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Abstract. We derive a system of nonlinear equations that govern the dynamics
of low-frequency short-wavelength electromagnetic waves in the presence of
equilibrium density, temperature, magnetic field and velocity gradients. In the
linear limit, a local dispersion relation is obtained and analyzed. New η

e
-driven

electromagnetic drift modes and instabilities are shown to exist. In the
nonlinear case, the temporal behaviour of a nonlinear dissipative system can be
written in the form of Lorenz- and Stenflo-type equations that admit chaotic
trajectories. On the other hand, the stationary solutions of the nonlinear system
can be represented in the form of dipolar and vortex-chain solutions.

1. Introduction

In recent years, there has been increasing interest in numerous types of drift-
wave instabilities in order to explain the enhanced fluctuations causing
anomalous particle and heat transport (Kadomtsev 1965; Mikhailovskii 1974;
Hasegawa and Mima 1978). It is well known that electron-temperature-
gradient, η

e
, modes may be responsible for the anomalous electron energy

transport for various toroidal devices. Several authors have investigated η
e
(η

i
)

electrostatic modes in slab geometry for a uniform magnetized plasma (Coppi
et al. 1967; Liu 1971; Rozhanskii 1981; Shukla 1987). However, when the
plasma β (particle kinetic pressure}magnetic pressure) exceeds the electron-to-
ion mass ratio, the electromagnetic effects on η

e
modes must be taken into

account.
In this paper, we investigate the linear and nonlinear properties of low-

frequency (ω'ω
ce
) and short-wavelength electromagnetic drift–dissipative

waves in an electron plasma with equilibrium density, temperature, magnetic
field and velocity gradients. For this purpose, we employ the hydrodynamic
equations of Braginskii (1965) and derive a system of nonlinear equations. In
the linear limit, a new dispersion relation under the local approximation is
derived, and a number of interesting limiting cases are discussed. On the other
hand, in the nonlinear case, we discuss possible stationary and non-stationary
solutions of the newly derived nonlinear equations.

Let us consider the nonlinear propagation of low-frequency (ω'ω
ce
, where

ω
ce

is the electron cyclotron frequency) electromagnetic waves in the presence
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of equilibrium density, temperature and magnetic field gradients along with
equilibrium velocity gradients d

x
v
e!
(x)¯ v!

e!
. Here v

e!
(x) is the magnetic-field-

aligned plasma sheared flow. We assume that the difference in the equilibrium
flow velocities of ions and electrons leads to a small shear component of the
magnetic field.

The electron and ion velocity under the drift approximation are
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are the usual E¬B
!

and diamagnetic drifts respectively. Here

E¯®¡φ®
1

c
¦
t
A

z
z#

is the electric field vector, φ(A
z
) is the electrostatic (parallel component of the

vector) potential, Bv ¯¡A
z
¬z# is the perpendicular component of the wave

magnetic field, c is the speed of light and ν
e
is the electron collision frequency.

The parallel component of the electron velocity perturbation is determined
from the parallel component of Ampe' re’s law, giving

v
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E
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4πen
e
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z
,

where ~#v ¯ ¦#x¦#y.
The dynamics of electromagnetic waves is governed by the equations of

continuity, momentum and energy balance, which are supplemented by the
charge-neutrality condition and Ampe' re’s law. From these equations, after
letting
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Equations (1)–(4) are the desired nonlinear coupled equations describing
electromagnetic fluctuations in a non-uniform magnetoplasma with equilibrium
density, temperature and magnetic field gradients and with plasma sheared
flows.

In the linear limit, assuming that all the perturbed quantities are proportional
to exp[i(k[r®ωt)], where k and ω are the wavevector and the frequency
respectively, Fourier transforming (1)–(4) gives the following dispersion
relation:
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is the ion Larmor radius with the electron temperature. For a uniform B
!
and

for non-dissipative case, the dispersion relation takes the following simple
form:
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In the absence of an equilibrium density gradient, assuming that k#v λ#
De

' 1
and ω( k

z
v
e!

, (6) shows the growth rate of instability to be
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Equation (7) tells us that the equilibrium sheared flow is responsible for the
instability. In the absence of v

e!
and for k#v λ#

De
' 1 and η

e
¯®1, we get the

threshold of instability as
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we obtain another interesting limiting case, namely

ω¯
1io3

2 )ωn
T
e!

β
!
ck

z
(η

e
1)

en
e!

k#v ρ#
s
(1b

e
) )

"/$

, (9)

which shows that plasma will become unstable whenever the equilibrium
electron density and temperature gradients are in the opposite direction. This
also shows an oscillatory instability with a real frequency
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and imaginary part γ¯o3ω
r
.
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Next, we present the nonlinear coherent vortex solutions of the coupled
equations (1)–(4), by introducing a new frame ξ¯ yαz®ut, where α and u are
constants, and assuming that φ, A

z
, δn and δT are functions of x and ξ only.

Assuming that at equilibrium the density and temperature gradients are zero
and that the plasma is embedded in a constant external magnetic field such that
λ#
De

~#v ' 1 and u( v
e!
, (1)–(4) respectively can be rewritten as

/φ δn
e
¯/

A 0ne!
¦
x
v
e!

uB
!

A
z


cα

4πeu
~#v A

z1 , (11)

/φ 9(1®λ#
e
~#v)A

z
®

cα
!

u
φ:/

A 0cαT
e!

en
e!

u
δn

e


cα

eu
δT

e1¯ 0, (12)

/φ 0δTe
®

2T
e!

3n
e!

δn
e1E 0, (13)

/φ ~#v φ¯
eB#

!

m
i
n
!
c#

/
A 0ne!

¦
x
v
e!

uB
!

A
z


cα

4πeu
~#v A

z1 , (14)

where

/φ 3 ¦ξ®
c

uB
!

(¦
x
φ¦ξ®¦ξ φ¦

x
),

/
A

3 ¦ξ®
1

αB
!

(¦
x
A

z
¦ξ®¦ξ Az

¦
x
), α

!
¯α®

ω
v

ω
ce

.

Obtaining the stationary solutions of (11)–(14) is a rather involved process, and
can only be done numerically. However, we discuss here some approximate
solutions by considering first an inertial-wave case in which one may ignore the
density fluctuations. We further assume that λ#

e
~#v A

z
'A

z
by assuming that

the scale size of the vortex is much smaller than the electron skin depth. Then
(12) gives
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Substituting (15) into (14), we get
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In the absence of velocity shear, (16) takes the following form of the
Navier–Stokes equation:
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Equation (17) is satisfied by
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where φ
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and K are arbitrary constants and a

!
represents the size of a vortex.

For a#
!
" 1, the solution (19) represents a typical vortex-chain or Kelvin–Stuart

‘cat’s eyes ’ solution (Mikhailovskii 1974; Shukla et al. 1998).
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Here we also assume that
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and f
#
is a constant of integration. Equation (24) is a fourth-order differential

equation that admits a spatially bounded dipolar-vortex solution (Mikhailovskii
1974; Shukla et al. 1998).

2. Chaotic behaviour of electromagnetic fluctuations

In order to study the temporal behaviour of nonlinearly interacting finite-
amplitude two-dimensional electromagnetic waves (i.e. ¦
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¯ 0) in a collisional

magnetoplasma without density gradient, (1)–(4) respectively can be rewritten
as
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We follow the approach of Stenflo (1996) and introduce the ansatz
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nonlinear coupling between various amplitudes:
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Here

σ
!
¯

µ
i
(1k#λ#

e
)

η
e

, σ
"
¯

K#v D
e
(1k#λ#

e
)

η
e
K#

,

r¯®
β
"
k
y
a
"

η
e
K#a

#

, b¯
4K#

x
(1K#λ#

e
)

K#(14K#
x
λ#
e
)
,

s
!
¯®

γ
#
(k#®4k#

x
) (1k#λ#

e
) k

x
k
y
a
#
a
$

a
"
η
e
K%

,

s
"
¯

β
#
K

x
K

y
a
$
a
%

a
#
η
e
K#

,

s
#
¯

β
#
K

x
K

y
(1k#λ#

e
) a

#
a
%

2η
e
K#(14K#

x
λ#
e
) a

$

,

s
$
¯

α
#
K

x
K

y
(k#®4k#

x
) (1K#λ#

e
) a

#
a
$

η
e
K#a

%

,

with K#¯K#
x
K#

y
. It is worth mentioning here that we have dropped the terms

proportional to sin(3K
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x) in the derivation of (31).
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Equations (31) are the generalized Lorenz–Stenflo equations, whose proper-
ties can be studied both analytically and numerically by means of standard
techniques. The equilibrium points of (31) can be obtained by setting time-
derivative terms equal to zero and solving this nonlinear set of coupled
equations. The 3¬3 matrix case has been studied in some detail by Mirza and
Shukla (1997). It is worth mentioning that the detailed behaviour of the chaotic
motion can be studied by solving (31) numerically. However, this investigation
is beyond the scope of this paper.

The stability of the stationary states can be studied by a simple linear
analysis. Letting
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the linearized system is
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) represents a

stationary state. The corresponding characteristic equation is thus

(σ
"
λ) (λb) [λ#(1σ

!
)λσ

!
(1®r)]¯ 0, (33)

which governs the linear stability of the stationary state. If we set σ
"
¯ s

"
¯

s
#
¯ s

$
¯ 0 then we recover the results of our earlier investigation (Mirza and

Shukla 1997).

3. Discussion and conclusions

In summary, we have derived a set of nonlinear equations that govern the
coupling of low-frequency electromagnetic waves in a non-uniform collisional
magnetoplasma that has an equilibrium density gradient as well as a sheared
plasma flow. The physical mechanism of the present instability is the coupling
of free energy stored in the sheared equilibrium plasma flow to Alfve! n-like
modes. For a collision-dominated magnetoplasma without a density gradient,
there is the possibility of a resistive instability of Alfve! n-like waves in the
presence of equilibrium sheared ion flows. We have also shown that the
stationary solutions of the nonlinear system without dissipation and density
gradients can be represented in the form of dipolar and vortex chains.
Furthermore, linearly excited finite-amplitude electromagnetic waves interact
among themselves and lead to a chaotic state due to mode couplings. This has
been demonstrated by seeking a time-dependent solution of the nonlinear
equations that govern the dynamics of finite-amplitude electromagnetic waves
in a resistive medium. We have found that the nonlinear dynamics of
electromagnetic turbulence in the presence of sheared plasma flows without the
density gradient can be expressed as a set of four coupled-mode equations, or
simply the generalized Lorenz–Stenflo equations, which admit chaotic
trajectories. The results of our investigation should be helpful in understanding
the properties of electromagnetic turbulence in low-temperature laboratory and
space plasmas.
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