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This paper is concerned with a fully non-linear variant of the Allen–Cahn equation with

strong irreversibility, where each solution is constrained to be non-decreasing in time. The

main purposes of this paper are to prove the well-posedness, smoothing effect and comparison

principle, to provide an equivalent reformulation of the equation as a parabolic obstacle

problem and to reveal long-time behaviours of solutions. More precisely, by deriving partial

energy-dissipation estimates, a global attractor is constructed in a metric setting, and it is also

proved that each solution u(x, t) converges to a solution of an elliptic obstacle problem as

t→ +∞.

Key words: Strongly irreversible evolution equation, Allen–Cahn equation, obstacle parabolic
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1 Introduction

Evolution equations along with strong irreversibility often appear in Damage Mechanics

to describe a uni-directional evolution of damaging phenomena. For instance, damage

accumulation and crack propagation exhibit strong irreversibility, since the degree of

damage never decreases spontaneously. Therefore, to describe such phenomena as a

phase field model, one may need to take into account the strong irreversibility (or uni-

directionality) of the evolution. On the other hand, (spatial) propagation of damage is

described in terms of diffusion (type) processes. However, these two effects, namely the

uni-directionality of the evolution and the diffusive nature, often conflict each other.

Such a conflict of two different effects may produce significant features of damaging

phenomena. A few ways have been proposed to describe damaging phenomena in view

of such two effects; above all, one often employs parabolic partial differential equations

(PDEs) involving the positive-part function ( · )+ := max{ · , 0} � 0 (or a negative-part
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one). The simplest example reads,

ut = (Δu)+ in Ω × (0,∞), (1.1)

where Ω is a smooth bounded domain of �N and which is a classical problem (see,

e.g., [39]) and also still revisited by many authors (see, e.g., [35, 36] and also [3, 45]).

Furthermore, physical backgrounds of such irreversible models will be briefly reviewed

in Section 2. From the viewpoints of mathematical analysis, equations such as (1.1)

are classified as fully non-linear PDEs, and hence, the lack of gradient structure gives

rise to difficulties and particularly prevents us to reveal dissipation structure driven by the

diffusion term. Indeed, dissipative structures of parabolic equations are partially destroyed

by applying the positive-part function. On the other hand, dissipative behaviours may

also occur like a classical diffusion equation, unless they violate the strong irreversibility

(see also Remark 4.2).

In this paper, we are concerned with the Allen–Cahn equation with strong irreversibility,

ut =
(
Δu−W ′(u)

)
+

in Ω × (0,∞), (1.2)

where W ′(u) = u3 − κu (with κ > 0) is the derivative of a double-well potential W (u)

simply given by

W (u) :=
1

4
u4 − κ

2
u2. (1.3)

For simplicity, we shall use the form (1.3); however, most of the arguments throughout

the present paper can be extended to more general (but still regular) double-well potential

functions W defined on � (on the other hand, the dimensional restriction in (v) of

Theorem 3.2 relies on the cubic growth of W ′(u). Moreover, it is more delicate to

treat singular potentials, for example, logarithmic potential). Equation (1.2) is a strongly

irreversible version of the celebrated Allen–Cahn equation,

ut = Δu−W ′(u) in Ω × (0,∞). (1.4)

It is often employed to model phase-separation phenomena. Moreover, (1.2) also appears

in a special setting of a phase field model describing crack propagation (see Remark 2.1).

As is already pointed out, (1.2) is classified as a fully non-linear parabolic equation,

which is formulated in a general form ut = F(D2u) with a non-linear function F and the

Hessian matrix D2u. Here, we shall reformulate the equation as a generalized gradient

flow (of sub-differential type), which is fitter to distributional frameworks and energy

techniques. By applying the (multivalued) inverse mapping α( · ) of ( · )+ to both sides,

(1.2) is reduced to

α(ut) � Δu−W ′(u) in Ω × (0,∞).

The inverse mapping α of ( · )+ can be decomposed as follows:

α(s) = s+ ∂I[0,∞)(s), ∂I[0,∞)(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 if s > 0

(−∞, 0] if s = 0

∅ if s < 0

for s ∈ �, (1.5)
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where ∂I[0,∞) stands for the sub-differential of the indicator function I[0,∞) over the half-

line [0,+∞). In the present paper, we shall particularly consider the Cauchy–Dirichlet

problem for (1.2), which is hereafter denoted by (P) and equivalently given as

ut + η − Δu+W ′(u) = 0, η ∈ ∂I[0,∞)(ut) in Ω × (0,∞), (1.6)

u = 0 on ∂Ω × (0,∞), (1.7)

u = u0 in Ω. (1.8)

Furthermore, comparing (1.6) with (1.2), one can immediately find the relation,

η = −
(
Δu−W ′(u)

)
−
, (1.9)

where ( · )− stands for the negative part function, that is, (s)− := max{−s, 0} � 0. To be

precise, such a doubly-non-linear reformulation including the relation (1.9) is justified in

a strong formulation, for example, under the frame over L2(Ω), where equations hold in

a pointwise sense; on the other hand, in a weaker formulation, such as H−1-framework,

it is more delicate to verify the equivalence of two equations as well as (1.9).

Behaviours and properties of solutions to (P) can be imagined from the form of

equations (1.2) and (1.6). For instance, each solution u(x, t) of (P) behaves like that of the

classical Allen–Cahn equation (1.4) at (x, t) where Δu−W ′(u) is positive. Otherwise, u(x, t)

never evolves. Therefore, one may expect that smoothing effect and energy-dissipation

partially occur, but not everywhere. On the other hand, it is not easy to give a proof for

such conjectures. Indeed, even existence and uniqueness of solutions have not yet been

fully studied due to the severe non-linearity of (1.2) and (1.6). Moreover, to the best of

authors’ knowledge, such partial effects of smoothing and energy-dissipation have never

been studied so far. Different from classical Allen–Cahn equations, such as (1.4), due to

the defect of the (full) energy-dissipation structure, (P) has no absorbing set, and hence,

no global attractor in any Lp-spaces. Indeed, from the non-decrease of u(x, t) in time, that

is, u(x, t) � u(x, s) a.e. in Ω if t � s, one cannot expect any dissipation estimates for the

Lp-norm ‖u(·, t)‖Lp(Ω), provided that u0 � 0. On the other hand, due to the presence of

a gradient structure lying inside of ( · )+ in (1.2), (P) shares a common Lyapunov energy

with (1.4),

E(w) :=
1

2

∫
Ω

|∇w(x)|2 dx+

∫
Ω

W (w(x)) dx,

which decreases along the evolution of solutions u = u(x, t) to (P) as well as of those

to (1.4). So one may expect that a partial energy dissipation occurs (more precisely, a

(quantitative) dissipative estimate for E(u(t)) holds in a proper sense) and it enables us

to construct an absorbing set and a global attractor for (P) under a non-standard setting.

However, it is unclear in which setting one can find out a partial energy-dissipation

structure of (P) and establish quantitative dissipative estimates enough for a construction

of a global attractor.
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As we shall see in Section 6, the Cauchy–Dirichlet problem (P) (equivalently, (1.2), (1.7),

(1.8)) can be rewritten as an obstacle problem of parabolic type,

u � u0, ut − Δu+ u3 − κu � 0 in Ω × (0,∞),

(u− u0)
(
ut − Δu+ u3 − κu

)
= 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = u0,

whose obstacle function coincides with the initial datum. Such parabolic obstacle problems

whose obstacle functions coincide with initial data are also studied in the context of

(American) option evaluation (see [23,43] and references therein). This reformulation will

play a key role to discuss long-time behaviours of solutions as well as to investigate

qualitative properties, for example, comparison principle and uniqueness (or selection

principle), of solutions to (P) under milder assumptions.

The strongly irreversible evolution also exhibits a stronger dependence on initial state,

compared to the classical Allen–Cahn equation. For example, solutions of (1.1) are

constrained to be not less than initial data. Such a stronger initial-state-dependence of

evolution can be found out more explicitly in the parabolic obstacle problem. Indeed, the

evolution law (= the obstacle problem) explicitly depends on initial data. Furthermore,

related issues (e.g., convergence to equilibria and Lyapunov stability of equilibria) of

the dynamical system (DS) generated by (1.2) must be also affected by such a strong

dependence of the DS on initial states. Therefore, it would be interesting to reveal the

whole picture of such peculiar dynamics.

Main purposes of the present paper are to prove the well-posedness of (P) in an

L2-framework and to investigate qualitative and quantitative properties (e.g., comparison

principle, smoothing effect, energy-dissipation estimates) and long-time behaviours of

solutions. In particular, we shall focus on how to extract an energy-dissipation structure

of (1.6) beyond the obstacle arising from the strong irreversibility, and moreover, we shall

discuss in which setting (e.g., phase space) one can construct a global attractor for the DS

generated by (P).

In Section 2, we briefly review several previous studies on strongly irreversible evolution

equations (such as (1.2) and (1.6)) arising from Damage Mechanics and so on. Section 3

is devoted to discussing the well-posedness and a smoothing effect for (P) and providing

a proof for the uniqueness and continuous dependence of solutions on initial data. In

Section 4, we arrange energy inequalities which will be used to prove a smoothing effect

for (P) as well as to reveal long-time behaviours of solutions. In this section, one may

also find out energy-dissipation structures concealed in the equation. Finally, we also give

a sketch of proof for the smoothing effect, that is, the existence of solutions to (P) for a

wider class of initial data. A detailed proof will be given in Section 5 (and some part of

it will be completed at the end of Section 6). In Section 6, we equivalently reformulate

(P) as a parabolic variational inequality of obstacle type. This fact also indicates the

lack of classical regularity of solutions to (P); indeed, it is well known that solutions to

(elliptic) obstacle problems are at most of class C1,1 (see, e.g., [22]). The argument for

justifying the reformulation is somewhat delicate and deeply related to the construction

of solutions to (P). Moreover, in Section 7, we shall discuss a comparison principle for

the equation resulting from the reformulation. Furthermore, we shall obtain a uniform
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estimate for solutions to (P), and in particular, it will be verified that solutions of (P)

enjoy a range-preserving property, that is, if u0 takes a value within a certain range, then

so does u(·, t) for any t > 0. This is a fundamental requirement for phase-field models.

Here, the comparison principle is not directly proved for (P), since there arise some

difficulties from the double non-linearity in the L2-framework (on the other hand, it can

be directly proved for (P) under some additional assumptions). Sections 8 and 9 are

devoted to constructing a global attractor for a DS generated by (P) in a proper sense. As

mentioned previously, no global attractor exists in any Lp-spaces, because of the strong

irreversibility. Therefore, it is most crucial how to set up a phase set, which will be given

by a metric space without linear and convex structures. In Section 10, we shall prove

the convergence of each solution u(x, t) for (P) as t → ∞ and characterize the limit as a

solution of an elliptic variational inequality of obstacle type. Also here, the reformulation

exhibited in Section 6 will play a crucial role to characterize equilibria.

Notation We denote by ‖·‖p, 1 � p � ∞ the Lp(Ω)-norm, that is, ‖f‖p := (
∫
Ω
|f(x)|p dx)1/p

for p ∈ [1,∞) and ‖f‖∞ := ess supx∈Ω |f(x)|. Denote also by (·, ·) the L2-inner product,

that is, (u, v) :=
∫
Ω
u(x)v(x) dx for u, v ∈ L2(Ω). For each normed space X and T > 0,

Cw([0, T ];X) denotes the space of weakly continuous functions on [0, T ] with values in

X. We also simply write u(t) instead of u(·, t), which is regarded as a function from Ω

to �, for each fixed t � 0. Here and henceforth, we use the same notation I[0,∞) for the

indicator function over the half-line [0,∞) as well as for that defined on L2(Ω) over the

closed convex set K := {u ∈ L2(Ω) : u � 0 a.e. in Ω}, namely,

I[0,∞)(u) =

{
0 if u ∈ K,
∞ otherwise

for u ∈ L2(Ω),

if no confusion may arise. Moreover, let ∂I[0,∞) also denote the sub-differential operator

(precisely, ∂�I[0,∞)) in � (see (1.5)) as well as that (precisely, ∂L2I[0,∞)) in L2(Ω) defined

by

∂L2I[0,∞)(u) =
{
η ∈ L2(Ω) : (η, u− v) � 0 for all v ∈ K

}
for u ∈ K.

Here, we note that these two notions of sub-differentials are equivalent each other in the

following sense: for u, η ∈ L2(Ω),

η ∈ ∂L2I[0,∞)(u) if and only if η(x) ∈ ∂�I[0,∞)(u(x)) a.e. in Ω

(see, e.g., [20, 21]). We denote by C a non-negative constant, which does not depend on

the elements of the corresponding space or set and may vary from line to line.

2 Evolution equations with strong irreversibility

Evolution equations including the positive-part function, such as (1.1) and (1.2), have

been studied in several papers and they play important roles particularly in Damage

Mechanics. In this section, we briefly review some of those models and related non-linear

PDEs including the positive-part function.
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2.1 Quasi-static brittle fracture models

Francfort and Marigo [33] proposed a quasi-static evolution of brittle fractures in elastic

bodies based on Griffith’s criterion (see also [26] and [31]). Let Ω ⊂ �3 be an elastic body

and let Γn ⊂ Ω be a crack at time tn. Then, the crack Γn+1 ⊂ Ω and the displacement

	un+1 : Ω \ Γn+1 → �3 at time tn+1 are obtained as a minimizer of the elastic energy,

F(	u, Γ ) =

∫
Ω\Γ

μ|ε(	u)|2 + λ|tr ε(	u)|2 dx︸ ︷︷ ︸
bulk energy

+ H2(Γ )︸ ︷︷ ︸
surface energy

among Γ ⊂ Ω including Γn and	u : Ω \Γ → �3 satisfying a boundary condition	u|∂Ω =	g

associated with the external load 	g on (some part of) the boundary. Here, ε(	u) is the

symmetric part of the gradient matrix of	u, λ and μ are positive constants, and H2 denotes

the two-dimensional Hausdorff measure. Furthermore, concerning the mode III (i.e., anti-

planar shear) crack growth, the displacement vector	u =	u(x) is reduced to a scalar-valued

function u = u(x) of class SBV (Ω) (see [32]). In order to perform numerical analysis of

the mode III crack propagation, F is often regularized as the Ambrosio–Tortorelli energy

(see [4, 5]),

Fε(u, z) =
μ

2

∫
Ω

(1 − z)2|∇u|2 dx+

∫
Ω

fu dx+

∫
Ω

γ(x)

(
|∇z|2

2ε
+ εV (z)

)
dx,

where u and z stand for the deformation of the material and a phase parameter describing

the degree of crack (e.g., z = 1 means ‘completely cracked’ configuration), respectively,

V (·) is a potential function, ε > 0 is a relaxation parameter (which is also related to the

thickness of the diffuse interface), μ is a positive constant and γ(x) denotes the fracture

toughness of the material. It is proved in [4,5] that Fε converges to the Francfort–Marigo

energy in the sense of Γ -convergence as ε→ 0. Quasi-static dynamics of the approximated

brittle fracture model is also studied by introducing a constrained minimization scheme

associated with Fε (see [34]). Here, we stress again that the evolution of the phase

parameter z(x, t) is supposed to be monotone (i.e., non-decreasing in time).

A couple of non-linear evolution equations have been also proposed to describe

(or approximate) quasi-static evolution of brittle fractures. Above all, Kimura and

Takaishi [38, 48] developed a crack propagation model for numerical simulation. Their

model is derived as a double gradient flow (i.e., in both variables (u, z)) for Fε(u, z):

α1ut = μdiv
(
(1 − z)2∇u

)
+ f(x, t) in Ω × (0,∞),

α2zt =

(
εdiv(γ(x)∇z) − γ(x)

ε
V ′(z) + μ|∇u|2(1 − z)

)
+

in Ω × (0,∞),

where α1, α2 are positive constants (related to numerical efficiency), together with boundary

and initial conditions (see also [10], where mixed boundary conditions are imposed on

u and z). Here, we remark that the second equation of the system includes the positive-

part function in the right-hand side, in order to reproduce the non-decreasing (in time)

evolution of the phase parameter z(x, t).
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Remark 2.1 Equation (1.2) can be derived as an extreme case of the quasi-static model

for the regularized energy. More precisely, let V (·) be a double-well potential, V (s) =

s4/4 − κs2/2, to confine the phase parameter into an interval (see [49]). Moreover, for

(mathematical) simplicity, set γ(x) ≡ 1, f ≡ 0, ε = 0 and take α1 = 0 and α2 = 1 to the

double-gradient flow model. Testing the first equation by u and integrating by parts, we see

that

(1 − z)2|∇u|2 = 0 for a.e. (x, t) ∈ Ω × (0,∞),

which means that either (1 − z) or |∇u| is zero a.e. in Ω × (0,∞). Hence, the system is

reduced to the single equation (1.2).

2.2 Damage accumulation models

Barenblatt and Prostokishin [14] proposed a damage accumulation model, which derives

the following fully non-linear parabolic PDE including the positive-part function:

ut = uα (uxx + κu)+ in (a, b) × (0,∞)

with parameters α > 1, κ > 0 to describe the evolution of damage factor u(x, t), that is,

an internal variable used in the Kachanov theory [37]. Their model was mathematically

studied by Bertsch and Bisegna in [15], where the solvability of the initial-boundary value

problem is proved in a classical framework and long-time behaviours of solutions are also

investigated. In particular, it is proved that the regional blow-up phenomena occur (i.e.,

the blow-up set of a solution is a sub-interval of (a, b); however, it is neither a point set

nor the whole of the interval) under suitable assumptions on λ, α and the interval (a, b)

(see also [1]).

2.3 Irreversible evolution equations governed by sub-differentials

As is explained in Section 1, the strongly irreversible evolution can be also described in

terms of the sub-differential operator ∂I[0,∞) of the indicator function over the half-line.

In what follows, we shall recall strongly irreversible evolution equations formulated in

such a way. Let us start with a rate-independent uni-directional flow along with the

Ambrosio–Tortorelli energy (see Knees, Rossi and Zanini [40, 41] and references therein,

e.g., [29]). In [40,41], they discussed the existence of solutions to the Cauchy problem for

the rate-independent evolution equation,

∂R(zt) + DzFε(u, z) � 0, 0 < t < T , u = arg min
v

Fε(v, z),

where Dz denotes a functional derivative (e.g., Fréchet derivative) of Fε with respect to

the second variable z, with a 1-positively homogeneous and uni-directional dissipation

functional R given by

R(η) =

{∫
Ω
κ|η(x)|dx if η � 0 a.e. in Ω,

∞ otherwise,
for η ∈ L1(Ω)

for some κ > 0 (more precisely, in [40], a modified Ambrosio–Tortorelli energy is treated).
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Strongly irreversible evolution equations also appear in other topics. For instance, the

following irreversible phase transition model is proposed by Frémond and studied, for

example, in [17, 18],

θt − θχt − Δθ = χ2
t in Ω × (0,∞),

χt + ∂I[0,∞)(χt) − Δχ+ β(χ) � θ − θc in Ω × (0,∞),

where θ and χ denote the absolute temperature (θc is a transition temperature) and a

phase parameter, respectively, and moreover, β is a maximal monotone graph in �2. Due

to the presence of the sub-differential term ∂I[0,∞)(χt), the evolution of χ is constrained

to be non-decreasing. We refer the reader to [46] and references therein for mathematical

analysis of the model. Moreover, Aso and Kenmochi [8] (see also [7]) studied the existence

of solutions for a quasi-variational evolution inequality of reaction–diffusion type such as

θt − Δθ + k(θ, w) = h(t, x) in Ω × (0,∞),

wt + ∂I[g(θ),∞)(wt) − Δw + �(θ, w) � q(t, x) in Ω × (0,∞),

where k and � are Lipschitz continuous functions in both variables, g is a smooth non-

negative function and h and q are given functions in a suitable class. These systems are also

reduced to (1.2) in an isothermal setting, that is, θ = constant (with suitable assumptions).

Furthermore, we also refer the reader to references [16, 47] and references therein.

Equations reviewed in this section have been studied mostly in view of well-posedness.

On the other hand, qualitative and quantitative analysis on behaviours of solutions is still

open, since the equations have several different complexities. So, the study on intrinsic

phenomena arising from the strong irreversibility has not yet been fully pursued. In the

present paper, we shall treat a simpler equation, (1.2), but we shall investigate various

properties and behaviours of solutions as well as the well-posedness of (P) in order to

find out intrinsic features of parabolic PDEs involving the positive-part function.

3 Existence of L2-solutions

The L2(Ω)-solvability of (P) (= {(1.2), (1.7), (1.8)}) can be ensured for smooth data

by applying a general theory due to Barbu [13] and Arai [6]; more precisely, for any

u0 ∈ H2(Ω)∩H1
0 (Ω)∩L6(Ω), (P) possesses at least one L2(Ω)-solution u = u(x, t) defined by

Definition 3.1 A function u ∈ C([0,∞);L2(Ω)) is said to be a solution (or an L2(Ω)-

solution) of (P), if the following conditions are all satisfied :

(i) u belongs to W 1,2(δ, T ;L2(Ω)), C([δ, T ];H1
0 (Ω) ∩ L4(Ω)), L2(δ, T ;H2(Ω)) and

L6(δ, T ;L6(Ω)) for any 0 < δ < T <∞;

(ii) there exists η ∈ L∞(0,∞;L2(Ω)) such that

ut + η − Δu+ u3 − κu = 0, η ∈ ∂I[0,∞)(ut) for a.e. (x, t) ∈ Ω × (0,∞) (3.1)

and η = −
(
Δu−u3 +κu

)
− for a.e. (x, t) ∈ Ω× (0,∞). Hence, u also solves (1.2) a.e. in

Ω × (0,∞);

(iii) u(·, 0) = u0 a.e. in Ω.
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On the other hand, the uniqueness of solutions does not follow from general theories.

Furthermore, by focusing on specific structures of the equation (1.6), we shall improve

the result on the L2(Ω)-solvability. More precisely, we shall prove a smoothing effect

for (P), that is, even if initial data belong to a closure of a set D (of more regular

functions), corresponding solutions belong to the set D instantly. To state more details,

let us introduce a set

Dr :=
{
u ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω) : ‖(Δu− u3 + κu)−‖2
2 � r

}
for each r > 0. Here, we stress that Dr is an unbounded set. Indeed, let z ∈ C2(Ω) ∩C(Ω)

be the negative solution of the classical elliptic Allen–Cahn equation,

−Δz + z3 − κz = 0 in Ω, z = 0 on ∂Ω. (3.2)

Then, any multiple w = cz of z satisfies Δw − w3 + κw � 0 a.e. in Ω, provided that c � 1.

Then, w belongs to Dr , and therefore, Dr is unbounded.

Now, let us state a theorem on the well-posedness and smoothing effect.

Theorem 3.2 (Well-posedness and smoothing effect) Let r > 0 be arbitrarily fixed.

(i) Let u0 belong to the closure Dr
L2

of Dr in L2(Ω). Then (P) admits a solution u = u(x, t)

satisfying

u ∈ L2(0, T ;H1
0 (Ω)) ∩ L4(0, T ;L4(Ω)),

t1/2ut ∈ L2(0, T ;L2(Ω)), tut ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

t1/2u ∈ L∞(0, T ;H1
0 (Ω)) ∩ L2(0, T ;H2(Ω)),

t1/4u ∈ L∞(0, T ;L4(Ω)), t1/6u ∈ L6(0, T ;L6(Ω)),

t1/3u ∈ L∞(0, T ;L6(Ω)), tu ∈ L∞(0, T ;H2(Ω)),

u ∈ Cw((0, T ];H2(Ω) ∩ L6(Ω)) ∩ C((0, T ];H1
0 (Ω) ∩ L4(Ω)),

u(t) ∈ Dr for all t ∈ (0, T ]

for any 0 < T <∞.

(ii) If u0 belongs to the closure Dr
H1

0∩L4

of Dr in H1
0 (Ω) ∩ L4(Ω), then it further holds that

u ∈W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)),

u ∈ C([0, T ];H1
0 (Ω) ∩ L4(Ω)), t1/2ut ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

t1/2u ∈ L∞(0, T ;H2(Ω)), t1/6u ∈ L∞(0, T ;L6(Ω))

for any 0 < T <∞.

(iii) If u0 ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω), then u ∈ Cw([0, T ];H2(Ω) ∩ L6(Ω)) and ut ∈

L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) for any 0 < T <∞.

(iv) Let T > 0 be fixed. For N � 3, L2(Ω)-solutions u belonging to the class

C([0, T ];H1
0 (Ω)) (3.3)
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are uniquely determined by initial data u0 ∈ H1
0 (Ω) and they continuously depend on

initial data u0 in the following sense: let ui be the unique solution of (P) for the initial

data u0,i ∈ H1
0 (Ω) (for i = 1, 2) and set w := u1 − u2. Then, there exists a constant

C > 0, which depends only on supt∈(0,T ) ‖∇ui(t)‖2 (i = 1, 2) such that

‖w(t)‖2
2 + ‖∇w(t)‖2

2 �
(
‖w(0)‖2

2 + ‖∇w(0)‖2
2

)
eCt (3.4)

for all t ∈ [0, T ].

(v) For N � 4, L2(Ω)-solutions belonging to (3.3) and

L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)) (3.5)

are uniquely determined by initial data u0 ∈ H1
0 (Ω) and (3.4) holds true with a constant

C depending only on ‖ui‖L2(0,T ;H2(Ω)) and ‖ui‖L6(0,T ;L6(Ω)) (i = 1, 2).

(vi) Furthermore, for general N, L2(Ω)-solutions belonging to L∞(Ω×(0, T )) as well as (3.3)

are uniquely determined by initial data u0 ∈ H1
0 (Ω) and they satisfy (3.4) with a constant

C which depends only on uniform bounds ‖ui‖L∞(Ω×(0,T )) of solutions ui (i = 1, 2).

Remark 3.3 (Invariance of the set Dr) Thanks to (i), the set Dr (and its closures) turns

out to be invariant under the evolution generated by (P) (see also (4.6)). Hence, Dr will

play a role of a phase space in order to investigate the dynamics of solutions to (P) (see

Sections 8 and 9).

Remark 3.4 (Difference between Dr and its closure) To observe how smoothing effect oc-

curs (in Theorem 3.2), let us consider the following two examples (with N = 1, Ω = (−1, 1)

and κ = 1 for simplicity):

(i) Set u0(x) = |x| − 1 ∈ H1
0 (−1, 1) \H2(−1, 1). Then, define u0,ε ∈W 2,∞(−1, 1) by

u0,ε(x) =

{
|x| − 1 if |x| > ε
1
ε
x2

2
+ ε

2
− 1 if |x| � ε

,

for ε > 0. Then, one observes that

u′′0,ε − u3
0,ε + u0,ε =

⎧⎪⎨
⎪⎩
−u3

0,ε + u0,ε < 0 if |x| > ε
1
ε
−u3

0,ε + u0,ε︸ ︷︷ ︸
close to zero

> 0 if |x| � ε ,

for ε > 0 small enough. Therefore,

‖(u′′0,ε − u3
0,ε + u0,ε)−‖2

2 =

∫
|x|>ε

(u3
0,ε − u0,ε)

2 dx � ‖u3
0 − u0‖2

2 =: r < +∞.

Moreover, one can check that u0,ε → u0 strongly in H1
0 (−1, 1). Hence, u0 belongs to the

closure of Dr in H1
0 (−1, 1). However, u0 does not belong to Dr (⊂ H2(−1, 1)). On the

other hand, by Theorem 3.2, u(x, t) belongs to (at least) H2(−1, 1) ⊂ C1+α([−1, 1]) at

any t > 0. Therefore, the sharp edge of u0(x) at x = 0 instantly vanishes.
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(ii) Set u0(x) ≡ −1 ∈ L2(−1, 1) \ H1
0 (−1, 1) (hence, u0 violates the homogeneous Dirichlet

condition) and define approximated data by

u0,ε(x) =

{
−1 if |x| < 1 − ε,

−1 + 1
ε2

(|x| − 1 + ε)2 if |x| � 1 − ε.

Then, u0,ε ∈ H2(−1, 1) ∩ H1
0 (−1, 1) and u0,ε → u0 strongly in L2(−1, 1) as ε → 0.

Moreover, we observe that

u′′0,ε − u3
0,ε + u0,ε =

{
0 if |x| < 1 − ε,
2
ε2
− u3

0,ε + u0,ε > 0 if |x| � 1 − ε,

which yields ‖(u′′0,ε − u3
0,ε + u0,ε)−‖2

2 = 0. Hence, u0 belongs to the closure of Dr in

L2(−1, 1) (but u0 � Dr). Since the solution to (P) satisfies the boundary condition

u(±1, t) = 0 for any t > 0 by Theorem 3.2, the values of u(±1, t) jump to 0 from −1 at

t = 0.

Proof of (iv)–(vi) Before starting a proof for (iv), we remark that the uniqueness of

solutions for (P) is not ensured by the abstract results (e.g., Arai [6], Colli-Visintin [25],

Colli [24], Visintin [50]). For instance, in [24, 25], the uniqueness is proved for (abstract)

doubly non-linear equations, A(ut) + B(u) � 0, provided that either A or B is linear.

Fix δ > 0 arbitrarily. Let ui (i = 1, 2) be two solutions for (P) belonging to (3.3) with

initial data u0,i ∈ H1
0 (Ω) (i = 1, 2) and set w := u1 − u2. Then,

wt + η1 − η2 − Δw + u3
1 − u3

2 = κw,

where ηi is a section of ∂I[0,∞)(∂tui) for i = 1, 2. Test both sides by wt and employ the

monotonicity of ∂I[0,∞) to find that

‖wt‖2
2 +

1

2

d

dt
‖∇w‖2

2 �
κ

2

d

dt
‖w‖2

2 −
(
u3

1 − u3
2, wt

)
�
κ

2

d

dt
‖w‖2

2 + C‖u3
1 − u3

2‖2
2 +

1

2
‖wt‖2

2

for a.e. t ∈ (δ, T ) (see Definition 3.1). Here, note that, for any ε > 0, there exists a constant

Cε > 0 such that

1

2

d

dt
‖w‖2

2 = (wt, w) � ε‖wt‖2
2 + Cε‖w‖2

2.

Therefore, choosing ε > 0 small enough, one obtains

α
d

dt
‖w‖2

2 +
1

2

d

dt
‖∇w‖2

2 �
Cε

2ε
‖w‖2

2 + C‖u3
1 − u3

2‖2
2 (3.6)

for some α > 0. In case N � 3, thanks to the Mean-Value Theorem and Sobolev’s

embedding H1
0 (Ω) ↪→ L6(Ω), it follows that

‖u3
1 − u3

2‖2
2 � C

(
‖∇u1‖4

2 + ‖∇u2‖4
2

)
‖∇w‖2

2. (3.7)
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Thus, Gronwall’s inequality yields

‖w(t)‖2
2 + ‖∇w(t)‖2

2 �
(
‖w(δ)‖2

2 + ‖∇w(δ)‖2
2

)
eC0(t−δ) for all t � δ, (3.8)

where C0 is a constant depending only on supt∈(0,T ) ‖∇ui(t)‖2. From the fact that ui ∈
C([0, T ];H1

0 (Ω)), one can pass to the limit as δ → 0+ and obtain (3.8) with δ = 0. If

w(0) = 0, then we conclude that w ≡ 0, that is, u1 ≡ u2. This completes the proof of (iv).

Concerning (v), for any 3 � N � 5 (then, H2(Ω) ⊂ L2N(Ω)), by Gagliardo–Nirenberg’s

inequality we infer that

‖u3
1 − u3

2‖2
2 � C

(
‖u1‖4

2N + ‖u2‖4
2N

)
‖∇w‖2

2

� C
(
‖u1‖4θ

H2(Ω)‖u1‖4(1−θ)
6 + ‖u2‖4θ

H2(Ω)‖u2‖4(1−θ)
6

)
‖∇w‖2

2,

where θ is given by

1

2N
= θ

(
1

2
− 2

N

)
+

1 − θ

6
.

Furthermore, assuming N � 4, one finds that

2θ +
2(1 − θ)

3
� 1,

which yields

‖ui‖4θ
H2(Ω)‖ui‖

4(1−θ)
6 ∈ L1(0, T )

for i = 1, 2. Therefore, by Gronwall’s inequality, we can obtain the desired conclusion.

To prove (vi), the argument presented can be also generalized for general dimension

N by assuming the boundedness of solutions, that is, ui ∈ L∞(Q) (i = 1, 2) with Q =

Ω × (0, T ), and by replacing (3.7) by

‖u3
1 − u3

2‖2
2 � C

(
‖u1‖4

∞ + ‖u2‖4
∞

)
‖w‖2

2.

Therefore, for general N, bounded solutions are uniquely determined by initial data and

a similar inequality to (3.8) holds with a constant C0 depending on ‖ui‖L∞(Q). Thus, (vi)

is proved. �

Before giving a (sketch of) proof for the existence part (i)–(iii) of Theorem 3.2, we shall

(formally) derive energy estimates in the next section.

4 Energy inequalities and partial energy-dissipation estimates

In this section, we first collect key energy inequalities, which will play a crucial role

later; in particular, we shall derive partial energy-dissipation estimates and apply them to

construct a global attractor in a customized setting (cf. as we mentioned in Section 1,

due to the strong irreversibility, no absorbing set and no global attractor exist in any

Lp-spaces). In order to derive (some of) them in an intuitive way, we here carry out

formal arguments only. Secondly, we shall give a sketch of proof for the existence part of
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Theorem 3.2. In Section 5, we shall give detailed proofs for the existence part and energy

inequalities.

Energy Inequality 1 Test (1.6) by ut and employ the relation (η, ut) = 0 for any η ∈
∂I[0,∞)(ut) to see that

‖ut‖2
2 +

d

dt
E(u(t)) = 0 a.e. in (0,∞), (4.1)

where E : H1
0 (Ω) ∩ L4(Ω) → � is an energy functional given by

E(w) :=
1

2
‖∇w‖2

2 +
1

4
‖w‖4

4 −
κ

2
‖w‖2

2 for w ∈ H1
0 (Ω) ∩ L4(Ω).

Since E is coercive, one can observe that∫ T

0

‖ut‖2
2 dt+ sup

t∈[0,T ]

(
‖∇u‖2

2 + ‖u‖4
4

)
� C (E(u0) + 1) (4.2)

for any T > 0. Hence, for u0 ∈ H1
0 (Ω) ∩ L4(Ω), (if a solution exists, then) one can expect

that u ∈W 1,2(0, T ;L2(Ω))∩L∞(0, T ;H1
0 (Ω)∩L4(Ω)). Multiplying (4.1) by t, we also have

t‖ut‖2
2 +

d

dt

(
tE(u(t))

)
= E(u(t)) a.e. in (0,∞). (4.3)

Energy Inequality 2 The following is a formal computation. Differentiate both sides of

(1.6) in t and set v = ut. Then, we have

vt + ηt − Δv + 3u2v = κv in Ω × (0,∞), (4.4)

where η is a section of ∂I[0,∞)(v). Test both sides by v. It follows that

1

2

d

dt
‖v‖2

2 +
d

dt
I∗[0,∞)(η) + ‖∇v‖2

2 + 3

∫
Ω

u2v2 dx = κ‖v‖2
2,

where I∗[0,∞) stands for the convex conjugate of I[0,∞), that is,

I∗[0,∞)(σ) = sup
s∈�

(
sσ − I[0,∞)(s)

)
= sup

s�0
sσ = I(−∞,0](σ).

Here, we used the fact (ηt, v) = (d/dt)I∗[0,∞)(η) by the relation v ∈ ∂I∗[0,∞)(η). Moreover, we

note that I∗[0,∞)(η) = 0.

Now, for each potential function V = V (x), let us denote by λΩ(V ) the first eigenvalue

of the Schrödinger operator −Δ+V (x) over Ω equipped with the homogeneous Dirichlet

boundary condition. If u0 � 0, then one observes that

‖∇v‖2
2 + 3

∫
Ω

u2v2 dx � ‖∇v‖2
2 + 3

∫
Ω

u2
0v

2 dx � λΩ(3u2
0)‖v‖2

2.

Hence,

1

2

d

dt
‖v‖2

2 +
(
λΩ(3u2

0) − κ
)
‖v‖2

2 � 0.
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In addition, assuming λΩ(3u2
0) > κ, one can obtain the exponential decay estimate for

v = ut,

‖v(t)‖2
2 � ‖v0‖2

2 exp
(
−2(λΩ(3u2

0) − κ)t
)

(4.5)

for all t > 0. Here, we note that v0 corresponds to (Δu0 − u3
0 + κu0)+. Exponential decay

estimate (4.5) will be used in Corollary 10.3 (see also Remark 10.4) in Section 10.

Energy Inequality 3 The following argument will play a key role to overcome difficulties

arising from the double non-linearity of (1.6) and enable us to establish partial energy-

dissipation estimates. Formally, test (4.4) by η to find that

d

dt
I[0,∞)(v) +

1

2

d

dt
‖η‖2

2 + (−Δv, η) + 3

∫
Ω

u2vη dx = κ(v, η).

Note that vη ≡ 0, I[0,∞)(v) = 0 a.e. in Ω × (0,∞) and (−Δv, η) � 0. It follows that

1

2

d

dt
‖η‖2

2 � 0,

which implies that

‖η(t)‖2
2 � ‖η(s)‖2

2 for a.e. 0 � s � t <∞. (4.6)

Here, we recall that η(0) = η0 := −(Δu0 − u3
0 + κu0)−. Likewise, multiplying (4.4) by

|η|p−2η ∈ ∂I[0,∞)(v), one can also derive

‖η(t)‖p � ‖η(s)‖p for a.e. 0 � s � t <∞,

when η(0) ∈ Lp(Ω), for any p ∈ (1,∞), and hence,

‖η(t)‖∞ � ‖η(s)‖∞ for a.e. 0 � s � t <∞,

provided that η(0) ∈ L∞(Ω).

Energy Inequality 4 Testing (1.6) by u, we have

1

2

d

dt
‖u‖2

2 + ‖∇u‖2
2 + ‖u‖4

4 = κ‖u‖2
2 − (η, u) � κ‖u‖2

2 + ‖η‖2‖u‖2.

By Hölder and Young inequalities and (4.6) with s = 0 and η(0) = η0, we further derive

that

1

2

d

dt
‖u‖2

2 + ‖∇u‖2
2 +

1

2
‖u‖4

4 � C1(1 + ‖η0‖4/3
2 ) (4.7)

for some constant C1 > 0 depending only on |Ω| and κ. Integration of both sides over

(0, T ) yields

1

2
‖u(T )‖2

2 +

∫ T

0

(
‖∇u‖2

2 +
1

2
‖u‖4

4

)
dt � C1T (1 + ‖η0‖4/3

2 ) +
1

2
‖u0‖2

2 (4.8)
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for any T > 0. Thus, one expects that u ∈ L2(0, T ;H1
0 (Ω))∩L4(0, T ;L4(Ω)) for u0 ∈ Dr

L2

(then, ‖η0‖2 � r <∞). Moreover, it follows from (4.3) and (4.8) that∫ T

0

t‖ut‖2
2 dt+ TE(u(T )) �

C1

2
T

(
1 + ‖η0‖4/3

2

)
+

1

4
‖u0‖2

2 (4.9)

for any T > 0. It also implies that t1/2ut ∈ L2(0, T ;L2(Ω)), t1/2u ∈ L∞(0, T ;H1
0 (Ω)) and

t1/4u ∈ L∞(0, T ;L4(Ω)) whenever u0 ∈ Dr
L2

.

We next derive a partial energy-dissipation estimate. Assume that ‖η0‖2
2 � r for some

r > 0. Then, combining (4.7) with (4.1), one finds that

‖ut‖2
2 +

d

dt
φ(t) + 2κφ(t) � κC1(1 + r2/3) =: Cr, (4.10)

where φ : H1
0 (Ω) ∩ L4(Ω) → � is a functional given by

φ(t) :=
1

2
‖∇u(t)‖2

2 +
1

4
‖u(t)‖4

4.

Therefore, we conclude that

φ(t) �
Cr

2κ
+ e−2κt

[
φ(0) − Cr

2κ

]
for all t � 0, (4.11)

which will play an important role to construct an absorbing set in Section 8. Here, it

is noteworthy that Cr is independent of u0 belonging to Dr
H1

0∩L4

; however, Cr cannot

be chosen uniformly for all r > 0. Hence, (4.11) can be regarded as a partial energy-

dissipation estimate.

Energy Inequality 5 Test (1.6) by −Δu+ u3 − κu to get

d

dt
E(u(t)) − ‖η‖2

2 + ‖ − Δu+ u3 − κu‖2
2 = 0.

Here, we used the fact that η = −(Δu− u3 + κu)−. Combining this with (4.6) where s = 0

and η(0) = η0, one has

d

dt
E(u(t)) + ‖ − Δu+ u3 − κu‖2

2 � ‖η0‖2
2 a.e. in (0,∞), (4.12)

which implies

E(u(T )) +

∫ T

0

‖ − Δu+ u3 − κu‖2
2 dt � T‖η0‖2

2 + E(u0) (4.13)

for any T > 0. Thus, we infer that u ∈ L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)), provided that

u0 ∈ Dr
H1

0∩L4

. Furthermore, it also follows from (4.12) that

TE(u(T )) +

∫ T

0

t‖ − Δu+ u3 − κu‖2
2 dt �

∫ T

0

E(u(t)) dt+
T 2

2
‖η0‖2

2, (4.14)
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which along with (4.8) implies t1/2u ∈ L2(0, T ;H2(Ω)) and t1/6u ∈ L6(0, T ;L6(Ω)) if

u0 ∈ Dr
L2

.

Energy Inequality 6 The following argument is also formal; indeed, the differentiability

(in t) of −Δu+ u3 − κu is not supposed in Definition 3.1. Test (1.6) by (−Δu+ u3 − κu)t.

Then, we observe that

(
ut, (−Δu+ u3 − κu)t

)
= ‖∇ut‖2

2 + 3

∫
Ω

u2u2
t dx− κ‖ut‖2

2

and (
η, (−Δu+ u3 − κu)t

)
� 0.

Here, we used the fact that (η,−Δut) � 0 and ηut ≡ 0 a.e. in Ω × (0,∞). Therefore,

‖∇ut‖2
2 + 3

∫
Ω

u2u2
t dx+

1

2

d

dt
‖Δu− u3 + κu‖2

2 � κ‖ut‖2
2.

Furthermore, by (4.1),

‖∇ut‖2
2 + 3

∫
Ω

u2u2
t dx+

1

2

d

dt
‖Δu− u3 + κu‖2

2 � κ‖ut‖2
2 = −κ d

dt
E(u(t)),

which can be rewritten as

‖∇ut‖2
2 + 3

∫
Ω

u2u2
t dx+

d

dt

[
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t))

]
� 0 (4.15)

for a.e. t > 0. In particular,

∫ T

0

‖∇ut‖2
2 dt+ 3

∫ T

0

∫
Ω

u2u2
t dx dt+

1

2
‖Δu(T ) − u3(T ) + κu(T )‖2

2

+κE(u(T )) �
1

2
‖Δu0 − u3

0 + κu0‖2
2 + κE(u0) (4.16)

for all T > 0. Hence, u ∈ L∞(0, T ;H2(Ω) ∩ L6(Ω)) and ut ∈ L2(0, T ;H1(Ω)) ∩
L∞(0, T ;L2(Ω)) (by (1.2)) if u0 ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω).

On the other hand, multiply (4.15) by t and compute as follows:

t‖∇ut‖2
2 + 3t

∫
Ω

u2u2
t dx+

d

dt

(
t

[
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t))

])

�
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t)). (4.17)
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Integrating both sides over (0, T ), we conclude that

∫ T

0

t‖∇ut‖2
2 dt+ 3

∫ T

0

t

(∫
Ω

u2u2
t dx

)
dt

+ T

[
1

2
‖Δu(T ) − u3(T ) + κu(T )‖2

2 + κE(u(T ))

]

�
1

2

∫ T

0

‖Δu− u3 + κu‖2
2 dt+ κ

∫ T

0

E(u(t)) dt

for all T > 0. Combining it with (4.13), one can obtain an estimate exhibiting a smoothing

effect,

∫ T

0

t‖∇ut‖2
2 dt+ 3

∫ T

0

t

(∫
Ω

u2u2
t dx

)
dt

+ T

[
1

2
‖Δu(T ) − u3(T ) + κu(T )‖2

2 + κE(u(T ))

]

�
1

2

(
T‖η0‖2

2 + E(u0) − E(u(T ))
)

+ κ

∫ T

0

E(u(t)) dt (4.18)

for all T > 0. Hence, one expects that t1/2ut ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) (by

(1.2)), t1/2u ∈ L∞(0, T ;H2(Ω)) and t1/6u ∈ L∞(0, T ;L6(Ω)) for u0 ∈ Dr
H1

0∩L4

. Moreover,

multiply (4.17) by t again. Then,

t2‖∇ut‖2
2 + 3t2

∫
Ω

u2u2
t dx+

d

dt

(
t2

[
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t))

])

� 2t

(
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t))

)
.

Integrate both sides over (0, T ). Then, it follows that

∫ T

0

t2‖∇ut‖2
2 dt+ 3

∫ T

0

t2
(∫

Ω

u2u2
t dx

)
dt

+ T 2

[
1

2
‖Δu(T ) − u3(T ) + κu(T )‖2

2 + κE(u(T ))

]

� 2

∫ T

0

t

(
1

2
‖Δu− u3 + κu‖2

2 + κE(u(t))

)
dt

(4.14)

�

∫ T

0

E(u(t)) dt+ 2κ

∫ T

0

tE(u(t)) dt+
T 2

2
‖η0‖2

2 +
κT

2
‖u(T )‖2

2. (4.19)

By virtue of (4.8), we may obtain tut ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) (by (1.2)),

tu ∈ L∞(0, T ;H2(Ω)) and t1/3u ∈ L∞(0, T ;L6(Ω)) for u0 ∈ Dr
L2

.

https://doi.org/10.1017/S0956792518000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000384


724 G. Akagi and M. Efendiev

Let us also derive another partial energy-dissipation estimate. Inequality (4.18) yields

1

2
‖Δu(T ) − u3(T ) + κu(T )‖2

2 + κE(u(T ))

�
1

2

(
‖η0‖2

2 +
1

T
E(u0) −

1

T
E(u(T ))

)
+
κ

T

∫ T

0

E(u(t)) dt (4.20)

for any T > 0. Due to the decrease of the energy t �→ E(u(t)) and the fact that

E(·) � −M0 := infw∈H1
0 (Ω) E(w) > −∞, it follows that

1

2
‖Δu(t) − u3(t) + κu(t)‖2

2

� κM0 +
1

2

(
‖η0‖2

2 +
1

t
E(u0) +

1

t
M0

)
+
κ

t

∫ t

0

φ(u(τ)) dτ

(4.11)

� κM0 +
1

2

(
r +

1

t
E(u0) +

1

t
M0

)
+
Cr

2
+
φ(0)

2t
for all t > 0, (4.21)

which will be used to construct an absorbing set in Section 8. On the other hand, one

can also exhibit a dissipation structure in a more quantitative way. Since t �→ E(u(t)) is

non-increasing and E(·) is bounded from below, we deduce that

E∞ := lim
t→∞

E(u(t)) � −M0,

and therefore,

1

T

∫ T

0

E(u(t)) dt↘ E∞ as T → ∞.

Consequently, by (4.20), one has the following result:

Corollary 4.1 In case u0 ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω), for any ε > 0, there exists Tε > 0

(possibly depending on each solution u) such that, for all T � Tε,

‖Δu(T ) − u3(T ) + κu(T )‖2
2 �

∥∥(Δu0 − u3
0 + κu0)−

∥∥2

2
+ ε. (4.22)

In case u0 ∈ Dr
H1

0∩L4

, for any ε > 0, one can take Tε > 0 such that, for all T � Tε,

‖Δu(T ) − u3(T ) + κu(T )‖2
2 � r + ε.

Remark 4.2 Due to the non-decreasing constraint on solutions, energy-dissipation cannot

be observed in a usual way. Indeed, since u(·, t) � u0 a.e. in Ω for all t � 0, it follows that

‖u(t)‖p � ‖u0‖p for any p ∈ [1,∞],

provided that u0 � 0. Hence, the Lp norm of u(t) never decays and no absorbing set in Lp(Ω)

exists. Moreover, let z be the positive solution of the classical elliptic Allen–Cahn equation

(3.2). Then, any multiple w = cz for c � 1 turns out to be an equilibrium for (P), since it

holds that Δw−w3 + κw � 0 a.e. in Ω. Therefore, the set of equilibria is unbounded in any
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(linear) space including z. On the other hand, for any initial data u0 ∈ Dr , one can observe

partial energy-dissipation in (4.11), (4.21) and (4.22). Indeed, the set Dr excludes a part

of the unbounded set of equilibria (still, we emphasize again that Dr itself is unbounded).

Hence, there arises a question: whether or not one can construct an “attractor” for the DS

generated by (P) over the set Dr . An answer to this question will be provided in Section 8

and Section 9.

We close this section by giving a sketch of proof for the existence part of Theorem 3.2

and by exhibiting an idea to justify the formal arguments given so far.

A sketch of proof for the existence part of Theorem 3.2 Set H = L2(Ω) and define a

functional ψ : H → [0,∞] by

ψ(u) :=

{
φ(u) if u ∈ H1

0 (Ω) ∩ L4(Ω),

∞ otherwise.
(4.23)

Then, the sub-differential ∂ψ of ψ has the representation, ∂ψ(v) = −Δv + v3 for v ∈
D(∂ψ) = H2(Ω)∩H1

0 (Ω)∩L6(Ω). Hence, (P) is reduced to an abstract Cauchy problem in

the Hilbert space H ,

ut + ∂I[0,∞)(ut) + ∂ψ(u) � κu in H, 0 < t < T , u(0) = u0, (4.24)

whose solvability (i.e., existence of solutions) has been studied by [13] and [6] for

u0 ∈ D(∂ψ). Then, (iii) can be proved by checking some structure conditions proposed

in [6] (see Section 5 for more details). For later use, let us briefly recall a strategy (similar

to [6]) to construct a solution of (4.24): We construct approximate solutions for (P) and

denote by uλ the (unique) solution of

ut + ∂I[0,∞)(ut) + ∂ψλ(u) � κu in H, 0 < t < T , u(0) = u0 ∈ D(∂ψ), (4.25)

where ∂ψλ is the sub-differential operator of the Moreau–Yosida regularization ψλ of ψ

(equivalently, the Yosida approximation of ∂ψ) (see, e.g., [20]). Here, one can write

∂ψλ(v) = ∂ψ(Jλv) = −Δ(Jλv) + (Jλv)
3 for all v ∈ H, (4.26)

where Jλ : H → D(∂ψ) = H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω) stands for the resolvent of ∂ψ, that is,

Jλ := (I + λ∂ψ)−1 (see [20]). Indeed, equation (4.25) can be also rewritten as an evolution

equation governed by a Lipschitz continuous operator in H , that is,

ut =
(
I + ∂I[0,∞)

)−1
(−∂ψλ(u) + κu) in H, 0 < t < T , u(0) = u0,

since ∂ψλ and
(
I + ∂I[0,∞)

)−1
are Lipschitz continuous in H . Therefore, the solution uλ

of (4.25) is uniquely determined (by u0) and uλ is of class C1,1 in time. Furthermore, the

section ηλ of ∂I[0,∞)(∂tuλ) as in (3.1) belongs to C0,1([0, T ];H) by means of the relation

ηλ = κuλ − ∂ψλ(uλ) − ∂tuλ. Moreover, (4.25) is also equivalent to

ut = (−∂ψλ(u) + κu)+ in H, 0 < t < T .
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As in the formal computations given above, one can derive corresponding energy inequal-

ities for uλ with η0 replaced by −(κu0−∂ψλ(u0))−. Therefore, passing to the limit as λ→ 0+

(see Section 5), one can construct an L2-solution u of (P) (for u0 ∈ D(∂ψ)) and reproduce

all the energy inequalities obtained so far. Moreover, in order to prove smoothing effects

(e.g., (ii)), we approximate initial data u0 ∈ Dr
H1

0∩L4

by u0,n ∈ Dr satisfying

u0,n → u0 strongly in H1
0 (Ω) ∩ L4(Ω) as n→ ∞

and particularly employ the fact ‖(Δu0,n − u3
0,n + κu0,n)−‖2

2 � r (by u0,n ∈ Dr) to reproduce

the energy inequalities. For more precise arguments as well as a proof for (i), we refer the

reader to Section 5. �

5 Proof of existence of solutions and energy inequalities

In this section, we give a proof for the existence part of Theorem 3.2 and a rigorous

derivation of energy inequalities, which are derived in Section 4 by formal computations.

More precisely, we shall prove

Theorem 5.1 Let r > 0 be arbitrarily fixed.

(i) Let u0 belong to the closure Dr
L2

of Dr in L2(Ω). Then, (P) admits the unique solution

u = u(x, t) satisfying all the regularity conditions as in (i) of Theorem 3.2 such that

(4.1), (4.3), (4.7)–(4.10), (4.12), (4.14) and (4.19) hold true with ‖η0‖2
2 replaced by r.

Moreover, it is also satisfied that

‖η(t)‖2
2 � r for a.e. t > 0. (5.1)

(ii) If u0 also belongs to the closure Dr
H1

0∩L4

of Dr in H1
0 (Ω) ∩ L4(Ω), then the solution

u = u(x, t) also satisfies all the regularity conditions as in (ii) of Theorem 3.2. Moreover,

(4.1)–(4.3), (4.7)–(4.14), (4.18)–(4.21) and (5.1) are satisfied with ‖η0‖2
2 replaced by r.

(iii) If u0 ∈ H2(Ω) ∩ L6(Ω), then the solution u = u(x, t) also fulfils all the regularity

conditions as in (iii) of Theorem 3.2. Moreover, (4.1)–(4.3), (4.7)–(4.14), (4.16), (4.18)–

(4.21) are satisfied with ‖η0‖2
2 replaced by ‖(Δu0 − u3

0 + κu0)−‖2
2. Furthermore, it holds

that

‖η(t)‖2
2 � ‖(Δu0 − u3

0 + κu0)−‖2
2 for a.e. t > 0. (5.2)

A rigorous proof for energy inequalities (4.5), (4.6), (4.15) and (4.17) will be postponed

until the end of Section 6 (see Corollary 6.5). Indeed, we need uniqueness of solutions (for

general initial data). Now, we give a proof of Theorem 5.1.

5.1 Reduction to an abstract Cauchy problem

Let T > 0 be arbitrarily fixed. Set H = L2(Ω) (with ‖ · ‖H := ‖ · ‖2), V = H1
0 (Ω) ∩ L4(Ω)

(with ‖ · ‖V := ‖∇ · ‖2 + ‖ · ‖4) and define a functional ψ on H as in (4.23). Moreover, set
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ϕ : H → [0,∞] by

ϕ(u) =
1

2
‖u‖2

2 + I[0,∞)(u) for u ∈ H, (5.3)

which is homogeneous of degree 2. Then, as in Section 4, (P) is reduced to the abstract

Cauchy problem (4.24), which is also equivalent to

∂ϕ(ut) + ∂ψ(u) � κu in H, 0 < t < T , u(0) = u0. (5.4)

In order to prove the existence of solutions to (5.4), it suffices to check all the assumptions

of [6] (see also [13]). For the readers’ convenience, let us recall them as follows:

(A1) there exists a reflexive Banach space (V , ‖ · ‖V ) which is densely and compactly

embedded in (H, ‖ · ‖H ),

(A2) D(ψ) ⊂ V and ψ(u) + ‖u‖2
H → +∞ as ‖u‖V → +∞,

(A3) there exist C > 0 and R > 0 such that ϕ(u) � C‖u‖2
H for u ∈ D(ϕ) satisfying

‖u‖H � R,

(A4) there exists p > 1 such that ϕ(μu) = μpϕ(u) for u ∈ D(ϕ) and μ > 0,

(A5) ∂ψ is ∂ϕ-monotone, that is,

ϕ(Jλu− Jλv) � ϕ(u− v) for u, v ∈ H and λ > 0, (5.5)

where Jλ is the resolvent of ∂ψ, that is, Jλ := (I + λ∂ψ)−1.

Since (A1)–(A4) follow immediately from the setting of ψ and ϕ, we only give a proof for

checking (A5).

Lemma 5.2 It holds that

I[0,∞)(Jλu− Jλv) � I[0,∞)(u− v), ‖Jλu− Jλv‖2
2 � ‖u− v‖2

2

for u, v ∈ H . In particular, (5.5) holds true with ϕ defined as in (5.3).

Proof The second inequality follows from a well-known fact that resolvents of maximal

monotone operators are non-expansive, that is, ‖Jλu− Jλv‖H � ‖u− v‖H for u, v ∈ H (see,

e.g., [20]). So, it remains to prove the first inequality. In case I[0,∞)(u − v) = ∞, we have

nothing to prove. In case I[0,∞)(u− v) = 0, that is, u � v a.e. in Ω, by the definition of Jλ,

we see that

Jλu− Jλv + λ [∂ψ(Jλu) − ∂ψ(Jλv)] = u− v. (5.6)

Test both sides by −(Jλu− Jλv)− � 0 to get

∫
Ω

(Jλu− Jλv)
2
− dx � −

∫
Ω

(u− v) (Jλu− Jλv)− dx � 0,
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which implies Jλu � Jλv a.e. in Ω. Here, we used the fact that

(∂ψ(Jλu) − ∂ψ(Jλu),−(Jλu− Jλv)−) = (−Δ(Jλu− Jλv),−(Jλu− Jλv)−)

+
(
|Jλu|2Jλu− |Jλv|2Jλv,−(Jλu− Jλv)−

)
� 0

by monotonicity. Thus, I[0,∞)(Jλu− Jλv) = 0. �

5.2 Proof of (iii)

Let us prove (iii). To this end, suppose that

u0 ∈ D(∂ψ) = H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω). (5.7)

Then, thanks to Arai [6, Theorem 3.3] (see also Barbu [13]), we assure that (5.4) admits

a solution u ∈ W 1,∞(0, T ;H) ∩ L∞(0, T ;V ), such that the function t �→ ϕ(u′(t)) belongs

to L∞(0, T ) and the function t �→ ψ(u(t)) is absolutely continuous on [0, T ]. Concerning

energy inequalities, one can rigorously derive (4.1)–(4.3) as in Section 4 under the frame

of Definition 3.1. So, we shall verify the other energy inequalities. To this end, the rest of

this sub-section is devoted to preparing auxiliary steps.

Recall approximate problems (4.25) for (P) and denote by uλ the unique solution.

Furthermore, let ηλ be the section of ∂I[0,∞)(∂tuλ) satisfying

∂tuλ + ηλ + ∂ψλ(uλ) = κuλ, uλ(0) = u0. (5.8)

Set pλ := ∂tuλ + ηλ. Then, pλ is a section of ∂ϕ(∂tuλ).

Remark 5.3 (Approximate equations in [6]) Approximate problems used in [6] seem

slightly different from (5.8); indeed, they involve a liner relaxation term such as

λut + ∂ϕ(ut) + ∂ψλ(u) � κu,

since the quadratic coercivity of ϕ is not assumed. However, concerning (1.6), one can re-

produce the same arguments as in [6] for (5.8), since the original equation (1.6) already

includes the linear relaxation term. On the other hand, the following arguments also work

well for approximate equations with the additional relaxation term as in [6].

As mentioned in Section 4, we assure that ∂tuλ, ηλ ∈ C0,1([0, T ];H) and ηλ = −(κuλ −
∂ψλ(uλ))− in H for each t ∈ [0, T ]. In particular, one finds that

ηλ(0) := lim
t→0+

ηλ(t) = −
(
κu0 − ∂ψλ(u0)

)
−.

Moreover, every assertion obtained by [6] for uλ is valid (see proofs of Theorems 3.1 and

3.3 in [6] for details). In particular, let us recall that, up to a (not relabelled) subsequence
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λ→ 0,

Jλuλ → u strongly in C([0, T ];H),

uλ → u strongly in C([0, T ];H),

∂tuλ → ut weakly star in L∞(0, T ;H),

∂ψλ(uλ) → ∂ψ(u) weakly star in L∞(0, T ;H),

pλ → p weakly star in L∞(0, T ;H),

and moreover, the function t �→ ψ(u(t)) is (absolutely) continuous on [0, T ] (hence, u ∈
C([0, T ];H1

0 (Ω) ∩ L4(Ω))) and p ∈ ∂ϕ(ut). Since ∂ψ(u) ∈ L∞(0, T ;H) and u(t) ∈ D(∂ψ) =

H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω) for a.e. t ∈ (0, T ), it follows that u ∈ L∞(0, T ;H2(Ω) ∩ L6(Ω))

from the fact that ‖Δw‖2
2 + ‖w‖6

6 � ‖∂ψ(w)‖2
2 for all w ∈ D(∂ψ) along with the elliptic

estimate ‖w‖H2(Ω) � C(‖Δw‖2 + ‖w‖2) for w ∈ H2(Ω). Thus, u solves (P). Here, we further

observe that

Jλuλ → u weakly star in L∞(0, T ;H1
0 (Ω) ∩ L4(Ω))

and (see [20], [19] and [12])

lim
λ→0

∫ T

0

(∂ψλ(uλ), Jλuλ) dt→
∫ T

0

(∂ψ(u), u) dt.

One can also verify that

lim sup
λ→0

∫ T

0

‖∇Jλuλ(t)‖2
2 dt = lim sup

λ→0

∫ T

0

(−ΔJλuλ, Jλuλ) dt

� lim sup
λ→0

∫ T

0

(
∂ψλ(uλ) − (Jλuλ)

3, Jλuλ
)

dt

�

∫ T

0

(−Δu, u) dt =

∫ T

0

‖∇u(t)‖2
2 dt,

which implies

Jλuλ → u strongly in L2(0, T ;H1
0 (Ω)).

Similarly,

Jλuλ → u strongly in L4(0, T ;L4(Ω)).

Hence, ∫ T

0

φ(Jλuλ(t)) dt→
∫ T

0

φ(u(t)) dt. (5.9)

Moreover, by u ∈ C([0, T ];H1
0 (Ω) ∩ L4(Ω)) ∩ L∞(0, T ;H2(Ω) ∩ L6(Ω)), we deduce that

u ∈ Cw([0, T ];H2(Ω) ∩ L6(Ω)) (see [44]). It follows that

Jλuλ(t) → u(t) weakly in H2(Ω) ∩ L6(Ω) for any t ∈ [0, T ]. (5.10)

On the other hand, there exists η ∈ L∞(0, T ;H), such that

ηλ → η weakly star in L∞(0, T ;H)
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and η = p− ut ∈ ∂I[0,∞)(ut). From the equivalence between (1.6) and (1.2), we also remark

that

η = − (κu− ∂ψ(u))− = −
(
Δu− u3 + κu

)
− a.e. in Ω × (0, T ). (5.11)

We next justify formal arguments in Section 4 to derive energy inequalities (except

Energy Inequality 1 in Section 4). To this end, we claim that

Jλu, |Jλuλ|Jλuλ ∈W 1,2(0, T ;H1
0 (Ω)). (5.12)

Indeed, recalling (5.6) with u and v replaced by uλ(t + h) and uλ(t), respectively, and

multiplying it by Jλuλ(t+ h) − Jλuλ(t), one can derive that

1

2
‖Jλuλ(t+ h) − Jλuλ(t)‖2

2 + λ ‖∇ (Jλuλ(t+ h) − Jλuλ(t))‖2
2

+
3

4

∥∥∥(|Jλuλ|Jλuλ)(t+ h) − (|Jλuλ|Jλuλ)(t)
∥∥∥2

2
�

1

2
‖uλ(t+ h) − uλ(t)‖2

2

for a.e. t ∈ (0, T ) and h ∈ � satisfying t+ h ∈ [0, T ]. Here, we also used the fundamental

inequality,

3

4

∣∣∣|a|a− |b|b
∣∣∣2 � (a3 − b3)(a− b) for all a, b ∈ �. (5.13)

From the arbitrariness of h, we deduce that Jλuλ ∈ W 1,2(0, T ;H1
0 (Ω)) by uλ ∈

C1,1([0, T ];L2(Ω)) ⊂W 1,2(0, T ;L2(Ω)).

By [6, Lemma 3.10] and the monotonicity of ∂ψλ along with Lemma 5.2, we obtain

Lemma 5.4 For u ∈ C1([0, T ];H) satisfying ut � 0 a.e. in Ω × (0, T ), it holds that

(i) I[0,∞)((Jλu)t) � I[0,∞)(ut) for a.e. t ∈ (0, T ), in particular, (Jλu)t � 0 a.e. in Ω × (0, T ),

(ii) for any η ∈ ∂I[0,∞)(ut), one has(
η(t),

d

dt
∂ψλ(u(t))

)
� 0 for a.e. t ∈ (0, T ).

5.3 Derivation of Energy Inequalities under (5.7)

We next derive energy inequalities.

Energy Inequalities 3 Differentiate both sides of (5.8) in t (indeed, it is rigorously possible,

since both sides of (5.8) are smooth (in t) enough by approximation) and put vλ := ∂tuλ ∈
C0,1([0, T ];H) ⊂W 1,∞(0, T ;H). Then,

∂tvλ + ∂tηλ +
d

dt
∂ψλ(uλ) = κvλ. (5.14)

Multiplying both sides by ηλ and employing (ii) of Lemma 5.4, we deduce that

d

dt
I[0,∞)(vλ) +

1

2

d

dt
‖ηλ‖2

2 � κ

∫
Ω

vληλ dx = 0,
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which leads us to get

‖ηλ(t)‖2
2 � ‖ηλ(0)‖2

2 = ‖(κu0 − ∂ψλ(u0))−‖2
2 for all t ∈ [0, T ]. (5.15)

Since ∂ψλ(u0) → ∂ψ(u0) strongly in H as λ→ 0 by u0 ∈ D(∂ψ) (see [20]), one has

‖η(t)‖2
2 � ‖η‖2

L∞(0,T ;H) � lim inf
λ→0

‖ηλ‖2
L∞(0,T ;H) � ‖(κu0 − ∂ψ(u0))−‖2

2

for a.e. t ∈ (0, T ). Hence, (5.2) follows.

Energy Inequalities 4–6 Thanks to (5.2), as in Section 4, one can derive (4.7)–(4.14)

by replacing ‖η0‖2 by ‖(Δu0 − u3
0 + κu0)−‖2. As for Energy Inequality 6, test (5.8) by

(∂ψλ(uλ)−κuλ)t, which is well-defined due to the smoothness of uλ and ∂ψλ(uλ) in t. Then,

it follows that

(
∂tuλ + ηλ, (∂ψλ(uλ) − κuλ)t

)
+

1

2

d

dt
‖∂ψλ(uλ) − κuλ‖2

2 = 0.

Here, we also observe by (ii) of Lemma 5.4 that

(
ηλ, (∂ψλ(uλ) − κuλ)t

)
= (ηλ, (∂ψλ(uλ))t) � 0,

and moreover,

(
∂tuλ,

d

dt
∂ψλ(uλ)

)
=

(
(Jλuλ)t + λ

d

dt
∂ψλ(uλ),

d

dt
∂ψλ(uλ)

)

�

(
(Jλuλ)t,

d

dt
∂ψλ(uλ)

)
(4.26)

� ‖∇(Jλuλ)t‖2
2 +

3

4

∥∥∂t
(
|Jλuλ|Jλuλ

)∥∥2

2
. (5.16)

Here, we also used the fact that

(Jλuλ(t+ h) − Jλuλ(t), ∂ψλ(uλ(t+ h)) − ∂ψλ(uλ(t)))

�
∥∥∥∇ (Jλuλ(t+ h) − Jλuλ(t))

∥∥∥2

2
+

3

4

∥∥∥(|Jλuλ|Jλuλ)(t+ h) − (|Jλuλ|Jλuλ)(t)
∥∥∥2

2

by (5.13). By combining all these facts,

‖∇(Jλuλ)t‖2
2 +

3

4

∥∥∂t
(
|Jλuλ|Jλuλ

)∥∥2

2
+

1

2

d

dt
‖∂ψλ(uλ) − κuλ‖2

2

� κ‖∂tuλ‖2
2 = −κ d

dt
Eλ(uλ(t)),
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where Eλ(w) := ψλ(w) − (κ/2)‖w‖2
2. Integrate both sides over (0, t) to see that

∫ t

0

(
‖∇(Jλuλ)τ‖2

2 +
3

4

∥∥∂τ
(
|Jλuλ|Jλuλ

)∥∥2

2

)
dτ

+
1

2
‖∂ψλ(uλ(t)) − κuλ(t)‖2

2 + κEλ(uλ(t))

�
1

2
‖∂ψλ(u0) − κu0‖2

2 + κEλ(u0). (5.17)

Thus,

(Jλuλ)t → ut weakly in L2(0, T ;H1
0 (Ω)), (5.18)

∂t
(
|Jλuλ|Jλuλ

)
→ ∂t(|u|u) weakly in L2(0, T ;L2(Ω)). (5.19)

Passing to the limit in (5.17) as λ → 0 and recalling that u ∈ Cw([0, T ];H2(Ω) ∩ L6(Ω)),

we have ∫ t

0

(
‖∇uτ‖2

2 +
3

4

∥∥∂τ
(
|u|u

)∥∥2

2

)
dτ

+
1

2
‖∂ψ(u(t)) − κu(t)‖2

2 + κE(u(t)) �
1

2
‖∂ψ(u0) − κu0‖2

2 + κE(u0)

for all t ∈ (0, T ). Furthermore, one can also derive (4.18) (with ‖η0‖2 replaced by

‖(Δu0 − u3
0 + κu0)−‖2). Then, (4.21) also follows immediately from (4.18) as in Section 4.

5.4 Proof of (ii)

We next prove (ii). Take an approximate sequence (u0,n) satisfying

u0,n ∈ Dr, u0,n → u0 strongly in H1
0 (Ω) ∩ L4(Ω). (5.20)

Since u0,n fulfils (5.7), the solution un of (P) with u0 replaced by u0,n and the section

ηn ∈ ∂I[0,∞)(∂tun) as in (3.1) satisfy all energy inequalities that have been justified in the

proof of (iii). Here, we mainly use (4.1)–(4.3) and (4.13) and note by (5.2) and (5.20) that

E(u0,n) → E(u0), ‖ηn(t)‖2
2 � ‖

(
Δu0,n − u3

0,n + κu0,n

)
− ‖2

2 � r for a.e. t > 0.

Hence, by a priori estimates (4.1)–(4.3) and (4.13) for un, one can obtain, up to a (not

relabelled) subsequence n→ ∞,

un → u weakly in W 1,2(0, T ;H),

weakly star in L∞(0, T ;H1
0 (Ω) ∩ L4(Ω)),

strongly in C([0, T ];H),

−Δun + u3
n → −Δu+ u3 weakly in L2(0, T ;H),

ηn → η weakly star in L∞(0, T ;H),
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which also implies u(t) ∈ D(∂ψ) for a.e. t ∈ (0, T ) and ut + η − Δu + u3 = κu a.e. in

Ω × (0, T ). Moreover, as in the proof of (5.9), one finds that∫ T

0

E(un(t)) dt→
∫ T

0

E(u(t)) dt.

We next identify the limit η. We see that∫ T

0

(ηn, ∂tun) dt = −
∫ T

0

‖∂tun‖2
2 − E(un(T )) + E(u0,n),

which implies

lim sup
n→∞

∫ T

0

(ηn, ∂tun) dt � −
∫ T

0

‖ut‖2
2 − E(u(T )) + E(u0) =

∫ T

0

(η, ut) dt.

Hence, by Minty’s trick, we conclude that ut � 0 and η ∈ ∂I[0,∞)(ut) a.e. in Ω×(0, T ). Since

the function t �→ u(t) is weakly continuous on [0, T ] with values in H1
0 (Ω)∩L4(Ω) (see [44])

and the function t �→ φ(u(t)) is (absolutely) continuous on [0, T ] (by ut ∈ L2(0, T ;H) and

−Δu+ u3 ∈ L2(0, T ;H)), we also assure by the uniform convexity of H1
0 (Ω) ∩ L4(Ω) that

u ∈ C([0, T ];H1
0 (Ω) ∩ L4(Ω)).

Concerning energy inequalities, (4.1)–(4.3) are (rigorously) derived as in Section 4.

Moreover, (5.1) is proved as in the proof of (iii). Hence, (4.7)–(4.14) can be also rigorously

derived with ‖η0‖2
2 replaced by r. Moreover, combining (4.18) with (4.13) for un, one can

verify

t1/2∂tun → t1/2ut weakly in L2(0, T ;H1
0 (Ω)),

t1/2∂t(|un|un) → t1/2∂t(|u|u) weakly in L2(0, T ;L2(Ω)),

t1/2Δun → t1/2Δu weakly star in L∞(0, T ;L2(Ω)),

t1/2u3
n → t1/2u3 weakly star in L∞(0, T ;L2(Ω)),

which also yields (4.18)–(4.21). Thus, (ii) has been proved.

5.5 Proof of (i)

Finally, let us prove (i). To this end, take u0,n satisfying

u0,n ∈ Dr, u0,n → u0 strongly in L2(Ω). (5.21)

The solution un of (P) with u0 replaced by u0,n and the section ηn of ∂I[0,∞)(∂tun) satisfy

all the energy inequalities that are justified in (iii). Here, we mainly use (5.2), (4.7)–(4.9),

(4.14) and (4.19) (with ‖η0‖2 replaced by ‖(Δu0,n − u3
0,n + κu0,n)−‖2) for un along with the

fact that

‖ηn(t)‖2
2 � ‖

(
Δu0,n − u3

0,n + κu0,n

)
− ‖2

2 � r for a.e. t > 0.
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Moreover, (4.9) yields∫ t

0

τ‖∂τun‖2
2 dτ+ tE(un(t)) �

C1

2
t
(
1 + ‖η0‖4/3

2

)
+

1

4
‖u0,n‖2

2,

which implies

E(un(t)) �
C1

2

(
1 + r2/3

)
+

1

4t
‖u0,n‖2

2 for any t > 0. (5.22)

Due to the lack of the convergence E(u0,n) → E(u0), we need an extra argument. One can

obtain the following estimate for solutions u of (P) in the dual space V ∗ = H−1(Ω) +

L4/3(Ω) of V = H1
0 (Ω) ∩ L4(Ω):∫ T

0

‖ut‖4/3
V∗ dt � C

∫ T

0

(
‖η‖4/3

2 + ‖Δu‖4/3
V∗ + ‖u3‖4/3

V∗ + ‖u‖4/3
2

)
dt

� C

∫ T

0

(
‖η‖2

2 + ‖∇u‖2
2 + ‖u‖4

L4(Ω) + ‖u‖2
2 + 1

)
dt.

By Aubin–Lions–Simon’s compactness lemma along with the compact embeddings V ↪→
L2(Ω) ≡ (L2(Ω))∗ ↪→ V ∗, it follows that

un → u weakly star in L∞(0, T ;L2(Ω)),

weakly in W 1,4/3(0, T ;V ∗) ∩ L2(0, T ;H1
0 (Ω)) ∩ L4(0, T ;L4(Ω)),

strongly in L2(0, T ;L2(Ω)) ∩ C([0, T ];V ∗),

ηn → η weakly star in L∞(0, T ;L2(Ω)).

Moreover, u ∈ Cw([0, T ];L2(Ω)) and u(0) = u0. Let δ ∈ (0, T ) be arbitrarily fixed. Then,

it follows from (4.9), (4.14) and (4.19) for un that

un → u strongly in C([δ, T ];L2(Ω)),

t1/2∂tun → t1/2ut weakly in L2(0, T ;L2(Ω)),

t1/2un → t1/2u weakly star in L∞(0, T ;H1
0 (Ω)),

t1/4un → t1/4u weakly in L∞(0, T ;L4(Ω)),

t
(
−Δun + u3

n

)
→ t

(
−Δu+ u3

)
weakly star in L∞(0, T ;L2(Ω)),

and hence, ut + η − Δu + u3 = κu a.e. in Ω × (0, T ). Here, we used the demi-closedness

of maximal monotone operators to identify the limit. Moreover, from the arbitrariness

of δ > 0, we see that u ∈ C((0, T ];L2(Ω)). We claim that u(t) → u0 strongly in L2(Ω) as

t → 0+, which also implies u ∈ C([0, T ];L2(Ω)). Indeed, since u(t) → u0 weakly in L2(Ω)

as t→ 0+, by (4.8) and (5.21),

‖u0‖2 � lim inf
t→0+

‖u(t)‖2 � lim sup
t→0+

‖u(t)‖2 � ‖u0‖2,

which concludes that u(t) → u0 strongly in L2(Ω) as t → 0+. Thus, we obtain u ∈
C([0, T ];L2(Ω)).
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Now, it remains to identify the limit η of ηn ∈ ∂I[0,∞)(∂tun). To this end, let ε ∈ (0, T )

be a constant, and observe that

lim sup
n→∞

∫ T

ε

(ηn, ∂tun) dt
(1.6)

� − lim inf
n→∞

∫ T

ε

‖∂tun‖2
2 dt− lim inf

n→∞
E(un(T ))

+ lim sup
n→∞

E(un(ε)).

By Aubin–Lions–Simon’s compactness lemma along with the compact embedding H2(Ω)∩
L6(Ω) ↪→ H1(Ω) ∩ L4(Ω), for any δ > 0, we see that

un → u strongly in C([δ, T ];H1
0 (Ω) ∩ L4(Ω)),

which particularly implies

un(t) → u(t) strongly in H1
0 (Ω) ∩ L4(Ω)

for t ∈ (0,∞). Therefore, for any ε > 0, we conclude that

E(un(ε)) → E(u(ε)).

Here, we also remark that due to (5.22), E(u(ε)) is estimated by

E(u(ε)) �
C1

2

(
1 + r2/3

)
+

1

4ε
‖u0‖2

2 for any ε > 0.

It follows that

lim sup
n→∞

∫ T

ε

(ηn, ∂tun) dt � −
∫ T

ε

‖∂tu‖2
2 dt− E(u(T )) + E(u(ε))

=

∫ T

ε

(η, ut) dt,

and therefore, due to Minty’s trick (see [20]), we conclude that η ∈ ∂I[0,∞)(ut) a.e. in

Ω × (ε, T ) (see Section 5.4). Since one can also take ε > 0 arbitrarily close to zero, the

desired conclusion is obtained. As for the energy inequalities, the idea of derivation is

basically same as the proof of (ii). This completes the proof of Theorem 5.1.

6 Reformulation of (P) as an obstacle problem

In this section we shall verify that (1.6) is equivalently rewritten as a parabolic variational

inequality of obstacle type. Such a reformulation will not only shed light on a characteristic

behavior of solutions but also play an important role to reveal the long-time behavior of

each solution (see Section 10). Moreover, it will be also employed to discuss the uniqueness

of solutions and a comparison principle for (P) (see Section 7) as well as to investigate

Lyapunov stability of equilibria in a forthcoming paper (see [2]).

Our result of this section is stated in the following:
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Theorem 6.1 (Reformulation of (P) as an obstacle problem) For u0 ∈ Dr
L2

, the Cauchy–

Dirichlet problem (P) admits a solution u = u(x, t) which also solves

ut + ∂I[u0(x),∞)(u) − Δu+ u3 − κu � 0 in Ω × (0,∞), (6.1)

u = 0 on ∂Ω × (0,∞), (6.2)

u = u0 in Ω, (6.3)

where ∂I[u0(x),∞) is the sub-differential operator of the indicator function I[u0(x),∞) over

[u0(x),∞). Hence, the section η of ∂I[0,∞)(ut) as in (3.1) also belongs to ∂I[u0(x),∞)(u) for

a.e. in Ω × (0,∞). Such a solution to (P) is uniquely determined by the initial datum u0.

Furthermore, (P) is equivalently rewritten as (6.1)–(6.3), provided that the solution of (P) is

unique.

Remark 6.2

(i) In this paper, it is not proved that all solutions to (P) solve (6.1)–(6.3), unless solu-

tions to (P) are uniquely determined by initial data. Since Theorem 6.1 will be proved

through the approximation (4.25) of (1.6), the equivalence of two problems will be en-

sured only for the solutions constructed by the approximation as in Section 4 (see also

Section 5).

(ii) The theorem stated previously also provides a selection principle for (P). Indeed, for

u0 ∈ Dr
L2

, the uniqueness of solutions is not generally ensured. However, according to

Theorem 6.1, (P) always possesses one and only one solution which also solves (6.1)–

(6.3). Moreover, as discussed in Section 5, selected solutions fulfil energy inequalities

derived in Section 4. Such a selection principle will be used to consider the DS generated

by (P) and to prove the convergence of solutions as t→ +∞.

(iii) It is noteworthy that the fully non-linear problem (1.2) is now converted to a semi-

linear obstacle problem (6.1). However, such a semi-linear problem still involves another

difficulty, since the obstacle function u0 is supposed to lie on the L2 closure of Dr and the

problem is posed on the L2 (i.e., strong) framework. On the other hand, it is also known

(see [28]) that uniformly elliptic fully non-linear equations of the form f(D2u) = 0 can

be reduced to a quasi-linear one, provided that f is smooth enough (e.g., of class C3,α).

However, it is not applicable to (1.2), for the corresponding f is not so smooth and not

uniformly elliptic.

Remark 6.3 (Parabolic obstacle problem) Problem (6.1)–(6.3) can be equivalently rewritten

as follows:

u � u0, ut − Δu+ u3 − κu � 0 in Ω × (0,∞),

(u− u0)
(
ut − Δu+ u3 − κu

)
= 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = u0,

which is an obstacle problem of parabolic type and where the initial datum u0 also plays a

role of the obstacle function from below (see [23,43]). One may no longer expect classical
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regularity of solutions to (P). Indeed, let us consider a simpler elliptic obstacle problem, e.g.,

−Δφ(x) � f(x), φ(x) � g(x), (−Δφ(x) − f(x)) (φ(x) − g(x)) = 0 in Ω

along with the homogeneous Dirichlet condition. It is well known that the optimal regularity

of solution is C1,1(Ω) (unless the contact set is non-empty), even though the obstacle function

g is sufficiently smooth (e.g., g ∈ C∞(Ω)) (see [22]).

Proof Let us recall again the approximate problems (5.8) whose solutions are sufficiently

smooth in time. Throughout this proof, let ((0, T ),Mt, μt), (Ω,Mx, μx) and (Q,Mx,t, μx,t)

be the measure spaces of Lebesgue measures with respect to t, x and (x, t), respectively.

Moreover, for any A ∈ Mx,t, we write

Ax := {t ∈ (0, T ) : (x, t) ∈ Q} for each x ∈ Ω,
At := {x ∈ Ω : (x, t) ∈ Q} for each t ∈ (0, T ).

Then, Ax ∈ Mt for μx-a.e. x ∈ Ω and At ∈ Mx and for μt-a.e. t ∈ (0, T ), by Fubini–Tonelli’s

lemma.

Let uλ be the solution of (5.8) for u0 ∈ D(∂ψ) = H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω) and let ηλ

be the section of ∂I[0,∞)(∂tuλ). We recall that uλ ∈ C1,1([0, T ];L2(Ω)) and ηλ, ∂ψλ(uλ) ∈
C0,1([0, T ];L2(Ω)). Hence, ηλ and ∂ψλ(uλ) are differentiable μt-a.e. in (0, T ) with values in

L2(Ω). Moreover, (by taking a continuous representation of ηλ) it holds that

uλ(t) = uλ(s) +

∫ t

s

∂τuλ(τ) dτ, ηλ(t) = ηλ(s) +

∫ t

s

∂τηλ(τ) dτ in L2(Ω)

for any t, s ∈ [0, T ]. Moreover, recall that uλ and ηλ satisfy (5.8) in L2(Ω) for all t ∈ [0, T ].

Since both sides of (5.8) are differentiable μt-a.e. in (0, T ), for any r ∈ (1, 2) and

ζ ∈ Lq(Ω), ζ � 0 with q ∈ (1,∞) satisfying 1/q + r/2 = 1, one observes that

∫
Ω

ζ(x)|ηλ(x, t)|r dx �

∫
Ω

ζ(x)|ηλ(x, s)|r dx if t � s (6.4)

for all t, s ∈ [0, T ]. Indeed, let ζ ∈ C∞
0 (Ω) be such that ζ � 0 in Ω and test (5.14) by ζηλ.

Then, we find that

d

dt
I[0,∞)(∂tuλ) +

1

2

d

dt

∫
Ω

ζη2
λ dx+

(
d

dt
∂ψλ(uλ), ζηλ

)
= κ

∫
Ω

∂tuληλζ dx.

Here, we notice that ζηλ also belongs to ∂I[0,∞)(∂tuλ) by ζ � 0 and ηλ ∈ ∂I[0,∞)(∂tuλ), and

therefore, by (ii) of Lemma 5.4

(
d

dt
∂ψλ(uλ), ζηλ

)
� 0.
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Then, integrate both sides over (s, t) and employ the facts that ∂tuληλ = 0 and I[0,∞)(∂tuλ) =

0 a.e. in Ω × (0,∞) to obtain∫
Ω

ζη2
λ(t) dx �

∫
Ω

ζη2
λ(s) dx for t � s � 0.

Likewise, noting |ηλ|r−2ηλ ∈ ∂I[0,∞)(∂tuλ) for any r ∈ (1,∞), one can also obtain∫
Ω

ζ|ηλ(t)|r dx �

∫
Ω

ζ|ηλ(s)|r dx for t � s � 0 and 1 < r <∞ (6.5)

for any ζ ∈ C∞
0 (Ω) satisfying ζ � 0. In particular, let r > 1 be less than 2 and let

q ∈ (1,∞) and ζ ∈ Lq(Ω) be such that ζ � 0 and 1/q + r/2 = 1. Then, one can take

ζn ∈ C∞
0 (Ω) such that ζn � 0 and ζn → ζ strongly in Lq(Ω). Moreover, passing to the limit

in (6.5) with 1 < r < 2 and ζ replaced by ζn as n→ ∞, we deduce that∫
Ω

ζ|ηλ(t)|r dx �

∫
Ω

ζ|ηλ(s)|r dx for t � s � 0 and 1 < r < 2

for any ζ ∈ Lq(Ω), ζ � 0, 1/q + r/2 = 1. Thus, (6.4) is proved.

By (6.4), we assure that |ηλ(x, t)| is non-increasing in t for a.e. x ∈ Ω. Indeed, suppose

on the contrary that |ηλ(x, t)| > |ηλ(x, s)| for all x ∈ Ω0 and for some t > s and Ω0 ⊂ Ω

satisfying |Ω0| > 0. Substitute ζ = χΩ0
, which is the characteristics function over Ω0, into

(6.4) to obtain ∫
Ω0

|ηλ(t)|r dx �

∫
Ω0

|ηλ(s)|r dx.

However, this fact contradicts the assumption. Hence, |ηλ(x, ·)| is non-increasing in

time for a.e. x ∈ Ω, and furthermore, ηλ(x, ·) is non-decreasing by ηλ � 0. Since

ηλ ∈ C0,1([0, T ];L2(Ω)), one can verify that ∂tηλ(t) � 0 μx-a.e. in Ω for μt-a.e. t ∈ (0, T ).

For each t ∈ (0, T ), define the set Ωt ∈ Mx of x ∈ Ω satisfying

(i) uλ and ηλ satisfy (5.8) at (x, t),

(ii) uλ, ηλ and ∂ψλ(uλ) are partially differentiable in t at (x, t),

(iii) the following identities hold at (x, t):

uλ(x, t) = uλ(x, 0) +

∫ t

0

∂τuλ(x, τ) dτ,

ηλ(x, t) = ηλ(x, 0) +

∫ t

0

∂τηλ(x, τ) dτ,

(iv) ∂tηλ(x, t) � 0 at (x, t).

Then, μx(Ω \Ωt) = 0 for μt-a.e. t ∈ (0, T ). Define the set Q1 ∈ Mx,t of (x, t) ∈ Q satisfying

(i)–(iv). Then noting that Ωt = (Q1)t, we find by Fubini–Tonelli’s lemma that Q1 has full

measure, that is, μx,t(Q \ Q1) = 0.

Now, set

Ω1 := {x ∈ Ω : μt((0, T ) \ (Q1)x) = 0} .
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First, we claim that Ω1 ∈ Mx. Indeed, by Fubini–Tonelli’s lemma, we see that (Q1)x ∈ Mt

for μx-a.e. x ∈ Ω, and moreover, the function x �→ μt((Q1)x) is Mx-measurable. Since the

function

x �→ μt((0, T ) \ (Q1)x) = T − μt((Q1)x)

is also Mx-measurable, the level set Ω1 of the Mx-measurable function also belongs to

Mx.

Next, we claim that μx(Ω \ Ω1) = 0. Indeed, note that

N1 := {(x, t) ∈ Q : x ∈ Ω \ Ω1, t ∈ (0, T ) \ (Q1)x} ⊂ Q \ Q1,

N2 := {(x, t) ∈ Q : x ∈ Ω1, t ∈ (0, T ) \ (Q1)x} ⊂ Q \ Q1.

Since the measure space (Q,Mx,t, μx,t) is complete, the sets N1 and N2 also belong to Mx,t.

In particular, we obtain μx,t(N1) = μx,t(N2) = 0. By Fubini–Tonelli’s lemma,∫
Ω\Ω1

μt((0, T ) \ (Q1)x) dx = μx,t(N1) = 0,

which implies μx(Ω \ Ω1) = 0 by μt((0, T ) \ (Q1)x) > 0 for a.e. x ∈ Ω \ Ω1.

Furthermore, the set

Q2 := {(x, t) ∈ Q : x ∈ Ω1, t ∈ (Q1)x} = (Ω1 × (0, T )) \N2

is Mx,t-measurable and has full measure, that is, μx,t(Q \ Q2) = 0; indeed, applying

Fubini–Tonelli’s lemma and combining all the facts obtained so far, we conclude that

0 � μx,t(Q \ Q2) � μx,t(N2) + μx(Ω \ Ω1)T = 0.

Moreover, Q2 is a subset of Q1. Now, we are ready to prove Theorem 6.1. Let (x0, t0) ∈ Q2

be fixed. In case uλ(x0, t0) = u0(x0), by ∂I[u0(x),∞)(uλ(x0, t0)) = (−∞, 0], the relation

∂tuλ + ∂I[u0(x),∞)(uλ) + ∂ψλ(uλ) − κuλ � 0 (6.6)

holds true at (x0, t0). In case uλ(x0, t0) > u0(x0) (then, ∂I[u0(x0),∞)(uλ(x0, t0)) = {0}), since

(x0, t0), (x0, t) ∈ Q1 for μt-a.e. t ∈ (0, T ), there exists t1 ∈ (0, t0) ∩ (Q1)x0
such that

∂tuλ(x0, t1) > 0, which implies ηλ(x0, t1) = 0. Moreover, it follows that

0 � ηλ(x0, t0) =

∫ t0

t1

∂τηλ(x0, τ) dτ+ ηλ(x0, t1)

=

∫
(t1 ,t0)∩(Q1)x0

∂τηλ(x0, τ) dτ+ ηλ(x0, t1) � 0,

which implies ηλ(x0, t0) = 0. Thus, (6.6) is satisfied at (x0, t0). In particular, the section ηλ
of ∂I[0,∞)(∂tuλ) also belongs to the set ∂I[u0(x0),∞)(uλ) for μx,t-a.e. in Q.

Recalling the convergence as λ→ 0 of solutions uλ for (5.8) obtained in Section 5, one

can deduce that

ηλ → η ∈ ∂I[u0(x),∞)(u) weakly star in L∞(0, T ;L2(Ω))
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by the demi-closedness of maximal monotone operators. Hence, the limit u of uλ also

solves (6.1)–(6.3).

We next consider the case that u0 ∈ Dr
L2

. Then, let us take u0,n ∈ Dr such that

u0,n → u0 strongly in L2(Ω). (6.7)

Let un be the solution of (P) with the initial data u0,n such that un also solves (6.1)–(6.3)

with u0 replaced by u0,n. In particular, the section ηn of ∂I[0,∞)(∂tun) as in (3.1) also belongs

to the set ∂I[u0,n(x),∞)(un). On the other hand, by (6.7), it holds that I[u0,n(x),∞) → I[u0(x),∞) on

L2(Ω) in the sense of Mosco (see Lemma 6.4 and [9]). Therefore, from the convergence

of un obtained in Section 5.4, we deduce that the limit η of ηn fulfils

η ∈ ∂I[u0(x),∞)(u) for a.e. t ∈ (0, T ).

Lemma 6.4 Let u0,n, u0 ∈ L2(Ω) be such that u0,n → u0 strongly in L2(Ω). Then, I[u0,n(x),∞) →
I[u0(x),∞) on L2(Ω) in the sense of Mosco.

Proof Existence of recovery sequences: For each w ∈ D(I[u0(x),∞)), define a recovery se-

quence wn := w − u0 + u0,n ∈ L2(Ω). Then, wn � u0,n, which gives wn ∈ D(I[u0,n(x),∞)).

Moreover, wn → w strongly in L2(Ω) by assumption.

Weak lim inf convergence: Let wn, w ∈ L2(Ω) be such that wn → w weakly in L2(Ω). We

shall check that

lim inf
n→∞

I[u0,n(x),∞)(wn) � I[u0(x),∞)(w).

In case lim infn→∞ I[u0,n(x),∞)(wn) = ∞, the assertion follows immediately. In case

lim infn→∞ I[u0,n(x),∞)(wn) < ∞, up to a (not relabelled) subsequence, I[u0,n(x),∞)(wn) is

bounded. Hence, wn � u0,n a.e. in Ω. For each z ∈ C∞
0 (Ω) satisfying z � 0, it follows that

∫
Ω

wnz dx �

∫
Ω

u0,nz dx.

Letting n→ ∞ and using the arbitrariness of z, we conclude that w � u0 a.e. in Ω. Thus,

I[u0(x),∞)(w) = 0, and hence, the assertion follows. Consequently, I[u0,n(x),∞) → I[u0(x),∞) on

L2(Ω) in the sense of Mosco. �

One can prove in a standard way that the solution of (6.1)–(6.3) is uniquely determined

by the initial datum u0 (cf. Theorem 7.2). Hence, it turns out that (P) and (6.1)–(6.3) are

equivalent to each other, provided that the solution to (P) is unique. This completes the

proof of Theorem 6.1. �

We close this section by giving a proof for the energy inequalities (4.5), (4.6), (4.15) and

(4.17), which have not yet been rigorously proved.
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Corollary 6.5 If u = u(x, t) also solves (P) as well as the obstacle problem (6.1)–(6.3) (see

Theorem 6.1), then (4.6), (4.15) and (4.17) hold. In addition, if u0 ∈ H2(Ω)∩H1
0 (Ω)∩L6(Ω),

then (4.5) is also satisfied with ‖v0‖2
2 replaced by ‖(Δu0 − u3

0 + κu0)+‖2
2.

Proof Let u = u(x, t) be a solution to (P) which also solves (6.1)–(6.3). By Theorem 6.1,

it is uniquely determined by u0 (and actually exists). Therefore, by the proofs of (i)–(iii)

of Theorem 5.1, u(x, t) satisfies the energy inequalities which have already been verified in

Section 5.1–5.5 and is obtained as a limit of unique solutions uλ to (5.8) as λ→ 0.

Energy Inequality (4.6) By (5.11), for each s ∈ [0, T ) at which η(s) satisfies (1.6), we

can construct a solution to (P) with the initial datum u(s) and deduce by (5.2) and the

uniqueness of solutions that

‖η(t)‖2
2 � ‖η(s)‖2

2 for a.e. t ∈ (s, T ). (6.8)

We remark that the set of t ∈ (s, T ) at which (6.8) is satisfied may depend on the choice

of s. We further claim that

‖η(t)‖2
2 � ‖η(s)‖2

2 for a.e. (s, t) ∈ {(σ, τ) ∈ [0, T ]2 : σ � τ} (6.9)

(hereafter, we also simply write (4.6) instead of (6.9)). Indeed, the subset I = {(σ, τ) ∈
[0, T ]2 : σ � τ, ‖η(τ)‖2 > ‖η(σ)‖2} is (Lebesgue) measurable due to the measurability of

t �→ ‖η(t)‖2. Hence, since Iσ := {τ ∈ [σ, T ] : (σ, τ) ∈ I} has Lebesgue measure zero for

a.e. σ ∈ (0, T ), so is I by Fubin–Tonelli’s lemma. Thus, (6.9) follows.

Energy Inequalities (4.15) and (4.17) Similarly, we can also prove by uniqueness that∫ t

s

(
‖∇uτ‖2

2 +
3

4

∥∥∂τ
(
|u|u

)∥∥2

2

)
dτ

+
1

2
‖∂ψ(u(t)) − κu(t)‖2

2 + κE(u(t)) �
1

2
‖∂ψ(u(s)) − κu(s)‖2

2 + κE(u(s))

for a.e. 0 < s < t < T .

In particular, the function t �→ (1/2) ‖∂ψ(u(t)) − κu(t)‖2
2 + κE(u(t)) is non-increasing, and

hence, it is differentiable a.e. in (0, T ). Dividing both sides by t− s and taking a limit as

s↗ t, we obtain (4.15). Furthermore, (4.17) also follows in a similar way.

Energy Inequality 2 Here, we suppose that u0 satisfies (5.7). Multiplying (5.14) by vλ, we

have
1

2

d

dt
‖vλ‖2

2 +

∫
Ω

(∂tηλ)vλ dx+

(
d

dt
∂ψλ(uλ), vλ

)
= κ‖vλ‖2

2.

Here, we remark that ∫
Ω

(∂tηλ)vλ dx =
d

dt
I∗[0,∞)(ηλ) = 0

by vλ ∈ ∂I∗[0,∞)(ηλ). Therefore, we find by (5.16) that

1

2
∂t‖vλ‖2

2 + ‖∇(Jλuλ)t‖2
2 +

3

4

∥∥∂t
(
|Jλuλ|Jλuλ

)∥∥2

2
dx � κ‖vλ‖2

2.
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To apply the convergence obtained so far (e.g., (5.18) and (5.19)) and employ the weak

lower semi-continuity of norms,

1

2

d

dt

(
e−2κt‖vλ‖2

2

)
+ e−2κt‖∇(Jλuλ)t‖2

2 � 0.

Integrate both sides over (s, t), pass to the limit as λ→ 0, divide both sides of the resulting

inequality by t− s and take the limit as s↗ t. Then, one can obtain

1

2

d

dt

(
e−2κt‖ut‖2

2

)
+ e−2κt‖∇ut‖2

2 � 0 for a.e. 0 < t < T ,

which implies (4.5). Thus, all energy inequalities (for u0 satisfying (5.7)) obtained in Section

4 along with (iii) of Theorem 3.2 have been rigorously reproduced. This completes the

proof. �

7 Comparison principle

This section is devoted to proving a comparison principle for the obstacle problem (6.1)

as well as the strongly irreversible Allen–Cahn equation (1.2) (or equivalently, (1.6)). Let

us begin with the definition of L2 sub- and super-solutions of (6.1) (and (1.6)).

Definition 7.1 Let T ∈ (0,∞) be fixed. A function u ∈ C([0, T ];L2(Ω)) is said to be an L2

sub-solution (or sub-L2-solution) of (6.1) on QT = Ω × (0, T ), if the following conditions

are all satisfied :

(i) u belongs to the same class as in (i) of Definition 3.1,

(ii) there exists η ∈ L∞(0, T ;L2(Ω)) such that

ut + η − Δu+ u3 − κu � 0, η ∈ ∂I[u0(x),∞)(u) for a.e. (x, t) ∈ Ω × (0, T ). (7.1)

A function u ∈ C([0, T ];L2(Ω)) is said to be an L2 super-solution (super-L2-solution)

of (6.1) on QT = Ω × (0, T ), if (i) and (ii) are satisfied with the inverse inequality of

(7.1). Furthermore, a sub- and a super-L2-solution of (1.6) are also defined by replacing the

inclusion of (7.1) with η ∈ ∂I[0,∞)(ut).

Our result reads,

Theorem 7.2 (Comparison principle for (6.1)) Let u and v be a sub- and a super-L2-

solution for (6.1) with the obstacle function replaced by u0 = u(0) and v0 = v(0), respectively,

in QT = Ω × (0, T ) for some T > 0. Suppose that u � v a.e. on the parabolic boundary

∂pQT = (Ω × {0}) ∪ (∂Ω × [0, T )). Then, it holds that

u � v a.e. in QT .

In particular, the solution of (6.1)–(6.3) is unique.
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Proof By subtracting inequalities (see (7.1)) and by setting w := u− v, we see that

wt − Δw + u3 − v3 � κw + ν − μ in QT ,

where μ and ν are sections of ∂I[u0(x),∞)(u) and ∂I[v0(x),∞)(v), respectively. Test both sides

by w+. Then, we have:

1

2

d

dt
‖w+‖2

2 � κ‖w+‖2
2 +

∫
Ω

(ν − μ)w+ dx for a.e. 0 < t < T .

Here, we observe by ν � 0 and μ ∈ ∂I[u0(x),∞)(u) that∫
Ω

(ν − μ)w+ dx =

∫
Ω

νw+ dx−
∫
Ω

μw+ dx

� −
∫
{u=u0}∩{u�v}

μw dx.

Due to the fact that v � v0 � u0 a.e. in Ω, one of the following (i) and (ii) holds: (i) the set

{u = u0} ∩ {u � v} has Lebesgue measure zero; (ii) w = 0 for a.e. x ∈ {u = u0} ∩ {u � v}.
Hence, it follows that ∫

{u=u0}∩{u�v}
μw dx = 0.

Combining all these facts, we deduce that∫
Ω

(ν − μ)w+ dx � 0.

Therefore, one obtains

1

2

d

dt
‖w+‖2

2 � κ‖w+‖2
2 for a.e. 0 < t < T ,

and hence, applying Gronwall’s inequality, we conclude that w+ ≡ 0 a.e. in QT , which

completes the proof. �

Now, we exhibit a range-preserving property of solutions to (P) in the following:

Corollary 7.3 Let u be the unique solution of (P) such that u also solves (6.1)–(6.3) (see

Theorem 6.1). Assume u0 ∈ L∞(Ω). Then, it holds that

u0(x) � u(x, t) � max
{√

κ, ‖u0‖L∞(Ω)

}
a.e. in Ω × (0,∞),

and hence u ∈ L∞(Ω × (0,∞)).

Proof Due to the non-decrease of u(x, t), it follows immediately that

u0(x) � u(x, t) a.e. in Ω × (0,∞).
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On the other hand, by assumption, u is also a solution of (6.1). Moreover, the constant

function U(x, t) ≡ max
{√

κ, ‖u0‖L∞(Ω)

}
�

√
κ turns out to be a super-solution of (6.1),

and furthermore, one can observe that

u(x, t) � U(x, t) a.e. on ∂pQT for any T > 0.

Thus, by Theorem 7.2, we deduce that u(x, t) � max
{√

κ, ‖u0‖L∞(Ω)

}
a.e. in QT for any

T > 0. �

As for (1.2) (or equivalently (1.6)), we shall exhibit two comparison principles under

different additional assumptions. The following theorem provides a comparison principle

for classical solutions of (1.2):

Theorem 7.4 (Comparison principle for classical solutions to (1.2)) Let u and v be a sub-

and a super-C2,1-solution for (1.2) in QT = Ω×(0, T ) for some T > 0, respectively. Suppose,

that u � v a.e. on the parabolic boundary ∂pQT = Ω×{0}∪∂Ω× [0, T ). Then, it holds that

u � v a.e. in QT .

Proof Let u and v be a sub- and a super-solution for (P), respectively. Then, it holds that

∂t(u− v) �
(
Δu− u3 + κu

)
+
−

(
Δv − v3 + κv

)
+

�
(
Δw − u3 + v3 + κw

)
+
,

where we set w := u − v. Let α > 0 be fixed so that r �→ κr+ − αr is strictly decreasing

(e.g., α > κ). Subtracting αw from both sides, one has

wt − αw �
(
Δw − u3 + v3 + κw

)
+
− αw.

Multiply both sides by e−αt and set z := e−αtw. It then follows that

zt �
(
Δz − e−αt(u3 − v3) + κz

)
+
− αz.

We claim that

z � 0 in Q := Ω × (0, T ],

which also implies

u � v in Q.

Indeed, assume on the contrary that

z(x0, t0) > 0

at some (x0, t0) ∈ Q. Then

sup
(x,t)∈Q

z(x, t) > 0,
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where the supremum is achieved by some (x1, t1) ∈ Ω×(0, T ]. Then by Taylor’s expansion,

zt � 0, ∇z = 0, Δz � 0 at (x1, t1).

Hence

0 � zt �
(
Δz − e−αt(u3 − v3) + κz

)
+
− αz � κz+ − αz < 0 at (x1, t1).

This yields a contradiction. Thus z � 0 on Q. �

One can also prove a comparison principle for strictly increasing L2-sub-solutions for

(1.6).

Proposition 7.5 Let u be an L2-sub-solution of (1.6) in QT satisfying ut > 0 and let v be

an L2-super-solution of (1.6) in QT . Suppose that u � v a.e. on ∂pQT . Then, it holds that

u � v a.e. in QT .

Proof By assumption, we find that ∂I[0,∞)(ut) = {0}, and therefore, (1.6) holds with η ≡ 0.

Subtract inequalities to see that

wt − ν − Δw + u3 − v3 � κw in QT ,

where w := u− v and ν is a section of ∂I[0,∞)(vt). The multiplication of the both sides and

w+ yields

d

dt
‖w+‖2

2 −
∫
Ω

νw+ dx+ ‖∇w+‖2
2 � κ‖w+‖2

2.

Here, recall that ν � 0, and therefore, by Gronwall’s inequality, we conclude that w+ ≡ 0,

that is, u � v in QT . �

8 Phase set, semi-group and compact absorbing set

The following two sections are devoted to constructing a global attractor of the DS

generated by (P) as well as (6.1)–(6.3). We emphasize again that due to the strong

irreversibility, global attractor does not exist in any Lp-spaces. So, we need a customized

setting to extract energy-dissipation structures of the equation and to construct a global

attractor. We start with setting up a (non-linear) phase set and a metric on it.

Let r > 0 be arbitrarily fixed and set a phase set D = Dr (see Section 3 for the definition

of Dr). Thanks to Theorem 3.2, we see that D is invariant under the evolution of solutions

to (P). Furthermore, let us define a metric d(·, ·) over the set D by

d(u, v) := ‖u− v‖H1
0 (Ω) + ‖u− v‖L4(Ω) for u, v ∈ D.

Moreover, denote by St : D → D the semi-group associated with (P) and (6.1)–(6.3), that

is,

Stu0 := u(t) for t � 0, u0 ∈ D,
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where u is the (unique) solution of (P) which also solves (6.1)–(6.3) and whose initial

datum is u0. By Theorems 3.2 and 6.1, one can assure that St is a continuous semi-group.

We next set a subset of D by

B0 :=
{
u ∈ D : ‖Δu− u3 + κu‖2

2 � cr + 1, φ(u) � Cr + 1
}

with cr = 2κM0 + r + Cr and Cr := Cr/(2κ) (see (4.11) and (4.21)). Then, the partial

energy-dissipation estimates (4.11) and (4.21) immediately ensure the following:

Lemma 8.1 The set B0 is D-absorbing, that is, for any bounded subsets B of (D, d), one

can take τB � 0 such that StB ⊂ B0 for all t � τB .

We next prove the compactness of B0 in (D, d).

Lemma 8.2 The set B0 is compact in (D, d).

Proof To prove this lemma, let us define a functional C : L2(Ω) → [0,∞) by

C(f) :=

∫
Ω

(
f(x)

)2

− dx for f ∈ L2(Ω).

We then observe that C(·) is (strongly) continuous in L2(Ω) and convex. Hence, C(·) is

also weakly lower semi-continuous in L2(Ω) by the convexity.

Let (un) be a sequence in B0. Then, obviously, (un) is bounded in H1
0 (Ω) ∩ L4(Ω), and

moreover,

‖ − Δun + u3
n‖2 �

√
cr + 1 + κ‖un‖2 � C.

Noting that

‖ − Δv‖2
2 + ‖v3‖2

2 � ‖ − Δv + v3‖2
2 for all v ∈ H2(Ω) ∩ L6(Ω),

we deduce that (un) is bounded in H2(Ω) ∩ L6(Ω). Then,

un → u weakly in H2(Ω) ∩ L6(Ω)

for some u ∈ H2(Ω) ∩ L6(Ω). Moreover, by the compact embedding H2(Ω) ∩ L6(Ω) ↪→
H1

0 (Ω) ∩ L4(Ω), one can take a subsequence of (n) without relabelling such that

un → u in (D, d), that is, strongly in H1
0 (Ω) ∩ L4(Ω),

which also yields

Δun → Δu strongly in H−1(Ω) and weakly in L2(Ω),

u3
n → u3 strongly in Lq(Ω) and weakly in L2(Ω), 1 � q < 2.

Hence, we see that

Δun − u3
n + κun → Δu− u3 + κu weakly in L2(Ω).
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Since C(·) is weakly lower semi-continuous in L2(Ω) and un ∈ D, it follows that

C(Δu− u3 + κu) � lim inf
n→∞

C(Δun − u3
n + κun) � r,

which implies u ∈ D. Moreover, the weak lower semi-continuity of ‖ · ‖2 and φ leads us

to obtain u ∈ B0. �

Remark 8.3 (Set up of the phase set)

(i) The phase space D assigned here is non-linear and non-convex (cf. see also Proposition

9.5). Furthermore, we stress that D is unbounded. The metric d is chosen such that B0

becomes compact in (D, d).

(ii) One may replace the phase set D by its closure in H1
0 (Ω) ∩ L4(Ω). Then, the compact-

ness of B0 follows in a simpler way; indeed, it suffices to prove the pre-compactness

of B0 in (D, d). However, we address ourselves to the phase set D instead of its

closure.

9 Construction of a (D, d)-global attractor

In this section, we shall construct a global attractor defined in the following sense for the

DS generated by (P) on the phase set (D, d):

Definition 9.1 ((D, d)-global attractor) A subset U of D is called a (D, d)-global attractor

associated with the DS (St, (D, d)) if the following conditions hold true:

(i) U is compact in (D, d);

(ii) U satisfies an attraction property in (D, d), that is, let B ⊂ D be a d-bounded subset

of D (i.e., the diameter diam(B) := sup{d(u, v) : u, v ∈ B} is finite). Then, for any

neighbourhood O of U in (D, d), there exists τO � 0, such that StB ⊂ O for all t � τO;

(iii) U is strictly invariant, that is, for any t � 0, it holds that St U = U .

Our result reads,

Theorem 9.2 (Existence of (D, d)-global attractor) The DS (St, (D, d)) admits the (D, d)-

global attractor U , which is given by

U :=
⋂
τ�τ0

Fτ, Fτ :=
⋃
t�τ

StB0, (9.1)

where τ0 is a positive constant and Fτ stands for the closure of Fτ in (D, d). Moreover, U
is the maximal bounded strictly invariant set, and therefore, the (D, d)-global attractor is

unique.

Proof For the convenience of the reader and self-containment, we give a proof specific

to our setting instead of checking conditions and applying a ready-made theorem, for the

argument below is not lengthy (e.g., in [42], one may find a general theory in a metric
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setting). The following argument is essentially based on a standard theory (see [11, Chap.

2, §2] and also [27], where a metric setting is not treated). In what follows, we shall

directly check three conditions (i)–(iii) of Definition 9.1 for the set U given by (9.1).

Compactness in (D, d). Here, we note that Fτ ⊂ B0 for any τ � t0 and some t0 � 0. Hence,

Fτ is compact in (D, d) and included in B0. Therefore, U is included in B0 and compact in

(D, d).

Attraction property in (D, d). To prove this, let B ⊂ D be a d-bounded set and suppose on

the contrary that there exist a neighbourhood O0 of U in (D, d) and a sequence tn → ∞
such that StnB ∩ (D \ O0) �= ∅. Let us take yn ∈ StnB ∩ (D \ O0). Since B0 is D-absorbing,

one can take τB � 0 such that StB ⊂ B0 for all t � τB . Hence, for n � 1 satisfying

tn � τB , one observes that yn ∈ StnB ⊂ B0. Therefore, up to a subsequence, yn converges

to an element y of B0 in (D, d). Moreover, let n0 ∈ � be such that Stn0B ⊂ B0. Then,

since yn ∈ Stn−tn0 ◦ Stn0B ⊂ Stn−tn0B0 ⊂ Ftn−tn0 for all n � 1, the limit y belongs to U (see

Lemma 9.3). On the other hand, by yn ∈ D \ O0, the limit y never belongs to U . This is a

contradiction. Therefore, U enjoys the attraction property in (D, d).

Lemma 9.3 Let (Xn) be a sequence of closed subsets of a metric space (D, d). Let yn ∈ Xn

be such that yn → y in (D, d). In addition, suppose that Xn ⊂ Xm if n � m. Then, it holds

that

y ∈
⋂
k∈�

Xk.

Proof Let k ∈ � be arbitrarily fixed. For any n � k, we recall yn ∈ Xn ⊂ Xk . Hence,

the closedness of Xk implies y ∈ Xk . From the arbitrariness of k, we conclude that

y ∈ ∩k∈�Xk . �

Strict invariance. We claim that St U ⊂ U . Let y ∈ St U . Then, there exists u ∈ U such that

y = Stu. Moreover, u belongs to Fτ for any τ � τ0. Hence, in particular, by a diagonal

argument, one can take a sequence un ∈ Fn such that un → u in (D, d). Indeed, for each

m ∈ �, since u belongs to Fm, one can take a sequence (u(m)
n )n∈� in Fm such that u(m)

n → u in

(D, d) as n→ ∞. Now let un := u(n)
n ∈ Fn and observe that un → u in (D, d). Furthermore,

there exist sequences tn � n and bn ∈ B0 such that un = Stnbn. Here, one can suppose that

tn is increasing without any loss of generality. Thus, one can write

y = Stu = St( lim
n→∞

un) = lim
n→∞

Stun = lim
n→∞

St ◦ Stnbn = lim
n→∞

St+tnbn.

Here, we used the continuity of St in (D, d), which follows from the continuous dependence

of solutions for (1.6)–(1.8) on initial data (see Theorem 3.2), to verify the third equality.

Noting that bn ∈ B0, we deduce that St+tnbn ∈ Ft+tn . Therefore, y belongs to U (see Lemma

9.3), which also implies the relation St U ⊂ U . We next show U ⊂ St U . Let y ∈ U be fixed.

Then, y belongs to Fτ for all τ � τ0. Hence, one can particularly take a sequence tn ↗ ∞
and bn ∈ B0 such that y = limn→∞ Stnbn. Note that

y = lim
n→∞

Stnbn = lim
n→∞

St ◦ Stn−tbn = St

(
lim
n→∞

Stn−tbn
)
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for each t > 0. Here, we used the continuity of St again and further noticed that

Stn−tbn ∈ Stn−tB0 ⊂ B0

for n � 1, since B0 is D-absorbing, and therefore, the compactness of B0 implies that
Stn−tbn converges to an element u1 ∈ B0 in (D, d), up to a subsequence, as n→ ∞. Recall

that Stn−tbn ∈ Ftn−t for n� 1 to obtain

u1 = lim
n→∞

Stn−tbn ∈ U

(see also Lemma 9.3). Thus, y belongs to St U . Consequently, we conclude that St U = U .
Finally, let us prove the maximality of U among bounded strictly invariant sets. Indeed,

let V be a bounded strictly invariant set in (D, d). Then, since V is a bounded set in (D, d),

one can take τ � 0 such that St V ⊂ B0 for all t � τ. From (9.1) along with the strict

invariance of V , it follows that V ⊂ U . Thus, U is maximal. �

Not surprisingly, we observe that

Proposition 9.4 Let r > 0 and let ψ ∈ Dr be a solution of the inclusion,

∂I[0,∞)(0) − Δψ + ψ3 − κψ � 0 in L2(Ω) (9.2)

(hence, ψ is a super-solution to the elliptic Allen–Cahn equation (3.2)).Then, ψ belongs to
the global attractor U constructed in Theorem 9.2 under the phase set D = Dr .

Proof We note that (9.2) corresponds to a stationary equation for (P). More precisely,

u(x, t) ≡ ψ(x) is a solution for (P) with u0 = ψ. Hence, ψ must belong to the absorbing

set B0 (see Lemma 8.1). Therefore, by means of (9.1) along with the fact Sτψ = ψ, one

can conclude that ψ ∈ U . �

The connectedness of the global attractor U (with D = Dr) is not proved due to the

peculiar setting of the phase set Dr . However, we can prove it by assigning the following

set D+
r to the phase set D instead of Dr:

D+
r :=

{
u ∈ Dr : u � 0 a.e. in Ω

}
.

Here, we remark that D+
r is still non-compact in H1

0 (Ω) and unbounded in H2(Ω) (cf. see

(i) of Remark 3.4). Then, the preceding argument still runs as previously mentioned.

Indeed, the non-negativity of initial data is inherited to solutions of (P).

Proposition 9.5 It holds that

(i) D+
r is convex,

(ii) U is connected if D = D+
r .
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Proof We first prove (i). Let u, v ∈ D+
r and θ ∈ (0, 1) and set uθ := (1−θ)u+θv. Note that

Δuθ + κuθ − u3
θ = (1 − θ) [Δu+ κu] + θ [Δv + κv] − ((1 − θ)u+ θv)3

� (1 − θ)
[
Δu− u3 + κu

]
+ θ

[
Δv − v3 + κv

]
by the convexity of the cubic function x3 on [0,∞). Hence, the decrease as well as the

convexity of the function x �→ (x)2− lead us to observe that

(
Δuθ − u3

θ + κuθ
)2

− �
(
(1 − θ)

[
Δu− u3 + κu

]
+ θ

[
Δv − v3 + κv

])2

−

� (1 − θ)
(
Δu− u3 + κu

)2

− + θ
(
Δv − v3 + κv

)2

− .

Thus, integrating both sides over Ω and recalling the fact that u, v ∈ D+
r , we obtain

C(Δuθ − u3
θ + κuθ) � r,

which implies uθ ∈ D+
r . Therefore, D+

r is convex.

We next prove (ii). In the proof of Lemma 8.2, we have shown that B0 is bounded in

H2(Ω) ∩ L6(Ω). Hence, one can take R > 0 such that

B0 ⊂ B1 :=
{
u ∈ D : ‖u‖H2(Ω) + ‖u‖L6(Ω) � R

}
.

Then, since D = D+
r is convex, so is B1, and hence, B1 is connected in (X, d). Moreover, we

can verify that B1 is compact in (D, d). Furthermore, by Lemma 8.1, we can take t0 > 0

such that StB1 ⊂ B0 for all t � t0. Hence, StB1 ⊂ B0 ⊂ B1 for all t � t0, and therefore, it

holds that

U =
⋂
τ�τ0

Eτ, Eτ :=
⋃
t�τ

StB1.

Moreover, due to the continuity of St in (D, d), the set StB1 is also connected for each

t � 0. Furthermore, since the family {StB1}t�0 has a non-empty intersection (indeed, every

stationary point in B1 (e.g., 0 ∈ B1) belongs to the intersection), the union Eτ = ∪t�τStB1

is connected as well. Therefore, the closure Eτ is also connected. Finally, Lemma 9.6

ensures the connectedness of U = ∩τ�τ0Eτ, since Eτ is included in the compact set B1 for

τ � t0. �

Lemma 9.6 (see e.g. [30, p.437]) Let X be a compact Hausdorff space. Let P be a family

of non-empty, closed and connected subsets of X such that either A ⊂ B or B ⊂ A holds

true for any A,B ∈ P . Then, the intersection

⋂
P :=

⋂
A∈P

A

is also connected.

https://doi.org/10.1017/S0956792518000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792518000384


Allen–Cahn equation with strong irreversibility 751

10 Convergence to equilibria

We finally discuss the convergence of each solution u = u(x, t) for (P) as t goes to

∞. We shall prove the ω-limit set is non-empty and a singleton. Moreover, the limit is

characterized as a solution of an elliptic variational inequality of obstacle type.

Theorem 10.1 Let u0 ∈ Dr
L2

with an arbitrary r > 0 and let u be the solution of (P) as

well as (6.1)–(6.3) (see Theorem 6.1). Then, it holds that

u(t) → φ strongly in H1
0 (Ω) ∩ L4(Ω),

weakly in H2(Ω) ∩ L6(Ω) as t→ ∞

for some φ ∈ H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω). Hence, the ω-limit set ω(u) of u is non-empty and a

singleton. Moreover, the limit φ is a solution of the following elliptic variational inequality

of obstacle type:

∂I[u0(x),∞)(φ) − Δφ+ φ3 � κφ in L2(Ω), φ ∈ H1
0 (Ω), (10.1)

which is rewritten as

φ � u0, −Δφ+ φ3 − κφ � 0 in Ω,

(φ− u0)
(
−Δφ+ φ3 − κφ

)
= 0 in Ω,

φ|∂Ω = 0.

Proof Even though the uniqueness of solutions to (P) is not guaranteed, the solution of

(P) as well as of (6.1)–(6.3) is unique (see Theorem 6.1). Hence, all energy inequalities are

valid (see Section 5). By (4.2), there is a sequence τn ∈ [n, n+ 1] such that

ut(τn) → 0 strongly in L2(Ω).

Furthermore, since u(t) is bounded in H1
0 (Ω) ∩ L4(Ω) for t � 0, up to a (not relabelled)

subsequence, there exists φ ∈ H1
0 (Ω) ∩ L4(Ω) such that

u(τn) → φ weakly in H1
0 (Ω) ∩ L4(Ω) and strongly in L2(Ω).

We also further derive from (4.6) (with s and ‖η(s)‖2
2 replaced by 0 and r, respectively)

and Corollary 4.1 (hence (u(τn)) is bounded in H2(Ω) ∩ L6(Ω)) that

η(τn) → η∞ weakly in L2(Ω),

−Δu(τn) + u(τn)
3 → −Δφ+ φ3 weakly in L2(Ω),

u(τn) → φ weakly in H2(Ω) ∩ L6(Ω),

which along with the demi-closedness of ∂I[0,∞) gives η∞ ∈ ∂I[0,∞)(0). It also particularly

implies

u(τn) → φ strongly in H1
0 (Ω) ∩ L4(Ω).
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Therefore, we assure that

η∞ − Δφ+ φ3 − κφ = 0, η∞ ∈ ∂I[0,∞)(0), (10.2)

which is a necessary condition for (10.1).

Thus, φ is an element of the ω-limit set ω(u) of u. Furthermore, from the non-decrease

of t �→ u(x, t) for a.e. x ∈ Ω, we conclude that

u(x, t) ↗ φ(x) for a.e. x ∈ Ω as t→ ∞.

Hence, ω(u) = {φ}.
Now, recall that u also solves (6.1)–(6.3) and η belongs to ∂I[u0(x),∞)(u). By the demi-

closedness of ∂I[u0(x),∞) in L2(Ω)×L2(Ω), we conclude that η∞ is a section of ∂I[u0(x),∞)(φ)

a.e. in Ω. Thus, φ turns out to be a solution of (10.1). This completes the proof. �

Remark 10.2

(i) To prove that the ω-limit set is a singleton, �Lojasiewicz-Simon type inequalities are often

used. However, it seems difficult to apply them to (P), since (1.6) is not a gradient flow

but a generalized one, which can be written in the form,

ut + ∂I[0,∞)(ut) � −E′(u),

where E′ stands for a functional derivative of E (i.e., Fréchet derivative). On the other

hand, this point was proved more easily since solutions of (P) are non-decreasing in

time.

(ii) As for the parabolic obstacle problem (6.1)–(6.3), it also seems difficult to apply a

�Lojasiewicz–Simon type inequality due to the presence of the non-smooth potential

I[u0(x),∞); however, by reducing the obstacle problem to (P), one can prove that the

ω-limit set of each solution for the obstacle problem is a singleton and consists of a

single solution to (10.1).

In Theorem 10.1, the rate of convergence is not estimated. Under a suitable assumption

on initial data, by employing (4.5), one can verify an exponential convergence of u(t) as

t→ ∞.

Corollary 10.3 In addition to the same assumptions as in Theorem 10.1, suppose that

u0 � 0 and λΩ(3u2
0) > κ. (10.3)

Set σ := λΩ(3u2
0) − κ > 0 and C = ‖(Δu0 − u3

0 + κu0)+‖2. Then, it holds that

‖u(t) − φ‖2 �
C

σ
e−σt for all t � 0.

Proof By Theorem 10.1, it is already known that u(t) converges to some equilibrium φ

strongly in H1
0 (Ω) ∩ L4(Ω) as t → ∞. Moreover, setting σ := λΩ(3u2

0) − κ > 0 and letting
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s0 > 0, we observe that

‖u(t) − u(s)‖2 �

∫ t

s

‖∂τu(τ)‖2 dτ

(4.5)

� C

∫ t

s

e−στ dτ �
C

σ

(
e−σs − e−σt

)
for s0 � s � t <∞

for some constant C � 0. Letting t→ ∞, we deduce that

‖φ− u(s)‖2 �
C

σ
e−σs for all s � s0.

This completes the proof. �

Remark 10.4 (On assumption (10.3)) Note that λΩ(3u2
0) > μ(Ω) > 0 by u0 � 0, where μ(Ω)

stands for the first eigenvalue of the Dirichlet Laplacian −Δ posed in Ω. Hence, the second

inequality of (10.3) holds true if μ(Ω) � κ (e.g., the diameter of Ω is small enough). On

the other hand, even if μ(Ω) < κ, the second condition of (10.3) is also satisfied under an

appropriate assumption on the initial datum u0, for instance,

3u2
0 � Uλ a.e. in Ω,

where Uλ = Uλ(x) is the (unique) positive solution of the elliptic equation for any λ > κ,

−ΔUλ +U2
λ = λUλ, Uλ > 0 in Ω, Uλ = 0 on ∂Ω. (10.4)

Indeed, for each λ > κ (hence, λ > μ(Ω)), (10.4) admits the unique positive solution Uλ ∈
C2(Ω) ∩C(Ω) such that 0 < Uλ � λ in Ω, and moreover, (λ,Uλ) turns out to be a principal

eigenpair of the Schrödinger operator v �→ −Δv + Uλv. Hence, if 3u2
0 � Uλ a.e. in Ω, then,

λΩ(3u2
0) � λΩ(Uλ) = λ > κ.
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