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Near-interface colloidal monolayers are often used as model systems for research
on hydrodynamics in biophysics systems and in the chemical industry. Using
microrheological methods, the correlated diffusion of particles is experimentally
measured in colloidal monolayers near a water–air interface. The results show that the
scaling lengths (χ||, χ⊥) of such colloidal monolayers are anisotropic in two orthogonal
directions within the monolayer, which are parallel and perpendicular to the line
connecting the centres of a particle pair. The former (χ||) is the Saffman length of the
monolayer, while the latter (χ⊥) is a function of both the Saffman length and the radius
of the colloids. The size of the colloids is involved in χ⊥ but not χ||, which reflects the
discrete nature of the monolayer in the transverse direction and the continuous nature
of the monolayer in the longitudinal direction. From the scaling lengths, the viscosities
of the colloidal monolayers are obtained, which agree with those obtained from the
single-particle diffusion coefficients. The influence of the boundary condition imposed
by the nearby interface on the hydrodynamic interactions is in a power-law behaviour of
the distance z.

Key words: colloids, thin films, microfluidics

1. Introduction

The characterization of the viscoelastic properties of colloidal suspensions has long
been the subject of fundamental research due to the ubiquity of such suspensions in
biology and industry. Microrheological techniques have been widely employed for such
measurements due to their advantages in probing the local material response in systems
such as porous media (Cai, Panyukov & Rubinstein 2011; Di Rienzo et al. 2014; Wang et al.
2014; Begam et al. 2015), biological systems (Ramadurai et al. 2009; Parigi et al. 2014;
He et al. 2016) and microfluidic devices (McWhirter, Noguchi & Gompper 2009; Frydel
& Diamant 2010; Shani et al. 2014; Misiunas et al. 2015; Huang et al. 2017). Research has
shown that the viscoelastic properties of a colloidal suspension are strongly affected by the
confining boundaries (Caruso et al. 1991; Ouali & Pefferkorn 1996; Dufresne et al. 2000;
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Wille et al. 2002; Cui et al. 2004; Wang et al. 2009; Oppenheimer & Diamant 2010; Huang
& Szlufarska 2015). Two-dimensional (2-D) colloidal monolayers have traditionally been
used to model the dynamic behaviours of proteins and other large molecules near a
biomembrane (Saffman & Delbrück 1975; Wang et al. 2009, 2011a; Park & Lee 2015;
He et al. 2016). The hydrodynamic mechanisms in a colloidal monolayer differ from
those in a 3-D bulk liquid or a 2-D liquid film (Di Leonardo et al. 2008; Oppenheimer
& Diamant 2009, 2010; Vivek & Weeks 2015). The mass of such a 2-D monolayer is
conserved within the monolayer, and momentum can propagate between the monolayer
and the surrounding 3-D liquid (Oppenheimer & Diamant 2009, 2010). To characterize
the hydrodynamic interactions (HIs) between the particles in such a confined quasi-2-D
system, a characteristic length should be introduced. For a continuous two-fluid system,
Saffman (Saffman & Delbrück 1975; Saffman 1976) defined this characteristic length
as λs = η(s)/η(b), where η(s) is the surface viscosity of the liquid membrane and η(b) is
the bulk viscosity of the surrounding liquid. When the distance r between two particles
is much smaller than λs, the momentum is conserved in the 2-D membrane. When the
distance r is much larger than λs, the momentum diffuses into the surrounding 3-D liquid
(Saffman & Delbrück 1975; Saffman 1976; Prasad, Koehler & Weeks 2006; Zhang et al.
2013a,b).

In Saffman’s model, the stress (momentum flux) in the membrane is spatially isotropic
and decays logarithmically as ∼ log(1/r) (Saffman & Delbrück 1975; Saffman 1976)
due to the conservation of momentum in the 2-D liquid (Vivek & Weeks 2015). The
characteristic length in Saffman’s model is solely characterized by λs. The work of Weeks
et al. (Prasad et al. 2006) experimentally validated that λs serves as a scaling length in
a system consisting of a large-molecule membrane at a water–air interface. Zhang et al.
(2013b) also noted that the scaling length in a particle monolayer at a water–air interface
depends on both the particle size and the Saffman length. Previous work (Saffman &
Delbrück 1975; Saffman 1976; Prasad et al. 2006; Oppenheimer & Diamant 2009, 2010;
Zhang et al. 2013b) has mainly focused on the HIs in a liquid film suspended in a
bulk liquid or at a liquid–liquid interface. In contrast, few experimental studies have
investigated the dynamic features of particle monolayers close to a liquid–air interface,
which are distinctly different from those for a monolayer at the interface. Knowledge of
the transitions of the HIs from the 2-D monolayer to the 3-D bulk liquid is essential to
understand the role played by the interface in the HIs in the monolayer.

In this study, we report experimental investigations of the correlated diffusion of
colloidal particles in a monolayer close to a water–air interface. In a water–oil system,
the correlated diffusion of particles was found independent on z, the distance between
monolayer and the interface (Zhang et al. 2013a). This was in contrast to the intuitive
expectation: the mechanism of HIs near a boundary should be sensitive to the distance
away from the boundary. We thought that, due to the high viscosity of oil, the strength of
HIs through oil phase is much higher than that of HIs through the water film between
the monolayer and the interface, which results in the independence of the correlated
diffusion on the thickness of the water film z. To verify this, we set up a water–air system,
where the water film plays an important role in HIs between particles and contributes
significantly to the correlated diffusion of colloidal particles since the viscosity of air can
be ignored. And we do obtain quantitative results on the z-dependent correlated diffusion,
and the universal behaviours of such correlated diffusion have been studied here. The
results show that the scaling lengths in the longitudinal and transverse directions are
different. In the longitudinal direction, the scaling length is the Saffman length λs. In the
transverse direction, the scaling length is a function of λs and the particle radius a. With
these scaling lengths, the curves describing the correlated diffusion of particles under
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FIGURE 1. Schematic view of the experiment. (a) Schematic view of the system. (b) Optical
microscope image of silica particles (a = 1.57 μm) suspended near a water–air interface at an
area fraction of n = 0.04. (c) The definitions of �s||, �s⊥ and �si(τ ).

different conditions can be collapsed into one master curve. Using these scaling factors,
the viscosity of such a monolayer can be estimated, and the result is consistent with that
obtained from one-particle measurements.

2. Experimental method

Samples of three kinds of colloidal particles were obtained from Bangs Laboratories,
namely, silica spheres with radii of a = 1.57 μm (Si1), 1.0 μm (Si2) and 0.6 μm (Si3).
The particle samples were cleaned 8–10 times via centrifugation prior to use to scour off
the surfactant in the solution. Then, the cleaned particles were suspended in deionized
water to form preparatory samples. The deionized (DI) water was produced using a
Synergy UV System from Millipore. The sample cell was made of stainless steel and
had a structure similar to that in Zhang et al. (2013a). The cell consisted of a solution
tank at the bottom and an air tank at the top. The inner diameter of the solution tank
was 8.3 mm. The depth of both tanks was 0.8 mm. A preparatory sample was introduced
into the solution tank until the sample solution bulged. The extra solution was removed
using a glass straw. The opening of the straw was half-immersed at the solution surface.
When the extra solution was sucked off by the straw, the possible impurities on the
interface were also removed. After the prepared cell was sealed with a coverslip, the sealed
cell was placed upside down and left undisturbed for 7–8 h. Then, the particles settled
down toward the water–air interface under gravity. The surface tension of the water was
sufficiently strong to retain the water on the top side of the cell. A stable particle monolayer
stays close to the water–air interface due to the interaction of the image charge of the
particles. The separation between the water–air interface and the centres of particles in the
monolayer is denoted by z. The experimental system is shown in figure 1(a). A microscope
(Olympus X71 with 60× objectives, NA 0.70) and a CCD camera (Prosilica GE1050,
1024 pixels × 1024 pixels, 17 fps) were used to record sequences of images of the particles
in the monolayer (figure 1b). Each sequence comprised 500 frames. The image resolution
of the camera was 0.09 μm pix−1. The closest particles in adjacent frames were identified
as the same particle. The particle trajectories s(t) were obtained using our homemade
particle tracking program.

3. Results

The single-particle self-diffusion coefficient Ds(n) can be obtained from the mean
square particle displacement 〈�s2

i (τ )〉 = 4Ds(n)τ , where �si(τ ) = si(t + τ) − si(t), as
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FIGURE 2. (a) Normalized self-diffusion coefficients of a single particle. The normalized
self-diffusion coefficient Ds(n)/D0 is plotted as a function of the area fraction n for samples
Si1, Si2 and Si3. The solid lines represent the second-order polynomial fits to the formula
Ds(n)/D0 = α(1 − βn − γ n2) for each sample. (b) The dependence of the Saffman length λs of
monolayers on the area fraction n for each sample.

shown in figure 1(c). Here, τ is the lag time, and n is the area fraction of the particles.
Figure 2(a) shows the normalized curves of Ds(n)/D0 as functions of the particle
concentration n for the three samples, where D0 is the diffusion coefficient for a single
particle in the bulk water, D0 = kBT/6πη(b)a. The value for each data point in figure 2(a)
was obtained by averaging more than 106 particles. The solid lines in figure 2(a) illustrate
the results of fitting the data to Ds(n)/D0 = α(1 − βn − γ n2) (Chen & Tong 2008).
When n → 0, Ds(0)/D0 = α, where Ds(0) is the single-particle diffusion coefficient in the
monolayer in the dilute limit. The fitted values of the parameters α, β and γ for the three
samples are given in table 1. As seen from this table, a larger particle size corresponds to
a larger value of α and a smaller value of β. Here, the value of the parameter α reflects
the strength of the viscosity experienced by a single particle in the local environment
in the dilute solution limit. A large α implies a low viscosity (Zhang et al. 2013a). The
value of the parameter β represents the strength of the effective hydrodynamic interactions
between two particles, excluding the effects of the local environment. A large β reflects
strong hydrodynamic interactions. The value of the parameter γ represents the strength of
the many-body effect among the particles in the monolayer.

The separation z is calculated according to (3.1) (Wang et al. 2009, 2011b):

Ds(0)

D0
= 1 + 3

16

(
2η(b) − 3η(a)

η(b) + η(a)

) (
a
z

)
, (3.1)

where η(b) is the viscosity of the bulk water, η(a) is the viscosity of the air and z is the
separation between the particle centre and the liquid interface. The calculated values
of z are shown in table 1. It should be noted that the thermal motion of the particles
prevents them from staying at a fixed location, and rather causes them to sway around
their equilibrium positions, while their vertical positions follow a Boltzmann distribution.
The measured value of z presented here is an average one, with a fluctuation width �z
in the order of kBT/�mg, where �m is the difference of the mass between the particle
and a water sphere with the same size. This is true for a 1 μm radius silica particle,
�z ∼ 0.1 μm, for example. All our measurements are the results of HIs averaged in the
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Sample a (μm) α β γ z (μm) z/a κ(0) κ(1) [η]

Si1 1.57 1.31 ± 0.03 0.92 ± 0.05 0.4 ± 0.1 1.89 ± 0.05 1.21 ± 0.03 15.3 ± 0.4 3.55 ± 0.05 1.27 ± 0.05
Si2 1.00 1.30 ± 0.03 1.00 ± 0.05 0.3 ± 0.1 1.26 ± 0.05 1.26 ± 0.05 15.4 ± 0.4 3.47 ± 0.07 1.31 ± 0.05
Si3 0.60 1.08 ± 0.02 1.05 ± 0.05 1.3 ± 0.3 2.81 ± 0.04 4.68 ± 0.08 18.5 ± 0.5 1.18 ± 0.05 1.91 ± 0.06

TABLE 1. Parameters of the three samples.
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water film with a thickness of ∼�z. As shown in table 1, a large α corresponds to a
small separation z/a, which suggests that the local viscosity is higher when the particle
monolayer in the water is farther from the water–air interface.

The water–air interface is perfectly slipping, incapable of supporting a shear stress.
Such a slip boundary corresponds to a decreased particle friction (increased mobility) and
decreased energy dissipation. Intuitively, the closer a Brownian particle is to the water–air
interface, the less surrounding water can be driven by the particle’s moving, because the
water film between the particle and the interface is thinner. The particle will thus feel less
viscosity when approaching the interface, unlike that in the bulk of the water. From (3.1),
we can know that for a particle that is far away from the water–air interface, the particle’s
friction is increased with respect to its bulk value, and the diffusion constant is decreased,
so the value of the measured diffuse constant tends to its bulk values.

According to the work of Sickert, Rondelez & Stone (2007) and Fischer, Dhar & Heinig
(2006), the single-particle diffusion coefficient can be written as

Ds(n) ∼= kBT
κ(0)η(b)a + κ(1)η(s1)(n)

, (3.2)

where kB is the Boltzmann constant and η(s1)(n) is the n-dependent surface viscosity of
the particle monolayer. Equation (3.2) indicates that the friction of a particle experienced
in a monolayer (or a film) comes from two terms: κ(0)η(b)a and κ(1)η(s1). The first
term represents the friction due to the viscosity experienced by the particle in its local
environment, where η(b) is the viscosity of the bulk of fluid and κ(0) is related to the
position of the monolayer. The second term represents the friction coming from the
monolayer (or film) itself, which is a function of the area fraction n. The dimensionless
coefficients κ(0) and κ(1), which are the functions of z, can be calculated by following
equations (Fischer et al. 2006),

κ(0) ≈ 6π

√
tanh

[
32(z/a + 1)

9π2

]
, (3.3)

κ(1) ≈ −4 × ln
(

2
π

arctan
(

2
3

))
(3a)3/2

(z + 2a)3/2 (z ≥ a). (3.4)

The calculated values of κ(0) and κ(1) for the three samples are listed in table 1. More details
about the method to obtain the values of κ(0) and κ(1) are presented in the supplementary
material available at https://doi.org/10.1017/jfm.2020.693. Given the results of Ds(n), the
surface viscosity η(s1) of the monolayers can be estimated by (3.2). The Saffman length λs
can be obtained by λs = η(s1)/η(b) (Saffman & Delbrück 1975; Saffman 1976). The curves
of λs vs. n are shown in figure 2(b), which indicates that λs increases with n monotonically.

The correlated diffusion reflects the response function of the HIs between two particles
(Crocker et al. 2000; Gardel, Valentine & Weitz 2005; Prasad et al. 2006). In terms of the
particle displacement, the correlated diffusion coefficient is defined as

D||,⊥(r) =
〈�si

||,⊥(t, τ )�s j
||,⊥(t, τ )δ(r − Ri,j(t))〉

i /= j

2τ
. (3.5)

Here, �si
||,⊥ is the displacement of the ith particle in the longitudinal (||) or transverse (⊥)

direction during a time interval τ , as shown in figure 1(c). The longitudinal displacement
�s|| and transverse displacement �s⊥ are the components of �si(τ ) that are parallel and
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FIGURE 3. Measured correlated diffusion coefficients D||/Ds(n) (a) and D⊥/Ds(n) (b) as a
function of the distance r/(2a) for sample Si1; (c and d) for sample Si2; (e and f ) for sample
Si3. The different symbols represent measurements at different area fractions n. The highest n is
labelled in each figure. The dashed lines corresponding to ∼1/r (a) and ∼1/r2 (b) are plotted
for reference.

perpendicular, respectively, to the line connecting the centres of two particles i and j. The
average 〈〉i /= j is taken over all pairs consisting of the ith and jth particles with a separation
distance r for i /= j. The correlated diffusion coefficients D||,⊥(r) for sample Si1 are
plotted in figure 3(a,b), where the results are normalized with respect to the single-particle
diffusion Ds(n) to eliminate the effects of the local viscosity. In figure 3(a,b), from bottom
to top, the area fraction n varies from 0.03 to 0.59, and the black squares and green crosses
correspond to the smallest and largest n values, respectively. The curves of D||,⊥(r) for
samples Si2 and Si3 are plotted in figures 3(c,d) and 3(e, f ), and exhibit behaviours similar
to those of D||⊥(r) for sample Si1.

Curves of D||⊥(r) in figure 3(a–f ) collapse to a single master curve D̃||,⊥(R||,⊥) for each
direction when an effective diffusion coefficient Dm

s and adjustable parameters χ||,⊥ are
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used as the scaling factors in vertical and horizontal axis respectively, i.e. D̃|| ≡ D||/Dm
s

and R||,⊥ ≡ r/χ||,⊥ (see figure 4). The effective diffusion coefficient Dm
s is obtained by the

single-particle diffusion coefficient Ds(n) in the following method. As shown in (3.2), the
retardation experienced by a Brownian particle involves two factors: the local viscosity
experienced by the particle in the dilute limit κ(0)η(b)a and the many-body effect of
the particles κ(1)η(s) in the particle monolayer. Based on (3.2), two effective diffusion
coefficients can be defined by Ds(0) ≡ kBT/κ(0)η(b)a and Dm

s (n) ≡ kBT/κ(1)η(s1). Hence,
(3.2) can be rewritten as

1
Ds(n)

= 1
Ds(0)

+ 1
Dm

s (n)
. (3.6)

Here, Ds(0) is the diffusion coefficient of a single particle in the monolayer in the dilute
limit (n → 0), which can be obtained from figure 2(a), and Dm

s (n) is a function of n
because the viscosity η(s1) stems from the HIs between particles in the monolayer. Since
the measured correlated diffusion coefficients D||, ⊥(r) describe the HIs between particles,
Dm

s (n) is a more suitable scaling factor than Ds(n) for this scenario.
The scaling factors χ||,⊥, which are the functions of n, can be regarded as characteristic

lengths of the particle monolayer. Based on the concept of the Saffman length, the
values of χ||,⊥(n) are determined by the ratio of the surface viscosity of the monolayer
and the bulk viscosity of water (Saffman & Delbrück 1975). When χ||(n) obtained in
figure 4(a,c,e) are regarded as

χ|| = η
(s2)

|| /η(b), (3.7)

the surface viscosity η
(s2)

|| of the monolayer can be estimated from the value of χ||. The
comparison between such η

(s2)

|| and η(s1) is plotted in figure 5(a), which reads that η
(s2)

|| and
η(s1) agree with each other. The values of η

(s2)

|| and η(s1), which are obtained in one-particle
and two-particle measurements respectively, should agree with each other for the same
homogeneous monolayer (Prasad et al. 2006; Zhang et al. 2013b). Usually, the agreement
between η

(s2)

|| and η(s1) will be satisfied when n is small. The monolayer can turn into a
heterogeneous state with an increase in n. Then, there will be a gradual deviation between
η

(s2)

|| and η(s1) with an increase in n, (Prasad et al. 2006) as shown in figure 5(a). The results
in figure 5(a) suggest that χ|| is the Saffman length indeed, i.e. χ|| = λs.

However, we found that χ⊥(n) obtained in figure 4(b,d, f ) cannot be regarded as
the Saffman length λs. If χ⊥(n) = λs was regarded, the values of η

(s2)

⊥ estimated from
χ⊥(n) = η

(s2)

⊥ /η(b) would disagree with the values of η(s1). The comparison between such
η

(s2)

⊥ and η(s1) is plotted in figure 5(b), indicating that the viscosity η
(s2)

⊥ obtained from
χ⊥ = λs follows the power-law relationship η

(s2)

⊥ ∼ (η(s1))2/3. Considering this power-law
relationship, the dependence of the scaling length χ⊥ on the Saffman length λs = η

(s2)

⊥ /η(b)

should be expressed as

χ⊥ = 1
2

a
(
λs

a

)2/3

, (3.8)

for η
(s2)

⊥ = η(s1) to be satisfied. The viscosity η
(s2)

⊥ that is obtained using (3.8) is plotted
against η(s1) in figure 5(c). Once again, the values of η(s1) and η

(s2)

⊥ agree with each
other when n is small. The comparison between the viscosity η

(s2)

|| and η
(s2)

⊥ is plotted
in figure 5(d), which shows η

(s2)

|| = η
(s2)

⊥ all the time.
It should be noted that there exist sets of values of χ||,⊥ and their multiples such that

all of these values can make D̃||,⊥ collapse to a single curve. However, there is only one
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FIGURE 4. Scaled correlated diffusion coefficients D̃||(R||) (a) and D̃⊥(R⊥) (b) for sample
Si1; (c and d) for sample Si2; (e and f ) for sample Si3. The symbols used are same as in
figure 3.

special pair of χ||,⊥ values for which the calculated viscosity η(s2) ≡ η
(s2)

||,⊥ agrees with η(s1).
This constraint allows for one to determine a unique pair of χ||, ⊥ values with which to
determine the positions of the master curves of D̃||,⊥.

The dependence of η(s2) on n is plotted in figure 6, showing that it follows the
Krieger–Dougherty equation (Krieger & Dougherty 1959) as follows:

η(s2) = η(s1)(0)

[(
1 − n

nm

)−[η]nm

− 1

]
, (3.9)
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FIGURE 5. (a) Plots of η
(s2)
|| vs. η(s1) for three samples. (b) Plots of η

(s2)
⊥ vs. η(s1) calculated

from χ⊥ = λs for three samples. The cyan curves represent fits to η
(s2)
⊥ ∼ (η(s1))2/3. (c) Plots of

η
(s2)
⊥ vs. η(s1) calculated from (3.7). (d) Plots of η

(s2)
⊥ vs. η

(s2)
|| from (3.7) for three samples. The

navy blue line in (a,c,d) is shown for reference, and the slope of the line is 1.0.

where η(s1)(0) is a characteristic scale for the surface viscosity, which is affected by the
confining boundary. In the above equation, nm

∼= 0.84 is the maximum random packing
fraction in two dimensions (Berryman 1983; O’Hern et al. 2002), and the intrinsic
viscosity [η] is the only fitting parameter. The fitted values of the intrinsic viscosity [η]
are shown in table 1.

In the vicinity of a fluid–fluid interface, the mobility of particles and the hydrodynamic
interactions between particles will be different from those in the bulk, which show a
complex dependence on the separation z (Jones, Felderhof & Deutch 1975; Bickel 2007;
Wang et al. 2009, 2011b). In our experiments, D̃|| and D̃⊥ indeed depend on the separation
z. The larger z is, the weaker the influence of the water–air interface. The master curves
of D̃||(R||) and D̃⊥(R⊥) with different z each degenerate to a single curve when D̃||(R||)
and D̃⊥(R⊥) are multiplied by a factor of (z/a)2/3 (as shown in figure 7). This degeneracy
of D̃||,⊥ by a factor of (z/a)2/3 at z > 0 indicates that, with the exception of the boundary
effect, no dynamic mechanisms are introduced into the system by the water–air interface.

It can be seen from figure 7(b) that the value for Si3 is slightly lower than the other two.
This deviation between them looks more obvious in the half-log plot (see supplementary
figure S1). We think that such deviation comes from fluctuations in the vertical position
of the particles, which will weaken HIs between the particles at given projection

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

69
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.693


Anisotropic scaling lengths of colloidal monolayers 905 A3-11

0
0

100
Si3
Si2
Si1

200

300

0.2 0.4
n

0.6

η
(s

2)
 (c

p 
µ

m
)

FIGURE 6. The surface viscosities η(s2) as functions of the particle area fraction n. The cyan
curves represent fits to the Krieger–Dougherty equation.
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FIGURE 7. (a) Universal master curve of D̃||(z/a)2/3 as a function of R|| for three samples.
(b) Universal master curve of D̃⊥(z/a)2/3 as a function of R⊥ for three samples.

distance r. The smaller the mass of the particles, the greater the fluctuations experienced
in the vertical position. The correlated diffusion, D||⊥(r), of Sample Si3 was smaller than
that of the other two samples. Another feature of such deviation is that a significant
deviation appears in a short distance, as the strength of such an influence is supposed
to be proportional to �z/r.

4. Discussion

It should be noted that the screened Coulomb repulsive interaction exists in addition
to hydrodynamic interactions between the charged particles immersed in water. However,
such a Coulomb interaction is a short-range interaction, which usually occurs in few Debye
screening lengths. The samples were left undisturbed for 7–8 h before the measurement.
The CO2 resolves in the DI water during this time, which increases the concentration
of counterions in the water solution and reduces the Debye screening lengths to the
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(b)(a) Water Water

Air Air

FIGURE 8. Two kinds of colloidal systems. (a) The particle monolayer is at the water–air
interface. (b) The particle monolayer is near the water–air interface.

order of 0.1 μm. The measured D||,⊥(r) in a range of 2–30 μm in figure 3 will not be
affected by such a short-range interaction. The particles totally immerse in the water
and are away from the interface, which excludes the presence of capillary interaction
or dipole interaction between the particles. In fact, the hydrodynamic interaction is the
only long-range interaction in our system, which corresponds to the behaviours of D||⊥(r)
obtained here.

When r 
 λs, one usually has D||(r) ∼ 1/r and D⊥(r) ∼ 1/r2 for the monolayer of
particles suspended in a liquid. The particles in such a 2-D monolayer cannot conserve
momentum, but diffuse momentum into the surrounding fluid, leading to the fact that
the r-dependence of D||,⊥ in the monolayer is dominated by the surrounding liquid. In
the longitudinal direction, the dependence of D||(r) ∼ 1/r is identical to the longitudinal
correlation in an unbounded fluid, caused by 3-D shear stresses, while in the transverse
direction, the dependence of D⊥(r) ∼ 1/r2 arises from 2-D compressive stresses due to the
force of effective dipoles. For a particle monolayer located just at the water–air interface
(figure 8a), the scaling lengths in the longitudinal and transverse directions are identical
(Prasad et al. 2006; Zhang et al. 2013b). In our experiments, however, the monolayer is
located a short distance from the water–air interface (figure 8b), and the scaling lengths
differ in the two directions. This phenomenon can be attributed to the boundary effect
of the water–air interface. Figure 3(a,c,e) shows that D||(r) decays with r as ∼1/r in
the longitudinal direction. This results from the HIs response to a 3-D-like shear stress
in the bulk water and the thin-film water, which acts as a kind of semi-3-D system due
to the momentum conservation in a 3-D liquid (Nägele et al. 1993; Crocker et al. 2000;
Levine & Lubensky 2000; Oppenheimer & Diamant 2009, 2010). In figure 3(b,d, f ), D⊥(r)
decays as ∼1/r2 in the transverse direction, showing behaviour that has been attributed
to long-range compression and modelled as interactions of effective mass dipoles (Cui
et al. 2004; Shani et al. 2014). This difference in the variation tendencies of the correlated
diffusion coefficients in the longitudinal and transverse directions is universal among
colloidal monolayers suspended in fluids (Oppenheimer & Diamant 2009, 2010).

In this water–air system, the scaling length is separated into a longitudinal scaling length
λs and a transverse scaling length χ⊥. Such a scaling method for r can also be applied in
a similar way to the water–oil system. The relationship between them follows 2χ⊥/a =
(λs/a)2/3. This relationship may be understood by comparison with that of the lubrication
of a liquid film confined between two solid surfaces. The normal load capacity of the film
depends on the form of hydrodynamic action that the film experiences (Hamrock, Schmid
& Jacobson 2004). In the case of squeezing action, the normal load capacity is Wsqueeze =
(w′/η(b)usqueeze)(hsqueeze/l)3, where w′, usqueeze, hsqueeze, and l are the normal load per unit
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length, squeezing velocity, film thickness and length of the solid surface, respectively.
Similarly, the expression for the load capacity for sliding action (Hamrock et al. 2004)
is Wsliding = (w′/(η(b)usliding))(hsliding/l)2, where hsliding is the thickness of the liquid film
and usliding is the sliding velocity. When these two load capacities are comparable (i.e.
Wsqueeze ∼ Wsliding) with usqueeze = usliding, the equation hsqueeze/l ∼ (hsliding/l)2/3 is obtained,
with a functional form similar to that of 2χ⊥/a = (λs/a)2/3. This analogy is based on the
recognition that the squeezing and sliding actions for a confined film are equivalent to the
compression and shear stress between the particles in a particle monolayer (Oppenheimer
& Diamant 2009, 2010). Thus, the relationship between the two scaling lengths of the
particle monolayer has the same form as that of hsqueeze/l = (hsliding/l)2/3.

The form of the scaling length χ⊥ = a(λs/a)2/3/2 can also be understood by analogy
to lubrication theory. The squeezing force between two particles of radius a with a
separation distance r in a liquid is f = ξ(r)U, where U is the velocity at which one
particle is approaching the other and ξ(r) is the hydrodynamic friction coefficient. When
the two particles are suspended in a 3-D liquid with a separation distance r3D, the friction
coefficient is ξ(r3D) = (3/2)πη(b)a(a/r3D) (Russel, Saville & Schowalter 1992). In a 2-D
system, such as two circular disks of radius a with a separation distance r2D approaching
each other in a thin liquid film (Hamrock et al. 2004), the friction coefficient of the
squeezing force is ξ(r2D) = (3/2)πηs(a/r2D)3/2. Here, the viscosity of the film, ηs, is equal
to η(b)a. By equating these two kinds of squeezing lubrication forces [i.e. ξ(r2D) = ξ(r3D)],
we find that r2D = a(r3D/a)2/3, which is similar to χ⊥ = a(λs/a)2/3/2.

5. Conclusions

In this work, for a particle monolayer near a water–air interface, the correlated
diffusion coefficients of the particles in the longitudinal and transverse directions are
presented in the form of normalized functions D̃||,⊥(R||,⊥). From such correlated diffusion
measurements, the longitudinal scaling length is the Saffman length λs of the particle
monolayer, and the transverse scaling length χ⊥ follows a power-law relationship with λs,
as expressed by χ⊥ = a(λs/a)2/3/2. Using these scaling lengths, the master curves of the
correlated diffusion and viscosity of such particle monolayers can be obtained. Studies
of the correlated diffusion of a colloidal monolayer near a water–oil interface have been
reported previously (Zhang et al. 2013a). Data collapse into master curves was achieved
by a phenomenological scaling method, which does not improve our understanding.
Compared with the previous results, the scaling lengths in this work provide a better way to
understand the collapse of correlated diffusion curves. Using the scaling method described
here, the surface viscosities of monolayers can be calculated correctly. Our experiments
provide a set of reliable data that can be used for the further development of theoretical
models to study the dynamics of liquids near soft interfaces.
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