would be excited. Making use of the sloshing condition gives an advantage for
the easy detection of the emergence of the initially non-existing resonant wave. As
a comparison, an off-resonant wave system was generated as well, retaining the
frequency of f3 but changing the propagation angle to be 20◦ to the primary wave
(case 2).

The discrete interaction approximation (DIA, Hasselmann & Hasselmann 1985)
greatly simplifies the collision integral of the nonlinear wave interaction by selecting
just one combination of the quartet from the set of infinite combinations. The DIA
quadruplet consists of three waves that satisfy the exact resonance condition:

2ω1 =ω2 +ω3,

2k1 = k2 + k3,

}
ω2 = (1− 0.25) ω1,

ω3 = (1+ 0.25) ω1,

} φ1 = 0,
φ2 − φ1 =−33.6,
φ3 − φ1 =+11.5.

 (3.2a−c)

Among the three waves, the primary wave that propagates along the tank (f1) and
the secondary wave (f2) that propagates at 33.6◦ were generated (case 3, table 1).
The primary wave was 0.91 m, the secondary wave 1.6 m and the tertiary wave
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0.58 m long. The initial steepnesses were 0.055 and 0.022 for the primary and
secondary waves. The cross-tank wavenumbers (ky) did not match the integer division
of twice the tank width (20/n m or 0.314n rad m−1, where n = 1, 2, 3, . . .), and,
therefore, the cross-wave (or the sloshing wave) studied by Jones (1984), Kit, Shemer
& Miloh (1987) and Yao, Tulin & Kolaini (1994), or the oblique waves studied by
Trulsen, Stansberg & Velarde (1999) were not excited directly. As a comparison,
the off-resonant case was tested as well. Retaining the frequency, the angle of the
secondary wave was changed to −20◦ (case 4). In this case the primary and the
secondary waves alone cannot resonate to generate the third wave.

It should be noted that to take advantage of the symmetry of the sidewall reflections,
we actually generated waves propagating at both positive and negative angles for all
of the experimental cases. It is known for irregular waves that the statistical properties
of the random waves are more homogeneous in a narrow channel than in a rectangular
basin with two wavemakers at normal angle (Takezawa, Kobayashi & Kasahara 1988).
Indeed, the sidewall reflections fill in the diffraction region as described by Dalrymple
(1989). Those additional waves are denoted as f ′i in table 1.

The values of kh for the waves used in the experiments, where k is the wavenumber
and h = 5 m is the depth, were 14.3, 4.7 and 28.8 for the tertiary wave case and
34.5, 19.7 and 54.0 for the DIA case. Therefore, all of the experimental cases can be
considered to be in deep water conditions, where the depth effect can be neglected.

For the DIA condition (case 3), background currents were added. Three cases of
the opposing mean current (case 5, −8.32 cm s−1; case 6, −5.39 cm s−1; case 7,
−3.71 cm s−1), and two cases of the coflowing mean current cases (case 8,
7.41 cm s−1; case 9, 0.89 cm s−1) were tested. The associated Doppler Speed Udop,
frequency shift kUdop and resonance detuning ∆kU are listed as well. These will be
explained in § 4.2.

3.3. Current field in the tank
The mean current field has large horizontal and vertical gradients because of the
geometry of the circulation system (figure 1a). The current tends to be stronger
on the side where the orifices of the pipes are located, because the flow makes an
abrupt 90◦ turn and cannot diffuse across the tank (figure 1b). The inlet and outlet
are located near the bottom of the tank (3.5 m and 3.0 m high, 10 m wide) and
occupy 60–70 % of the entire vertical section. The flow needs to diverge at the inlet
and converge at the outlet. Therefore, the vertical profile is likely to vary along the
tank. From the measurement taken at approximately 20 m from the wavemaker, the
velocity decays with depth down to 1.2 m (figure 1c). With a vertical shear, the
Doppler speed depends on the wavenumber.

Furthermore, the current speed is highly variable. The time records of an
electro-magnetic current meter located at 10 m (solid line) and 20 m (thick solid
line) from the wavemaker are shown in figure 2 for cases 5–9, i.e. for the average
current speeds of −7.79, −5.39, −3.71, 0, 0.89 and 7.41 cm s−1. For example, at the
highest opposing current speed case (−7.79 cm s−1), the speed changed in the range
of −2 to −14 cm s−1, with a corresponding standard deviation of approximately
2 cm s−1. The mean speed and the standard deviation are summarised in table 2
for all of the cases. The current fluctuations tend to increase with the mean speed.
However, the standard deviation is smaller in the case of coflowing current, as one
can see by comparing cases 5 (−7.79 cm s−1) and 6 (7.41 cm s−1). This is because
the inlet and outlet configuration of the current circulation system is such that the
coflowing condition is better regulated.
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FIGURE 2. Current speeds for (a) case 5, −7.79 cm s−1; (b) case 6, −5.39 cm s−1; (c)
case 7, −3.71 cm s−1; (d) case 8, +0.89 cm s−1 and (e) case 9, +7.41 cm s−1. The
thick solid line is for measurement at 20 m and the thin solid line is at 10 m. The mean
quantities are listed in table 2.

4. Results: third-order resonant wave interaction experiments
4.1. Third-order resonance in a narrow channel

4.1.1. Tertiary wave interaction (cases 1 and 2)
The classical experiments of Longuet-Higgins & Smith (1966) and McGoldrick

et al. (1966) are revisited. Unlike the experiments conducted in a square basin
with two wavemakers generating primary and secondary waves propagating normal
to each other, the primary wave (2.2 m, f1 = 0.84 Hz) and the tertiary waves
(1.09 m, f3 = 1.20 Hz) propagating at an angle of 9.4◦ were generated by the
directional wavemaker (case 1, figure 3a). The secondary wave at a frequency of
f2=2f1− f3=0.484 Hz should grow in the case of exact resonance. The corresponding
wavelength is 6.67 m, which is 2/3 of the tank width. Because the secondary wave
propagates across the tank, it will inevitably excite a sloshing mode in the tank (Jones
1984; Kit et al. 1987; Yao et al. 1994). By intentionally exciting this cross-wave, the
detection of the third-order wave resonance should become easy (case 1, figure 3a).
For comparison, the oblique wave angle of f3 was changed to 20◦ which greatly
deviates from the resonance condition (case 2, figure 3b). As expected, the energy
level of f2 in the resonant case is much higher than that of the off-resonant case.
This substantiates that four-wave interaction can occur in a narrow basin if the wave
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FIGURE 3. Spectrum at 30 m for the exact resonant case (a) and an off-resonant case
(b). The frequency resolution is 0.122 Hz and the number of degrees of freedom is
approximately 20. A Hamming window was applied.

20 m 10 m Mean

Case U u′2 (u′2)0.5 T.i. U u′2 (u′2)0.5 T.i. U u′2 (u′2)0.5 T.i.

5 −7.79 4.72 2.17 0.28 −8.85 2.00 1.41 0.16 −8.32 3.36 1.83 0.22
6 −4.68 2.38 1.54 0.33 −6.11 1.07 1.03 0.17 −5.39 1.73 1.31 0.24
7 −2.93 1.09 1.04 0.36 −4.48 0.97 0.98 0.22 −3.71 1.03 1.01 0.27
8 6.77 0.27 0.52 0.08 8.05 1.29 1.13 0.14 7.41 0.78 0.88 0.12
9 0.65 0.03 0.17 0.27 1.13 0.12 0.35 0.31 0.89 0.07 0.27 0.31

TABLE 2. Current conditions for cases 5–9. The mean U, the variance u′2, the standard
deviation σ = (u′2)0.5 and the turbulence intensity σ/U of the current are estimated from
measurements at 10 and 20 m from the wavemaker. The means of these are shown as
well.

parameters are selected appropriately. However, the result of this experiment cannot
be compared with the theoretical growth rate, because the cross-wave does not grow
in time or fetch. It is a standing wave triggered by the resonant wave interaction.

4.1.2. Discrete interaction approximation quadruplet interaction (cases 3 and 4)
The DIA (Hasselmann & Hasselmann 1985) is widely used in operational wave

modelling. The three waves that satisfy the resonance condition (3.2a−c) are
considered to have the largest contribution to the kinetic integral of Hasselmann
(1962) among all the other quartets. At approximately 30 wavelengths from the
wavemaker (20 m fetch), spectra with distinct peaks develop. A peak around 1.64 Hz
appears in both resonant (figure 4a,b) and off-resonant (figure 4c,d) cases, but their
energy levels differ significantly. The magnitude of the tertiary wave at 1.64 Hz is
an order of magnitude smaller in the off-resonant case than in the exact resonant one.
For resonant conditions, the tertiary wave grows to approximately 25 % of the primary
wave at 1.3 Hz (figure 4b). The spectral peaks at high frequencies (figure 4a,c) do
not seem to differ in magnitude. It is conjectured that these waves, including the
1.64 Hz wave of the off-resonant case, are bound harmonics.

The normalised tertiary wave amplitude (f3, figure 5a) grows linearly in the first
10 m or 16 wavelengths from the wavemaker. In the case of exact resonance (black
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FIGURE 4. Spectrum at 20 m of the exact resonant case (a,b) and the off-resonant case
(c,d) of the DIA near-resonance experiment. The frequency resolution is 0.0031 Hz and
the number of degrees of freedom is 4. No window function is used.

circles, figure 5a), the amplitude grows more or less in accord with the growth rate
estimated by potential theory (see § 2). The solid line corresponds to the linear growth
curve estimated from (2.12a). The growth rate was estimated using the observed wave
amplitude and was doubled to take into consideration the two quartet systems with
secondary waves propagating obliquely at ±33.6◦. A good agreement is found for the
first 16 wavelengths. Gradually the growth slows down and stops; a slight signature
of declination is seen towards the end of the tank (at approximately 40 m fetch or 60
wavelengths). On the contrary, the tertiary wave amplitude remains unchanged for the
off-resonant case (open circles, figure 5a).

4.2. Discrete interaction approximation cases with current (cases 5–9)
The exact and the off-resonant cases of the DIA quartet as described in the previous
section will serve as benchmarks for the four-wave interaction experiment under
the influence of current. The wavemaker signal was kept the same (0.91 m primary
wave at 0◦ and 1.6 m secondary wave at −33.6◦) for the opposing (−8.32, −5.39
and −3.71 cm s−1) and the coflowing (7.41 and 0.89 cm s−1) current cases. The
energy of the tertiary wave E was extracted from the wave spectrum (e.g. figure 4),
and its normalised amplitude E/E0, where E0 is the total energy, is plotted against
distance from the wavemaker in figure 5. The opposing current cases are summarised
in figure 5(b). Compared with the benchmark case (exact resonance without current,
solid circle), the growth of the tertiary wave saturates at a shorter fetch and the
energy remains smaller for cases with current. As the opposing current speed
becomes larger, the energy tends to saturate at a much shorter fetch (solid square,
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FIGURE 5. Amplitudes of the tertiary waves of the DIA combinations. (a) Solid
circles, resonant case; open circles, off-resonant case. (b) Resonant cases with opposing
currents: solid circles, 0 cm s−1; solid squares, with −3.71 cm s−1; solid triangles, with
−5.39 cm s−1; open circles, −8.32 cm s−1. (c) Resonant cases with coflowing currents:
solid circles, 0 cm s−1; solid squares, with 0.89 cm s−1; solid triangles, with 7.41 cm s−1.

case 7, −3.71 cm s−1; solid triangle, case 6, −5.39 cm s−1; open circle, case 5,
−8.32 cm s−1). In fact, at −8.32 cm s−1, the evolution is somewhat like the off-
resonant case shown in figure 5 (see the open circles in a). Therefore, it is conjectured
that the four-wave resonance is impaired because of the opposing current. On the other
hand, the four-wave resonance may be impaired for the coflowing current case as well
(figure 5c). As the current speed increases, the energy of the tertiary wave reduces; for
the 7.41 cm s−1 case, case 8, the evolution resembles the off-resonant case, case 4.

Why does the four-wave resonance deteriorate under the influence of current?
Let us first consider the effect of the Doppler shift, σ = ω + k · U. The Doppler
shifts of all of the waves will accumulate in the detuning term of the frequency
resonance condition (2.3). When the Doppler velocity is constant for all of the waves,
the resonance detuning will nullify because of the exact wavenumber resonance
condition, ∆kU = (k1 + k2 − k3 − k4) · U = 0. This is not always the case since the
Doppler velocity may depend on the wavenumber (e.g. Stewart & Joy 1974),

U i = ki

∫ 0

−∞
U(z) exp(kiz) dz, where i= 1, 2, 3, 4. (4.1)

The velocity field in the tank has a vertical shear, figure 1(c) and Toffoli et al. (2013),
and therefore the effective Doppler velocity depends on the wavenumber U i(ki). As
a result, the shift in frequencies due to current will accumulate in the resonance
detuning term,

∆kU = k1 ·U1 + k2 ·U2 − k3 ·U3 − k4 ·U4 6= 0. (4.2)
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FIGURE 6. Amplitude of the tertiary waves compared with (a) the mean current speed and
(b) the standard deviation of the current field. The open symbols denote measurements at
10 m fetch and the closed symbols denote measurements at 20 m fetch.

The resonance condition can be shifted due to horizontal velocity shear as well. The
wavenumber is no longer a constant and will change in space and time. As a result of
refraction dki/dt=−∇(ki ·U i(x, y)), where i= 1, 2, 3, 4, the exact resonance condition
of the wavenumber is perturbed,

[k1 + k2 − k3 − k4]t=t1 =
∫ t1

t0

∇∆kU dt. (4.3)

The effects of Doppler shift and refraction given in (4.2) and (4.3) do not explicitly
depend on time. However, the temporal variation of the current speed is not negligible,
as can be seen from the time series (figure 2). The standard deviation of the current
speed is approximately a quarter of the mean current speed in the case of the opposing
current and is approximately an eighth in the case of the coflowing current (table 2).
The temporal variation is probably associated with advection of eddies in the tank,
with both the vertical and horizontal changing velocity gradient over time. Bearing
this in mind, the amplitude of the tertiary wave will be compared with the mean and
the standard deviation of the current speed.

The normalised amplitude of the tertiary wave (E/E0)
1/2 is compared with the mean

current speed (figure 6a) and the standard deviation of the current speed (figure 6b).
For the exact resonant case, E/E0 is approximately 0.25 and is marked by a horizontal
line in figure 6. The off-resonant case is also marked by a horizontal line and is
approximately E/E0=0.1. The normalised amplitudes of cases with current (solid line,
opposing; dashed line, following) tend to decrease with both current speed and current
variation, and at first sight it is not apparent which of the two is responsible for the
suppression of the four-wave interaction. Since the standard deviation of the current
speed and the mean current speed are linearly correlated (table 2), the causes of the
suppression of resonant interaction cannot be inferred just from the scatter diagrams
shown in figure 6.

Let us consider a steady current field so that the effect of Doppler shift introduces
a constant frequency mismatch to the resonance condition (2.3). Then, the magnitude
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kx ky k akinitial

Wave 1 6.808 0 6.808 0.008
Wave 2 3.191 2.12 3.83 0.0056
Wave 3 10.425 −2.12 10.638 0

TABLE 3. The combinations of waves used for the numerical simulation. The wavenumber
satisfies the exact resonance condition, i.e. 2kx1 = kx2 + kx3 and 2ky1 = ky2 + ky3.

of the nonlinear growth periodically changes on a time scale inversely proportional
to ∆kU, see (2.5a). Hence, the evolution of the tertiary wave is expected to grow
and decay recursively in time. On the contrary, the observed growth of the tertiary
wave under the influence of current saturates but maintains its magnitude (figure 5).
We can then deduce that the effect of the current is intermittent, and, therefore, the
resonance detuning is randomly changing in time. This bold hypothesis will be tested
numerically in the next section.

5. Discussion
5.1. Numerical simulation

As a result of wave refraction and Doppler shift due to background opposing and
coflowing mean current with large temporal and spatial variations, the exact resonance
condition may be perturbed, (4.2) and (4.3). From the experimental results, we have
inferred that the effect of a background current field is to detune the resonance
condition randomly. First, we will test this hypothesis numerically, and then we will
study the effect of mean current alone.

The reduced gravity equation (2.2) is solved for the exact resonance condition
corresponding to the DIA quartet (appendix A). For the given set of waves (table 3),
the resonance detuning due to frequency mismatch ∆1234 is zero, and, therefore, only
the detuning due to the current effect remains.

To take into consideration the modification of the first-order dispersion relationship
in potential theory, the current field needs to be a potential flow as well; e.g.
Madsen & Fuhrman (2006). Therefore, the inclusion of a wavenumber-dependent
Doppler effect due to rotational flows violates the framework of Zakharov’s equation.
However, when U/Cg� 1, the effect of vertical velocity shear can be incorporated
(e.g. Qingpu 1996; Mei, Stiassnie & Yue 2005), and, as a result, the interaction
coefficient is modified. In this case, through the change of Θ1234, ∆1234 is perturbed,
but ∆kU remains zero as the first-order dispersion relationship is not altered. It is
beyond the scope of this study to pin down whether the ∆1234 or ∆kU is perturbed,
but numerically they are equivalent (A 3), and their effects can be combined as a
perturbation to the resonance detuning term.

The following resonance detuning due to current variation was introduced:

∆kU = r× 2π× rand (−1∼ 1), (5.1)

where the constant r was set to be 0, 0.01, 0.02, 0.03, 0.05 and 0.1, and rand (−1∼ 1)
is a real number selected randomly from a uniform distribution at each integration
time step.

With no random detuning (corresponding to a case with r = 0), the third wave
will grow linearly due to exact resonance and eventually start to influence the other
waves as its amplitude becomes finite. Since the evolution is solved numerically
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FIGURE 7. Evolution of the amplitude of the initially non-existing member of the DIA
quartet numerically estimated by solving Zakharov’s equation. The solid line corresponds
to exact resonant interaction whereas the other lines correspond to cases with randomly
perturbed resonance detuning parameters for r= 0.01, 0.02, 0.03, 0.05 and 0.1.

restricting the active free waves to only three DIA quartets, the amplitude of the
third wave tends to go through a recurrent cycle of growth and seizure (figure 7).
As the random resonance detuning is introduced, the growth of the third wave tends
to slow down after some wave cycles, and eventually stops growing, subsequently
maintaining its amplitude. The time scale on which the growth tends to deviate from
the exact resonance case shortens with increased degree of randomness. The random
resonance detuning seems to control the eventual amplitude of the third wave as well.
Qualitatively, the tendency for the suppression of resonance growth is quite similar
to the experimental result (figure 5), and therefore it substantiates the hypothesis that
the effect of random current field annuls the resonant interaction through resonance
detuning.

To rule out the possible effect of the mean current alone, additional numerical
experiments were conducted imposing a constant resonance detuning:

∆kU = sgn CkU

{
sgn=−1 corresponding to T1123,
sgn= 1 corresponding to T2311,

(5.2)

for CkU =−0.05, 0.01, 0.05, 0.10. It should be noted that the values are much larger
than the actual ∆kU values that were estimated based on the observed vertical current
shear shown in figure 1 using (4.1). The estimated values are listed in table 1. For
positive CkU, the growth of the initially non-existing member of the DIA quartet
gradually decelerates and eventually diminishes at an earlier timing than the exact
resonance case, figure 8. Then, it starts to grow again and the cycle repeats. The
repetition cycle becomes shorter as the effect of constant background current CkU
increases. On the other hand, when CkU is negative, the effect of resonance detuning
is to annul the reduction of growth due to phaseshift of each member, and therefore
the amplitude of the initially non-existing member becomes larger than in the exact
resonance case. The tendency is distinct from the experimental results, as these did
not show difference between the opposing and the coflowing mean current. Therefore,
it is conjectured that the effect of random current variation is more dominant than
the effect of mean background current. This conclusion, however, will not rule out
the possibility of their combined effect.

The result of the random detuning is equivalent to the ensemble averaged solution
of Zakharov’s equation for a resonant quartet by Stiassnie & Shemer (2005). They
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FIGURE 8. Evolution of the amplitude of the initially non-existing member of the DIA
quartet numerically estimated by solving Zakharov’s equation. The solid line corresponds
to exact resonant interaction whereas the other lines correspond to cases with constant
resonance detuning parameters for CkU =−0.05, 0.01, 0.05, 0.10.

constructed an ensemble of deterministic simulations with random initial phases
and showed that, upon averaging, the growth of the wave amplitude diminished.
In our study, instead of ensemble averaging the numerous realisations, the phases
were randomly perturbed and hence as the waves propagated down the tank, the
current effectively prohibited the resonant interaction. Annenkov & Shrira (2006)
elaborated further the findings by Stiassnie & Shemer (2005) and showed that when
quasi-resonant or non-resonant interaction is taken into account, the discrepancy
between Hasselman’s kinetic equation and the dynamic solution by Stiassnie &
Shemer (2005) is resolved. Numerous recent works have implied the significance of
the dynamical time scale when the spectrum is abruptly altered by external forcing. It
is of interest to see how the random current field affects the evolution of the random
directional wave field in the tank, as the tank waves represent well the evolution of
the spectrum on dynamic time scales.

5.2. Evolution of irregular waves under the influence of current
Recent works suggest that the quasi-resonant interaction plays an important role
in the rapid development of Hasselman-like nonlinear energy transfer around the
spectral peak on a dynamic time scale (Tanaka 2001; Pushkarev, Resio & Zakharov
2003). On the other hand, for an equilibrium spectral tail to develop, a kinetic
time scale is necessary (Annenkov & Shrira 2006). However, if the energetic part
of the spectrum is perturbed in time, it is plausible to think that the complete
development of the spectral tail is inhibited. We, therefore, looked into the impact of
the current field on the spectral tail. A random directional wave field was generated
with the directional wavemaker for the JONSWAP frequency spectrum (γ = 3.0) and
a fixed directional spread (G(θ) ∝ cos10 θ ). The JONSWAP spectrum is given as
S(f )= αg2f−5exp{−5/4(f /fp)

−4}γ exp{((f−fp)2)/(2σ 2f 2
p )}, where σ = 0.08 and γ = 3.0. The α

and fp were selected such that the significant wave height was 3.5 cm and the peak
period was 0.8 s. The directional spreading is given as G(θ) = G′ cos10 θ , where G′
is a normalisation factor and θ is the wave direction. It should be noted that because
of the limitation of the wavemaker, the directional spreading G(θ) was set to 0 for
|θ | > π/2, and the G′ was adjusted accordingly so that the integral of G was 1.
According to earlier studies (by, e.g., Waseda et al. 2009), despite the tank length
being only of the order of 40 wavelengths, a spectral tail develops beyond 2.5 Hz,
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FIGURE 9. Frequency spectra of irregular directional random waves without current
and with opposing current, −5.2, −8.8 and −13.8 cm s−1. The unperturbed spectrum
is JONSWAP with a directional spread of G(θ) ∝ cos10 θ . The frequency resolution is
0.0977 Hz and the number of degrees of freedom is approximately 700. A Hamming
window was used. The saturated spectra B(f ) = S(f ) × f 5 are plotted in (b). The lines
corresponding to f−5 and f−7 are plotted for visual guidance of the slope, also indicating
the range of frequency that was used to estimate the exponent of f−ν .

which is the upper limit of the wavemaker. They have shown that as the directional
spectrum narrows, the slope of the spectral tail steepens. Under the influence of the
current, the slope of the spectral tail seems to steepen as well. In figure 9, spectra
with and without current at 40 m from the wavemaker are compared. The difference
in the spectral tail is much larger than the effect of Doppler shift. As the mean current
speed increases, the spectral tail tends to steepen (figure 9). The saturated spectra,
B(f )≡ S(f )× f 5, are shown as well, in (b). The spectral tail tends to saturate for the
case without current, but clearly deviates from saturation as the background current
speed increases. The slope of the spectral tail was estimated to be between 1.56
and 3.03 Hz, indicated by the solid lines in the figures, for the cases with averaged
current speeds of −13.8, −8.8, −5.2 and 0 cm s−1. The exponents ν of ω−ν are 5.1,
5.8, 6.4 and 7.5 respectively. Following the corollary of § 5.1, the steepening of the
spectral tail is conjectured to be a result of the resonance detuning of the four-wave
interaction due to the random current field. Whether the influence of random forcing
prevails on a longer time scale or not is beyond the scope of this study, and it is of
interest to find out how the spectral tail further develops on the kinetic time scale.

5.3. High-frequency spectral peaks and tail
The special cases of the exact resonant quartet studied in this paper satisfy 2ω1 =
ω2 + ω3 and 2k1 = k2 + k3. In the frequency domain, numerous other spectral peaks
appear at higher frequencies (figures 3 and 4). These peaks may indicate either the
bound harmonics or the free waves generated due to dynamical cascade (Kartashova
2009; Kartashova & Shugan 2011; Hirobe 2013). Bound harmonics may appear at the
frequencies of combinations of the three waves, nω1+mω2+ lω3, where n, m and l are
arbitrary integers . . .−2,−1,0,1,2 . . . . Free waves may also appear due to dynamical
cascading at similar frequencies to the bound harmonics. It should be noted also that
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FIGURE 10. The spectral evolution for the cases without current and with opposing
currents at 2, 4 and 6 cm s−1, from bottom to top. The spectra were estimated from the
averaged periodograms of frequency resolution 0.0031 Hz, four degrees of freedom with
boxcar window function of width 327.68 s. Log–linear plots of the spectra (cm2 s) are
shown in (a) and log–linear plots of the saturated spectra (cm3 s−4) are shown in (b).

non-resonant free waves can be generated as a result of quasi-resonant interaction (e.g.
Waseda et al. 2009).

It is apparent from the observed spectrum (figure 4) that these spectral peaks
appear for cases with both resonant and off-resonant initial conditions. Just from the
frequency spectrum it is not possible to distinguish whether these high-frequency
peaks are free waves or not. What is notable is that the magnitude of these
peaks tends to decrease for the initially off-resonant case (see the high-frequency
components in figure 4). Kartashova (2009) showed that, due to interaction, a set of
the resonant quartet can cascade to another resonant quartet under certain conditions.
The quasi-resonant interaction can play a role in the dynamical cascade as well and
thereby increases the possibility of dynamical cascade (Kartashova & Shugan 2011;
Hirobe 2013). This could explain why the magnitudes of the high-frequency spectral
peaks in the resonant case tend to be higher than in the off-resonant case.

Now, how would external forcing perturb this dynamical cascading process? The
consequence of the background random current field was to perturb the dispersion
relationship such that the exact resonance was randomly detuned. In that case, the
cascade of energy should diminish and the spectral peaks should disappear. Spectra
from selected cases are plotted in figure 10. Evidently the spectral peaks disappear as
the magnitude of the current disturbance increases. We can infer from this result that
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the generation of the high-frequency spectral peaks is firmly tied to the exact or quasi-
resonance of the dominant waves. We conjecture that the numerous high-frequency
peaks are probaby generated due to dynamical cascade, as proposed by Kartashova
(2009).

It is also notable that as the current speed increases, the spectral energy seems
to fill in the gaps between spectral peaks, and a continuous spectral tail develops
(figure 10a). The energy level of this spectral tail increases with the current speed and
eventually becomes comparable to the high-frequency spectral peaks. This tendency is
not affected by the choice of the analysis method, i.e. the window function applied to
the time series. The spectral tail up to approximately 10 Hz tends to saturate, as can
be seen in the saturated spectrum (S(f )f 5) in figure 10(b). The idea of an equilibrium
spectral tail proportional to f to the power of −5 was saluted and interred with
dignity (Phillips 1985) but seems to resurrect over and over again (Tamura, Waseda
& Miyazawa (2010) and references therein). In this study, with the absence of an
energetic wind-wave spectrum and with only a few isolated resonant quartets, the
saturated spectrum seems to develop with increasing magnitude of the random current
forcing. This opens up a new arena of wave turbulence research where neither the
dissipative forcing nor the wind input is important. What role an energy cascade of
the Kolmogorov–Zakharov type (Badulin et al. 2005) plays under such conditions is
an outstanding question.

6. Conclusion
Fifty years have passed since the first experimental validation of the four-wave

resonance of surface gravity waves. In this study, we have revisited this important
yet not fully exploited research topic and extended it to include the effect of vortical
current field. The tertiary wave interaction, as a special case of the exact resonance
quartet interaction, was investigated in a wave tank. The initially infinitesimal wave
grew linearly in the distance, and the rate compared well with the theory. When a
background current field was added, the growth slowed down, and as the current
speed increased, the growth saturated. With further analysis of both opposing and
coflowing current conditions, we reached the conclusion that the current variability
affected the result rather than the mean current speed itself. The corollary of this
analysis is to penalise the resonant detuning parameter of the four-wave resonance
to model the effect of the random vortical current field. The potency of this idea
was then investigated by conducting a numerical simulation of Zakharov’s equation
for tertiary waves with a random resonant detuning parameter. Although the actual
interaction of wave and current in an enclosed basin might involve non-conservative
processes, in this study it was shown that to a lowest-order approximation, the effect
of advection and refraction of the surface gravity wave by the random current field
can be condensed into the resonance detuning term, hence providing an account of
the experimental result within the framework of potential theory. Although more
work is warranted, the idea of radomising the resonance detuning gives an easy way
to extend existing wave models based on potential theory to include the effect of
wave–current interaction.
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Appendix A
Zakharov’s equation (2.2) is solved numerically by introducing the canonical

variable Bi, where bi = Bi exp(−iωit),

i
∂B0

∂t
=

∑
0+1−2−3

T0123B∗1B2B3 exp(−i∆0123t). (A 1)

The equation (A 1) is further modified for this study by replacing Bi= c1/2
gi Ai(k), where

Ai(k)≡ ai exp(iθi),

i
∂A0

∂t
=

∑
0+1−2−3

T0123

(
cg1cg2cg3

cg0

)1/2

A∗1A2A3 exp(−i∆0123t). (A 2)

Combinations of the quartet that satisfy the wavenumber condition k0 + k1 − k2 −
k3 = 0 are selected within the code, so that the coupled evolution equations for an
arbitrary number of waves can be solved. Both resonant interaction terms T1234 and
amplitude dispersion terms such as T1111 and T1212 are automatically generated. The
time integration scheme is fourth-order Runge–Kutta.

To incorporate the current effect, (A 2) is modified as follows:

i
∂A0

∂t
=

∑
0+1−2−3

T0123

(
cg1cg2cg3

cg0

)1/2

A∗1A2A3 exp(−i(∆0123 +∆kU)t), (A 3)

where ∆kU represents the resonance detuning due to the background current field.
Numerically, the ∆kU was parameterised, for tertiary interaction of waves f1, f2 and
f3 satisfying 2ω1 =ω2 +ω3, to mimic the effect of mean background current,

∆kU = sgn CkU

{
sgn=−1 corresponding to T1123,
sgn= 1 corresponding to T2311,

(A 4)

and to mimic the effect of current variability,

∆kU = r× 2π× rand (−1∼ 1), (A 5)

where CkU and r are arbitrary positive control parameters. The rand (−1 ∼ 1) is a
real number selected randomly from a uniform distribution between −1 and 1 at each
integration time step.
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