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Can officially reported output figures be externally validated? This paper presents a
dynamic panel framework for assessing statistics using verifiable signals of economic
activity. In this context, satellite readings of nitrogen dioxide, a byproduct of combustion,
are forwarded. The problem of validating China’s reported gross domestic product at the
sub-national level during two recent downturns is considered. During the Great Recession
period, reported figures are validated for some regions, but not others, including
specifically those known to be inaccurate.
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1. INTRODUCTION

Can officially reported output figures be externally validated? This question is
pertinent to data from China, which have long been cast under suspicion. While
opaque methods in data collection represent one cause for concern,1 another is
systematic manipulation. Such man-made anomalies have historically been pro-
nounced during recessionary episodes in particular, when they become relatively
more politically opportune [Wallace (2014)]. For example, during the height of
the Asian Financial Crisis in 1998, China reported a relatively robust 7.8% year-
on-year rate of growth in GDP. This figure appears to be an aberration not only
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regionally, but also in the context of sharper contemporaneous declines in energy
consumption [Rawski (2001)]. Similar concerns arose during the Great Recession
period of 2007–2009, an era from which inflation and consumption data are sus-
pected [Nakamura et al. (2016)]. But pairwise incompatibilities of reported GDP
with other conventional indicators of growth, such as electricity generation, were
evidently more muted during this later episode. In fact, both statistics indicate a
healthy rise in economic activity over the NBER recession dates, 2007 Q4–2009
Q2 [Figure 1 (a)].2 Perhaps, due to this redundancy of information, economists
have in this case come to more mixed conclusions as to the veracity of reported
statistics; Fernald et al. (2013) argue that industrial production indices includ-
ing electricity generation corroborate reported data, while the opposite case had
previously been made by Koech and Wang (2012).

But perhaps the true problem is that electricity generation is reported by the
very same officials who report output. This paper makes three contributions in
this arena. First, independently reported international satellite readings of nitro-
gen dioxide (NO2), a byproduct of combustion, are forwarded as a useful signal
from which to construct a proxy for economic growth. This data set is freely
available, on a dense geographic mesh of the Earth’s habitable surface, for a time
sample of the past 20 years. We suggest that this data set is a useful companion
to another truly unadulterated signal of growth, night lights [Henderson et al.
(2012)]. Inter-quarterly business cycle dynamics are of interest, but night lights
data are available only annually; NO2 is reliable up to monthly frequency, and
available up to daily. In contrast with electricity generation, NO2 suggests a sig-
nificant downturn in economic activity in China during the Great Recession period
[Figure 1 (b)].

Second, an econometric framework for constructing combined measures of eco-
nomic growth using any proxy is presented. In contrast with existing approaches,
this dynamic panel data (DPD) framework exploits not only the cross-sectional,
but also time series dimension of the data. This enables the analysis to focus
on particular sub-national regions over the business cycle, which is critical since
variability in economic activity across these regions is substantial [Figures 1(c) and
(d)].3 Moreover, as we discuss, it is the provincial level of the political hierarchy at
which misreporting may actually occur in practice, focusing on the national level
is prone to obscuring these dynamics. Central to this analysis is the knowledge
of the elasticity of a signal with respect to income, as well as other structural
parameters. We show that the identification and estimation of these parameters is
subject to a number of previously undocumented econometric challenges. These
include nuisance parameters which hinder the interpretability of reduced form
vector autoregressive (VAR) estimates, biases, and under-coverage of asymptotic
confidence intervals in small samples.

As part of this analysis, we also show how to compute the sampling distribution
of the weighting on the proxy in the combined measure. Our third theoretical
contribution is to show that in fact, neither the weighting on the proxy created
using NO2, nor night lights, nor any of a number of indices of industrial pro-
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(a) Reported GDP vs. reported electricity generation: All China. (b) Reported GDP vs. NO2 densities in atmosphere: All China.
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GDP: Left axis, black. Electricity: Right axis, red. GDP: Left axis, black. NO2: Right axis, blue.
Quarterly four-quarter rolling average, 2006Q1 - 2013Q3. Shaded: NBER dates (07Q4 - 09Q2). GDP NBER dates chg.: +22.3%.

(c) Electricity generation change over NBER dates: By-region. (d) NO2 density in atmosphere change over NBER dates: By-region.

FIGURE 1. Reported GDP and signals of economic growth: China, 2006–2013. (a) Reported GDP vs. reported electricity generation: All China.
(b) Reported GDP vs. NO2 densities in atmosphere: All China. (c) Electricity generation change over NBER dates: By-region. (d) NO2 density in
atmosphere change over NBER dates: By-region.

https://doi.org/10.1017/S1365100518000056 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S1365100518000056


3330 STEPHEN D. MORRIS AND JUNJIE ZHANG

duction, is statistically significant. This calls into question the interpretability
of point estimates of combined measures using any signal.4 Instead, this pa-
per shows how to compute the sampling distribution of the combined measure
by bootstrap, and notes that these confidence bands are nonetheless useful for
validating reported GDP figures. This is therefore the extent of the empirical
question one may reasonably hope to answer, and the one which we pursue in this
paper.

In the results, we show that if one attempts to consider aggregate national
data, then one fails to reject that officially reported GDP statistics during the Great
Recession period are validated. But at the sub-national level, statistics from certain
provinces, autonomous regions, and municipalities are not validated. A subset of
these entirely satellite-identified areas corresponds to those now known to have
embellished data, due to later revelations from a 2015 corruption probe. In other
words, the methodology is also proven to work as intended.

2. DATA SET

Statistics which are merely indicative of production are usually called signals of
economic growth. Fundamentally, their relationship with GDP is not one-to-one.
In order to make substantive conclusions regarding output from any signal, it must
first be transformed into a proxy. To make this transformation, one must know or
otherwise be able to estimate the elasticity of the signal with respect to income.
We now consider what make useful signals, the panel of interest in this paper, and
how elasticities may vary or remain fixed across time and space.

2.1. Signals

Why might officially reported indices of industrial production such as electricity
generation make problematic signals? Two assumptions are always necessary to
identify the elasticity of growth with respect to the signal: (1) the signal is reliable
and (2) the relationship with output is known. With respect to industrial production
indices, a case may be made for the latter qualification. But these statistics are
reported by the same entities reporting output, casting a shadow over their credi-
bility.5 Moreover, energy consumption itself has become a performance measure
for promotion of local officials, thanks to the recently introduced mandatory target
of energy intensity [Sinton (2002), Ghanem and Zhang (2014)].6

Given these concerns, it is necessary to seek out signals which are guaranteed
to be free of distortion. The benchmark in the realm of externally verifiable
growth measurement is night-time luminosity, or “night lights.” This signal is
not only naturally indicative of energy consumption, but measured by orbiting
international satellite instruments, and publicly available. Henderson et al. (2012)
pioneered the application of this data set to formally producing combined measures
of economic growth—optimal weighted averages of proxy and reported output—
in areas where data collection is otherwise challenging. This data set has proven
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useful in many contexts, particularly in development economics. However, the
DMSP–OLS luminosity data set currently only ranges from 1992 to 2013, an
annual time dimension of just T = 22. This is limiting of time-domain business
cycle analysis.

This paper suggests satellite readings of tropospheric NO2 densities as another
useful signal of economic activity. NO2 is a byproduct of anthropogenic sources
primarily including combustion, and therefore directly indicative of economic
activity. Natural sources of NO2 including biomass burning, soil, and lightning
comprise errors in the interpretability of NO2 as a signal which, later, we model
explicitly. The satellite measurements we consider take the form of vertical column
densities (VCDs or “columns”) which are geographically gridded measurements
(up to a few square kilometers) of trace gas concentrations. VCDs are inferred
by satellites as a function of the difference between sunlight scattered in the
atmosphere versus that reflected by the Earth. High spatial resolution and sampling
frequency (up to daily) enables one to assemble a longitudinal data set which like
luminosity is guaranteed to be free of political influence, and indicative of growth.7

But unlike luminosity, NO2 data is reliable at least up to a monthly basis, allowing
one to consider business-cycle fluctuations at the regional level. The satellite VCD
readings of NO2 utilized in this paper are based on quarterly mean tropospheric
NO2 from Ozone Monitoring Instrument, a UV/Vis nadir spectrometer onboard
NASA’s EOS-Aura satellite.8 These data are publicly, freely available online at
sources including http://www.temis.nl/.

There is precedent for using NO2 columns to infer otherwise unobservable
data from China. Nitrogen oxides (NOx) is a generic umbrella term encapsulat-
ing both nitric oxides (NO) and NO2. Anthropogenic emissions of NOx are of
keen interest to scientists, as they affect the formation of ozone, and may have
harmful environmental implications including smog and acid rain. Such emissions
have surged in China over the past decades coinciding with increased economic
growth. For locations elsewhere in the world, NOx inventories are computed using
what is known as the bottom-up approach. This methodology utilizes known
fuel consumption and emissions factors, or, technology-dependent degrees of
intensity with which fuel is converted into pollution. But limited access to such
data in China in particular, where these numbers are part of local figureheads’
annual performance reviews, has led scientists to instead pursue what is known
as the top-down approach. Simply put, by this method, one attempts to deduce
emissions from satellite readings of columns [Wang et al. (2012)].9 NOx emis-
sions data are more directly indicative of human activity than NO2 densities in
that nonanthropogenic contributors are sorted out. However, these data are less
readily available to economists, since it first must be estimated using a scientific
model.

Finally, among all tropospheric species, NO2 is arguably the easiest to measure.
The short atmospheric life of NO2 means that densities are closely correlated to
emissions, and therefore may be used to accurately measure them independent of
wind or other obfuscation.10
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TABLE 1. Data set

Annual Quarterly
1993–2008 06Q1–13Q3

N = 31 regions Units (T = 16) (T = 31)

Reported output GDP yuan � �
Satellite signals Luminosity watts/cm2 �

NOx emissions tons �
NO2 columns molecules/cm2 �

Reported signals Freight traffic tons �
Electricity generation kilowatt-hours � �
Cement production tons � �
Steel production tons �∗ �∗∗

Crisis period 1997–9 2007–9

Notes: N = 31 provinces, municipalities (Beijing, Tianjin, Shanghai, and Chongqing) and autonomous regions
(Guangxi, Inner Mongolia, Tibet, Ningxia, and Xinjiang). *Tibet missing. **Tibet, Hainan, Ningxia missing.

2.2. Sample

Two separate panels are assembled, as described by Table 1. Both panels cor-
respond to the same set of N = 31 provinces, municipalities, and autonomous
regions previously depicted in Figures 1(c) and (d). But the panels differ in the time
T dimension. The time periods selected purposefully subsume two economically
challenging periods in China, during which systematic manipulation of data at the
sub-national level may have been more likely.

The first time period, at the annual frequency from 1993 to 2008, includes the
Asian Financial Crisis of 1997–1999. This annualized series is studied in part to
serve as a control from which to compare the usefulness of purely anthropogenic
NOx emissions data versus night-time luminosity. In addition, several reported
indices of industrial production including electricity generation are included.11

The second period, at the quarterly frequency from 2006 Q1–2013 Q3, includes
the Great Recession of 2007–2009. Both luminosity and freight traffic must be
dropped, as neither is available at higher than annual frequency. In this time sample,
we revert to simply using raw NO2 column data, rather than NOx emissions.
Recall, this data naturally contains errors due to nonanthropogenic sources of
NO2 densities. However, there is good reason to believe this data in itself is a
useful indicator of human activities specifically.12 Moreover, it is readily available
to economists, unlike NOx emissions, so we wish to understand if it is equally
informative.

2.3. Elasticities

Utilizing any signal to construct a proxy for growth relies on identifying the
elasticity of the signal with respect to income, β. If this signal is constant across
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regions n = 1, . . . , N and time periods t = 1, . . . , T , then the following equality
will hold with independently and identically distributed error εnt :

%�Signalnt = β × %�Outputnt + εnt . (1)

Estimating the elasticity as a fixed parameter with cross-sectional data would
require that β is fixed across n. But this does not seem to be true in the data.13

Intuitively, each area is economically distinct, and variety technologies and utilized
inputs result in distinct elasticities of each signal with respect to output; one need
only consider the distinction in technologies utilized in the largely rural western
provinces of China versus the largely urban centers in the east.14 One may further
corroborate this result by analyzing the time dimension cross-correlations for each
individual area.15 In the annual sample, these correlations fluctuate across regions;
for instance, the correlation of GDP with luminosity is 0.81 in Hainan but 0 in
Sichuan.16 So, in both samples, there is ample evidence that signal elasticities are
not constant across regions in China, a result which holds for all signals. In this
sense, β is not constant across n, and exploiting large N results to estimate (1) is
unlikely to result in a consistent estimator.

Given these observations, the perspective of this paper is that cross-sectional
areas should be small enough so that elasticities are confidently fixed across them,
and then time-series variation should be introduced to supplement the empiri-
cal analysis. Estimating the elasticity as a fixed parameter with time series data
would require that β is fixed across t . First, it must be addressed that this may
not strictly be so in the longer run, when technical change could be substantial.
For example, we might expect to observe the elasticity of NOx to decay as a
result of substitution toward less pollutant i.e. greener technologies over a long
enough horizon. In the time samples utilized in this analysis, 8 and 16 years,
there appears to be evidence that any such trend is small.17 Nonetheless, it re-
mains critical to investigate this point further, and establish that if such trends
exist, they are sufficiently slow moving for NOx to be useful as a signal. In the
following sections, while we assume the signal–output relationship is constant, in
Section 7, we show how to directly verify this assumption using two statistical
tests.

3. MODEL

The question of computing externally verifiable growth statistics for China and
other areas has been considered from the cross-sectional and time-series dimen-
sions independently. Henderson et al. (2012) construct combined measures of
economic growth for many global regions (excluding China) at certain points
in time using cross-sectional night lights data. Fernald et al. (2015) use trading
partner data to assess growth statistics in China at the national level from the time
series perspective.18
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We have seen that it may be more useful to consider the case of China from
the time series perspective, as elasticities may differ substantially across regions.
But why may it be important to consider the question of economic growth in
China at specifically the sub-national level over time? The most notable proxy
for economic growth in China is the “Li Index,” named after Chinese Premier
Li Keqiang. As then Party Secretary of Liaoning province, Li was cited through
Wikileaks cables as using electricity consumption, volume of rail cargo, and the
amount of loans disbursed as signals from which to infer his measure [e.g. Batson
(2010)]. While this quotation is widely known, it has a more subtle implication
that is often overlooked. Specifically, the fact that Party elite would be forced to
rely on such a proxy offers perspective on an aspect of Chinese political econ-
omy. The national government of China naturally desires accurate statistics for
the purpose of policy making, and theories of manipulation at this vantage are
usually refuted [Chow (2006)].19 However, independently functioning provincial
and municipality officials, vying for power, involve themselves in a promotional
tournament for advancement; their ascent is contingent upon annual performance
reviews containing GDP statistics from their district [Chen et al. (2005)]. As
evidence of the competing objectives of local and national officials, beginning
in 1998, China’s National Bureau of Statistics began to bypass some provincial
governments in data accumulation. In sum, it is the local-level change in signals
which is relevant for proxy construction, as this is the scope at which output figures
may be inaccurate.

This section offers refinements in the arena of combined measure construction
pioneered by Henderson et al. (2012). The primary objective will be to extend this
framework from a cross-sectional, to dynamic panel perspective, where large-T
results will be applicable.

3.1. Structural Equations

Let Y ∗
nt be the level of latent, or otherwise unknown, unobserved, or poorly mea-

sured output for geographical area n = 1, . . . , N in time period t = 1, . . . , T .
Generally, n may correspond to any arbitrary unit of area, ranging from an en-
tire country, to a mesh grid of the finest resolution. t typically means years or
quarters; higher frequency output data is not usually available or studied even for
sovereignties with very accurate statistical records. Henceforth, take the conven-
tion of exponent-* to mean variables which are not directly observable.

Say ỹ∗
nt = 100 × � ln Y ∗

nt ≈ %�Y ∗
nt evolves according to an AR(1) process

ỹ∗
nt = αn + ρyỹ

∗
nt−1 + ε

y
nt for macroeconomic shock ε

y
nt . αn are fixed effects

attributable to either potential output for area n, or average mismeasurement over
the time sample under consideration. Then the percentage change less-means
y∗

nt = ỹ∗
nt − E(ỹ∗

nt ) follows20

y∗
nt = ρyy

∗
nt−1 + ε

y
nt . (2)
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The following standard regularity conditions are also assumed: 0 < |ρy | < 1,
ε

y
nt ∼ IWN(0, σ 2

y ) (independent white noise) for 0 < σy < ∞, and {εy
nt } has finite

fourth moments. The shocks are therefore not serially correlated. However, they
are not necessarily uncorrelated across areas, contemporaneously. This allows for
areas to share identical shocks, but at the same time does not impose any such
restriction.

Equation (2), which imposes dynamics on the system, is unique to the model
specification of this paper, versus Henderson et al. (2012)’s setup. However, the
next three equations are largely consistent. Say that that the latent or otherwise
unobservable value of a signal, S∗

nt , is related to latent output by the relation
S∗

nt = Y
∗β
nt . Thus, β is the elasticity of the signal with respect to income. Define

s̃∗
nt = 100 × � ln S∗

nt and s∗
nt = s̃∗

nt − E(̃s∗
nt ). s

∗
nt are as such differenced from their

own fixed effects, which, for example, may arise from an attempt to “reconcile”
such signals to output. Specifically, s∗

nt is related to y∗
nt by

s∗
nt = βy∗

nt , (3)

β �= 0 by assumption. This requires that the signal is in a colloquial sense, relevant.
The observed or otherwise scientifically recorded value of the signal is related to
this latent value with error. For example, a known issue pertaining to luminosity
data is that phantom readings may occur over oceans near coastal settlements.
NO2 column data is subject to meteorological and other nonanthropogenic error.
Henceforth, this paper adopts the notation that variables without-* (snt ) represent
the observable datum corresponding to each with-* unobservable counterpart (s∗

nt ).

snt = s∗
nt + εs

nt , (4)

εs
nt ∼ IWN(0, σ 2) for 0 < σ < ∞, {εs

nt } has finite fourth moments, and {εs
nt }

is independent of {εy
nt }. In words, signal measurement error is not serially cor-

related, though possibly correlated across areas. Furthermore, it is uncorrelated
from macroeconomic shocks. Such assumptions only require that scientific or
other exogenous error in measuring the signal is idiosyncratic, and unrelated to
business cycle fluctuations.

The motivation of combined measure construction is that traditionally reported
observable output data ynt is erroneous.

ynt = y∗
nt + u∗

nt . (5)

Unlike signal measurement error εs
nt , however, output measurement error u∗

nt is
allowed to be serially correlated.

u∗
nt = ρuu

∗
nt−1 + εu

nt , (6)

0 < |ρu| < 1, εu
nt ∼ IWN(0, σ 2

u ) for 0 < σu < ∞, {εu
nt } has finite fourth moments,

and {εu
nt } is independent of {εs

nt } and {εy
nt }. In words, εu

nt may be correlated across
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areas, though not time. It is not correlated with either macroeconomic shocks, or
signal measurement error.

Allowing for u∗
nt to be serially correlated is the second significant way in

which this paper departs from the assumptions of Henderson et al. (2012). The
purpose of this generalization is both statistical and structural. From a statistical
perspective, the basic model (2) and (3), while theoretically elegant, can for
the same reason not be expected to account for all comovements in the data.
Serial correlation in measurement error enables the model to more closely match
observed experience, without confounding parsimony in specification.21 From a
structural perspective, since u∗

nt is persistent, its process also allows for systematic
human-related intervention in data reporting.22

3.2. Combined Measure

Equations (2)–(6) encapsulate the model. In total, there are six structural parame-
ters, collected in

θ
6×1

= (β, σ︸︷︷︸
Signal

, ρy, σy︸ ︷︷ ︸
Output

, ρu, σu︸ ︷︷ ︸
Error

)′. (7)

The structural parameters may be partitioned into two which are signal-specific,
and four which are not. Of those which are not, two depend upon the y-evolution
of latent output, and two upon the u-evolution of output measurement error. The
identifiability of θ and a consistent estimator θ̂ will be discussed in the following
section. Given any consistent estimator, and known relationship between signal
and latent output (3) and (4), one may construct a proxy for growth. It is the linear
projection

ẑnt = (
1/β̂

)
snt . (8)

The proxy ẑnt may be used to construct a composite estimate of output. Such a
combined measure is the weighted average xnt = (1 − φ)ynt + φẑnt . Creating an
optimal combined measure x̂nt means choosing the proxy loading φ accordingly.
The appropriate choice is a consistent estimator φ̂ for φ which minimizes the mean
squared error of xnt . The mean squared error is

V (φ) = E
[
(1 − φ)ynt + φẑnt − y∗

nt

]2 = E
[
(1 − φ)u∗

nt + (φ/β)εs
nt

]2

= (1 − φ)2 σ 2
u

1 − ρ2
u

+ φ2

β2
σ 2.

The first-order condition of V (φ) evaluated at the estimator is

V ′(φ)
∣∣
θ=θ̂

= 0 = −2(1 − φ̂)
σ̂ 2

u

1 − ρ̂2
u

+ 2φ̂

β̂2
σ̂ 2.
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Simply rearranging yields the optimal loading:

φ̂ = σ̂ 2
u

1 − ρ̂2
u

/(
σ̂ 2

u

1 − ρ̂2
u

+ σ̂ 2

β̂2

)
. (9)

From this, we may finally define the optimal combined measure of output:

x̂nt = (1 − φ̂)ynt + φ̂ẑnt . (10)

φ̂ ∈ [0, 1] is required of its definition as a weighting. A necessary and sufficient
condition is |ρ̂u| ∈ [0, 1]. In the extreme case that ρ̂u = 0 and output measurement
error is not serially correlated, both traditional output and the signal are potentially
useful. When this is so, the magnitude of the loading depends upon (1) the elasticity
of the signal with respect to output and (2) the relative magnitudes of measurement
errors. Conversely, in the extreme case that ρ̂u = 1 and output measurement error
is a random walk, then reported data is not reliable, and the combined measure is

identically the proxy. The previous assumptions restrict |ρ̂u| p→ |ρu0| ∈ (0, 1) and

β̂
p→ β0 �= 0 for consistent estimators.23 In any such admissible case, φ̂

p→ φ0 ∈
(0, 1) and the economic implication is some nontrivial convex combination of the
two extreme outcomes.

3.3. Multiple Signals

The analysis thus far has concerned itself with a lone signal snt . As many distinct
combined measures may be computed as there are signals available. However,
should there in fact be many signals available, one might wish to instead compute
a combined measure from all signals, jointly. Let us assume that there are i =
1, . . . , S signals under consideration. In terms of these, define the following vectors
of measured signals, true values, and errors:

snt
S×1

= [
snt (1) . . . snt (S)

]′
, s∗

nt
S×1

= [
s∗
nt (1) . . . s∗

nt (S)
]′

,

εs
nt

S×1
= [

εs
nt (1) . . . εs

nt (S)
]′

.

Henceforth, parenthetic (i) denotes parameters and variables which are signal
i-specific. The system equivalent of the signal measurement equation (4) is again
written,

snt = s∗
nt + εs

nt , (11)

but now, snt , s∗
nt , and εs

nt are vectors. In the case of a lone signal S = 1, there
are six structural parameters in θ (7). The first two (β, σ ) are signal-dependent,
while the latter four

(
ρy, σy, ρu, σu

)
are signal-independent. The system equivalent

has S + S(S + 1)/2 structural parameters which are signal-dependent for each
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i = 1, . . . , S, while the latter four are mutual among signals. Thus, there are
nθ = S + S(S + 1)/2 + 4 total structural parameters for S ≥ 1 signals.

θ
nθ×1

= (β ′, σ ′︸ ︷︷ ︸
S Signals

, ρy, σy︸ ︷︷ ︸
Output

, ρu, σu︸ ︷︷ ︸
Error

)′. (12)

β
S×1

= [
β(1) . . . β(S)

]′
σ

S(S+1)×1
= vech(L) L

S×S
= chol(
)



S×S

≡ E(εs
nt ε

s ′
nt )

vech(·) is the operator which selects the S(S +1)/2 unique elements on and below
the principal diagonal. chol(·) is the lower left Cholesky decomposition so that
LL′ = 
. 
 is allowed to have possibly nonzero off-diagonal elements. Finally,
note that in the special case that S = 1, then nθ = 6, and we have the previous
lone signal model setup.

Given a consistent estimator θ̂ , we also have S independent proxies for economic
growth.

ẑnt
S×1

= diag(β̂)−1snt . (13)

Recall, the individual elasticities are nonzero by assumption of the signals’ rele-
vance. Therefore, diag(β̂), the S × S square diagonal matrix with the elements of
β in order on its principal diagonal, is always invertible.

Finally, we wish to utilize these S proxies ẑnt to construct a joint composite
estimate of growth. Such a joint combined measure is the weighted average xnt =
(1 − φ′1S)ynt + φ ′̂znt , where φ is an S × 1 vector of loadings and 1S is an S × 1
vector of 1’s. Creating an optimal combined measure x̂nt means choosing the
proxy loadings φ accordingly. The appropriate choice is a consistent estimator φ̂

for φ which minimizes the mean squared error of xnt , which is

V (φ) = E
[
(1 − φ′1S)ynt + φ ′̂znt − y∗

nt

]2 = (1 − φ′1S)
2 σ 2

u

1 − ρ2
u

+φ′diag(β̂)−1
diag(β̂)−1φ.

The first-order condition of V (φ) evaluated at the estimator is

∂V (φ)

∂φ′

∣∣∣∣
θ=θ̂

1×S

= 01×S = −2(1 − φ̂′1S)1
′
S

σ̂ 2
u

1 − ρ̂2
u

+ 2φ̂′diag(β̂)−1
̂diag(β̂)−1.

Simply rearranging yields the optimal loadings:

φ̂
S×1

=
[

1S1′
S

σ̂ 2
u

1 − ρ̂2
u

+ diag(β̂)−1
̂diag(β̂)−1

]−1

× 1S

σ̂ 2
u

1 − ρ̂2
u

. (14)
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φ̂′1S ∈ [0, 1] is required of φ’s definition as a weighting. A necessary and sufficient
condition, as in the lone signal case, is |ρ̂u| ∈ [0, 1]. Intuitively, when S = 1, φ̂

reduces to the lone signal weighting (9). However, (14) is not equivalent to a
vector of (9) computed signal-by-signal for S > 1. In that case, φ̂′1S ∈ [0, 1] is
not generally satisfied. The optimal multiple signal combined measure is

x̂nt = (1 − φ̂′1S)ynt + φ̂ ′̂znt . (15)

4. METHODOLOGY

This section first establishes that the model observables have DPD representation
with serially correlated errors. Consequently, an instrumental variables general-
ization of the within-estimator typically utilized to estimate dynamic panel models
becomes useful. Inferring latent growth, however, also requires a second step of
recovering the structural parameters from these estimates. The nuisance parameters
which arise in this nonlinear mapping make any attempt to decipher latent growth
from a VAR, or other linear reduced form model, subject to misleading conclu-
sions. Finally, this ultimately computationally efficient estimator also expedites
the bootstrapping of small T sample bias correction, confidence intervals for the
structural parameters and proxy loading, and confidence bands for the combined
measure.

The model (2)–(6) contains both observable and unobservable variables, imply-
ing that it has state space representation when utilizing any lone signal. Proposition
1, proven in Online Appendix Section C, establishes that this state space also yields
parsimonious reduced form representation for the observables given any S ≥ 1
set of signals.

PROPOSITION 1 (Reduced form representation). The observables have the
representation

Ynt = Xnt� + Vnt (16)

for Xnt = (
Y ′

nt−1 ⊗ IS+1
)
R is (S + 1) × (S + 2), Ynt = [

ynt s ′
nt

]′
is (S + 1) × 1,

R an (S + 1)2 × (S + 2)-dimensional zero-one selection matrix, � a (S + 2) × 1
vector function of both the structural parameters θ and S nuisance parameters
contained in λ which sum to 1

�(θ; λ) = [
ρy ρu ψ ′]′

, (17)

ψ(θ; λ)
S×1

= (ρy − ρu)
[

λ1
β(1)

. . . λS

β(S)

]′
, (18)

λ
S×1

= [
λ1 . . . λS

]′ ; λ′1S = 1, (19)

and Vnt a (S + 1) × 1 vector MA(1) error with variance–covariance matrix

�(θ; λ) = E(VntV
′
nt ) (20)

for � a nonlinear but closed-form function of θ and λ.
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Equation (16) is interpretable from the time series dimension as by-region n

restricted VARMA(1,1) representation. Exclusion restrictions are embodied in R

and cross-equation restrictions in � and �. This representation is useful in that it
is stated entirely independently of the unobserved states. Yet, serial correlation in
the errors {Vnt } is directly attributable to the model’s inherent dependence on the
unknown status of output and reporting error.

From a panel perspective, however, this representation is more naturally inter-
preted as a realization of DPD. Specifically, this is vector DPD with serially cor-
related errors and structurally founded parametric restrictions. Aside from vector
notation, structural DPD has several more substantive distinguishing characteris-
tics from the more familiar DPD. First, the object of interest from the perspective
of identification, estimation, and inference is the structural parameters, not the
reduced form. However, it is only in the case that S = 1, when λ1 = 1 is known a
priori. So, any attempt to identify the structural parameters from multiple signals
without accounting for λ will not even yield a consistent estimator. Second, the fact
that {Vnt } is serially correlated means that estimators which assume otherwise are
subject to endogeneity problems. Third, the application of interest suggests large-
T asymptotic results are at least as important as large-N results, since locational
heterogeneity in production technology will generally imply distinct elasticities
of a given signal with respect to income. In certain cases, this might make the
interpretation of GMM estimators which presume N grows faster than T [Holtz-
Eakin et al. (1988), Arellano and Bond (1991)], or bias-correction methodologies
which rely on large N and T [Hahn and Kuersteiner (2002), Bai (2009)], unclear.

While we are ultimately interested in estimation and inference for θ , such an
analysis is impossible unless it is first possible to identify � and �. Proposition 2,
proven in Online Appendix D, extends the familiar within (covariance) estimators
from the DPD setting to the structural DPD case.

PROPOSITION 2 (Estimation of reduced form). The instrumental variables
estimator

�̂
(S+2)×1

=
[

N∑
n=1

Ẑ′
nX̂n

]−1 N∑
n=1

Ẑ′
nŶn, (21)

Ŷn
T (S+1)×1

= [
Ŷ ′

n3 . . . Ŷ ′
nT +2

]′
, X̂n

T (S+1)×(S+2)

= [
X̂′

n3 . . . X̂′
nT +2

]′
,

Ẑn
T (S+1)×(S+2)

= [
X̂′

n2 . . . X̂′
nT +1

]′
, X̂nt = (Ŷ ′

nt−1 ⊗ IS+1)R,

where {Ŷnt } is the sample analog to {Ynt }, is consistent for large T regardless of
N

�̂
p→ �0 as T → ∞, (22)

and asymptotically normal with bias depending on the relative rates of increase
of T and N √

T N(�̂ − �0)
d→ N(b(T ), Avar(�̂)) (23)
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b(T ) → 0 necessarily if N fixed T → ∞, but possibly not if both N and T are
increasing. A consistent estimator for Avar(�̂) is

Âvar(�̂) =
[
(T N)−1

N∑
n=1

Ẑ′
nX̂n

]−1

R′
̂R

[
(T N)−1

N∑
n=1

X̂′
nẐn

]−1

, (24)

and 
̂ a consistent estimator for 
 = E[(Ynt−2 ⊗ Vnt )(Ynt−2 ⊗ Vnt )
′].24

Proposition 2 represents an instrumental variables extension of Theorem 1 of
Alvarez and Arellano (2003), which investigates the within estimation of scalar
DPD models with independent errors. The estimation of � here is possible despite
serial correlation in errors simply by using lagged observables as instruments,
similar to the suggestion of Anderson and Hsiao (1981). The incidental parameter
bias b(T ) which arises in the asymptotic distribution is an artifact of the within
transformation necessary to obtain {Ŷnt }, as the data contain fixed effects [Neyman
and Scott (1948), Nickell (1981)]. This bias may not converge to zero if N grows.
Yet, it will necessarily disappear for fixed N large T .

Next, we wish to recover the structural parameters. Online Appendix Section
E.1 establishes that when there is a lone signal S = 1, the function g : θ →
(� ′, vech(�)′) is in fact simple enough to invert analytically, which inasmuch
guarantees θ is globally identified. This feature also means that an efficient indirect
least squares estimator for θ may be written in terms of the inverse mapping,

θ̂ = g−1
([

�̂ ′ vech(�̂)′
]′)

. (25)

Online Appendix Sections E.2–E.4 also detail the identification and estimation of
the structural parameters when S > 1. The advantage of estimating all parameters
together is in added efficiency. But because of the added difficulty of the nuisance
parameters, for space considerations, and because signal-by-signal analysis still
yields consistent estimates for all parameters of interest, we proceed on a signal-
by-signal basis in the remaining analysis.

5. SMALL SAMPLE PROPERTIES

The asymptotic distribution of some elements of θ̂ depend on the non-Gaussian
distribution of �̂. So, conventional asymptotic approximations for confidence
intervals are inapplicable. Moreover, analytical corrections for the incidental pa-
rameter bias b(T ) do not exist. But the fact that θ̂ is a computationally efficient
estimator makes bootstrapping such statistics feasible.

Recall, there is inherently bias in the DPD estimates if N is increasing with T . In
order to come to grips with the magnitude of these biases, consider the following
values for a hypothetical model with S = 1: β = 3, σ = 1e − 3, ρy =
0.7, σy = 1e − 3, ρu = 0.5, σu = 1e − 3. Using these as data-generating
values, the bias in the indirect least squares estimator for θ with variable N and
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TABLE 2. Small sample bias

N = 1 N = 3 N = 6 N = 10

T = 15 T = 30 T = 15 T = 30 T = 15 T = 30 T = 15 T = 30

β −0.26 −0.35 −0.37 −0.41 −0.39 −0.36 −0.39 −0.33
σ 0 0 0 0 0 0 0 0
ρy −0.08 −0.03 0 0 0 0 0 0
σy 0 0 0 0 0 0 0 0
ρu −0.25 −0.08 −0.08 −0.07 −0.07 −0.06 −0.06 −0.04
σu 0 0 0 0 0 0 0 0
φ 0.44 −0.07 −0.44 −0.16 −0.16 −0.16 −0.17 −0.15

Notes: Small sample bias in estimator across cross-sectional and time series dimensions.

T is computed by Monte Carlo experiment. The results are summarized in Table
2. Recall, the annual sample utilized in this paper has N = 31 and T = 16,
while the quarterly sample has T = 31. Samples with cross-sectional dimension
of N = 10 and lower are investigated in these Monte Carlo experiments, since as
discussed, it is desirable to partition provinces, municipalities, and autonomous
regions into as many distinct tranches as possible. In the entire range of potential
panel dimensions to be utilized, β̂ is consistently downward-biased by about 10%
of its true value. So, henceforth, our suggestion is to utilize the bias-corrected
estimator θ̂ � = 2θ̂ − 1

B

∑B
b=1 θ̂ (b) with bootstrap draws {θ̂ (b)}.25

Next, we wish to numerically examine the coverage probabilities of either
asymptotic or bootstrap confidence intervals for the bias corrected estimator θ̂ �.
Using again the previous data-generating values, asymptotic 95% confidence in-
tervals are computed for β, ρy , and ρu over a range of N and T in the top pane
of Table 3.26 In all cases, β is undercovered. In order to investigate the possibility
that bootstrap confidence intervals perform better, Monte Carlo experiments to
compute the bootstrap confidence interval’s coverage probability are carried out
using the methodology described by Horowitz (2001).27 Results are described in
the bottom pane of Table 3. The results indicate that for a time series dimension
of T = 15, roughly the magnitude considered in the annual sample in this paper, a
cross-sectional sample of minimally N = 10 is required to obtain correct coverage
probabilities for all parameters of interest. However, if the time series dimension
is expanded to T = 30, roughly the magnitude considered in the quarterly sample
in this paper, a cross-sectional sample of just N = 6 is required to obtain correct
coverage. In either case, these results indicate that bootstrap confidence intervals
are accurate.

Finally, we may also bootstrap percentile confidence intervals for the computed
combined measure series {̂xnt } [equation (10)] itself. These are henceforth known
as confidence bands.28 The key economic question of this paper is whether offi-
cially reported output statistics may be validated using other signals of growth.
Naturally, in any given sample, the combined measure x̂nt and reported figure ynt
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TABLE 3. Monte Carlo: Actual coverage probability of 95% confidence interval
(%)

Asymptotic

N = 1 N = 3 N = 6 N = 10

T = 15 T = 30 T = 15 T = 30 T = 15 T = 30 T = 15 T = 30

β 11 6 4 2 1 1 1 1
ρy 92 93 91 92 85 88 80 79
ρu 93 94 94 93 87 91 84 89

Bootstrap

N = 1 N = 3 N = 6 N = 10

T = 15 T = 30 T = 15 T = 30 T = 15 T = 30 T = 15 T = 30

β 95 97 99 98 98 97 96 95
σ 96 98 98 98 98 98 98 98
ρy 92 94 96 98 99 99 99 99
σy 96 98 99 98 98 96 97 96
ρu 67 71 77 87 87 94 93 97
σu 91 92 92 95 96 96 96 98
φ 92 93 93 96 95 95 95 96

Notes: Bold indicates coverage probability for all parameters within +/− 5% from actual.

may differ. Is this evidence that officially reported statistics may not be validated?
Not just the combined measure, but its entire sampling distribution, is the object
of interest: Is the difference between the combined measure and reported output,
x̂nt−ynt , statistically significant? Level α confidence bands quantify the reasonable
range in which true output figures likely lie. We now make use of these statistics
in the analysis of the data.

6. RESULTS

6.1. The Asian Financial Crisis: 1997–1999

Recalling the discussion of Section 2, the annualized data set, spanning from 1993
to 2008 (T = 16) and across all N = 31 regions, is utilized. On the basis of the
results of the Monte Carlo experiments in Table 3, these regions are separated
into two groups of 10 and one of 11 with similar elasticities with respect to NOx

emissions before estimation.29 Group 1 (N = 10) contains highest elasticities,
Group 3 (N = 10) contains smallest elasticities, and Group 2 (N = 11) contains
mid-range.

Using these groupings, bias-corrected estimates for the structural parameters θ

and weightings φ are computed. Larger φ estimates indicate the given proxy is
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TABLE 4. Estimates: Annual sample, 1993–2008

Group 1 Group 2 Group 3 Pooled
N = 10 N = 11 N = 10 N = 31

φL −0.40 0.01 0.81 0.27
(−0.81,1.23) (−1.82,1.91) (−0.14,2.38) (−0.38,1.92)

φN −0.69 −1.48 0.22 −0.60
(−1.00,0.81) (−2.16,−0.06) (−0.19,1.87) (−0.94,1.03)

φF 0.97* 1.24* −0.79 −0.97
(0.97,1.02) (0.78,2.80) (−2.03,2.26) (−1.59,0.68)

φE 0.62* −0.80 −1.19 −0.76
(0.07,1.98) (−1.28,0.64) (−2.29,0.37) (−1.23,0.76)

φC 1.18* 0.95* 1.04* 1.05*
(0.82,2.77) (0.93,1.16) (1.03,1.07) (0.87,1.82)

Notes: *Significance at 95% confidence level (confidence interval). Groupings are described
by Figure G.1(a); Group 1 is high NOx elasticity, Group 3 is low. L: Luminosity. N: NO2 columns.
F: Freight volume. E: Electricity generation. C: Cement production.

relatively more useful in combined measure construction. Signal-by-signal esti-
mates for φ with 95% bootstrap confidence intervals are listed in Table 4.30 Large
confidence intervals in all cases disallow us from attributing statistical significance
to φ for either luminosity or NOx emissions. Statistical significance may only be
attributed to some indices of industrial production, which in the first place are not
verifiable.

These results indicate that it is difficult to compute a reliable point estimate for
a combined measure of economic growth using any signal.31 This is disappointing
in that there is intuitive appeal to having an alternative combined measured of
economic growth for use besides GDP. But it is a useful reality check insofar
as understanding how much information these signals actually contain, and their
robustness in policy deliberations. Signals of economic growth are just that, and
they are not correlated with underlying output growth without error. Depending
on a point estimate calculated using any one signal leaves the analyst subject to
unknown idiosyncratic variation, and should generally be avoided.

However, there is yet usefulness in the computed combined measure. The ul-
timate purpose of this analysis is to determine whether officially reported output
data are supported by other signals of growth. Bootstrapped confidence bands,
described in Section 5 and computed using any signal or signals, provide a formal
means for determining this. Thus, these signals may be useful regardless of the
fact that point estimates are noisy.

As a case in point, in Figure 2, confidence bands across signals are depicted
for the four municipalities in the sample.32 In every case, reported output escapes
the confidence bands. So, one may reject the null hypothesis that reported output
data is consistent with remotely measured luminosity readings during the given
period, with a 5% chance that this rejection is incorrect. Why is it that reported
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TABLE 5. Estimates: Quarterly sample, 2006 Q1–2013 Q3

Group 1 Group 2 Group 3 Group 4 Group 5 Pooled
N = 6 N = 6 N = 7 N = 6 N = 6 N = 31

φN −0.02 −0.27 −1.69* −1.61 −1.40 −1.58*
(−2.64,1.20) (−0.63,1.27) (−3.91,−3e-3) (−3.98,1.82) (−7.03,1.74) (−3.11,−0.11)

φE 0.95 −0.30 0.99 1.03 6.95 0.03
(−1.13,4.09) (−0.75,1.21) (−0.02,2.50) (−1.20,2.98) (−9.65,11.67) (−1.45,1.59)

φC 0.78 −0.51 −0.59 0.41 1.08* −0.33
(−0.87,2.40) (−0.86,1.00) (−0.99,1.17) (−0.19,1.64) (0.68,0.86) (−0.75,1.30)

Notes: *Significance at 95% confidence level (confidence interval). Groupings are described by Figure G.1(b). Group
1 is high NO2 elasticity, Group 6 is low. N: NO2 columns. E: Electricity generation. C: Cement production.

output tends to appear too high before the recessionary period, and too low during
and after? Recall, officials also face a data smoothing motive [Nakamura et al.
(2016)]. If the percentage change in data is overreported for a period of time,
it must ultimately be underreported to maintain trend. Thus, we may interpret
statistically significant positive-then-negative deviations from confidence bands
as evidence of data smoothing.

6.2. The Great Recession: 2007–2009

We now consider the later, quarterly time sample which includes the Great Reces-
sion and uses NO2 column data. The first concern is to separate the N = 31 regions
into smaller groupings with similar structural parameter values. The Monte Carlo
experiment summarized in Table 3 indicates that given the longer T = 31 length
of this data set, a cross-sectional dimension of just N = 6 is now likely to lead
to correct coverage probabilities. Five groups of this size are defined, beginning
with low NO2 elasticities (Group 1) throughout high elasticity (Group 5).33

Quarterly data on luminosity and freight is not available. Table 5, therefore,
presents signal-independent estimates of φ for the remaining three signals.34 Once
again, confidence intervals tend to be too large to attribute statistical significance
to this weighting.

But also again, the more important statistic from the perspective of data valida-
tion are the confidence bands arising from each signal. Confidence bands computed
using each NO2, electricity generation, and cement production individually over
the quarterly period are depicted for each of the four municipalities in the sample
in Figure 3.35 Most clearly, data from Chongqing are not validated, and judged
too high in the aftermath of the crisis, across all signals.

Are the conclusions we draw from this analysis reasonable? Let us consider
the case of data from Chongqing. In the midst of the downturn in 2008, the
“Chongqing model,” brought forth by the city’s then Party secretary Bo Xilai,
was hailed as an exemplary economic initiative. Confidence bands indicate that
the annualized output figures reported just following the NBER dates—peaking
at a whopping 65% annualized growth rate in 2010—are not consistent with NO2
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FIGURE 2. Annual 95% confidence bands: Municipalities by signals. Notes: Black line: Annual reported % change, regional output. Gray shading:
1997–1999 Asian Financial Crisis period. Colored shading: confidence bands. Confidence bands are computed by bootstrap using each respective
Group 1–3 estimates. Beijing, Tianjin, and Shanghai are in Annual Group 1. Chongqing is in Group 2. Point estimates of combined measures are
noisy, and do not provide economic intuition, and are thus not depicted. They are available in the data set annual.mat using the weightings in
Table 4.
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FIGURE 3. Quarterly 95% confidence bands: Municipalities by signals. Notes: Black line:
Annualized quarterly reported % change, regional output. Gray shading: 2007–2009 Global
Financial Crisis period. Colored shading: confidence bands. Confidence bands are computed
by bootstrap using each respective Group 1–5 estimates. Shanghai is in Quarterly Group 1.
Beijing and Chongqing are in Group 3. Tianjin is in Group 4. Point estimates of combined
measures are noisy, and do not provide economic intuition, and are thus not depicted. They
are available in the data set quarterly.mat using the weightings in Table 5.

columns. In fact, this specific data is also considered suspect by observers outside
of this analysis, suggesting this conclusion is robust.36

But while data from Chongqing are merely suspect, there are some regions
which we now know definitively to have falsified data in this era. These include
the northeast provinces of Liaoning, Jilin, and Heilongjiang, which were found
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to have doctored GDP data during an anti-corruption probe in 2015. Publicly, the
official news agency Xinhua cited rampant fabrication of data over past years in a
December 11, 2015 report. Online Appendix Figure G.7 shows reported GDP from
Jilin (second row, fourth column) was too high during the height of the crisis period.
Reported GDP from Liaoning (second row, third column) and Heilongjiang (third
row, first column) was marginally too high in the immediate aftermath. Thus, we
can also verify ex-post that this methodology works as intended; using only satellite
data, we have identified a subset of regions where data is suspect, and may also
verify this conclusion is correct for a subset of these regions. At the same time, data
are validated for 10 out of 31 region throughout the sample, so we are not flatly re-
jecting all data. Finally, note that in Figure G.7, data from China as a whole are val-
idated (first row, first column). An analyst, using an entirely correct statistical ap-
proach, would fail to reject data reliability if blunt national level data were utilized.

7. TWO DIRECT TESTS FOR TECHNICAL CHANGE

How sensitive are these results to the assumptions? One structural assumption
made previously was that there is a stable elasticity of the signal with respect to
output, β. This was written S∗

nt = Y
∗β
nt for S∗

nt and Y ∗
nt the unobservable true levels

of signal and output. This became s∗
nt = βy∗

nt for s∗
nt and y∗

nt each percentage
change less means in equation (3).

However, if technical change causes substitution toward cleaner technologies
over time, then perhaps there is not a stable relationship between the levels of the
NO2 signal S∗

nt and output Y ∗
nt . In particular, perhaps such signals become less

responsive to the production of goods and services as technologies evolve and
become more environmentally friendly. This real possibility is at the very least
worthy of consideration. In this section, we provide two simple and direct tests
for this sort of technical change.

First, we consider the implication of technical change for the model’s spec-
ification. Say the response of the signal to output decays at a regular percent-
age rate b ≥ 0. In comparison with the original setup, this would be written
S∗

nt = exp{−(b/100)t}Y ∗β
nt , which nests the original setup for b = 0. This change

generalizes equation (3) to

s∗
nt = βy∗

nt − b(t − t) (26)

for t the mean time period. Using (26), the model’s new reduced form is solved
for in Online Appendix H.

The model’s more general solution for b possibly not zero implies there are two
direct ways to test for the null hypothesis H0 : b = 0, no technical change. The
first way uses the regression,37

�ynt = b0 + b1�ynt−1 + b2�snt−1 + �v
y
nt , (27)

Test 1: H0 : b ≡ b0/b2 = 0,

https://doi.org/10.1017/S1365100518000056 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100518000056


VALIDATING CHINA’S OUTPUT DATA 3349

TABLE 6. Wald statistic for null: No technical change (b = 0)

Test 1 Test 2
Period Sample p-value p-value

Annual, 1993–2008. Signal: NOx. T = 16, N = 31. 0.87 0.98
Contains: Asian Financial Crisis.
Quarterly, 2006 Q1–2013 Q3. Signal: NO2. T = 31, N = 31. 0.26 0.29
Contains: The Great Recession.

where � is the period-to-period change and �v
y
nt is an MA(2) process. Given this

error structure, estimates of the parameters may be obtained using �ynt−3 and
�snt−3, or any larger lags, as instruments. Given also the structural restrictions
underlying these regression coefficients implied by (26) and derived in Appendix
H, the null hypothesis may be framed as the simple nonlinear restriction H0 : b ≡
b0/b2 = 0. Note, (27) fits within the framework studied by Arellano and Bond
(1991), which also uses lagged differences as instruments. Moreover, we need not
model any other underlying structural relationships to test this null hypothesis. In
particular, we need not directly estimate any of the structural parameters which
were previously shown to be subject to small sample biases, and other distortions.
Therefore, as in Arellano and Bond’s study, there is no reason not to conduct this
test using a typical nonlinear Wald statistic and asymptotic results.38

The second way of testing for technical change, which also emerges as a
consequence of the reduced form derived in Online Appendix H, utilizes the
regression,39

�snt = b0 + b1�snt−1 + �vs
nt , (28)

Test 2: H0 : b ≡ b0/(b1 − 1) = 0.

�vs
nt is also MA(2), so �snt−3 may be used as instruments. Similar to Test 1,

the null hypothesis of no technical change may in this case be framed as a set of
nonlinear restrictions on the regression coefficients.40

Table 6 presents p-values for the null that there is no technical change using
either of these tests. In both time samples, across both tests, we may not reject
the null hypothesis that there is no technical change. Therefore, the previously
held assumption that β is relatively constant across either time sample is formally
supported in the data. Given technical change in this parameter is potentially
intuitive, how can this result be interpreted? This result in no way precludes
technical change in the longer run. Rather, one reasonable interpretation is that in
the time samples utilized in this paper, 8 and 16 years, any technical change is
small enough for the assumption that β is basically constant to not be a bad one.

Regardless, how would one proceed if they used a longer time sample and
found that the null of no technical change, b = 0, were rejected? Or if they simply
believed these dynamics were important? Equations (27) and (28) not only are
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the basis of two hypothesis tests, but also make up a generalized version of the
main model utilized in this paper (Proposition 1), albeit in differences. Working
in differences, the previous analysis could theoretically be entirely repeated, now
allowing for b > 0. We leave this claim for further study.

8. CONCLUSION

Can officially reported output statistics be externally validated using other veri-
fiable signals of economic growth? This paper has presented evidence that data
from China may be either validated, or not, on the basis of international satellite
readings of tropospheric NO2 densities. The results indicate that reported output
figures over the Great Recession period are corroborated by satellite readings
for many sub-national regions within China. However, reported figures for some
areas are not supported, and we now know a subset of these areas to have falsi-
fied data due to a 2015 corruption probe, validating the approach. NO2 column
data is freely available at high temporal frequency for areas worldwide. This
makes it a useful companion to annual night lights data in the economist’s
toolkit, particularly with respect to the study of business cycle frequency
fluctuations.

A feature of data misreporting in China is that it arises at the sub-national
level, so any analysis should be conducted at least in part cross-sectionally. At the
same time, elasticities of a given signal with respect to income differ regionally
due to differences in production technology, so the time series dimension of the
data should also be exploited. This paper has presented a DPD framework which
addresses these concerns, and is also generally applicable to areas worldwide.
A qualitative finding is that point estimates of combined measures of economic
growth are noisy, calling into question the usefulness and/or reliability of point
estimates of combined measures of economic growth. Yet, the sampling distri-
bution of the combined measure nonetheless provides a meaningful, formalized
statistical basis from which to validate—or fail to validate—reported data.

SUPPLEMENTARY MATERIAL

To view supplementary material for this article, please visit http://dx.doi.org/
S1365100518000056.

NOTES

1. Only recently has there been developed a quarterly macroeconomic data set for China comparable
with those commonly utilized in empirical research on Western economies [Chang et al. (2015)].

2. Here and throughout, NBER recession dates for the Great Recession period in the Unted States
are used as a proxy to the analogous period in China, since similar dates for China are not publicly
reported.

3. Analogs to Figures 1(a) and (b) for each regions depicted in Figures 1(c) and (d) are given in the
Online Appendix, Section A, Figures A.1 and A.2. All supplementary tables and figures later labeled
“A. ” are found there.
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4. For example, Alder et al. (2016) have found that point estimates of the effect of Special Economic
Zones on growth in China are lower using luminosity-based combined measures, rather than officially
reported data alone. In interpreting such results, having a grasp on the range of uncertainty inherent in
the combined measure itself is important.

5. A common viewpoint is that data manipulation in China has become more cunning in recent years
[Koch-Weser (2013)]. Holz (2014) has argued that previously offered evidences of data manipulation
is uncompelling, and that China’s National Bureau of Statistics has the freedom to doctor figures in a
“virtually undetectable” manner.

6. Liu et al. (2015) estimate that energy consumption in China during the 2010–2012 period was
10% above officially reported statistics.

7. For example, it has been noted that the resurgence in Chinese growth following the Global
Financial Crisis is clearly evident in this data [Itahashi et al. (2014)].

8. Daily data are available, but noisy. The monthly average is reliable. We make use of the quarterly
average, since we are considering quarterly GDP data.

9. Prominent scientific studies following this approach include Lin and McElroy (2011). Specif-
ically, NO2 columns are used to constrain NOx emissions estimates via a chemical transport model
relating stocks (columns) to flows (emissions). Purely human-made emissions can be determined
independently via a transport model using surface activity data such as land cover, wild fire, and mete-
orological inputs. Because anthropogenic emissions of NOx are mainly attributed to the combustion of
fossil fuels, energy consumption can also be inferred directly using a known emissions factor [Akimoto
et al. (2006)].

10. In fact, NO2 readings have been used to indirectly infer other more difficult to measure species,
such as carbon dioxide, over China [Berenzin et al. (2013)].

11. The evolution of the percentage change in these series for China as a whole is depicted in Figure
A.3.

12. Lin and McElroy (2011) previously noted that NO2 VCDs dissipated considerably during the
2007–9 period. Figure A.4 plots these series over the sample, and once again indicates a clear trough
in all series during the crisis period.

13. Figure A.5 depicts estimates by-region for both luminosity and NOx in the annual sample. These
estimates suggest that this latter assumption is not correct; estimated luminosity elasticities vary from
β̂ = 0.2 for Beijing to β̂ = 0.9 for Chongqing. A similar conclusion is found with respect to NO2 in
the quarterly sample, as depicted in Figure A.6.

14. Figure A.9 underscores these regional differences in signal elasticities. It plots the percentage
change in electricity generation and NO2 columns over the NBER dates previously depicted in Figures
1(c) and (d) against respective regional percentage change in GDP. If the elasticity of either signal with
respect to GDP is geographically constant across China, then one should observe an upward trend, but
any such trend is insignificant.

15. Table A.1 lists correlations of reported GDP with each signal, and each luminosity and NOx
emissions versus each other signal, for the annual sample. Table A.2 presents the same, excluding
luminosity and freight traffic, for NO2 columns in the quarterly sample.

16. Due to the apparent low correlation of steel production with GDP found in this analysis, and
its multiple missing values, for the remainder of the paper, it is omitted in favor of the remaining
signals.

17. As a first step of determining whether β is relatively constant across t , one may exploit variability
across n to estimate β within each period. In Figure A.7, elasticities for both luminosity and NOx
emissions are estimated for each year in the annual sample. They are statistically indistinguishable
from one another over time, for each signal. This suggests that β is indeed constant across the time
series dimension of the data for each area, and exploiting large T results to estimate β is valid. The
fact that NOx estimates are as constant as luminosity is meaningful insofar as the latter signal is never
subject to a time trend; labor and light are non-substitutable. In Figure A.8, the same is shown to hold
for NO2 columns across each quarter in the later sample.
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18. Nakamura et al. (2016) use household expenditures to study inflation and consumption at the
national level from a time series perspective, but do not consider output directly.

19. The national government has publicly ventured to cut down on associated graft. In early 2016,
Wang Baoan, director of China’s National Bureau of Statistics, was put under scrutiny by the Com-
munist Party for what it called “serious violations.”

20. Online Appendix Section B provides an example of a simple dynamic stochastic general equi-
librium model which corroborates the reduced form assumption in (2).

21. This approach has a long tradition in economic modeling [Sargent (1989)].
22. Consider the situation in which an authority overseeing area n designates an output target.

This target is reasonably derived from macroeconomic fundamentals about what rule of motion
output has τnt = ρyτnt−1 + ε

y
nt + ετ

nt and ετ
nt ∼ IWN(0, σ 2

τ ) for 0 < στ < ∞. In words, the
target, in units percentage change less means, follows the same rule of motion as output, with some
error. This would reflect the will of an authority with knowledge about the true structure of the
economy, but with expectations about the effectiveness of policies outside of the scope of (2). In
opposition to this authority, assume that there is an output reporter from area n who manipulates
output data ynt exactly to the extent such that it achieves this target in each period: u∗

nt = τnt − y∗
nt .

Substituting yields u∗
nt = ρyu∗

nt−1 + ετ
nt . This is the same as the assumed rule of motion for reporting

error (6).

23.
p→ denotes convergence in probability and subscript-0 denotes population value.

24. The functional form of the estimator 
̂ is given in Online Appendix D, equation (D.6).
25. See Online Appendix Section F.1.
26. These parameters depend only on � so their confidence interval is easily obtained using the

delta method.
27. See Online Appendix Section F.2 for the computation of bootstrap confidence intervals. Fol-

lowing Horowitz (2001)’s design, for each of 1000+ Monte Carlo draws, a bootstrap confidence
interval, requiring another 1000+ draws, is computed. The dimensionality of this computation makes
it intensive. Code was parallelized over 40 CPUs.

28. Online Appendix Section F.3 details the computation of bootstrapped confidence
bands.

29. For each of the three group-dependent estimators to be consistent, the structural parameters θ

must be in common of all regions within each bin. As an objective means of choosing these groupings,
one may utilize the preliminary by-region annual NOx emission estimated elasticities β̂ listed in
Figure A.5 to provide an ordering. The groupings implied by these preliminary estimates are depicted
in Figure G.1(a).

30. Estimates for each structural parameter in θ are listed in Online Appendix Tables G.1–G.2.
31. Chen and Nordhaus (2011) also call into question the usefulness of combined measures of

economic growth. They conduct a world-wide cross-sectional analysis using luminosity and find that
estimates for φ are small for any but developing countries, i.e. excluding middle-income countries like
China. They do not consider the sampling distribution.

32. Figures G.2–G.6 depict confidence bands across all regions for all signals in the annual
sample.

33. The preliminary estimates of NO2 column signal elasticities β̂ for this data set, given in Figure
A.6, are used to provide an ordering from which to define these groupings. The results of this objective
method of determining groupings is given in Figure G.1(b). This entirely data-based method of choosing
groups puts together regions which are more geographically and economically similar; high elasticity
groups are primarily located in the eastern urban provinces, while low elasticity groups are primarily
in the western, less urban provinces. Furthermore, that high elasticity groups are located in the east
makes sense, as this is the region with relatively more automobile traffic and energy production more
generally.

34. Estimates for the structural parameters θ are given in Tables G.3 and G.4.
35. All regions are depicted in Figures G.7–G.9.
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36. Xilai was deposed from office and sentenced to life in prison for corruption on September 22,
2013. In the words of his predecessor, Wang Yang in 2009, “Some of our GDP figures sure look rosy.”
[Liu (2009)].

37. Compare (27) with Online Appendix equation (H.4), first row.
38. See Online Appendix equation (H.5) for the form of Test 1’s Wald statistic.
39. Compare (28) with Online Appendix equation (H.4), second row.
40. See Online Appendix equation (H.6) for the form of Test 2’s Wald statistic.
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