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ABSTRACT

An interesting class of stochastic claims reserving methods is given by the mod-
els with conditionally independent loss increments (CILI), where the incremen-
tal losses are conditionally independent given a risk parameter �i, j depending
on both the accident year i and the development year j . The Bühlmann–Straub
credibility reserving (BSCR) model is a particular case of a CILI model where
the risk parameter is only depending on i . We consider CILI models with addi-
tive diagonal risk (ADR), where the risk parameter is given by the sum of two
components, one depending on the accident year i and the other depending
on the calendar year t = i + j . The model can be viewed as an extension of
the BSCR model including random diagonal effects, which are often declared
to be important in loss reserving but rarely are specifically modeled. We show
that the ADR model is tractable in closed form, providing credibility formulae
for the reserve and the mean square error of prediction (MSEP). We also de-
rive unbiased estimators for the variance parameters which extend the classical
Bühlmann–Straub estimators. The results are illustrated by a numerical example
and the estimators are tested by simulation.We find that the inclusion of random
diagonal effects can be significant for the reserve estimates and, especially, for
the evaluation of theMSEP. The paper is written with the purpose of illustrating
the role of stochastic diagonal effects. To isolate these effects, we assume that the
development pattern is given. In particular, ourMSEP values do not include the
uncertainty due to the estimation of the development pattern.

KEYWORDS
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1. INTRODUCTION

1.1. The claims reserving problem

In the standard setup for claims reserving, we have the rectangle of incremental
claims Xi, j where i = 0, 1, . . . , I is the index of the accident year (AY) and
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j = 0, 1, . . . , J is the index of the development year (DY). The index t = i+ j =
0, 1, . . . , I + J denotes the calendar year (CY). We assume that all claims are
settled after DY J where J ≤ I.

Let us consider the sets

DI = {Xi, j ; i + j ≤ I, j ≤ J}, Dc
I = {Xi, j ; i + j > I, i ≤ I, j ≤ J}.

At time I the random variables Xi j ∈ DI are observed and the random variables
Xi j ∈ Dc

I — the outstanding claims — must be predicted. Denoting by X̂i, j , the
prediction of Xi, j ∈ Dc

I we then have the reserve estimates

R̂i =
J∑

j=I−i+1

X̂i, j : reserve estimate for accident year i = I − J + 1, . . . , I,

R̂=
I∑

i=I−J+1

R̂i : total reserve estimate.

Such predictions— including a measure of precision— can only be made based
on a model for the random variables {Xi, j ; 0 ≤ i ≤ I, 0 ≤ j ≤ J}.

1.2. Conditionally independent loss increments (CILI) models

1.2.1. A class of CILI models. We consider a class of claims reserving models
characterized by the following essential hypothesis:

• The incremental losses Xi, j (0 ≤ i ≤ I, 0 ≤ j ≤ J) are generated by a two
level stochastic mechanism

Xi, j = wi, j �i, j + √
wi, j σ εi, j , (1)

where
– the randomvariable�i, j is a risk parameter intrinsic to Xi, j ; it describes the

risk characteristics of the “cell” (i, j), i.e. of development year j belonging
to accident year i .

– the random variable εi, j is an observation error not characteristic of the
cell (i, j), i.e. it is pure noise.

– the observation errors εi, j are independent. Moreover ε-variables are in-
dependent of �-variables.

– the deterministic weights wi, j > 0 are chosen in such a way that:

E(�i, j ) = μ0, Var(�i, j ) = σ 2
�,

E(εi, j ) = 0, Var(εi, j ) = 1. (2)
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By the independence of the observation errors, the loss increments Xi, j of
accident year i are conditionally independent, given the �-variables; hence we
say that (1) provides a class of “CILI models”.

The existence of weights satisfying (2) is not automatic. In particular, (1) and
(2) imply

E
[
Var(Xi, j |�i, j )

] = σ 2

μ0
E
[
E(Xi, j |�i, j )

]
,

which can be interpreted as a “conditionally overdispersed Poisson” assumption
(provided σ 2 ≥ μ0).

The deterministic weights wi, j = E(Xi, j )/μ0 are used to model deterministic
effects.

i. The most common form is

wi, j = ai γ j , 0 ≤ i ≤ I, 0 ≤ j ≤ J,

with the interpretation
• ai > 0: a priori estimate for expected ultimate loss E

(∑J
j=0 Xi, j

)
,

• γ j > 0: development quota
(∑J

j=0 γ j = 1
)
,

• μ0 is called the correction factor.
Forμ0 = 1, this factorization is the basic idea of the Bornhuetter–Ferguson
reservingmethod (Bornhuetter and Ferguson, 1972). Forμ0 estimated from
the data it is the basis of the Cape Cod reserving method (Bühlmann, 1983).

ii. Another form is

wi, j = ai δi+ j γ j , 0 ≤ i ≤ I, 0 ≤ j ≤ J,

with ai and γ j as under (i) but with an additional factor δt = δi+ j for a
deterministic diagonal effect in calendar year t = i + j . This approach is
found in Jessen and Rietdorf (2011).

In this paper, we focus on the probabilistic structure of �i, j (0 ≤ i ≤ I, 0 ≤
j ≤ J) variables which represent the stochastic effects of the reserving model.
We therefore work with the most simple form of the wi, j -weights, wi, j = ai γ j ,
and assume both the a priori values (ai )i=0,...,I and the development quotas
(γ j ) j=0,...,J as given quantities.

Remark. The CILI-class characterized here is not the most general one.We con-
sider models where the conditioning random variables �i, j are risk parame-
ters having the same distribution (or at least the same first two moments). In
the credibility-based additive loss reserving model introduced in Wüthrich and
Merz (2012), for example, we have, similarly as in (1),

Xi, j = ai � j + √
ai σ(� j ) εi, j .
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In this model, the random variables (� j ) j=0,...,J are also independent but do no
longer have the same distribution. This is also evident by their interpretation as
normalized random cashflows.

1.2.2. The �-structure.
The non-informative case. The case of a CILI model where �i, j (0 ≤ i ≤ I, 0 ≤
j ≤ J) are independent (in addition to having identical first and second mo-
ments) is called non-informative. Looking at (1), we see that not only the ε-
variables but also the �-variables can be understood as pure noise in this case.
This means that the parameters σ 2 and σ 2

� become stochastically indistinguish-
able.

For Xi, j ∈ Dc
I , we may still predict

X̂i, j = μ̂0 wi, j where μ̂0 =
∑

(i, j)∈DI
di, j

Xi, j
wi, j∑

(i, j)∈DI
di, j

,

for some weights di, j > 0. But for

msepXi, j (μ̂0 wi, j ) = Var(Xi, j ) + w2
i, j Var(μ̂0),

we are stuck, since for the evaluation of the above right-hand side we need
the variance components. We see that it is the dependence structure of the �-
variables that allows us to predict Xi, j ∈ Dc

I and also to make statements about
the prediction error.

Two important cases of dependence in the �-structure. Two basic informative
cases are specified as follows.
Case A. Dependence on accident year only, i.e.

�i, j = ηi , 0 ≤ i ≤ I, 0 ≤ j ≤ J, and {ηi ; 0 ≤ i ≤ I} independent .

Case B. Dependence on accident year as well as calendar year, i.e.

�i, j = ηi + ζi+ j , 0 ≤ i ≤ I, 0 ≤ j ≤ J, and

{ηi , ζt; 0 ≤ i ≤ I, 0 ≤ t ≤ I + J} independent . (3)

Since in (3) the risk parameter is additively separated into an accident year
parameter and a calendar year (diagonal) parameter, we call Case B “CILI
model with additive diagonal risk (ADR)”. Of course Case A, which is a CILI
model without diagonal risk, is contained in the ADR model.

2. THE CILI MODEL WITH ADDITIVE DIAGONAL RISK

Summarizing all the previous considerations, theADRCILImodel can be char-
acterized as follows.
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Model assumptions

A1. Let Θ := {ηi , ζi+ j ; 0 ≤ i ≤ I, 0 ≤ j ≤ J}. There exist positive parameters
a0, . . . , aI , γ0, . . . , γJ , and σ 2, with

∑J
j=0 γ j = 1, such that for 0 ≤ i ≤ I and

0 ≤ j ≤ J
E(Xi j |Θ) = ai γ j (ηi + ζi+ j ), (4)

and
Var(Xi j |Θ) = ai γ j σ 2 . (5)

A2. All η, ζ variables are independent, with

E(ηi ) = μ0, Var(ηi ) = τ 2, 0 ≤ i ≤ I,
E(ζi+ j ) = 0, Var(ζi+ j ) = χ2, 0 ≤ i ≤ I, 0 ≤ j ≤ J .

Assumption A1 can be written in the time series format:
A1bis . For 0 ≤ i ≤ I and 0 ≤ j ≤ J

Xi j = ai γ j (ηi + ζi+ j ) + √
ai γ j σ εi, j , (6)

where all η, ζ, ε variables are independent, with E(εi j ) = 0, Var(εi j ) = 1.

As usual, we interpret ai as the a priori estimate of ultimate loss of accident
year i and γ j as the development quota of development year j . Moreover we
call:

ηi : random effect of accident year i ,
ζi+ j : random effect of calendar year t = i + j (sometimes also random
diagonal effect).

Here the priors (ai )i=0,...,I and the development quotas (γ j ) j=0,...,J are as-
sumed to be given. The parameters μ0, σ

2, τ 2, χ2 must be estimated from the
data.

Remarks

• If in the previous assumptions we set χ2 = 0, the ADR model reduces to
the BSCR model, which is an application to claims reserving of the classical
Bühlmann–Straub credibility model, see Bühlmann and Gisler (2005). The
BSCR model is treated in Section 4.5 of Wüthrich and Merz (2008).

• If we set χ2 = τ 2 = 0, the ADR model reduces to the standard model for
the additive loss reserving method (see Schmidt (2006), Wüthrich and Merz
(2008) Section 8.3). Obviously in this case, the loss increments Xi, j are uncon-
ditionally independent.

• Using a full Bayesian approach, ADR models are also treated in Shi et al.
(2012), Wüthrich (2012) and Wüthrich (2013). Contrary to their approach,
our way of proceeding is based on empirical linear Bayesian (credibility)
methodology.
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• We are interested in analyzing the effects of the introduction of the diagonal
risk component separately from the effects of other sources of uncertainty,
as e.g. the development pattern uncertainty. Therefore, we always assume in
this paper that the development quotas γ j are externally given. This allows
for an evaluation of the reserve estimates and their prediction error in closed
form. This would no longer be possible (see Saluz et al. (2014)) if one simul-
taneously also had to estimate the development quotas γ j .

• Since E(ζi+ j ) ≡ 0, we assume that there is no trend in calendar year effects.
Therefore, in principle, the model should be applied after any calendar year
trend (e.g. economic inflation) has been removed from the data.

The innovative aspect of the ADR model is the inclusion of the calendar year
effect in the random variable �i,t which takes the form

�i,t = ηi + ζt for the calendar year t = i + j,

thus separating it additively from the (random) accident year effect. Our as-
sumptions imply the following correlation structure for the risk parameters

Cov(�i t, �ks)

Var(�i t)
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if i = k, t = s,
τ 2

τ 2+χ2 if i = k, t �= s,
χ2

τ 2+χ2 if i �= k, t = s,

0 if i �= k, t �= s .

Hence, in the ADR model the correlation within the same accident year i is
induced by ηi and is proportional to τ 2; the correlation within the same calendar
year t is induced by ζt and is proportional to χ2. It will be convenient to specify
covariance properties using the indicator function

Ii,k =
{
1 if i = k,
0 if i �= k .

With this notation, the covariance structure for the risk parameters is given by

Cov(�i t, �ks) = τ 2
Ii,k + χ2

It,s, 0 ≤ i, k ≤ I, 0 ≤ t, s ≤ I + J . (7)

We want

i. to show that the ADR model is still tractable by techniques stemming from
credibility theory and how stochastic diagonal effects can be incorporated.

ii. to find out whether the inclusion of stochastic diagonal effects substantially
changes the estimates of the reserves and its MSEP.

To this aim it will be useful to consider Case A of dependence, i.e. a CILI model
without random diagonal effects, as a “control model”. In what follows the re-
sults obtained with the ADR model will be compared with the corresponding
results provided by the BSCRmodel, as described inWüthrich andMerz (2008).
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3. PREDICTION

For Xi j ∈ Dc
I , property (4) suggests to consider the predictor

X̂i j = ai γ j (̂ηi + ζ̂i+ j ) .

For all Xi j ∈ Dc
I , there are no observations on the diagonals t = i + j , hence

we pose ζ̂i+ j = E[ζi+ j ] = 0 for i + j > I. Therefore, we consider the predictor

X̂i j = ai γ j η̂i . (8)

Using (8), we have the following predictor for the reserve in accident year i ∈
{I − J + 1, . . . , I}

R̂i =
J∑

j=I−i+1

X̂i j = ai (1 − βI−i ) η̂i ,

where β j :=
∑ j

k=0 γk, j = 0, . . . , J. The corresponding predictor of total re-
serve is then obtained by summing over the open accident years

R̂=
I∑

i=I−J+1

R̂i .

We want to derive estimators for the reserve of single accident years and the
total reserve, as well as estimates of the corresponding prediction error. The
estimators we are looking for are in the class of the credibility estimators.

4. CREDIBILITY ESTIMATORS

4.1. Incremental loss ratios

For the predictor η̂i , we define the incremental loss ratios (0 ≤ i ≤ I, 0 ≤ j ≤ J)

Zi j := Xi j
ai γ j

.

Then, using (6), we have

Zi j = ηi + ζi+ j + σ√
ai γ j

εi j , (9)

which, defining η = {ηi ; 0 ≤ i ≤ I}, implies

E(Zi j |η) = ηi , Var(Zi j |η) = χ2 + σ 2

ai γ j
.
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By (7) we have

Cov(Zi j , Zkl) = τ 2
Ii,k + χ2

Ii+ j,k+l + σ 2

ai γ j
Ii,k I j,l , 0 ≤ i, k ≤ I, 0 ≤ j, l ≤ J.

4.2. Covariance matrix of the observations

We shall denote by Ω the covariance matrix of all Zi, j observed at time I. Let
us introduce the double index (i, j), where i denotes an accident year and j
denotes a development year. We consider the set of double indices (i, j) defined
as

I := {
(i, j) : Xi, j ∈ DI

}
.

The set I has N = J (I− J)+ J (J+1)/2 elements. For any pair of observations
Xi, j , Xk,l ∈ DI , we consider the covariance

ω(i, j),(k,l) := Cov(Zi, j , Zk,l),

then the covariance matrix of the observations is

Ω := (
ω(i, j),(k,l)

)
(i, j),(k,l)∈I .

We also introduce a single index notation by defining an ordering in the ob-
servation set I and denoting by ν = 1, . . . , N the νth pair in the set. Hence,
any observed Zi, j can be also denoted as Zν . To fix ideas, we choose the left-to-
right/top-to-bottom (LR/TB) ordering

ν(i, j) := 1 + j +
i−1∑
k=0

[ι(k) + 1], 0 ≤ i ≤ I, 0 ≤ j ≤ ι(i),

where ι(i) := min(I− i, J). Then the covariance matrix of the observations can
also be denoted as

Ω := (
ων,λ

)
ν,λ=1,...,N ,

where
ων,λ := Cov(Zν, Zλ), 1 ≤ ν, λ ≤ N .

The single index notation allows us to use matrix notation. In order to switch
from the single index to the double index notation, we also define, for ν =
1, . . . , N

ay(ν) = accident year of Zν and dy(ν) = development year of Zν .

Remark. The ordering chosen for the single index notation is irrelevant for the
results below. However, the LR/TB ordering allows for a more intuitive repre-
sentation (see Table 1). Observe that for χ2 = 0, theΩmatrix is block diagonal.
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TABLE 1

STRUCTURE OF THE � MATRIX WITH I = J = 2 (WITH σ 2
� := τ 2 + χ2).

4.3. Best linear inhomogeneous estimators

Let Z := (Z1, . . . , ZN)′. The best linear inhomogeneous (BL) estimator for
ηi , 0 ≤ i ≤ I, is defined as

η̂i = argminη̂i∈L(Z,1) E[(̂ηi − ηi )
2], (10)

where L(Z, 1) is the space of all the linear combination of Z1, . . . , ZN, 1, that is

L(Z, 1) :=
{

η̂i : η̂i = c(i)
0 +

N∑
ν=1

c(i)
ν Zν, c(i)

0 , c(i)
1 , . . . , c(i)

N ∈ R

}
.

This estimator is “global” in the sense that it is based on all the observations at
time I. By Corollary 3.17 in Bühlmann and Gisler (2005), η̂i satisfies (10) if and
only if the following normal equations are satisfied for 0 ≤ i ≤ I

i. E(̂ηi − ηi ) = 0,

i i. Cov(̂ηi , Zν) = Cov(ηi , Zν), ν = 1, . . . , N .
(11)

Note that condition (i) implies that η̂i is unbiased. As shown in Corollary 3.18
in Bühlmann and Gisler (2005), if the covariance matrix is non-singular, then it
follows that

η̂i = μ0 + κ′
i Ω

−1(Z− μ0 1),

with 1 := (1, . . . , 1)′ ∈ R
N and where

κ′
i := (Cov(ηi , Z1), . . . ,Cov(ηi , ZN)) .

The covariances κ have a specific expression in the ADR model. Under our
assumptions, we have

κ′
i = τ 2 δ′

i where δi :=
(
Iay(1),i , . . . , Iay(N),i

)′ ;
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hence, the BL estimator for ηi is given by

η̂i = μ0 + τ 2 δ′
i Ω

−1(Z− μ0 1), 0 ≤ i ≤ I . (12)

Denoting by ω
(−1)
ν,λ , or ω

(−1)
(i, j),(k,l), the generic element of Ω−1, expression (12) can

also be written in double index notation

η̂i = μ0 + τ 2
ι(i)∑
j=0

I∑
k=0

ι(k)∑
l=0

ω
(−1)
(i, j),(k,l) (Zk,l − μ0), 0 ≤ i ≤ I .

Observe that the c(i)
ν coefficients can also be represented in double index nota-

tion as c(i)
k,l , with k = ay(ν) and l = dy(ν).

By these results, the following fundamental theorem is immediately ob-
tained.

Theorem 4.1 (Best linear inhomogeneous estimator). The best linear inhomoge-
neous estimator for ηi , 0 ≤ i ≤ I, is given by

η̂i = μ0 (1 − αi ) + αi
¯̄Zi , (13)

where

αi :=
I∑

k=0

ι(k)∑
l=0

c(i)
k,l = τ 2

I∑
k=0

ι(k)∑
l=0

ι(i)∑
j=0

ω
(−1)
(i, j),(k,l), (14)

and

¯̄Zi :=
I∑

k=0

ι(l)∑
l=0

ck,l(i)
αi

Zk,l = τ 2

αi

I∑
k=0

ι(k)∑
l=0

ι(i)∑
j=0

ω
(−1)
(i, j),(k,l) Zk,l . (15)

Proof. Let c(i)
0 , c(i)

1 , . . . , c(i)
N be the coefficients satisfying (10); that is

η̂i = c(i)
0 +

N∑
ν=1

c(i)
ν Zν, 0 ≤ i ≤ I . (16)

By condition (i) and (ii) of normal Equations (11), one finds (see proof of Corol-
lary 3.18 in Bühlmann and Gisler (2005)) that c(i)

0 can also be expressed as

c(i)
0 = μ0 − κ′

i Ω
−1μ0 1 = μ0(1 − τ 2δ′

i Ω
−11) ;

therefore we also have, for 0 ≤ i ≤ I

(
c(i)
1 , . . . , c(i)

N

) = τ 2δ′
i Ω

−1 and c(i)
0 = μ0

(
1 −

N∑
ν=1

c(i)
ν

)
.
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We then obtain

η̂i = μ0

(
1 −

N∑
ν=1

c(i)
ν

)
+

N∑
ν=0

c(i)
ν Zν, 0 ≤ i ≤ I,

which gives (13) posing αi = ∑N
ν=1 c

(i)
ν . The c(i)

ν coefficient has the explicit form

c(i)
ν = τ 2

ι(i)∑
j=0

ω
(−1)
(i, j),(ay(ν),dy(ν))

, 0 ≤ i ≤ I, 1 ≤ ν ≤ N, (17)

or, using double index notation,

c(i)
k,l = τ 2

ι(i)∑
j=0

ω
(−1)
(i, j),(k,l), 0 ≤ i, k ≤ I, 0 ≤ l ≤ ι(k).

By Theorem 4.1, the BL estimator for ηi is the weighted average, with credibility
weights αi , of μ0 and the average incremental loss ratio ¯̄Zi . Observe that in the
ADR model the average ¯̄Zi is taken over the entire trapezoid DI .

Remarks

• By expression (17), the c(i)
ν coefficient is obtained by the matrix Ω−1, under

the LR/TB ordering, by computing the νth column sum on the band corre-
sponding to accident year i . The coefficient αi is obtained by summing all
these column sums.

• For χ2 = 0, one has c(i)
ν = 0 if ay(ν) �= i , since Ω−1 is block diagonal.

Therefore αi ,
¯̄Zi and η̂i are based only on the observations of accident year

i . It can be shown that the version of Theorem 4.1 obtained in the case
χ2 = 0 provides all the main results of the classical credibility theory. This
is illustrated in Appendix A.

The following lemma provides the covariance structure of the BL estimators.

Lemma 4.2. The covariance of the BL estimators is given by

Cov(̂ηi , η̂k) = τ 2
I∑

p=0

ι(p)∑
l=0

c(i)
p,l Ip,k = (

τ 2)2 ι(i)∑
j=0

ι(k)∑
l=0

ω
(−1)
(i, j),(k,l), 0 ≤ i, k ≤ I .

(18)
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320 H. BÜHLMANN AND F. MORICONI

Proof. From (16)

Cov(̂ηi , η̂k) = Cov

(
η̂i ,

(
c(k)
0 +

N∑
ν=1

c(k)
ν Zν

))

=
N∑

ν=1

c(k)
ν Cov (̂ηi , Zν)

=
N∑

ν=1

c(k)
ν Cov (ηi , Zν) ,

where the last equality holds by condition (ii) of the normal equations. Then,
we have

Cov(̂ηi , η̂k) = τ 2
N∑

ν=1

c(k)
ν Iay(ν),i = τ 2

N∑
ν=1

c(i)
ν Iay(ν),k, 0 ≤ i, k ≤ I .

The variance of the BL estimators is given by

Var(̂ηi ) = (
τ 2)2 ι(i)∑

j=0

ι(i)∑
l=0

ω
(−1)
(i, j),(i,l), 0 ≤ i ≤ I . (19)

Since by Theorem 4.1 η̂i = αi (
¯̄Zi − μ0) + μ0, the covariance of the average

incremental loss ratios is given by

Cov( ¯̄Zi ,
¯̄Zk) = 1

αi αk
Cov(̂ηi , η̂k), 0 ≤ i, k ≤ I .

For i = k

Var( ¯̄Zi ) = 1

α2
i

Var(̂ηi ), 0 ≤ i ≤ I .

Remark . For χ2 = 0, since Ω−1 is block diagonal, Cov(̂ηi , η̂k) = 0 for i �= k.
In this case

αi = τ 2
ι(i)∑
j=0

ι(i)∑
l=0

ω
(−1)
(i, j),(i,l),

hence, Var(̂ηi ) = τ 2 αi and Var( ¯̄Zi ) = τ 2/αi .

In the following lemma, we provide cross-products of losses of BL estimators.
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Lemma 4.3. For 0 ≤ i, k ≤ I, the cross-product of losses of the BL estimators is
given by

E [(̂ηi − ηi )(̂ηk − ηk)] =
{

τ 2 − Var(̂ηi ), i = k,

− Cov(̂ηi , η̂k), i �= k .
(20)

Proof. For 0 ≤ i, k ≤ I one has

E [(̂ηi − ηi )(̂ηk − ηk)] = E [(̂ηi − μ0)(̂ηk − μ0)]

− E [(̂ηi − μ0)(ηk − μ0)] − E [(̂ηk − μ0)(ηi − μ0)]

+ E [(ηi − μ0)(ηk − μ0)]

= Cov(̂ηi , η̂k) + Cov(ηi , ηk)

− E [(̂ηi − μ0)(ηk − μ0)] − E [(̂ηk − μ0)(ηi − μ0)] .

We have

E [(̂ηi − μ0)(ηk − μ0)] = E [(̂ηi ηk)] − μ2
0

= μ0 c
(i)
0 +

N∑
ν=1

c(i)
ν E(Zν ηk) − μ2

0

= μ0 c
(i)
0 +

N∑
ν=1

c(i)
ν (μ2

0 + τ 2
Iay(ν),k) − μ2

0

= μ2
0

(
1 −

N∑
ν=1

c(i)
ν

)
+ μ2

0

N∑
ν=1

c(i)
ν

+ τ 2
N∑

ν=1

c(i)
ν Iay(ν),k − μ2

0

= τ 2
N∑

ν=1

c(i)
ν Iay(ν),k = Cov(̂ηi , η̂k) .

Hence,

E [(̂ηi − ηi )(̂ηk − ηk)] = Cov(ηi , ηk) − Cov(̂ηi , η̂k) .

Therefore, for i = k we obtain

E
[
(̂ηi − ηi )

2] = τ 2 − Var(̂ηi ) = τ 2

⎛⎝1 − τ 2
ι(i)∑
j=0

ι(k)∑
l=0

ω
(−1)
(i, j),(i,l)

⎞⎠ , (21)
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322 H. BÜHLMANN AND F. MORICONI

and for i �= k

E [(̂ηi − ηi )(̂ηk − ηk)] = −Cov(̂ηi , η̂k) = − (τ 2)2 ι(i)∑
j=0

ι(k)∑
l=0

ω
(−1)
(i, j),(k,l) . (22)

4.4. Best linear homogeneous estimators

Later, we shall also use estimates of ηi with μ0 estimated from the data. This
leads to the definition of homogeneous estimators.

We have defined the inhomogeneous estimator for ηi as the best estimator
in the space L(Z, 1) of all the linear combination of Z1, . . . , ZN, 1. Let us now
define the linear space

Le(Z ) := {
all linear combination of Z1, . . . , ZN, with expectation μ0

}
.

The best linear homogeneous estimator (BLH) for ηi is defined as

η̂hom
i = argminη̂i∈Le(Z ) E[(̂ηi − ηi )

2], 0 ≤ i ≤ I . (23)

The homogeneous estimator is obtained starting from the same linear space
where the inhomogeneous estimator is defined and imposing the additional re-
quirements of homogeneity and unbiasedness. Forcing the constant term in the
inhomogeneous estimator to be zero, together with the unbiasedness condition,
leads to a built-in estimator for μ0. In addition, we have a useful property (The-
orem of Pythagoras) for the quadratic loss of the homogeneous estimator. This
is shown by the following fundamental theorem.

Theorem 4.4 (Best linear homogeneous estimator). The BLH estimator for
ηi , 0 ≤ i ≤ I, is given by

η̂hom
i = αi

¯̄Zi + (1 − αi ) μ̂0 . (24)

where

μ̂0 =
I∑

i=0

αi

α•
¯̄Zi . (25)

Moreover, the quadratic loss of η̂hom
i is given by

E
[(̂

ηhom
i − ηi

)2] = E
[
(̂ηi − ηi )

2]+ E
[(̂

ηhom
i − η̂i

)2]
. (26)

Proof. We use the approach based on Hilbert spaces introduced in
Bühlmann and Gisler (2005), Section 3.2.1. We consider the Hilbert space L2

of the real-valued square integrable random variables and for any closed affine
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space M ⊂ L2, we denote by Pro(X|M) the orthogonal projection of the ran-
dom variable X ∈ L2 on M. Moreover, we denote by ‖X‖ := E(X2) the norm
of X ∈ L2. In terms of Hilbert spaces, condition (10), and then expression (13),
is equivalent to

η̂i = Pro
(
ηi |L(Z, 1)

)
,

and condition (23) is equivalent to

η̂hom
i = Pro

(
ηi
∣∣Le(Z )

)
.

Since Le(Z ) ⊂ L(Z, 1), by the iterativity of projections (see Theorem 3.13 in
Bühlmann and Gisler (2005)), we have

Pro
(
ηi
∣∣Le(Z )

) = Pro
(
Pro

(
ηi
∣∣L(Z, 1)

)∣∣∣Le(Z )
)
, (27)

and∥∥ηi − Pro
(
ηi |Le(Z )

)∥∥2 = ∥∥ηi − Pro
(
ηi |L(Z, 1)

)∥∥2
+ ∥∥Pro(ηi |Le(Z )

)− Pro
(
ηi |L(Z, 1)

)∥∥2 .

(28)

Equation (28), which corresponds to the Theorem of Pythagoras, is equivalent
to (26).

Using the linearity of η̂i , (27) gives

Pro
(
ηi
∣∣Le(Z )

) = αi
¯̄Zi + (1 − αi )Pro

(
μ0
∣∣Le(Z )

)
. (29)

We then need an expression for Pro
(
μ0
∣∣Le(Z )

)
. Let us define the linear space

Le(Z, η)

:= {
all linear combination of Z1, . . . , ZN, η0, . . . , ηI with expectation μ0

}
.

Using Theorem 3.16 in Bühlmann and Gisler (2005), we have

Pro
(
μ0
∣∣Le(Z, η)

) = 1
I + 1

I∑
k=i

ηi := η̄ .

This can be seen as follows. The first orthogonality condition E(η̄, μ0) = 0 in
the theorem is trivially fulfilled. Then, we have to prove that η̄ also satisfies the
second orthogonality condition

E [(η̄ − μ0)(η̄ − η∗)] = 0 for all η∗ ∈ Le(Z, η) .
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For η∗ = ηi , 0 ≤ i ≤ I, one has, by the independence of ηi ,

E [(η̄ − μ0)(η̄ − ηi )] = E [(η̄ − μ0)η̄] −
I∑

k=0

E[(ηk − μ0) ηi ]
I + 1

= Var(η̄) − Var(ηi )
I + 1

= τ 2

I + 1
− τ 2

I + 1
= 0 .

The same result holds for η∗ = Zν, 1 ≤ ν ≤ N, since
∑I

k=0 E[(ηk − μ0) Zν ] =
Var(ηay(ν)) = τ 2.

Then, since Le(Z ) ⊂ L(Z, η), again by the iterativity we obtain

Pro
(
μ0
∣∣Le(Z )

) = Pro
(
Pro

(
μ0
∣∣L(Z, η)

)∣∣∣Le(Z )
)

= Pro
(
η̄
∣∣Le(Z )

)
= 1

I + 1

I∑
i=0

Pro
(
ηi

∣∣∣Le(Z )
)

.

Hence, by (29)

Pro
(
μ0
∣∣Le(Z )

) = 1
I + 1

I∑
i=0

[
αi

¯̄Zi + (1 − αi )Pro
(
μ0
∣∣Le(Z )

)]
,

which implies

μ̂0 := Pro
(
μ0
∣∣Le(Z )

) =
I∑

i=0

αi

α•
¯̄Zi .

Then (29) reads

η̂hom
i = αi

¯̄Zi + (1 − αi ) μ̂0 .

The following corollaries provide an explicit expression for the variance of μ̂0
and the quadratic loss of the BLH estimators.

Corollary 4.5. The variance of the estimator μ̂0 is given by

E
[
(μ0 − μ̂0)

2] = 1
(α•)2

I∑
i=0

I∑
k=0

Cov (̂ηi , η̂k) . (30)
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Proof. By (25)

E
[
(μ0 − μ̂0)

2] = E

⎡⎣( I∑
k=0

αk

α•
( ¯̄Zk − μ0)

)2
⎤⎦ =

I∑
k=0

I∑
l=0

αk αl

(α•)2
Cov

(
¯̄Zk, ¯̄Zl

)
.

Then (30) follows, since αkαl Cov
(
¯̄Zk, ¯̄Zl

)
= Cov (̂ηk, η̂l).

Corollary 4.6. The quadratic loss of the BLH estimator is given by

E
[(̂

ηhom
i − ηi

)2] = τ 2 − Var(̂ηi ) +
(
1 − αi

α•

)2 I∑
k=0

I∑
l=0

Cov (̂ηk, η̂l) . (31)

Proof. The term τ 2 −Var(̂ηi ) is the first term on the right-hand side of (26)
given by (21). For the second term we have, by (24)

E
[ (̂

ηhom
i − η̂i

)2 ] = (1 − αi )
2 E
[
(μ0 − μ̂0)

2] ,
where the variance of μ̂0 is given by Corollary 4.5.

4.5. Mean square error of prediction of credibility estimators

The quadratic losses for the credibility estimators η̂i and η̂hom
i are of funda-

mental importance because they provide the unconditional MSEP for the cor-
responding estimators.

By the first expression in (20) and by (31), we immediately conclude that
in the ADR model the MSEP for the inhomogeneous credibility estimator η̂i ,

0 ≤ i ≤ I, is given by

msepηi
(̂ηi ) := E

[
(̂ηi − ηi )

2] = τ 2 − Var(̂ηi ) = τ 2

⎛⎝1 − τ 2
ι(i)∑
j=0

ι(k)∑
l=0

ω
(−1)
(i, j),(i,l)

⎞⎠ ,

(32)
and the MSEP for the homogeneous credibility estimator η̂hom

i , 0 ≤ i ≤ I, is
given by

msep(̂ηhom
i ) := E

[ (̂
ηhom
i − ηi

)2 ] = msep(̂ηi ) + E
[ (̂

ηhom
i − η̂i

)2 ]
= τ 2 − Var(̂ηi ) +

(
1 − αi

α•

)2 I∑
k=0

I∑
l=0

Cov (̂ηk, η̂l) .
(33)

The expressions for Var (̂ηi ) and Cov (̂ηi , η̂k) are given by (19) and (18).

Remark. If χ2 = 0, all the previous expressions reduce to the corresponding
expression in the classical Bühlmann–Straub model.
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5. CREDIBILITY ESTIMATE OF RESERVES

5.1. Single accident year and total reserve estimate

Let us consider the inhomogeneous estimates. For accident year i ∈ {0, . . . , I},
we have

η̂i = αi
¯̄Zi + (1 − αi ) μ0,

then, returning to the X-scale we obtain, for Xi j ∈ Dc
I

X̂i j = αi ai ¯̄Zi γ j + (1 − αi ) ai μ0 γ j .

Thus, the following predictor results for the reserve in AY i ∈ {I− J+1, . . . , I}

R̂i = αi ai ¯̄Zi (1 − βI−i ) + (1 − αi ) ai μ0 (1 − βI−i ) . (34)

The corresponding total reserve estimate is then obtained by summing over the
open accident years

R̂=
I∑

i=I−J+1

R̂i .

The corresponding expressions for the homogeneous case are obtained by
replacing the estimator μ̂0 for μ0. We have, for i ∈ {I − J + 1, . . . , I}

R̂hom
i = αi ai ¯̄Zi (1 − βI−i ) + (1 − αi ) ai μ̂0 (1 − βI−i ), (35)

and

R̂hom =
I∑

i=I−J+1

R̂hom
i .

5.2. Credibility decomposition of reserve estimates

Formulae (34) and (35) show that our reserve estimates have two components
which are then mixed with the credibility weights αi and 1 − αi . These weights
do change for each accident year. For i ∈ {I − J + 1, . . . , I}, (34) and (35) can
be written, respectively

R̂i = αi R̂
pro
i + (1 − αi ) R̂all

i ,

R̂hom
i = αi R̂

pro
i + (1 − αi ) R̂all/hom

i ,
(36)

where the mixture components are defined as follows.
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a. Projective component
The estimator R̂pro

i has the form

R̂pro
i := ai ¯̄Zi (1 − βI−i ) .

It projects the final reserve from the observed data of all accident years.
In the special case of the BSCR model (ADR model with χ2 = 0), ¯̄Zi re-
duces to

Z̄i = Ci,ι(i)

ai βι(i)
, i = 0, . . . , I,

and we have

R̂pro
i = 1 − βI−i

βI−i
Ci,I−i , i = I − J + 1, . . . , I .

That is all information needed is contained in Ci,I−i , the (latest) diagonal
element of accident year i in the triangle/trapezoid of observed cumulative
data, which is then multiplied by the projection factor (1 − βI−i )/βI−i .
In the general case of the ADR model, it is convenient to introduce a gen-
eralized, or adjusted, diagonal element

¯̄Ci,ι(i) := ai βι(i)
¯̄Zi , i = 0, . . . , I, (37)

which permits to write analogously

R̂pro
i := 1 − βI−i

βI−i
¯̄Ci,I−i , i = I − J + 1, . . . , I .

Remarks .
• The quantity ¯̄Zi depends on all observations and can be interpreted as a
correction factor applied to the a priori value on the latest diagonal which
is aiβI−i . In established reserving techniques the Cape Cod method calcu-
lates similarly

Z̄CC :=
∑I

k=0Ck,ι(k)∑I
k=0 ak βι(k)

, (38)

which is a correction factor identical for all accident years. All the cor-
rection factors ¯̄Zi , Z̄i , Z̄CC are average incremental loss ratios, where the
average is taken over different observation sets using different weights.

• If the development pattern (β j ) j=0,...,J is calculated from theChainLadder
factors ( f j ) j=0,...,J−1 by β j = 1/( f j f j+1 · · · fJ−1), we have

1 − β j

β j
= f j f j+1 · · · fJ−1 − 1, (39)

which is the Chain Ladder projection factor. We make this remark to em-
phasize that the Chain Ladder is the prototype of the projective reserve.
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b. Allocative Component
The estimators

R̂all
i := ai μ0 (1 − βI−i ),

R̂all/hom
i := ai μ̂0 (1 − βI−i ),

allocate the a priori estimate aiμ0 or ai μ̂0, respectively, to the development
years still to come. In the inhomogeneous case, this is the Bornhuetter–
Ferguson reserve estimate with a priori values aiμ0. In the homogeneous
case, the a priori values are adjusted by experience to ai μ̂0, with μ̂0 given
by (25).

Remark. Here the procedure is also similar to that based on the Cape Cod
method, where one sets μ̂CC

0 = Z̄CC.

6. MEAN SQUARE ERROR OF PREDICTION OF RESERVES

We have that for a single accident year i = I − J + 1, . . . , I the open liability in
the ADR model is given by

Ri =
J∑

j=I−i+1

Xi j =
J∑

j=I−i+1

[
ai γ j (ηi + ζi+ j ) + √

ai γ j σεi j
]
,

and the inhomogeneous and homogeneous reserve estimators are

R̂i =
J∑

j=I−i+1

X̂i j =
J∑

j=I−i+1

ai γ j η̂i = ai (1 − βι(i)) η̂i ,

R̂hom
i =

J∑
j=I−i+1

X̂hom
i j =

J∑
j=I−i+1

ai γ j η̂i = ai (1 − βι(i)) η̂hom
i .

For the aggregated accident years, we have the corresponding estimators

R̂=
I∑

i=I−J+1

R̂i , R̂hom =
I∑

i=I−J+1

R̂hom
i .

For all these estimators, we derive expressions for the (unconditional) MSEP.

6.1. MSEP for the reserve estimate, single accident year

TheMSEP for the inhomogeneous and homogeneous reserve estimators for ac-
cident year i = I − J + 1, . . . , I, is defined as, respectively

msepRi (R̂i ) := E
[
(Ri − R̂i )2

]
, msepRi (R̂

hom
i ) := E

[(
Ri − R̂hom

i

)2]
.
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The corresponding expressions are provided by the following theorem.

Theorem 6.1. In the ADR model, the MSEP for the inhomogeneous and homo-
geneous reserve estimators for accident year i = I − J + 1, . . . , I, are given by

msepRi (R̂i ) = a2i (1 − βI−i )2 msepηi
(̂ηi ) + χ2 a2i

J∑
j=I−i+1

γ 2
j + ai (1 − βI−i ) σ 2,

(40)

and

msepRi (R̂
hom
i ) = a2i (1 − βI−i )2 msepηi

(̂ηhom
i )

+ χ2 a2i

J∑
j=I−i+1

γ 2
j + ai (1 − βI−i ) σ 2,

(41)

respectively.

The expression for msepηi
(̂ηi ) and msepηi

(̂ηhom
i ) is given in (32) and (33) respec-

tively.

Proof.
Inhomogeneous case. If we consider the difference

Ri − R̂i = ai (1 − βI−i ) (ηi − η̂i )︸ ︷︷ ︸
A′
i

+
J∑

j=I−i+1

(aiγ j ζi+ j + √
aiγ j σ εi, j )︸ ︷︷ ︸

A′′
i

,

the terms A′
i and A′′

i are independent as η̂i depends only on past ζ and ε vari-
ables. Hence,

E
[
(Ri − R̂i )2

] = E
(
A′2
i

)+ E
(
A′′2
i

) = a2i (1 − βI−i )2 E
[
(ηi − η̂i )

2]
+ χ2 a2i

J∑
j=I−i+1

γ 2
j + ai (1 − βI−i ) σ 2,

which gives (40).
Homogeneous case. By the decomposition property of quadratic losses (26) in
Theorem 4.4, we have

E
[(
Ri − R̂hom

i

)2] = E
[(
Ri − R̂i

)2]+ E
[(
R̂i − R̂hom

i

)2]
, (42)

and, by Corollary 4.6

msepηi

(̂
ηhom
i

) = msepηi
(̂ηi ) + (1 − αi )

2 E
[
(μ0 − μ̂0))

2] .
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Since

R̂i − R̂hom
i = ai (1 − βI−i ) (1 − αi ) (μ0 − μ̂0),

we get

E
[ (
Ri − R̂hom

i

)2 ] = a2i (1 − βI−i )2 (1 − αi )
2 E
[
(μ0 − μ̂0))

2] ,
which inserted in (42) gives (41).

Remark. For χ2 = 0, these are the BSCR formulae in Corollary 4.60 in
Wüthrich and Merz, 2008.

6.2. MSEP for the total reserve

For the aggregated accident years, we consider the (unconditional) MSEP for
the inhomogeneous and homogeneous total reserve estimator

msepR(R̂) := E
[
(R− R̂)2

]
, msepR(R̂

hom) := E
[
(R− R̂hom)2

]
.

In this case, we have to take into account that the ζi+ j variables generate depen-
dence between accident years.

6.2.1. MSEP for the total reserve, inhomogeneous case.

Theorem 6.2. In the ADR model, the MSEP for the inhomogeneous reserve esti-
mator for the aggregated accident years is given by

msepR(R̂) =
I∑

i=I−J+1

msepRi (R̂i )

− 2
∑

I−J+1≤i<k≤I
ai ak (1 − βI−i ) (1 − βI−k)Cov(̂ηi , η̂k)

+ 2χ2
∑

I−J+1≤i<k≤I
ai ak

J∑
j=I−(i∧k)+1

γ j γ j−|k−i | .

(43)

The expression for Cov(̂ηi , η̂k) is given by Lemma 4.2.

Proof. We consider the difference

R− R̂=
I∑

i=I−J+1

ai (1 − βI−i ) (ηi − η̂i )︸ ︷︷ ︸
A′

+
I∑

i=I−J+1

J∑
j=I−i+1

(aiγ j ζi+ j + √
aiγ j σ εi, j )︸ ︷︷ ︸

A′′

,
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where the terms A′ and A′′ are still independent. Hence,E[(R− R̂)2] = E
(
A′2)+

E
(
A′′2). For the first expectation, we have

E
(
A′2) =

B︷ ︸︸ ︷
I∑

i=I−J+1

a2i (1 − βI−i )2 msep(̂ηi )

+ 2
∑

I−J+1≤i<k≤I
ai ak (1 − βI−i ) (1 − βI−k)E [(̂ηi − ηi )(̂ηk − ηk)]︸ ︷︷ ︸

C

.

For the second expectation, we obtain

E
(
A′′2) = E

⎡⎢⎣
⎛⎝ I∑
i=I−J+1

J∑
j=I−i+1

(aiγ j ζi+ j + √
aiγ j σ εi, j )

⎞⎠2
⎤⎥⎦

= E

⎡⎣ I∑
i,k=I−J+1

J∑
j=I−i+1

aiγ j ζi+ j

J∑
l=I−k+1

akγl ζk+l

⎤⎦

+ E

⎡⎢⎣
⎛⎝ I∑
i=I−J+1

J∑
j=I−i+1

√
aiγ j σ εi, j )

⎞⎠2
⎤⎥⎦

= χ2
I∑

i,k=I−J+1

ai ak
J∑

j=I−(i∧k)+1

γ j γ j−|k−i |︸ ︷︷ ︸
D

+
I∑

i=I−J+1

ai (1 − βI−i ) σ 2

︸ ︷︷ ︸
E

,

where the D term can be decomposed as

D = χ2
I∑

i=I−J+1

a2i

J∑
j=I−i+1

γ 2
j︸ ︷︷ ︸

D′

+ 2χ2
∑

I−J+1≤i<k≤I
ai ak

J∑
j=I−(i∧k)+1

γ j γ j−|k−i |︸ ︷︷ ︸
D′′

.
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Then (43) is obtained as msepR(R̂) = (B+ D′ + E) + C + D′′, observing that

B+ D′ + E =
I∑

i=I−J+1

(
a2i (1 − βI−i )2 msepηi

(̂ηi )

+ χ2 a2i

J∑
j=I−i+1

γ 2
j + ai (1 − βI−i ) σ 2

)

=
I∑

i=I−J+1

msepRi (R̂i ),

and recalling that E [(̂ηi − ηi )(̂ηk − ηk)] = −Cov(̂ηi , η̂k), by (22).

Remark. If χ2 = 0, one has msepR(R̂) = ∑
i msepRi (R̂i ) since Cov(̂ηi , η̂k) = 0

for i �= k.

6.2.2. MSEP for the total reserve, homogeneous case.

Theorem 6.3. In the ADRmodel, theMSEP for the homogeneous reserve estima-
tor for the aggregated accident years is given by

msepR(R̂
hom) = msepR(R̂)

+
(

I∑
i=I−J+1

ai (1 − αi )

α•
(1 − βI−i )

)2 I∑
i=0

I∑
k=0

Cov (̂ηi , η̂k) .

(44)

Proof. For the total reserve, property (26) still holds, then

msepR(R̂
hom) = msepR(R̂) + E

[(
R̂− R̂hom)2] .

Since

R̂− R̂hom =
I∑

i=I−J+1

ai (1 − βI−i ) (1 − αi ) (μ0 − μ̂0),
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we have, by Corollary 4.5,

E
[(
R− R̂hom)2] =

(
I∑

i=I−J+1

ai (1 − βI−i ) (1 − αi )

)2

E
[
(μ0 − μ̂0)

2]

=
(

I∑
i=I−J+1

ai (1 − αi )

α•
(1 − βI−i )

)2 I∑
i=0

I∑
k=0

Cov (̂ηi , η̂k)

Corollary 6.4. In the ADR model, the MSEP for the homogeneous reserve esti-
mator for the aggregated accident years is given by

msepR(R̂
hom) =

I∑
i=I−J+1

msepRi (R̂
hom
i )

− 2
∑

I−J+1≤i<k≤I
ai ak (1 − βI−i ) (1 − βI−k)Cov(̂ηi , η̂k)

+ 2χ2
∑

I−J+1≤i<k≤I
ai ak

J∑
j=I−(i∧k)+1

γ j γ j−|k−i | .

+ 2
I∑

i=0

I∑
k=0

Cov (̂ηi , η̂k)

×
∑

I−J+1≤i<k≤I
ai ak

(1 − αi )(1 − αk)

α2•
(1 − βI−i ) (1 − βI−k) .

Proof. This is immediately obtained by (44), using (43) and observing that,
for I − J + 1 ≤ i ≤ I

msepRi (R̂i ) − msepRi (R̂
hom
i ) = a2i (1 − βI−i )2

(
msepηi

(̂ηi ) − msepηi
(̂ηhom

i )
)

= −a2i (1 − βI−i )2
(
1 − αi

α•

)2 I∑
i=0

I∑
k=0

Cov (̂ηi , η̂k) .
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Remark . For χ2 = 0, one has Cov (̂ηi , η̂k) = Ii,k τ 2αi . Then

E
[(
R− R̂hom)2] =

(
I∑

i=I−J+1

ai (1 − αi )

α•
(1 − βI−i )

)2 I∑
i=0

I∑
k=0

Cov (̂ηi , η̂k)

=
(

I∑
i=I−J+1

ai (1 − αi )

α•
(1 − βI−i )

)2 I∑
i=0

I∑
k=0

Ii,k τ 2αi

= τ 2

α•

(
I∑

i=I−J+1

ai (1 − αi ) (1 − βI−i )

)2

.

In the BSCR model, Corollary 6.4 gives

msepR(R̂
hom) =

I∑
i=I−J+1

msepRi (R̂
hom
i )

+ 2
τ 2

α•

∑
I−J+1≤i<k≤I

ai ak (1 − αi )(1 − αk)(1 − βI−i ) (1 − βI−k).

7. PARAMETER ESTIMATION

Recall that in this paper, the prior values ai and the development quotas γ j are
assumed to be known. In addition, we have the parameters:

• collective correction factor: μ0,
• variance components: σ 2, τ 2, χ2,

which we now want to estimate. The estimates for these parameters then need
to be inserted into the formulae obtained in the earlier sections.

7.1. Assessing the value of μ0

The role of the collective correction factorμ0 is that of adjusting the prior values
ai to the “correct” level. We distinguish two cases.

a. Inhomogeneous case
We believe that the a priori values ai are already on the “correct” level.
Hence, we use μ0 = 1. The resulting estimators for the reserves and
the corresponding MSEP are the inhomogeneous estimators R̂i , R̂ and
msepRi (R̂i ),msepR(R̂).

b. Homogeneous case
We adjust the a priori values ai by a common correction factor μ̂0 which
is estimated from the data using the estimator in Theorem 4.4. The
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corresponding estimators for the reserves and the MSEP are the homoge-
neous estimators R̂hom

i , R̂hom and msepRi (R̂
hom
i ),msepR(R̂

hom).

7.2. Estimation of variance components

For the estimation of the variance parameters τ 2, χ2, σ 2, we adopt a method
which is typical in the analysis of variance. Some types of sum of square errors
(SS) are taken from the data and, given the model assumptions, the expecta-
tion E(SS) of each of these sums is expressed as a function f (τ 2, χ2, σ 2) of the
variance parameters. If the expectation E(SS) is replaced by the corresponding
observed value SS∗, the equations SS∗ = f (τ 2, χ2, σ 2) can provide sufficient
constraints to identify (i.e. estimate) the variance parameters. We apply this
method considering three different SS taken on the incremental loss ratios in
the observed trapezoid DI . Given the assumptions in our model, the functions
f are linear, and replacing the expectations with the corresponding observed
values, we obtain a system of three independent linear equations. We then ob-
tain estimates for τ 2, χ2, σ 2 by solving this system. Because of the linearity of
the equations, these estimates are unbiased.

In applying this estimation method, we consider two alternative approaches.
In a first approach, the SS are taken directly on the trapezoid DI , where the
paid losses are organized by accident year and development year. An alterna-
tive approach is obtained by rearranging the paid losses by accident year and
calendar year and taking the SS on this AY/CY data. Since the two approaches
lead to two different systems of independent linear equations, two distinct sets
of estimators for the variance parameters are available; these estimators are both
unbiased but are possibly characterized by different efficiency properties. In
the following sections, we provide the estimation equation systems under the
AY/DY and AY/CY approaches. The details of the derivations are given in Ap-
pendix B. The efficiency of the two sets of estimators is explored numerically in
Section 8.2, where we observe that the AY/CY approach performs better than
the AY/DY approach.

7.2.1. Variance parameters estimates with the AY/DY approach. The SS com-
putation involves weighted sums taken over the data, thus including only cells
(i, j) ∈ DI . To simplify notation, we define the new weights

qi, j =
{

wi, j = ai γ j if (i, j) ∈ DI ,

0 if (i, j) ∈ Dc
I .

(45)

Hence, all the weighted sums over i can be extended from i = 0 to i = I and
all the weighted sums over j can be extended from j = 0 to j = J. We shall de-
note by q• j , qi•, q•• the sums

∑I
i=0 qi, j ,

∑J
j=0 qi, j ,

∑I
i=0

∑J
j=0 qi, j respectively.

Moreover, we denote by Ji , i ∈ {0, . . . , I}, the number of nonzero qi, j -weights
of accident year i , and we denote J• = ∑I

i=0 Ji . In this Section 7 treating the
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parameter estimation, we will also use the following notation

Z̄∗
i :=

J∑
j=0

qi, j
qi•

Zi j , 0 ≤ i ≤ I, Z̄∗
j :=

I∑
i=0

qi, j
q• j

Zi j , 0 ≤ j ≤ J,

¯̄Z
∗
:=

I∑
i=0

qi•
q••

Z̄i ,

which do not depend on the structural parameters.
As shown in Appendix B, with these notations an unbiased estimate for

τ 2, χ2 and σ 2 can be obtained, as the solution of the following system of linear
equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

q••
(
1 − h

( j)
(i)

)
χ̂ 2 + σ̂ 2 (J• − I − 1) = ∑

i, j qi, j (Zi, j − Z̄∗
i )

2

q••
(
1 − h

(i)
( j)

)
τ̂ 2 + q••

(
1 − h

(i)
( j)

)
χ̂ 2 + σ̂ 2 (J• − J − 1) = ∑

i, j qi, j (Zi, j − Z̄∗
j )

2

q••
(
1 − h(i)

)
τ̂ 2 + q••

(
h

( j)
(i) − h(d)

)
χ̂ 2 + σ̂ 2 I = ∑

i qi• (Z̄∗
i − ¯̄Z

∗
)2

(46)
where

h
( j)
(i) =

∑
i

qi•
q••

h( j)
i with h( j)

i :=
∑
j

q2i, j
q2i•

,

h
(i)
( j) =

∑
j

q• j
q••

h(i)
j with h(i)

j :=
∑
i

q2i, j
q2• j

,

and

h(i) :=
∑
i

q2i•
q2••

, h(d) :=
I∑

t=0

(∑
i+ j=t qi, j

)2
q2••

.

We observe that J• = (J+1)(I+1− J/2) is the total number of nonzero weights
of all accident years.

Numerical Rule. If a solution of (46) for either variance component turns
out negative, it is set equal to zero.

Remark . The coefficients h(i), h(d), h
(i)
( j), h

( j)
(i) can be interpreted as Herfind-

ahl indices or weighted averages of Herfindahl indices. As it is well-known,
Herfindahl indices are measures of concentration. Referring to the distribution
{x1, . . . , xn} of a given quantity x, the Herfindahl index

h :=
n∑

k=1

x2k
x2•

,

provides a measure of how much the distribution of x is concentrated. One has
minimum concentration h = 1/n for xk ≡ x0 and maximum concentration
h = 1 if only one of the xk is different from zero.
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7.2.2. Variance parameters estimates with the AY/CY approach. An alternative
approach to the estimation of variance components is obtained by arranging
the data by accident year and calendar year. The calendar year is indexed as
t = 0, . . . ,T, where T = I. Now, we transpose our definitions for AY/DY
indices (i, j) to AY/CY indices (i, t). We have

q̃i,t = qi,i+ j and Z̃it = Zi,i+ j for i + j ≤ I,

and
q̃i,t = 0 and Z̃it = 0 for t ≤ i − 1 or t ≥ i + J + 1 .

Hence, all our summations can be taken from t = 0 to t = T. Let Ti , i ∈
{0, . . . , I}, the number of nonzero weights in AY i and T• = ∑i

i=0 Ti . Obviously
Ti = Ji as defined in 7.2.1. For simplicity of notation, we write from here on qi,t
for q̃i,t and Zi,t for Z̃i,t.

Unbiased estimates of τ 2, χ2 and σ 2 can then be obtained as the solution of
the following system of linear equations

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q••

(
1 − h

(t)
(i)

)
χ̂ 2 + σ̂ 2 (T• − I − 1) = ∑

i,t qit (Zit − Z̄∗
i )

2

q••
(
1 − h

(i)
(t)

)
τ̂ 2 + σ̂ 2 (T• − T − 1) = ∑

i,t qit (Zit − Z̄∗
t )

2

q••
(
1 − h(i)

)
τ̂ 2 + q••

(
h

(t)
(i) − h(t)

)
χ̂ 2 + σ̂ 2 I = ∑

i qi• (Z̄∗
i − ¯̄Z

∗
)2

(47)
where

h
(t)
(i) =

∑
i

qi•
q••

h(t)
i with h(t)

i :=
∑
t

q2i,t
q2i•

,

h
(i)
(t) =

∑
t

q•t
q••

h(i)
t with h(i)

t :=
∑
i

q2i,t
q2•t

,

and

h(t) :=
∑
t

q2•t
q2••

.

Since, the equalities hold

h(t) = h(d), h(t)
i = h( j)

i , h
(t)
(i) = h

( j)
(i) , T• = J•,∑

i,t

qit (Zit − Z̄∗
i )

2 =
∑
i, j

qi j (Zi j − Z̄∗
i )

2, (48)

the first and the third equations in the estimation system (47) are the same as in
the estimation system (46) and the only difference in the two systems is given by
the second equation.
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Remarks
• The system (47) is similarly obtained as (46), see Appendix B, and the nu-
merical rule applies equally to (47). Also the coefficients h(i)

t and h
(i)
(t) can be

interpreted in terms of Herfindahl indexes.
• For χ2 = 0, the first and third equation in estimation system (46) or (47)
provide the classical Bühlmann–Straub estimators for τ 2 and σ 2.

8. NUMERICAL RESULTS

8.1. Applying the model to reference data

In Wüthrich and Merz (2008), Example 4.63, a numerical illustration of the
BSCR model is provided. Since in this paper we refer to BSCR as a “control
model”, we use the same data for our numerical example concerning the ADR
model. The triangle of observed incremental claims, with I = J = 9, and the
corresponding a priori estimates ai are reported in Table 2.

As previously emphasized, this paper concentrates on showing how stochas-
tic diagonal effects influence reserve estimates and their prediction error in the
— theoretical — situation where the quotas γ j are known. The known γ j are
also those of Example 4.63 in Wüthrich and Merz (2008), obtained by Chain
Ladder estimators according to (39). This also allows us to compare the re-
sults of the ADR model with the corresponding figures provided by a standard
stochastic Chain Ladder model. The numerical values of the γ j quotas are given
in Table 3. The weights wi, j are then computed as wi j = ai γ j .

For the estimation of the variance parameters, we adopted the AY/CY ap-
proach (the motivations of this choice will be apparent in Section 8.2). The
values of the relevant Herfindahl indexes, which determine the values of the
coefficients in Equations (47), are as follows

h(i) = 0.1015845, h(t) = 0.1014692, h̄(i)
(t) = 0.4959558, h̄(t)

(i) = 0.4958533.

Solving Equations (47), we obtained the following estimates for the variance
parameters

τ̂ = 0.0496097, χ̂ = 0.0575456, σ̂ = 83.233023 . (49)

The estimates for the credibility weights are reported in the first column of Table
4. The corresponding homogeneous estimator ofμ0 is μ̂0 = 0.8820442. In Table
4, the reserves and the square root of the MSEPs (as well as the percentage
coefficients of variation) in the inhomogeneous and the homogeneous case are
also reported.

For the purpose of comparison, we also computed the reserves and the
MSEPs estimated with the BSCRmodel andwith the Time Series Chain Ladder
(TSCL) model (see Buchwalder et al. (2006)). For the BSCR, we use the estima-
tors for the variance parameters τ 2 and σ 2 and the homogeneous estimator for
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TABLE 2

A PRIORI ESTIMATES OF THE ULTIMATE CLAIM AND OBSERVED INCREMENTAL CLAIMS.

i ai Xi,0 Xi,1 Xi,2 Xi,3 Xi,4 Xi,5 Xi,6 Xi,7 Xi,8 Xi,9

0 11,653,101 5,946,975 3,721,237 895,717 207,761 206,704 62,124 65,813 14,850 11,129 15,814
1 11,367,306 6,346,756 3,246,406 723,221 151,797 67,824 36,604 52,752 11,186 11,646
2 10,962,965 6,269,090 2,976,223 847,053 262,768 152,703 65,445 53,545 8,924
3 10,616,762 5,863,015 2,683,224 722,532 190,653 132,975 88,341 43,328
4 11,044,881 5,778,885 2,745,229 653,895 273,395 230,288 105,224
5 11,480,700 6,184,793 2,828,339 572,765 244,899 104,957
6 11,413,572 5,600,184 2,893,207 563,114 225,517
7 11,126,527 5,288,066 2,440,103 528,042
8 10,986,548 5,290,793 2,357,936
9 11,618,437 5,675,568
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TABLE 3

CHAIN LADDER DEVELOPMENT PATTERN.

γ0 γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9

0.5900 0.2904 0.0684 0.0217 0.0144 0.0069 0.0051 0.0011 0.0010 0.0014

TABLE 4

RESERVES AND MSEP IN THE ADR MODEL.

i αi R̂i msep1/2Ri

(
R̂i
)

(%) R̂hom
i msep1/2Ri

(
R̂hom
i

)
(%)

0 0.4405 0 0 . 0 0 .
1 0.4090 15,155 10,620 70.1 14,031 10,623 75.7
2 0.3952 26,683 13,743 51.5 24,757 13,749 55.5
3 0.3867 36,544 16,219 44.4 33,825 16,229 48.0
4 0.3848 91,926 26,089 28.4 85,000 26,132 30.7
5 0.3829 170,354 35,945 21.1 157,395 36,054 22.9
6 0.3769 320,635 50,801 15.8 295,551 51,088 17.3
7 0.3668 511,867 67,539 13.2 468,989 68,170 14.5
8 0.3487 1,208,764 113,536 9.4 1,107,452 115,623 10.4
9 0.3047 4,620,160 316,789 6.9 4,229,107 327,843 7.8

Total 7,002,087 407,426 5.8 6,416,109 426,609 6.6

μ0 as standard in the Bühlmann–Straub model and obtain

μ̂BS
0 = 0.8810151, τ̂BS = 0.0595243, σ̂BS = 104.01929 .

The results in the BSCR model are reported in Table 5. The reserves and the
MSEPs with the TSCL model are reported in Table 6. Since the uncertainty in
the development pattern is missing both in the ADR and the BSCR, the MSEP
in these models should be compared with the process error component in the
TSCLmodel. To this aim, we calculated the decomposition of the MSEP of the
TSCL model in the process error and the estimation error part.

In order to discuss the results for the reserve estimates, it is useful to con-
sult the numerical details of the credibility decomposition introduced in Section
5.2. As explained there, the reserve estimates in both the ADR and the BSCR
model are credibility mixtures of a projective-type reserve R̂pro

i , based only on
the triangle data, and a BF-type reserves R̂all

i , based on external information (see
expression (36)). Since the development pattern used in our numerical example
is derived by the CL method, the projection factors (1−βI−i )/βI−i are equal to
the CL projection factors

∏J−1
j=I−i f j . Then, in the BSCR model the projective

reserves have the usual CL form R̂pro
i = R̂CL

i = Ci,I−i
∏J−1

j=I−i f̂ j , while in the
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TABLE 5

RESERVES AND MSEP IN THE BSCR MODEL.

i αi R̂i msep1/2Ri

(
R̂i
)

(%) R̂hom
i msep1/2Ri

(
R̂hom
i

)
(%)

0 0.7924 0 0 . 0 0 .
1 0.7880 15,338 13,216 86.2 14,931 13,216 88.5
2 0.7817 26,419 17,108 64.8 25,718 17,109 66.5
3 0.7760 35,219 20,191 57.3 34,217 20,192 59.0
4 0.7819 87,511 32,243 36.8 85,035 32,246 37.9
5 0.7873 161,074 44,160 27.4 156,568 44,167 28.2
6 0.7838 298,051 61,499 20.6 289,272 61,520 21.3
7 0.7756 477,205 80,460 16.9 461,874 80,507 17.4
8 0.7600 1,109,352 125,486 11.3 1,071,689 125,669 11.7
9 0.6917 4,202,908 276,469 6.6 4,027,964 278,257 6.9

Total 6,413,077 326,040 5.1 6,167,268 329,031 5.3

TABLE 6

RESERVES AND MSEP IN THE TSCL MODEL.

msep1/2Ri

(
R̂i
)

i R̂i Process (%) Estimation (%) Prediction (%)

1 15,126 191 1.3 187 1.2 268 1.8
2 26,257 742 2.8 535 2.0 915 3.5
3 34,538 2,669 7.7 1,493 4.3 3,059 8.9
4 85,302 6,832 8.0 3,392 4.0 7,628 8.9
5 156,494 30,478 19.5 13,517 8.6 33,341 21.3
6 286,121 68,212 23.8 27,286 9.5 73,467 25.7
7 449,167 80,076 17.8 29,675 6.6 85,398 19.0
8 1,043,242 126,960 12.2 43,903 4.2 134,337 12.9
9 3,950,815 389,783 9.9 129,770 3.3 410,818 10.4

Total 6,047,064 424,380 7.0 185,026 3.1 462,961 7.7

ADR model they are obtained as R̂pro
i = ¯̄Ci,I−i

∏J−1
j=I−i f̂ j , where

¯̄Ci,I−i is the
generalized, or adjusted, diagonal defined by (37). The values of the observed
diagonal and the ADR adjusted diagonal are illustrated in Figure 1, where the
vertical bars refer to the observed valuesCi,I−i and the continuous line with dots
refers to the adjusted values ¯̄Ci,I−i . For comparison, the dotted line with stars
illustrates the values of the adjusted diagonal in the Cape Cod method, as de-
fined in (38) (for the Cape Cod correction factor we obtained Z̄CC = 0.883973).
This graphical illustration clearly shows that the ADR adjustment has a strong
smoothing effect on the observed diagonal values.
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FIGURE 1: Observed and adjusted diagonal values in the ADR and the Cape Cod model (Color online).

The projective reserve estimates R̂pro
i corresponding to the diagonal values

illustrated in Figure 1 are reported in the first part of Table 7. In the second
part of Table 7, the allocative reserve estimates R̂all

i are also reported. Here, we
provide the Bornhuetter–Ferguson reserves computed withμ0 = 1 and with the
homogeneous μ0 estimate both in the ADR and the BSCR model:

R̂BF/1
i = ai (1−βI−i ), R̂BF/μ̂0

i = ai (1−βI−i ) μ̂0, R̂
BF/μ̂BS

0
i = ai (1−βI−i ) μ̂BS

0 .

Given the reserve components reported in Table 7, the results on the reserve
estimates in Tables 4 and 5 can be commented as follows. The inhomogeneous
and homogeneous reserve estimates in the ADR model are a credibility mix of
the Rpro

i reserves in the first column of Table 7 and the Rall
i reserves in the fourth

and the fifth column, respectively, of the same table. Since the BF/1 reserves are
higher than the BF/μ̂0 reserves, the inhomogeneous ADR reserves are higher
than the homogeneous ADR reserves. A similar argument holds for the BSCR
model. The difference between the reserves in the ADR model and the BSCR
model, both in the inhomogeneous and homogeneous case, can be explained by
the level of the credibility weights. Due to the additional uncertainty generated
by the diagonal random effects, the credibility weights in ADR model are sub-
stantially smaller than in BSCRmodel. Hence, ADR provides reserves closer to
the corresponding BF-type reserves and therefore closer to the a priori values.
The difference between the total reserves based on ADR and those based on
BSCR is 9.2% in the inhomogeneous case and 4.0% in the homogeneous case.
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TABLE 7

PROJECTIVE AND ALLOCATIVE COMPONENTS OF THE RESERVE ESTIMATES.

Projective Reserves R̂pro
i Allocative Reserves R̂all

i

i ADR CL CC BF/1 BF/μ̂0 BF/μ̂BS
0

1 13,754 15,126 14,254 16,125 14,223 14,206
2 23,878 26,257 23,866 26,999 23,814 23,786
3 34,317 34,538 33,216 37,576 33,143 33,105
4 83,778 85,302 84,361 95,434 84,177 84,079
5 150,349 156,494 157,369 178,024 157,025 156,842
6 289,942 286,121 301,705 341,306 301,047 300,696
7 500,276 449,167 507,480 574,090 506,373 505,782
8 1,163,742 1,043,242 1,165,647 1,318,646 1,163,104 1,161,747
9 3,979,360 3,950,815 4,215,123 4,768,385 4,205,926 4,201,019

Total 6,239,396 6,047,064 6,503,021 7,356,584 6,488,832 6,481,262

Themain difference between ADR and BSCR concerns the prediction error.
We find that the MSEP is substantially bigger for ADR than for BSCR, the
difference between the square roots being 25.0% in the inhomogeneous case
and 30.0% in the homogeneous case.

Comparing the MSEP based on the ADR model and the MSEP based on
the TSCL model, we find that the process error component of MSEP in TSCL
is higher than the MSEP in the inhomogeneous ADR and slightly lower in the
homogeneous ADR, the difference between the square roots being 4.2% and
−0.5% in the inhomogeneous and the homogeneous case, respectively.

8.2. Testing the estimation approaches by simulation

In order to empirically test the efficiency of the estimation approaches for μ0
as well as the variance components described in Section 7, we applied the esti-
mation procedures to simulated data. For the simulation, we used the data in
Section 8.1 as reference data. Then we generated new run-off triangles of in-
cremental payments by Equation (6), taking the ai priors from Table 2 and the
γ j quotas from Table 3 and using the variance components estimates as in (49).
The random variables η, ζ, ε in (6) were generated as independent and normally
distributed, i.e.

ηi ∼ N(μ0, τ
2), ζi+ j ∼ N(0, χ2), εi, j ∼ N(0, 1), 0 ≤ i + j ≤ I .

We also set μ0 = 1.
With this choice of the true values for the parameters μ0, τ

2, χ2, σ 2, we gen-
erated 100,000 10 × 10 triangles of simulated data and applied the estimation
Equations (46) and (47) to each triangle1. The results of the estimation under
the AY/DY approach (Equations 46) are summarized in the first part of Table
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8. The corresponding results under the AY/CY approach (Equations 47) are re-
ported in the second part of Table 8. These results are reported under the head-
ing “ADR”. Under the heading “BSCR” we also provide, for comparison, the
estimates for μ0, τ and σ obtained with the BSCR model. As it is also the case
for the Bühlmann–Straub estimators, also the AY/DY and AY/CY approaches
can provide negative values for the variance parameters estimates. In our sam-
ple statistics, these values have not been set at zero. The number of negative
estimation results is also reported in the table.

The results provided in the table show that both the AY/DY andAY/CY esti-
mation procedure reproduce unbiased estimates of the true values of the param-
eters (sample mean is correct). However, the AY/CY approach is more efficient
(smaller sample variance). Moreover, if we use the estimation procedure from
BSCR (i.e. the Bühlmann–Straub procedure), we miss χ and we have great bias
for τ and σ .

Table 9 illustrates the results obtained by posing χ = 0 (i.e. assuming that
BSCR is the true model) and using the same values for τ and σ . As expected,
the Bühlmann–Straub estimation procedure results to be the correct approach
in this case. However, also the estimation procedures from ADR provide satis-
factory results, producing a negligible value of χ and little loss of efficiency for
the other variance components.
Summarizing the results of the simulation study

I. If the true model includes stochastic diagonal effects:
• both estimation procedures AY/DY and AY/CY derived from the ADR

model provide unbiased parameter estimates but AY/CY is more efficient;
• the estimation procedure derived from the BSCR model performs badly

and produces biased parameter estimates.
II. If the true model includes no stochastic diagonal effects:

• the procedure derived from BSCR is best;
• the procedure AY/CY derived from ADR is still unbiased and loses little

efficiency in comparison with best estimators derived from BSCR.

CONCLUSIONS

The theoretical results and the results of the numerical example lead to the fol-
lowing conclusions:

1. The ADR model, which includes stochastic diagonal effects, is tractable in
closed form using the credibility theory approach. Since diagonal effects
induce correlation within calendar years, the covariance matrix of the in-
cremental loss ratios is not block diagonal and the credibility formulae are
more involved than in the classical theory. However, in the case of given de-
velopment pattern, closed form expressions can be obtained for the reserve
and MSEP estimates, both in the inhomogeneous and the homogeneous
case.
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TABLE 8

ESTIMATION RESULTS UNDER THE AY/DY AND THE AY/CY APPROACH (100,000 SIMULATIONS).

μ0 τ χ σ

True Values: 1 0.0496097 0.0575456 83.233023

AY/DY Approach

ADR BSCR ADR BSCR ADR ADR BSCR

# Negatives: 0 0 13,824 979 16,152 20 0

Sample Mean: 0.9994591 1.0001122 0.0495926 0.0594948 0.0574970 83.29557 104.03776

Sample CoVa: 0.1273799 0.0255935 0.9775685 0.6123772 1.0681165 0.5142962 0.2734148

AY/CY Approach

ADR BSCR ADR BSCR ADR ADR BSCR

# Negatives: 0 0 7,585 979 3,227 256 0

Sample Mean: 1.0001112 1.0001122 0.0496043 0.0594948 0.0574661 83.32062 104.03776

Sample CoVa: 0.0255554 0.0255935 0.8002220 0.6123772 0.6815610 0.3292820 0.2734148
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TABLE 9

ESTIMATION RESULTS UNDER THE AY/DY AND THE AY/CY APPROACH WITH χ2 = 0.

μ0 τ χ σ

True Values: 1 0.0496097 0 83.233023

AY/DY Approach

ADR BSCR ADR BSCR ADR ADR BSCR

# Negatives: 0 0 4,954 842 45,478 1 0

Sample Mean: 1.0016314 1.0000119 0.0496336 0.0496142 0.0024269 83.284829 83.243255

Sample CoVa: 0.4867062 0.0176713 0.696665 0.6016151 −452.216 0.4980504 0.2111396

AY/CY Approach

ADR BSCR ADR BSCR ADR ADR BSCR

# Negatives: 0 0 1,013 842 52,653 2 0

Sample Mean: 1.000013 1.0000119 0.049639 0.0496142 0.0027436 83.296379 83.243255

Sample CoVa: 0.0176809 0.0176713 0.6098596 0.6016151 −104.0526 0.2496164 0.2111396
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2. Alternative sets of unbiased estimators for the variance parameters of the
ADR model can be obtained using two different procedures, the AY/DY
and the AY/CY procedure. A simulation exercise suggests that the AY/CY
approach provides more efficient estimators.

3. The credibility decomposition of the reserve estimate into a projective and
an allocative component — which is typical in the BSCR model — can
be extended to the ADR model through the definition of a “generalized
diagonal”.

4. The inclusion of randomdiagonal effects givesmoreweight to the allocative
reserve estimates of the Bornhuetter–Ferguson type.

5. More importantly, such inclusion significantly increases the MSEP, both
for the inhomogeneous and the homogeneous reserve estimates.
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NOTE

1. Referring to a generic parameter π (i.e. μ0, τ
2, χ2 or σ 2), let us denote by π̃k the estimate of

π in the kth simulation. With n simulations, the following sample statistics have been computed

sample mean: m = 1
n

n∑
k=1

π̃k

sample variance: q2 = 1
n − 1

n∑
k=1

(π̃k −m)2

standard error: ε = q√
n − 1

relative standard error:
ε

m

coefficient of variation: CoVa = ε

m

√
n − 1 = q

m

REFERENCES

BORNHUETTER, R.L. and FERGUSON, R.E. (1972) The actuary and IBNR. Proc. CAS, LIX, pp.
181–195.
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APPENDIX A

For χ 2 = 0, Theorem 4.1 provides the classical credibility theory. Without diagonal effects
the covariance matrix Ω, with the LR/TB ordering, is a block diagonal matrix, where each
block corresponds to an accident year. Then all elements ω(i, j),(k,l) with i �= k are zero and
the blocks have the form

Bi = (
ω(i, j),(i,l)

)
0≤ j,l≤ι(i)

, 0 ≤ i ≤ I,

with

ω(i, j),(i,l) = τ 2 + σ 2

wi, j
I j,l .

As it is well-known, if Ω is a block diagonal matrix with blocks Bi , the inverse matrix Ω−1

is also a block diagonal, with blocks B−1
i . A convenient expression for B−1

i is obtained by
observing that Bi can be given by the sum

Bi = Di + τ 2 1i 1′
i ,

where 1i := (1, . . . , 1)′ ∈ R
ι(i)+1 and Di is the diagonal matrix

Di = (σ 2/wi,0, . . . , σ
2/wi,ι(i)) Ii ,

where Ii is the identity matrix with size ι(i) + 1. It can be shown (see e.g. identity (3) in
Henderson and Searle (1980)) that

B−1
i = D−1

i − τ 2

1 + τ 2 1′
i D

−1
i 1i

D−1
i 1i 1′

i D
−1
i .

This expression is also referred to as Sherman–Morrison formula. Let us introduce the pre-
cisions

π0 := 1
τ 2

, πi, j := 1
χ 2 + σ 2/wi, j

, 0 ≤ i ≤ I, 0 ≤ j ≤ ι(i) .

For χ 2 = 0, πi, j simplifies to

πi, j := wi, j

σ 2
, 0 ≤ i ≤ I, 0 ≤ j ≤ ι(i) ;

hence, we have
D−1
i = π′

i Ii , with πi := (πi,0, . . . , πi,ι(i))
′,

and

B−1
i = π′

i Ii − 1
π0 + πi,[ι(i)]

(π′
i Ii ) 1i 1

′
i (π

′
i Ii ),

or

B−1
i = π′

i Ii − Ci

π0 + πi,[ι(i)]
,

where Ci := (πi, j πi,l)0≤i,l≤ι(i). Hence, the generic element of block B−1
i , 0 ≤ i ≤ I, has the

form
ω

(−1)
(i, j),(i,l) = πi, j I j,l − πi, j πi,l

π0 + πi,[ι(i)]
, 0 ≤ j, l ≤ ι(i) .

https://doi.org/10.1017/asb.2015.3 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2015.3
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Summing over the column (or the line) l = 0, . . . , ι(i) of block B−1
i , one obtains

ι(i)∑
l=0

ω
(−1)
(i, j),(i,l) = πi, j

π0

π0 + πi,[ι(i)]
,

and summing over the block

ι(i)∑
j=0

ι(i)∑
l=0

ω
(−1)
(i, j),(i,l) = π0 πi,[ι(i)]

π0 + πi,[ι(i)]
.

In classical credibility theory, the credibility weights are defined as

αi := τ 2

τ 2 + σ 2/wi,[ι(i)]
, 0 ≤ i ≤ I,

which, in terms of precisions, is equal to

αi = πi,[ι(i)]

π0 + πi,[ι(i)]
, 0 ≤ i ≤ I .

Then for the sum over the block B−1
i , we have

ι(i)∑
j=0

ι(i)∑
l=0

ω
(−1)
(i, j),(i,l) = αi

τ 2
, 0 ≤ i ≤ I,

and the sum over j = 0, . . . , ι(i) in block B−1
i is given by

ι(i)∑
j=0

ω
(−1)
(i, j),(i,l) = αi

τ 2

πi, j

πi,[ι(i)]
= αi

τ 2

wi, j

wi,[ι(i)]
, 0 ≤ i ≤ I .

Then, we are led to the standard expression for the inhomogeneous credibility estimator

η̂i = μ0 (1 − αi ) + αi Z̄i with Z̄i :=
ι(i)∑
j=0

w j,l

wi,[ι(i)]
Zi, j .

More formally, Theorem 4.1 provides the classical results for the inhomogeneous case in
credibility theory if one poses, for 0 ≤ i, k ≤ I, 0 ≤ j ≤ ι(i) and 0 ≤ l ≤ ι(k)

ω(i, j),(k,l) =
(

πi, j I j,l − πi, j πi,l

π0 + πi,[ι(i)]

)
Ii,k .

In this case, the classical results for the homogeneous case are immediately provided by The-
orem 4.4, which gives

η̂hom
i = μ̂0 (1 − αi ) + αi Z̄i with μ̂0 =

I∑
i=0

αi

α•
Z̄i .
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APPENDIX B

We adopt here the definition (45) of the weights qi, j . Hence, the weighted sums over i are
extended from 0 to I, the weighted sums over j are extended from 0 to J and the weighted
sums over t are extended from 0 to T.

AY/DY approach

To derive the first equation in (46), we consider the sums of squares, 0 ≤ i ≤ I

SSi :=
∑
j

qi, j (Zi, j − Z̄∗
i )

2 where Z̄∗
i :=

∑
j

qi, j
qi•

Zi j .

By (9), given the properties of the η, ζ, ε variables and the independence assumptions, we
have for i + j ≤ I

E(Zi, j ) = E(Z̄∗
i ) = μ0, Var(Zi, j ) = τ 2 + χ 2 + σ 2

qi, j
, Var(Z̄∗

i ) = τ 2 + χ 2 h( j)
i + σ 2

qi•
.

(The explicit expressions of the Herfindahl indices are provided in the text). The sums of
squares can be written as

SSi =
∑
j

qi, j (Zi, j − μ0)
2 − qi• (Z̄∗

i − μ0)
2,

then taking the expectation

E(SSi ) =
∑
j

qi, j E[(Zi, j − μ0)
2] − qi• E[(Z̄∗

i − μ0)
2]

=
∑
j

qi, j Var(Zi, j ) − qi• Var(Z̄∗
i )

=
∑
j

qi, j

(
τ 2 + χ 2 + σ 2

qi, j

)
− qi•

(
τ 2 + χ 2 h( j)

i + σ 2

qi•

)

= qi•
(
1 − h( j)

i

)
χ 2 + σ 2 (Ji − 1) .

Summing over i

E

(∑
i

SSi

)
= q••

(
1 −

∑
i

qi,•
q••

h( j)
i

)
χ 2 + σ 2 (J• − I − 1) .

The first of the estimation Equation (46) is then obtained by substituting the observed value
of
∑

i SSi to the expectation.
For the second equation in (46), we consider the sums of squares, 0 ≤ j ≤ J

SS j :=
∑
i

qi, j (Zi, j − Z̄∗
j )

2 where Z̄∗
j :=

∑
i

qi, j
q• j

Zi j .
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Now we have, for i + j ≤ I

E(Z̄∗
j ) = μ0, Var(Z̄∗

j ) = (τ 2 + χ 2) h(i)
j + σ 2

q• j
.

Since

SS j =
∑
i

qi, j (Zi, j − μ0)
2 − q• j (Z̄∗

j − μ0)
2,

taking the expectation, we obtain

E(SS j ) =
∑
i

qi, j Var(Zi, j ) − q• j Var(Z̄∗
j )

=
∑
i

qi, j

(
τ 2 + χ 2 + σ 2

qi, j

)
− q• j

(
(τ 2 + χ 2) h(i)

j + σ 2

q• j

)
= q• j

(
1 − h(i)

j

)
(τ 2 + χ 2) + σ 2 (Ij − 1),

where Ij denotes the number of nonzero elements of DY j . Summing over j

E

⎛⎝∑
j

SS j

⎞⎠ = q••

⎛⎝1 −
∑
j

q• j
q••

h(i)
j

⎞⎠ (τ 2 + χ 2) + σ 2 (I• − J − 1) .

The second estimation equation in (46) is then obtained by equating the expectation to the
observed value of

∑
j SS j (and observing that I• = J•).

The third equation in (46) is obtained by considering the total sums of squares

TSS :=
∑
i

qi• (Z̄∗
i − ¯̄Z

∗
)2 where ¯̄Z

∗
:=
∑
i

∑
j

qi, j
q••

Zi j .

Now we have, for i + j ≤ I,

E( ¯̄Z
∗
) = μ0, Var( ¯̄Z

∗
) = τ 2 h(i) + χ 2 h(d) .

Since

TSS =
∑
i

qi• (Z̄∗
i − μ0)

2 − q•• ( ¯̄Z
∗ − μ0)

2,

taking the expectation, we obtain

E(TSS) =
∑
i

qi• Var(Z̄∗
i ) − q•• Var( ¯̄Z

∗
)

=
∑
i

qi•

(
τ 2 + χ 2 h( j)

i + σ 2

qi•

)
− q••

(
τ 2 h(i) + χ 2 h(d)

)
= q••

(
1 − h(i)

)
τ 2 + q••

(
h̄(i) − h(d)

)
χ 2 + σ 2 I .

The last equation of system (46) is then obtained by substituting the expectation with the
observed value of TSS.
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AY/CY approach

For the AY/CY approach, data are reorganized by accident year and calendar year. In this
new language, we have for t ≤ I

Zi,t = ηi + ζt + σ√
qi,t

εi,t .

Since the values on the right-hand side of the first and the third equation in (47) are clearly
the same as in (46), in the AY/CY approach the first and third estimation equations are the
same as the corresponding equations in (46) written in the new language (the correspondence
between the two languages is summarized by equalities (48) in the text). Then, we have only
to prove the second equation in (47). To this aim, we consider the sum of squares

SSt :=
∑
t

qi,t (Zi,t − Z̄∗
t )

2 =
∑
t

qi,t (Zi,t − μ0)
2 − qi• (Z̄∗

t − μ0)
2 .

Since, for t ≤ I

E(Zi,t) = E(Z̄∗
t ) = μ0, Var(Zi,t) = τ 2 + χ 2 + σ 2

qi,t
, Var(Z̄∗

t ) = τ 2 h(i)
t + χ 2 + σ 2

qi•
,

by taking the expectation, we obtain

E(SSt) =
∑
t

qi,t Var(Zi,t) − qi• Var(Z̄∗
t )

=
∑
t

qi,t

(
τ 2 + χ 2 + σ 2

qi,t

)
− qi•

(
τ 2 h(i)

t + χ 2 + σ 2

qi•

)
= qi•

(
1 − h(i)

t

)
τ 2 + σ 2 (Ti − 1) .

Summing over i , we get

E

(∑
t

SSt

)
= q••

(
1 −

∑
t

qt•
q••

h(i)
t

)
τ 2 + σ 2 (T• − T − 1),

which finally leads to the second equation in (47).
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