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Abstract. In this paper, we define a Cayley–Dickson process for k-coalgebras prov-
ing some results that describe the properties of the final coalgebra, knowing the properties
of the initial one. Namely, after applying the Cayley–Dickson process for k-coalgebras to
a coassociative coalgebra, we obtain a coalternative one. Moreover, the first coalgebra is
cocommutative if and only if the final coalgebra is coassociative. Finally we extend these
results to a more general approach of D-coalgebras, where D is a k-coalgebra, presenting
a class of examples of coalternative (non-coassociative) coalgebras obtained from group
D-coalgebras.

2010 Mathematics Subject Classification. 16T15

1. Introduction and previous definitions. The first alternative (nonassociative)
algebra which appeared in mathematical literature was the octonion algebra in the pio-
neer work of John Graves, in 1844. However, this structure was widely reported by Arthur
Cayley as a result of a duplication process of the quaternion algebra: considering an
algebra A with identity element endowed with an involutive antiautomorphism, the Cayley–
Dickson process allows us to construct a new algebra Ā with double dimension that is
an extension of the previous one, with same identity element and also endowed with an
involutive antiautomorphism. This process is very useful for applications and also from
a theoretical point of view, where we can predict some properties of Ā considering the
known structure of A. In particular, in [3] it is proved that if we apply Cayley–Dickson
process to an algebra kFG, we obtain a deformed group algebra kF̄(G × Z2), where F̄ is a
cochain defined from the cochain F. Using this approach the octonions arise in [3] as an
algebra in the monoidal category of graded vector spaces, that is, as an example of quasial-
gebra. Albuquerque, Elduque, and Pérez-Izquierdo in [2] went little further describing the
octonions as an example of division alternative quasialgebra. Moreover, they classified all
division alternative quasialgebras, proving that these algebras are obtained by applying
three times a generalized Cayley–Dickson process to an associative and commutative alge-
bra. Using a similar approach, in [5] Bulacu introduces the quasicoalgebras as coalgebras
in the monoidal category of graded vector spaces, defining a Cayley–Dickson process for
coalgebras starting with the trivial coalgebra (k, Idk). In [5], the octonions are shown to be
a natural example of quasicoalgebra obtained by this duplication process for coalgebras.
Bulacu goes one step further studying the compatibility between the algebra and coalgebra
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structures for the Cayley algebras, proving that weak braided Hopf algebras are actually
obtained.

In the algebra case, it was proved in [2] that if A is a strictly alternative division quasial-
gebra over a field k, then there are a field extension K|k, and an abelian group G with a
symmetric 2-cochain F : G × G → K \ {0}, such that A � KFG. It is said, in the general
algebra case, a quasialgebra over k is interpreted as a quasialgebra over K with k|K a field
extension. Moreover, the Cayley–Dickson process is reinterpreted in this situation by con-
sidering K as a new base field, in such a way that on KF[G] coexist two related structures,
namely that of k-algebra and another one of K-algebra.

When turning to coalgebras, the Cayley–Dickson process defined in [5] considers the
structure of k-coalgebra. It is enough in order to apply the construction to the particular
case kF[G] tackled in [5], where the base field is always k. Nevertheless, in order to provide
a general version of the Cayley–Dickson process for coalgebras, we must consider the
coexistence of the starting k-coalgebra structure with other related but different coalgebra
structure.

Notice that for a general algebra A, the construction considered in [2] is applied to
the case where K = Ae, the subspace of A consisting on homogeneous elements of degree
e the unit element of G, that in turn results to be a field extension of k, so it makes sense
to tensorize over K. But for a general coalgebra C, we do not know whether the new base
D is a field extension of k, because we do not have a division k-coalgebra structure on C.
We just have that D is a k-coalgebra. In this situation, it makes no sense to tensorize over
D and the suitable analogue to the tensor product is the cotensor product −�D−. Actually,
in the algebra case − ⊗K − is defined as a cokernel by using a K-bimodule structure of A,
while in the coalgebra case −�D− is defined as a kernel by using a (D,D)-bicomodule
structure of C. Notice however that if D = k, as actually happens in the case considered
in [5], then − ⊗k − = −�D−, so the construction we will present in this work extends that
of [5].

The paper is organized as follows. In this section, we present the preliminaries and
basic definitions that can be seen in [1, 7, 8]. In Section 2, we construct a Cayley–
Dickson process for k-coalgebras proving some theorems that describe the properties of
the resulting coalgebra just from the properties of the initial one. Namely, after applying
the Cayley–Dickson process for k-coalgebras to a coassociative coalgebra endowed with a
strong anti-coinvolutive coalgebra map, we obtain a coalternative one. In this case, the first
coalgebra is cocommutative if and only if the final coalgebra is coassociative. In Section 3,
we show that all these results obtained for k-coalgebras can be extended to a more gen-
eral structure of D-coalgebras, in such a way that we can accurately describe the relation
between both coexisting structures. Finally, in Section 4, we present a class of examples of
coalgebras, derived from group coalgebras, obtained from the generalized Cayley–Dickson
process.

We recall that a monoidal category is a category C together with a functor ⊗ : C ×
C → C called the tensor product, an object 1 ∈ C called the unit object, and natural isomor-
phisms a : ⊗ ◦ (⊗ × Id)→ ⊗ ◦ (Id × ⊗) (the associativity constraint), l : ⊗ ◦ (1 × Id)→
Id (the left unit constraint) and r : ⊗ ◦ (Id × 1)→ Id (the right unit constraint). In addition,
a satisfies the pentagon axiom, and l and r satisfy the triangle axiom. A monoidal category
is called strict if the associativity, right unit, and left unit constraints are identities (see [7]
for details). By Theorem XI.5.3 of [7], any monoidal category is monoidally equivalent
to a strict one, and by Mac Lane’s coherence theorem, in order to obtain general results
we can proceed as if the constraints were all identities. A braiding for a strict monoidal
category is a natural isomorphism � : ⊗ → ⊗ ◦ τ satisfying some hexagon axioms, where
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τ : C × C → C × C is the switch functor defined by τ(X , Y ) := (Y , X ), for X , Y in C. If,
moreover, �X ,Y =�−1

Y ,X for any objects X , Y of C, we say that C is symmetric (see [7] for
details). From now on, we assume that our starting category C is strict, symmetric with
braiding �, and such that the base object is a field k, otherwise specified. For simplicity of
notation, we will denote by unadorned − ⊗ −, the tensor product − ⊗k − over k in C.

A k-algebra in C is a triple (A,mA, ηA)—where A is an object of C, mA : A ⊗ A → A, a
morphism called multiplication of A, and ηA : 1 → A, a morphism called unit morphism—
such that mA ◦ (ηA ⊗ IdA)= mA ◦ (IdA ⊗ ηA)= IdA.

A k-coalgebra in C is a triple (C, �C, εC)—where C is an object of C, �C : C →
C ⊗ C, a morphism called comultiplication of C, and εC : C → 1, a morphism called counit
morphism—such that (εC ⊗ IdC) ◦�C = (IdC ⊗ εC) ◦�C = IdC . Unless otherwise speci-
fied, we understand coalgebras as k-coalgebras, although in Section 3 we will explicitly
define and actually work with a more general notion of coalgebra structure. Given two
coalgebras (C, �C, εC), (D, �D, εD), a map f : C → D is said to be a coalgebra morphism
if it satisfies that �D ◦ f = ( f ⊗ f ) ◦�C and εD ◦ f = εC.

From now on, although all the definitions of this section as well as some results on
Section 4 are valid in general, we will assume that the base field k is such that char(k) �= 2
and we will consider C as the monoidal category of graded vector spaces.

In addition, if there is no risk of confusion, for simplicity of notation we will use�, ε,
and Id instead of �C , εC , and IdC , respectively, when the referred coalgebra C is clearly
understood.
We say that the coalgebra is coassociative if in addition

(�⊗ Id) ◦�= (Id ⊗�) ◦�. (1.1)

Notice that if C is not strict, then the coassociativity condition (1.1) is required up to the
associativity constraint a. A coalgebra is said to be cocommutative provided that

�=� ◦�. (1.2)

DEFINITION 1.1. A coalgebra (C, �, ε) is said to be coalternative if the coproduct
satisfies the coalternativity properties:

(�⊗ Id) ◦�+ ((� ◦�)⊗ Id) ◦�= (� ⊗ Id) ◦ (Id ⊗�) ◦�+ (Id ⊗�) ◦�, (1.3)

(Id ⊗�) ◦�+ (Id ⊗ (� ◦�)) ◦�= (Id ⊗�) ◦ (�⊗ Id) ◦�+ (�⊗ Id) ◦�. (1.4)

It is clear that if a coalgebra (C, �, ε) is coassociative, then it is coalternative.

REMARK 1.2. Let (C, �, ε) be a coalgebra. Then (C, �coop =� ◦�, ε) is also a
coalgebra, called the co-opposite coalgebra. Furthermore, it holds that (C, �, ε) is coas-
sociative if and only if so is (C, �coop, ε), and the same holds regarding to cocommutativity
and coalternativity.

DEFINITION 1.3. Let C,D be two coalgebras and q : C → D a coalgebra morphism.

1. The morphism q is said to be coassociative if it satisfies that

(q ⊗ Id ⊗ Id) ◦ (Id ⊗�) ◦�= (q ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦�, (1.5)

(Id ⊗ q ⊗ Id) ◦ (Id ⊗�) ◦�= (Id ⊗ q ⊗ Id) ◦ (�⊗ Id) ◦�, (1.6)

(Id ⊗ Id ⊗ q) ◦ (Id ⊗�) ◦�= (Id ⊗ Id ⊗ q) ◦ (�⊗ Id) ◦�. (1.7)
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2. The morphism q is said to be cocentral if it satisfies that

(q ⊗ Id) ◦�=� ◦ (Id ⊗ q) ◦�. (1.8)

Notice that the preceding definition of cocentral coalgebra morphism means a generaliza-
tion of that introduced in [6].

Given a coalgebra D, a right D-comodule is a k-vector space C together with a k-linear
map ρC : C → C ⊗ D such that

(Id ⊗�D) ◦ ρC = (ρC ⊗ Id) ◦ ρC, (1.9)

(Id ⊗ ε) ◦ ρC = Id. (1.10)

Symmetrically, a left D-comodule is a k-vector space C together with a k-linear map Cρ :
C → D ⊗ C such that

(�D ⊗ Id) ◦ Cρ = (Id ⊗ Cρ) ◦ Cρ, (1.11)

(ε ⊗ Id) ◦ Cρ = Id. (1.12)

Finally, if C is a right and a left D-comodule with corresponding structure morphisms ρC

and Cρ, we say that it is a (D,D)-bicomodule if in addition it holds that

(Cρ ⊗ Id) ◦ ρC = (Id ⊗ ρC) ◦ Cρ. (1.13)

LEMMA 1.4. Let C,D be two k-coalgebras and q : C → D a coassociative coalgebra
morphism. Then C can be endowed with the (D,D)-bicomodule structure given by

ρC := (Id ⊗ q) ◦�C and Cρ := (q ⊗ Id) ◦�C.

DEFINITION 1.5. A coalgebra (C, �, ε) is said to be anti-coinvolutive if it is endowed
with an anti-coinvolution σ : C → C, that is, a morphism satisfying

σ 2 = Id, (1.14)

ε = ε ◦ σ, (1.15)

� ◦ σ = (σ ⊗ σ) ◦� ◦�. (1.16)

We say that C is strongly anti-coinvolutive if, in addition, the following conditions hold:

� ◦�+ (σ ⊗ Id) ◦� ◦�=�+ (σ ⊗ Id) ◦�, (1.17)

� ◦�+ (Id ⊗ σ) ◦� ◦�=�+ (Id ⊗ σ) ◦�. (1.18)

Obviously, if C is a cocommutative and anti-coinvolutive coalgebra, then the anti-
coinvolution is necessarily strong.

2. The double process for k-coalgebras. From a non-necessarily coassociative k-
coalgebra with anti-coinvolution, the Cayley–Dickson process provides an infinite chain
of non-necessarily coassociative coalgebras over k. In each step of this chain, we have a
k-coalgebra endowed with an anti-coinvolution map such that it contributes to the structure
of the k-coalgebra in the next step. We proceed now to construct such a Cayley–Dickson
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process for k-coalgebras what means a generalization of that developed in [5]. In the next
section, we will make use of this approach to extend the process to the more general
structure of D-coalgebras.

Our goal is to obtain, from a finite dimensional anti-coinvolutive coalgebra
(C, �, ε, σ ), a new coalgebra C′ = C ⊕ uC, of twice the dimension, with u just a for-
mal symbol to make distinction between the two components of the direct sum. Notice that
the symbol u can be interpreted as an isomorphism of k-vector spaces with inverse given
by u−1(uc)= c.

DEFINITION 2.1. For a fixed α ∈ k \ {0}, we define the morphism �′ : C′ → C′ ⊗ C′
by

�′|C := 1

2

(
�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�)

, (2.1)

�′|uC := 1

2

(
(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�) ◦ u−1, (2.2)

the morphism ε′ : C′ → k by

ε′|C := 2ε, ε′|uC := 0, (2.3)

and the morphism σ ′ : C′ → C′ by

σ ′|C := σ, σ ′|uC := −IduC. (2.4)

We will say that (C′, �′, ε′, σ ′) is the result of applying the Cayley–Dickson process to the
coalgebra (C, �, ε, σ ).

The following theorem shows the result of applying one step of the Cayley–Dickson
process.

THEOREM 2.2. Within the notations of Definition 2.1, if (C, �, ε, σ ) is a coasso-
ciative and strongly anti-coinvolutive coalgebra, then (C′, �′, ε′, σ ′) is a coalternative
anti-coinvolutive coalgebra.

Proof. First of all, (C′, �′, ε′, σ ′) is a coalgebra. Indeed,

(ε′ ⊗ Id) ◦�′|C = 1

2
(ε′ ⊗ Id) ◦

(
�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�

)

= (ε ⊗ Id) ◦�= Id|C,
and since ε ◦ σ = ε, we have

(ε′ ⊗ Id) ◦�′|uC = 1

2
(ε′ ⊗ Id)

(
(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�

)
◦ u−1

= (ε ⊗ Id) ◦ (σ ⊗ u) ◦� ◦ u−1

= (Id ⊗ u) ◦ (ε ⊗ Id) ◦� ◦ u−1 = IduC.

Now, we prove that σ ′ is an anti-coinvolution for C′. It is easy to check that σ ′2 = Id
and ε′ = ε′ ◦ σ ′. Finally, in order to prove (1.16), when restricting to C on the one hand, we
have

�′ ◦ σ ′|C =�′|C ◦ σ = 1

2

(
� ◦ σ + α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦� ◦ σ

)
,
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and on the other hand,

(σ ′ ⊗ σ ′) ◦� ◦�′|C = 1

2

(
(σ ′ ⊗ σ ′) ◦� ◦ (

�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�))

= 1

2

(
(σ ⊗ σ) ◦� ◦�+ α(u ⊗ u) ◦� ◦ (σ ⊗ Id) ◦� ◦�

)
.

The required equality follows because by (1.16), for σ we get �(σ)= (σ ⊗ σ) ◦� ◦�,
and using in addition (1.14) for σ, knowing that ψ is symmetric, we obtain that (σ ⊗ Id) ◦
� ◦�(σ)=� ◦ (σ ⊗ Id) ◦� ◦�. When restricting to uC, by the same arguments we get
that

(σ ′ ⊗ σ ′) ◦� ◦�′|uC

= 1

2
(σ ′ ⊗ σ ′) ◦

(
� ◦ (σ ⊗ u) ◦�+� ◦ (u ⊗ Id) ◦� ◦�

)
◦ u−1

= −1

2

(
(Id ⊗ σ) ◦� ◦ (σ ⊗ u) ◦� ◦ u−1 + (σ ⊗ Id) ◦� ◦ (u ⊗ Id) ◦� ◦� ◦ u−1

)

= −1

2

(
(Id ⊗ σ) ◦ (u ⊗ σ) ◦� ◦� ◦ u−1 + (σ ⊗ u) ◦� ◦ u−1

)

= −1

2

(
(u ⊗ Id) ◦� ◦�+ (σ ⊗ u) ◦�

)
◦ u−1 = −�′|uC =�′ ◦ σ ′|uC.

Concerning coalternativity, we just describe the proof for condition (1.3) when restric-
ting to C, because the proof for (1.4) is similar.

When restricting to C, the left-hand side of equality (1.3) is as follows:

(�′ ⊗ Id) ◦�′ + ((� ◦�′)⊗ Id) ◦�′|C
= 1

2

(
(�′ ⊗ Id)

(
�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�)

+ ((� ◦�′)⊗ Id)
(
�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�))

= 1

4

(
(�⊗ Id) ◦�+ α(u ⊗ u ⊗ Id) ◦ (σ ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�

+ α(Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(u ⊗ Id ⊗ u) ◦ (� ⊗ Id) ◦ (σ ⊗ σ ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ (� ⊗ Id) ◦ (�⊗ Id) ◦�
+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗ σ ⊗ Id) ◦ (�⊗ Id) ◦�
+ α(� ⊗ Id) ◦ (Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(Id ⊗ u ⊗ u) ◦ (σ ⊗ σ ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�

)
.

Moreover, if we reorder terms in the above sum and apply (1.14), (1.16), and the symmetry
of the braiding, we get that this preceding sum can be expressed as

(�′ ⊗ Id) ◦�′ + ((� ◦�′)⊗ Id) ◦�′|C
= 1

4

(
(�⊗ Id) ◦�+ (� ⊗ Id) ◦ (�⊗ Id) ◦�

+ α(u ⊗ u ⊗ Id) ◦ (σ ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�
+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗ σ ⊗ Id) ◦ (�⊗ Id) ◦�
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+ α(u ⊗ Id ⊗ u) ◦ (σ ⊗ σ ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(u ⊗ Id ⊗ u) ◦ (σ ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (ψ ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(Id ⊗ u ⊗ u) ◦ (σ ⊗ σ ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�

)
.

For simplicity of notation, we define

X :=
(
((σ ⊗ Id) ◦ψ ◦�)⊗ Id

)
◦�+

(
((Id ⊗ σ) ◦�)⊗ Id

)
◦�,

taken from the partial sum of the second and third summands,

Y :=
(
((σ ⊗ σ) ◦�)⊗ Id

)
◦� ◦�+

(
((σ ⊗ Id) ◦�)⊗ Id

)
◦� ◦�,

taken from the partial sum of the fourth and fifth summands, and

Z :=
(
((Id ⊗ σ) ◦ψ ◦�)⊗ Id

)
◦� ◦�+

(
((σ ⊗ σ) ◦ψ ◦�)⊗ Id

)
◦� ◦�,

taken from the partial sum of the sixth and seventh summands.
In relation to the right side of equality (1.3), when restricting to C, we have

(Id ⊗�′) ◦�′ + (� ⊗ Id) ◦ (Id ⊗�′) ◦�′|C
= 1

2

(
(Id ⊗�′) ◦ (

�+ α((u ⊗ u)⊗ (σ ⊗ Id) ◦� ◦�))

+ (� ⊗ Id) ◦ (Id ⊗�′) ◦ (
�+ α((u ⊗ u)⊗ (σ ⊗ Id) ◦� ◦�))

)

= 1

4

(
(Id ⊗�) ◦�+ α(Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (�⊗ Id) ◦�

+ α(u ⊗ σ ⊗ u) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�
+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�
+ (� ⊗ Id) ◦ (Id ⊗�) ◦�
+ α(� ⊗ Id) ◦ (Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (�⊗ Id) ◦�
+ α(� ⊗ Id) ◦ (u ⊗ σ ⊗ u) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�
+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗ σ ⊗ Id) ◦ (�⊗ Id) ◦� ◦�

)
.

Again by reordering the terms of the preceding sum and using that � and � ◦� are
coassociative, we can rewrite the sum in the following way:

(Id ⊗�′) ◦�′ + (� ⊗ Id) ◦ (Id ⊗�′) ◦�′

= 1

4

(
(Id ⊗�) ◦�+ (� ⊗ Id) ◦ (Id ⊗�) ◦�

+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�
+ α(u ⊗ u ⊗ Id) ◦ (Id ⊗ σ ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ α(u ⊗ σ ⊗ u) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�
+ α(� ⊗ Id) ◦ (Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (�⊗ Id) ◦�
+ α(Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (�⊗ Id) ◦�
+ α(� ⊗ Id) ◦ (u ⊗ σ ⊗ u) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦� ◦�

)
.
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Proceeding as before, we define

X ′ := (σ ⊗ (� ◦�)) ◦� ◦�+ (Id ⊗ σ ⊗ Id) ◦ (�⊗ id) ◦� ◦�,
taken from the partial sum of the second and third summands,

Y ′ :=
(
σ ⊗ ((σ ⊗ Id) ◦�)

)
◦� ◦�+

(
(� ◦ (Id ⊗ σ))⊗ Id

)
◦ (Id ⊗�) ◦ (�⊗ Id) ◦�,

taken from the partial sum of the fourth and fifth summands, and

Z′ :=
(
(� ◦ (σ ⊗ σ))⊗ Id

)
◦ (Id ⊗�) ◦� ◦�+ (Id ⊗ σ Id) ◦ (Id ⊗�) ◦ (�⊗ Id) ◦�,

taken from the partial sum of the sixth and seventh summands.
We can now check that the left and right sides of (1.3) are equal in this case. Indeed,

X = X ′ holds because of Remark 1.2 and equation (1.17). As far as Y = Y ′, first of all we
observe that Y = (� ⊗ Id) ◦ Z and Y ′ = (� ⊗ Id) ◦ Z′, so it is enough to prove that Z =
Z′, that in turn follows applying equations (1.17) and (1.18) and Remark 1.2. Finally, the
remaining corresponding summands are equal in virtue of the coassociativity of (C, �, ε).
The proofs for conditions (1.3) and (1.4), when restricting to uC, follow similar arguments.

THEOREM 2.3. Within the notations of Theorem 2.2, if (C, �, ε, σ ) is a coassociative,
cocommutative, and anti-coinvolutive coalgebra, then (C′, �′, ε′, σ ′) is a coassociative
and anti-coinvolutive coalgebra.

Proof. The proof of the fact that (C′, �′, ε′, σ ′) is a coalgebra with anti-coinvolution
is the same as in Theorem 2.2.
We proceed now to check the coassociativity condition. As far as�′|C is concerned, on the
one hand, we have

(�′ ⊗ Id) ◦�′|C = 1

2
(�′ ⊗ Id) ◦ (

�+ α((u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�))

= 1

4

(
(�⊗ Id) ◦�

+ α(u ⊗ u ⊗ Id) ◦ (σ ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�
+ α(Id ⊗ u ⊗ u) ◦ (σ ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦ (σ ⊗ Id) ◦� ◦�
+ α(u ⊗ Id ⊗ u) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦ (σ ⊗ Id) ◦� ◦�

)
,

and on the other hand, we have

(Id ⊗�′) ◦�′|C = 1

2
(Id ⊗�′) ◦ (

�+ α((u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�))

= 1

4

(
(Id ⊗�) ◦�

+ α(Id ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦�
+ α(u ⊗ Id ⊗ u) ◦ (σ ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦� ◦�
+ α(u ⊗ u ⊗ Id) ◦ (σ ⊗ Id ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦� ◦�

)
.

But each summand in the former sum corresponds with another in the latter. Indeed,
as C is coassociative we get (�⊗ Id) ◦�= (Id ⊗�) ◦�. By cocommutativity and
coassociativity on C, we obtain that
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(σ ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�= (σ ⊗ Id ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦� ◦�,
so the second summand in the former sum corresponds to the fourth in the latter. By using
the fact that σ is an anti-coinvolution and again cocommutativity and coassociativity on C,
it holds that

(σ ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦ (σ ⊗ Id) ◦� ◦�= (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦�,
so the second summand in the former sum corresponds to the first in the latter. For the
remaining term, the proof is analogous.

As far as �′|uC is concerned, on the one hand, we have

(�′ ⊗ Id) ◦�′|uC = 1

2
(�′ ⊗ Id) ◦ (

(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�) ◦ u−1

= 1

4

(
(Id ⊗ Id ⊗ u) ◦ (�⊗ Id) ◦ (σ ⊗ Id) ◦�

+ α(u ⊗ u ⊗ u) ◦ (σ ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦ (σ ⊗ Id) ◦�
+ (Id ⊗ u ⊗ Id) ◦ (σ ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
+ (u ⊗ Id ⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�

)
◦ u−1,

and on the other hand, it happens that

(Id ⊗�′) ◦�′|uC = 1

2
(Id ⊗�′) ◦ (

(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�) ◦ u−1

= 1

4

(
(Id ⊗ Id ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦�

+ (Id ⊗ u ⊗ Id) ◦ (Id ⊗�) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦�
+ (u ⊗ Id ⊗ Id) ◦ (Id ⊗�) ◦� ◦�
+ α(u ⊗ u ⊗ u) ◦ (Id ⊗ σ ⊗ Id) ◦ (Id ⊗ (� ◦�)) ◦� ◦�

)
◦ u−1.

The proofs of the equalities

(�⊗ Id) ◦ (σ ⊗ Id) ◦�= (Id ⊗ σ ⊗ Id) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦�,
(σ ⊗ Id ⊗ Id) ◦ ((� ◦� ◦ σ)⊗ Id) ◦�= (Id ⊗ σ ⊗ Id) ◦ (Id ⊗ (� ◦�)) ◦� ◦�,
(σ ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦� ◦�= (Id ⊗�) ◦ (Id ⊗�) ◦ (σ ⊗ Id) ◦�,
(� ⊗ Id) ◦ (�⊗ Id) ◦� ◦�= (Id ⊗�) ◦� ◦�

use the same arguments to those applied to prove the corresponding equalities in the case
of �|C , relying on the coassociativity and cocommutativity of C and the fact that σ is an
anti-coinvolution for C.

THEOREM 2.4. Within the notations of Definition 2.1, if (C, �, ε, σ ) is a coassocia-
tive, non-cocommutative, and strongly anti-coinvolutive coalgebra, then (C′, �′, ε′, σ ′) is
a coalternative non-coassociative, and anti-coinvolutive coalgebra.

Proof. By Theorem 2.2, we know that (C′, �′, ε′, σ ′) is a coalternative anti-
coinvolutive coalgebra. We suppose that C′ is coassociative and try to reach a contradic-
tion. Actually, if C’ were coassociative, then (�′ ⊗ Id) ◦�′|C = (Id ⊗�′) ◦�′|C , and in
particular

((� ◦�)⊗ Id) ◦�= (Id ⊗ (� ◦�)) ◦� ◦�. (2.5)
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As C is coassociative by hypothesis, so is the co-opposite coalgebra and then we can
rephrase equation (2.5) as

((� ◦�)⊗ Id) ◦�= ((� ◦�)⊗ Id) ◦� ◦�.
Now, composing with (εC ⊗ Id ⊗ Id) on both sides of the last equation we get that �=
� ◦�, it is said, C is a cocommutative coalgebra. Thus, we reach a contradiction.

3. The double process for D-coalgebras. In this section, we show that all the results
shown in Section 2 for k-coalgebras with tensor product − ⊗k − can be extended to a more
general structure, such as the D-coalgebras, being D an arbitrary k-coalgebra (see [4] for
details).

DEFINITION 3.1. Let D be a k-coalgebra. For C a right D-comodule and E a left D-
comodule, the cotensor product C�DE is defined as the following equalizer in the category
of vector spaces:

C�DE �� C ⊗ E
Id⊗Eρ

��
ρC⊗Id �� C ⊗ D ⊗ E.

If C, E are (D,D)-bicomodules, then C�DE can be endowed with a (D,D)-
bicomodule structure as was shown in [4, 11.3-(3)]. Notice that −�D− preserves direct
limits, so also direct sums [4, 10.5], and as we are dealing with vector spaces, it also pre-
serves injections [4, 10.4]. Notice also that since C�DE is a kernel, for any morphism
f : P → C ⊗ E with image contained in C�DE, there exists a unique f̃ : P → C�DE such
that i ◦ f̃ = f .

DEFINITION 3.2. Let (C, �C, εC), (D, �D, εD) be two k-coalgebras and q : C → D a
coassociative and cocentral coalgebra morphism. Under these conditions, we say that C is
a D-coalgebra, with structure (C, �q

C, ε
q
C), where �q

C is the factorization of �C through
C�DC, and εq

C := q.
These morphisms satisfy the coalgebra conditions, considering on C the D-

bicomodule structure given by Cρ = (q ⊗ IdC) ◦�C , ρC = (IdC ⊗ q) ◦�C . Indeed, using
that q is coassociative and [4, 11.3], it follows that D�DC � C � C�DD as D-comodules.
Hence, two different coalgebra structures coexist on C.

REMARK 3.3. From now on, otherwise specified, we consider the (D,D)-bicomodule
structure on C ⊗ C given by

C⊗Cρ := ((q ⊗ Id) ◦�)⊗ Id and ρC⊗C := Id ⊗ ((Id ⊗ q) ◦�), (3.1)

and on C�DC the one given by the factorization through D ⊗ (C�DC), respectively,
(C�DC)⊗ D, of the morphims:

C⊗Cρ ◦ iC,C, respectively, ρC⊗C ◦ iC,C, (3.2)

where iC,C : C�DC → C ⊗ C denotes the canonical inclusion.

LEMMA 3.4. Let C be a D-coalgebra. All compositions included as summands in the
conditions (1.3) and (1.4) of coalternative coalgebra factorize through the corresponding
cotensor products (C�DC)�DC and C�D(C�DC).
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Proof. First of all, it is obvious that (�⊗ Id) ◦� and (Id ⊗�) ◦� factorize through
(C�DC)�DC and C�D(C�DC) because q is coassociative.

With concern to the composition ((� ◦�)⊗ Id) ◦�, we can proceed as follows:

(Id ⊗ q ⊗ Id ⊗ Id) ◦ (Id ⊗�⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�
=

((
(� ⊗ Id) ◦ (q ⊗�) ◦ (�⊗ Id) ◦�) ⊗ Id

)
◦�

=
((
(� ⊗ Id) ◦ (q ⊗�) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�) ⊗ Id

)
◦�

=
((
(� ⊗ Id) ◦ (Id ⊗�) ◦ ((� ◦ (Id ⊗ q) ◦�)⊗ Id) ◦�) ⊗ Id

)
◦�

=
(
(� ⊗ Id) ◦ (Id ⊗�) ◦ (

((� ◦ (Id ⊗ q))⊗ Id) ◦ ((Id ⊗�) ◦�)) ⊗ Id
)

◦�
=

((
(((Id ⊗ q) ◦� ◦�)⊗ Id) ◦� ◦�) ⊗ Id

)
◦�

=
((
(((Id ⊗ q) ◦�)⊗ Id) ◦� ◦�) ⊗ Id

)
◦�,

where the first, third, and fifth equalities hold by naturality of the braiding, the second and
the sixth because q is cocentral, and the fourth one by coassociativity of q.

Hence, as − ⊗k C is left exact, we know that there exists a unique f : C → (C�DC)⊗
C such that

(iC,C ⊗ Id) ◦ f = (� ⊗ Id) ◦ (�⊗ Id) ◦�.
Moreover,

(
((iC,C ⊗ IdD) ◦ ρC�DC)⊗ Id

)
◦ f

=
(
((Id ⊗ Id ⊗ q) ◦ (Id ⊗�) ◦ iC,C)⊗ Id

)
◦ f

=
(
((Id ⊗ Id ⊗ q) ◦ (Id ⊗�) ◦� ◦�)⊗ Id

)
◦�

=
(
((� ⊗ q) ◦ (Id ⊗�) ◦�)⊗ Id

)
◦�

=
(
((� ⊗ Id) ◦ (�⊗ q) ◦�)⊗ Id

)
◦�

= (� ⊗ q ⊗ Id) ◦ (�⊗�) ◦�
= (Id ⊗ q ⊗ Id) ◦ (iC,C ⊗�) ◦ f .

As iC,C is an equalizer, it is a monomorphism, and so is iC,C ⊗ IdD ⊗ IdC , that in turns
implies that

(ρC�DC ⊗ Id) ◦ f = (C�DC ⊗C ρ) ◦ f .

Henceforth, there exists a unique g : C → (C�DC)�DC such that iC�DC,C ◦ g = f .
Summing up, we have

(iC,C ⊗ Id) ◦ iC�DC,C ◦ g = (iC,C ⊗ Id) ◦ f = (� ⊗ Id) ◦ (�⊗ Id) ◦�,
so (� ⊗ Id) ◦ (�⊗ Id) ◦� factorizes through (C�DC)�DC.
Following a similar pattern, we could prove also that (� ⊗ Id) ◦ (�⊗ Id) ◦� factorizes
through C�D(C�DC). The corresponding proofs for the remaining compositions in (1.3)
and (1.4) are analogous.
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We introduce now a generalization of the Cayley–Dickson process discussed in
Section 2 by using an endomorphism instead of a scalar α ∈ k.

DEFINITION 3.5. Let D be an arbitrary coalgebra and (C, �, ε, σ ) a strongly anti-
coinvolutive coalgebra with a D-coalgebra structure q : C → D such that q ◦ σ = q. Let
γ : D → k be any nonzero coalgebra morphism and define γ̃ : C → C as the composition

γ̃ := ((γ ◦ q)⊗ Id) ◦�.
We take C′ = C ⊕ uC as in Section 2, the morphisms ε′ and σ ′ as in (2.3) and (2.4),

respectively, and define �′ : C′ → C′ ⊗ C′ as follows:

�′|C := 1
2

(
�+ ((u ◦ σ)⊗ u) ◦ (Id ⊗ γ̃ ) ◦� ◦�

)
,

�′|uC := 1
2

(
(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�

)
◦ u−1.

We will say that (C′, �′, ε′, σ ′) is the result of applying the generalized Cayley–
Dickson process to the coalgebra (C, �, ε, σ ).

REMARK 3.6. As q is cocentral and k the unit object of the category, it holds that

γ̃ = ((γ ◦ q)⊗ Id) ◦� ◦�= (Id ⊗ (γ ◦ q)) ◦�. (3.3)

Notice also that, if we take D = k the trivial coalgebra and q = εC , then it results that
−�D− = − ⊗k − and the structure of D-coalgebra of C is just its k-structure. In addi-
tion, in this case γ̃ = γ ⊗ IdC , it is said, multiplication by an scalar. As a consequence, we
recover the Cayley–Dickson process discussed in Section 2.

PROPOSITION 3.7. Within the conditions of Definition 3.5, the coproduct �′ : C′ →
C′ ⊗ C′ factorizes through the cotensor

C′�DC′ = (C�DC)⊕ (C�DuC)⊕ (uC�DC)⊕ (uC�DuC).

Proof. First of all, as −�D− preserves direct limits, we have

C′�DC′ = (C�DC)⊕ (C�DuC)⊕ (uC�DC)⊕ (uC�DuC),

so we are reduced to check that each morphism acting as a summand in the definition of
�′ factorizes through the corresponding summand in the kernel. Notice also that as u is a
(D,D)-bicomodule isomorphism, it is not necessary to consider it in this proof.

(i) For the summand �, it holds that

(Id ⊗ (q ⊗ Id) ◦�) ◦�= (
((Id ⊗ q) ◦�)⊗ Id

) ◦� (3.4)

just by condition (1.6) for q.
(ii) For the summand � ◦�, applying that q is cocentral, coassociative, and the

naturality of the braiding, we have

(Id ⊗ q ⊗ Id) ◦ (�⊗ Id) ◦� ◦�= (� ⊗ Id) ◦ (q ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦� ◦�
= (� ⊗ Id) ◦ (Id ⊗�) ◦ (� ⊗ Id) ◦ (Id ⊗ q ⊗ Id) ◦ (Id ⊗�) ◦�
= (� ⊗ Id) ◦ (Id ⊗�) ◦ (� ⊗ Id) ◦ (Id ⊗ q ⊗ Id) ◦ (�⊗ Id) ◦�
= (� ⊗ Id) ◦ (Id ⊗�) ◦ (q ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦�
= (Id ⊗ q ⊗ Id) ◦ (Id ⊗�) ◦� ◦�.
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(iii) For the summand (σ ⊗ Id) ◦�, we have

(σ ⊗ ((q ⊗ Id) ◦�)) ◦�= (σ ⊗ q ⊗ Id) ◦ (�⊗ Id) ◦�
= (
((σ ⊗ q) ◦� ◦�)⊗ Id

) ◦�
= (
((σ ⊗ (q ◦ σ)) ◦� ◦�)⊗ Id

) ◦�
= (
((Id ⊗ q) ◦�D ◦ σ)⊗ IdD

) ◦�.

In the preceding computations, the first equality follows because q is coassociative, the
second one because q is cocentral, the third one relies on q ◦ σ = q, and the last one holds
because σ is an anti-coinvolutive coalgebra morphism.

(iv) Finally, as far as the summand (σ ⊗ γ̃ ) ◦� ◦� is concerned, it holds that

(Id ⊗ q ⊗ Id) ◦ (�⊗ Id) ◦ (σ ⊗ γ̃ ) ◦� ◦�
= (Id ⊗ Id ⊗ (γ ◦ q)⊗ Id) ◦ (Id ⊗ q ⊗�) ◦ (σ ⊗�) ◦� ◦�
= (Id ⊗ Id ⊗ γ ⊗ Id) ◦ (Id ⊗ q ⊗ q ⊗ Id) ◦ (Id ⊗�⊗ Id) ◦ (σ ⊗�) ◦� ◦�
= (Id ⊗ γ ⊗ Id ⊗ Id) ◦ (Id ⊗ q ⊗ q ⊗ Id) ◦ (Id ⊗�⊗ Id) ◦ (σ ⊗�) ◦� ◦�
= (Id ⊗ Id ⊗ q ⊗ Id) ◦ (Id ⊗ (γ ◦ q)⊗�) ◦ (σ ⊗�) ◦� ◦�.

On the preceding calculations, the first equality follows by part (ii), the second and the
fourth ones are true because q is coassociative, while on the third one we apply that q ◦ σ =
q. Summing up, we conclude that �′ factorizes thorough C′�DC′.

REMARK 3.8. Notice that the condition q ◦ σ = q is actually necessary in order to
have Proposition 3.7, because the factorization of the third summand means that

(σ ⊗ ((q ⊗ Id) ◦�)) ◦�= (((Id ⊗ q) ◦� ◦ σ)⊗ Id) ◦�

and composing both sides of this equation with ε ⊗ Id ⊗ ε, it results that q ◦ σ = q.

REMARK 3.9. The Cayley–Dickson process given in Definition 3.5 can be performed
in an iterative way as that of Section 2. Indeed, given a D-coalgebra structure on C, we can
define a D-coalgebra structure on C′ in a natural way.

More precisely, let q : C → D be the given coalgebra morphism and denote by p : C′ →
C the natural projection of k-vector spaces. Then, the composition

q′ : C′ p→ C
q→ D (3.5)

satisfies, with respect to C′, the same conditions than q with respect to C. Hence, we would
be again in the conditions of Definition 3.5 and be able to carry out the next step of the
Cayley–Dickson process. Actually, just by definition of �′, ε′, and σ ′, it follows that q′ is
a surjective k-coalgebra morphism such that q′ ◦ σ ′ = q′.

Concerning the cocentral character of q′, we obtain

(q′ ⊗ IdC′) ◦� ◦�′|C = (q′ ⊗ IdC′) ◦�′|C

because q is cocentral and q′ ◦ u = 0. The proof of the corresponding equality for the
summand uC is similar, but using in addition that q ◦ σ = q.
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As far as the coassociative character of q′, we have

(q′ ⊗ Id ⊗ Id) ◦ (�′ ⊗ Id) ◦�′|C
= 1

2

(
(q′ ⊗ Id ⊗ Id) ◦ (�′ ⊗ Id) ◦�

+ (q′ ⊗ Id ⊗ Id) ◦ (�′ ⊗ Id) ◦ (u ⊗ u) ◦ (σ ⊗ γ̃ ) ◦� ◦�
)

= 1

4

(
(q ⊗ Id ⊗ Id) ◦ (�⊗ Id) ◦�

+ ((q′ ◦ uσ)⊗ (u ◦ γ̃ )⊗ Id) ◦ (� ⊗ Id) ◦ (�⊗ Id) ◦�
+ ((q′ ◦ uσ)⊗ u ⊗ u) ◦ (�⊗ Id) ◦ (σ ⊗ γ̃ ) ◦� ◦�
+ (
((q′ ◦ u) ◦� ◦�)⊗ u

) ◦ (σ ⊗ γ̃ ) ◦� ◦�
)

= 1

4

(
(q ⊗�) ◦�+ (q ⊗ (u ◦ σ)⊗ Id) ◦ (� ⊗ u) ◦ (�⊗ γ̃ ) ◦� ◦�

)

= 1

4

(
(q′ ⊗�) ◦�

+ (
((Id ⊗ (u ◦ σ)) ◦�)⊗ (u ◦ γ̃ )) ◦ (Id ⊗�) ◦ (� ⊗ q) ◦ (Id ⊗�) ◦�

)

= 1

4

(
(q′ ⊗�) ◦�

+ (Id ⊗ (u ◦ σ)⊗ (u ◦ γ̃ )) ◦ (� ⊗ Id) ◦ (Id ⊗�) ◦ (� ⊗ Id) ◦ (�⊗ q) ◦�
)

= 1

4

(
(q ⊗ Id ⊗ Id) ◦ (p ⊗�) ◦�

+ (Id ⊗ (u ◦ σ)⊗ (u ◦ γ̃ )) ◦ (q′ ⊗ (� ◦�)) ◦�
)

= (q′ ⊗�′) ◦�′.

In the preceding computations, the third equality relies on the coassociativity of q and the
fact that q′ ◦ u = 0 and σ is an antimorphism of coalgebras, the fourth and the sixth ones
on the naturality of the braiding, while the fifth one holds because q is coassociative and
cocentral.

The corresponding proof for uC follows a similar pattern, as so do the proofs for the
remaining equalities required for coassociativity.

As an application of Lemma 3.4 and Proposition 3.7, we state below the main result of this
section. Specifically, the results about the Cayley–Dickson process developed in Section 2
for k-coalgebras and the tensor product − ⊗k − are extended to the additional structure
of D-coalgebras and the cotensor product −�D−, in such a way that both structures are
compatible.

THEOREM 3.10. Within the hypothesis and the notation of Definitions 3.2 and 3.5, it
holds that

(i) if (C, �, ε, σ ) is a coassociative and strongly anti-coinvolutive D-coalgebra, then
(C′, �′q, ε′q, σ ′) is a coalternative and anti-coinvolutive D-coalgebra;

(ii) if (C, �, ε, σ ) is a coassociative, cocommutative, and anti-coinvolutive D-
coalgebra, then (C′, �′q, ε′q, σ ′) is a coassociative and anti-coinvolutive D-
coalgebra;
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(iii) if (C, �, ε, σ ) is coassociative, non-cocommutative, and strongly anti-
coinvolutive D-coalgebra, then (C′, �′q, ε′q, σ ′) is a coaltenative, non-
coassociative, and anti-coinvolutive D-coalgebra.

Proof. As the equalizer morphism is a monomorphism, taking into account Lemma 3.4
and Proposition 3.7, we are reduced to prove the results for (C′, �′, ε′, σ ′), it is said, just for
k-algebras. But in this case, the arguments used in Theorems 2.2, 2.3, and 2.4 remain valid.
This is because, in virtue of the coassociative and cocentral properties for q, and by (3.3),
in the computations directed to prove the coalternativity condition of (C′, �′, ε′, σ ′), the
morphism γ̃ : C → C can be handled as if it were the multiplication by a scalar α in k.

4. LFG coalternative coalgebras. We present in this section a class of examples of
coalternative coalgebras inspired by Cayley algebras (quaternions and octonions) stud-
ied by Bulacu as quasicoalgebras in [5]. The following result is a generalization of
Proposition 3.2 in [5].

PROPOSITION 4.1. Let L|k be a field extension such that L has a cocommutative and
coassociative k-coalgebra structure, and let G be a finite abelian group such that |G| is
not divisible by char(k) and provided with F : G × G −→ L \ {0} a 2-cochain. It holds the
following:

(i) The group algebra L[G] with the coproduct and counit given, respectively, by

�F(x) := 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗L a−1x and εF(x) := |G|δx,e

for any x ∈ G, where δx,e is the Kronecker’s delta, is an L-coalgebra denoted by
LFG.

(ii) Let kF0 G be the k-coalgebra defined as in (i) for the 2-cochain F0 := εL ◦ F : G ×
G −→ k \ {0}, and let σF0 be any strong coinvolution for kF0 G. It holds that the
product k-coalgebra L ⊗ kF0 G together with the morphisms

q := IdL ⊗ εF0 , σL⊗kF0 G := IdL ⊗ σF0

falls under the conditions of Definition 3.5.

Proof. The demonstration of part (i) follows from the definitions and the fact that
F(a, e)= F(e, a)= 1L, for all a, b ∈ G.

As far as (ii) is concerned, it is well known (see [7]) that the product coalgebra L ⊗
kF0 G is a k-coalgebra which structural morphisms are given by

�L⊗F0 = (IdL ⊗� ⊗ IdkF0 G) ◦ (�L ⊗�F0), εL⊗F0 = εL ⊗ εF0 . (4.1)

The morphism q is a k-coalgebra morphism, because using that

(εF0 ⊗ L) ◦� = L ⊗ εF0 (4.2)

and the counit property for kF0 G, we get

(q ⊗ q) ◦�L⊗F0 = (IdL ⊗ εF0 ⊗ IdL ⊗ εF0) ◦ (IdL ⊗� ⊗ IdkF0 G)

=�L ⊗ εF0 =�L⊗kF0 G ⊗ q.
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We prove now one of the coassociativity conditions for q, the others being analogous.
Indeed, on the one hand, by the coassociative condition of L, (4.2) and the counit property
for kF0 G, we have

(q ⊗ IdL⊗F0) ◦ (�L⊗F0 ⊗ IdL⊗kF0 G) ◦�L⊗F0

=
(

IdL ⊗ ((εF0 ⊗ L) ◦�)⊗ IdkF0 G ⊗ IdL ⊗ IdkF0 G

)

◦
(
�L ⊗ ((�F0 ⊗ L) ◦�)⊗ IdkF0 G

)
◦ (�L ⊗�F0)

= (IdL ⊗ IdL ⊗� ⊗ IdkF0 G) ◦
(
((IdL ⊗�L) ◦�L)⊗�F0

)
.

On the other hand, by the same arguments, we have

(q ⊗�L⊗kF0 G) ◦�L⊗F0

= (IdL ⊗ εF0 ⊗ IdL ⊗�Id
kF0 G
) ◦ (IdL ⊗ IdL ⊗� ⊗ IdkF0 G)

◦
(
((IdL ⊗�L) ◦�L)⊗�F0

)

= (IdL ⊗ IdL ⊗� ⊗ IdkF0 G) ◦
(
((IdL ⊗�L) ◦�L)⊗�F0

)
.

The cocentral property of q follows by the cocommutativity of L, (4.2), the symmetry
of�, and the Hexagon Axiom in the definition of a braiding (see [7, XIII.1.1]). Finally, the
fact that IdL ⊗ σF0 is a coinvolution for the product coalgebra follows using the Hexagon
Axiom and knowing that σF0 is a coinvolution for kF0 [G] and � is symmetric and L is
cocommutative.

REMARK 4.2. Notice that the statement (ii) of Proposition 4.1 remains true if we take
σL⊗F0 = σL ⊗ σF0 with σL any strong coinvolution for L as a k-coalgebra.

Note that as L-vector spaces, we can identify L ⊗k kG and LG. Hence, we can
summarize the results and main implications of Proposition 4.1 in the following statement.

COROLLARY 4.3. Let L|k be a field extension such that L has a cocommutative and
coassociative k-coalgebra structure, and let G be a finite abelian group such that |G|
is not divisible by char(k) and provided with F : G × G −→ L \ {0} a 2-cochain. Under
these conditions and keeping the notation of Proposition 4.1, it holds that three differ-
ent coalgebra structures coexist in the group algebra LG with interrelations described in
Proposition 4.1. Namely,

(i) the product k-coalgebra structure over k given by (4.1);
(ii) the L-coalgebra structure (LFG, �F, εF); and

(iii) the L-coalgebra structure (LF0 G, �q
L⊗F0

, IdL ⊗ εF0) given by the factorization of
�L⊗F0 through the cotensor LG�LLG as in Definition 3.2.

In addition, the k-coalgebra structure of (i) and the L-coalgebra structure of (ii) fall under
the conditions required to apply the Cayley–Dickson process of Definition 2.1 over k and L,
respectively; while the L-coalgebra structure of (iii) satisfies the conditions of the Cayley–
Dickson process described in Definition 3.5.

Let us consider the map φ : G × G × G → k defined as φ(x, y, z) := F(x,y)F(xy,z)
F( y,z)F(x,yz) , for

all x, y, z ∈ G,. Next we generalize this result by presenting a coalgebra version of [3,
Proposition 3.3], providing conditions, in terms of the map φ, that ensure the coalternativity
of kFG.
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THEOREM 4.4. Let k be a field and G be a finite abelian group such that |G| is not
divisible by char(k) and provided with F : G × G −→ k \ {0} a 2-cochain. Consider the
group coalgebra kFG with k-coalgebra structure given by (4.1). It holds the following:

(i) If in the category of G-graded vector spaces the braiding � is given by the usual
flip functor, then kFG is a coalternative coalgebra if and only if

φ(y, x, z)+ R−1(x, y)φ(x, y, z)= 1 + R−1(x, y)

and

φ−1(x, y, z)+ R−1(z, y)φ−1(x, z, y)= 1 + R−1(z, y),

where R(x, y) := F(x,y)
F( y,x) , for all x, y, z ∈ G.

(ii) If in the category of G-graded vector spaces the braiding � is given by �(x, y)=
R(x, y)y ⊗ x, then kFG is coalternative if and only if φ(x, y, z)= 1 for all x, y, z ∈
G.

Proof. With regard to part (i), we write the proof of condition (1.3), as condition (1.4)
follows by similar arguments. Let x ∈ G. On the one hand, we have

(
(�⊗ Id) ◦�+ ((� ◦�)⊗ Id) ◦�

)
(x)

= (�⊗ Id)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

+ ((� ◦�)⊗ Id)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z−1a ⊗ z ⊗ a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
ξ∈G

F(a, a−1x)−1F(ξ−1a, ξ)−1ξ ⊗ ξ−1a ⊗ a−1x
)
,

being ξ := z−1a ∈ G in the last term. On the other hand, we have
(
(� ⊗ Id) ◦ (Id ⊗�) ◦�+ (Id ⊗�) ◦�

)
(x)=

= (� ⊗ Id) ◦ (Id ⊗�)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

+ (Id ⊗�)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1(a−1x))−1z ⊗ a ⊗ z−1(a−1x)

+
∑
a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1(a−1x))−1a ⊗ z ⊗ z−1(a−1x)
)
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= 1

|G|2
(∑

a∈G

∑
z∈G

F(z−1a, a−1zx)−1F(z, a−1x)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
ξ∈G

F(ξ, ξ−1x)−1F(ξ−1a, a−1x)−1ξ ⊗ ξ−1a ⊗ a−1x
)
,

because in the last equality we used the fact that a covers G if and only if so does z−1a and
after have done this change we considered again the notation ξ = z−1a.

Therefore, for kFG, the coalternativity condition given by equation (1.3) remains

F(a, a−1x)−1F(z, z−1a)−1 + F(a, a−1x)−1F(z−1a, z)−1 =
F(z−1a, a−1zx)−1F(z, a−1x)−1 + F(z, z−1x)−1F(z−1a, a−1x)−1.

Doing the change of variable v := a−1x and u := z−1a, the preceding equality can be written
as

F(zu, v)−1F(z, u)−1 + F(uz, v)−1F(u, z)−1 = F(u, vz)−1F(z, v)−1 + F(z, uv)−1F(u, v)−1

and replacing in turn u by x, z by y and v by z, we obtain that the condition given by equation
(1.3) can be expressed in this case as the equality

F(x, y)−1F(xy, z)−1 + F(y, x)−1F(yx, z)−1 = F(y, z)−1F(x, yz)−1 + F(x, z)−1F(y, zx)−1,

for any x, y, z ∈ G.
Similarly, we can prove that

F(x, z)−1F(xz, y)−1 + F(x, y)−1F(xy, z)−1 = F(z, y)−1F(x, zy)−1 + F(y, z)−1F(x, yz)−1,

for any x, y, z ∈ G, which is equivalent to the second coalternativity condition given by
equation (1.4).

With regard to part (ii), again we just write the proof of condition (1.3). On the one
hand, we have

(
(�⊗ Id) ◦�+ ((� ◦�)⊗ Id) ◦�

)
(x)

= (�⊗ Id)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

+ ((� ◦�)⊗ Id)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1F(z, z−1a)F(z−1a, z)−1z−1a ⊗ z ⊗ a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x
)
.
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On the other hand, we have
(
(� ⊗ Id) ◦ (Id ⊗�) ◦�+ (Id ⊗�) ◦�

)
(x)=

= (� ⊗ Id) ◦ (Id ⊗�)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

+ (Id ⊗�)
( 1

|G|
∑
a∈G

F(a, a−1x)−1a ⊗ a−1x
)

=

= 1

|G|2
(∑

a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a−1x)−1F(a, z)F(z, a)−1z ⊗ a ⊗ z−1a−1x

+
∑
a∈G

∑
z∈G

F(a, a−1x)−1F(z, z−1a−1x)−1a ⊗ z ⊗ z−1a−1x
)

= 1

|G|2
(∑

a∈G

∑
z∈G

F(z−1a, za−1x)−1F(z, a−1x)−1F(z−1a, z)F(z, z−1a)−1z ⊗ z−1a ⊗ a−1x

+
∑
a∈G

∑
z∈G

F(z−1a, za−1x)−1F(z, a−1x)−1z−1a ⊗ z ⊗ a−1x
)
,

where the last equation holds because a covers G if and only if so does z−1a.
Then, in this case, condition (1.3) can be expressed by means of

F(a, a−1x)−1F(z, z−1a)−1 = F(z−1a, za−1x)−1F(z, a−1x)−1F(z−1a, z)F(z, z−1a)

and

F(a, a−1x)−1F(z−1a, z)−1 = F(z−1a, za−1x)−1F(z, a−1x)−1, (4.3)

for all a, x, z in G. As these equalities are equivalent, it is enough to consider (4.3). Now,
doing the changes of variables v := a−1x and u = z−1a, we can write (4.3) as

F(uz, v)−1F(u, z)−1 = F(u, zv)−1F(z, v)−1. (4.4)

Replacing again u by x, z by y and v by z we get, in turn, that (1.3) for kF(G) is equivalent
to φ(x, y, z)= 1, with x, y, z ∈ G, as we wanted to prove.

The next result shows the relationship between the coalgebra structures defined by means
of 2-cochains and the Cayley–Dickson process.

PROPOSITION 4.5. Let k be a field and G a finite abelian group such that char(k)
does not divide |G|, and N <H <G a chain of subgroups of G such that G = H ∪ uH with
u2 ∈ N. Let also α ∈ k \ {0} be any scalar, s : G → k \ {0} a map such that s(x)= 1 if x ∈ N
and s(x)= −1 if x ∈ G \ N, and F : H × H → k \ {0} a 2-cochain satisfying that

F(x, y)

F(y, x)
= s(x)s(y)

s(xy)
, for x, y ∈ H . (4.5)

Under this hypothesis, the following statements related to the k-coalgebras kFH introduced
in Proposition 4.1 hold:

(i) The morphism σ : kFH → kFH defined by σ(x) := s(x)x for all x ∈ H is a strong
anti-coinvolution for the coalgebra kFH.
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(ii) The map F : G × G → k \ {0} defined by

F(x, y) := F(x, y),

F(x, uy) := s(x)−1F(x, y),

F(ux, y) := F(y, x),

F(ux, uy) := α−1s(x)−1F(y, x)

is a 2-cochain for the group G that satisfies the corresponding equality analogous
to (4.5) with s(x)= s(x) and s(ux)= −1.

(iii) The coalgebra kFG with the strong anti-coinvolution given by σ(x)= s(x)x is the
k-coalgebra obtained by applying the Cayley–Dickson process of Definition 2.1 to
kFH.

Proof. (i) By definition, σ trivially satisfies conditions (1.14) and (1.15). As far as
condition (1.16), on the one hand, we have

� ◦ σ(x)= s(x)�(x)= 1

|H |
∑
a∈H

s(x)F(a, a−1x)−1a ⊗ a−1x

and on the other hand,

(σ ⊗ σ) ◦� ◦�(x)= 1

|H |
∑
a∈H

s(a−1x)s(a)F(a, a−1x)−1(a−1x ⊗ a).

Now, if we define b := a−1x, the preceding expression can be rewritten as

(σ ⊗ σ) ◦� ◦�(x)= 1

|H |
∑
b∈h

s(b)s(b−1x)F(b−1x, b)−1(b ⊗ b−1x),

that, in turn, can be expressed as

(σ ⊗ σ) ◦� ◦�(x)= 1

|H | s(x)
∑
b∈H

F(b, b−1x)−1(b ⊗ b−1x)

because as F satisfies (4.5), we have s(b)s(b−1x)F(b−1x, b)−1 = s(x)F(b, b−1x). Thus, σ
is an anti-coinvolution.

Now, in order to prove that σ is a strong anti-coinvolution, we just write the proof for
(1.17), (1.18) being analogous. In the context of the present definition, the left-hand side
of the equation (1.17) can be expressed as

1

|H |
∑
a∈H

F(a, a−1x)−1
(
(a−1x ⊗ a)+ s(a−1x)(a−1x ⊗ a)

)

= 1

|H |
∑
a∈H

F(a, a−1x)−1
(
1 + s(a−1x)

)
(a−1x ⊗ a)

= 1

|H |
∑
b∈H

F(b−1x, b)−1
(
1 + s(b)

)
(b ⊗ b−1x)
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= 1

|H |
∑
b∈N

2F(b−1x, b)−1(b ⊗ b−1x)

= 2

|H |
∑
b∈N

F(b, b−1, b)−1(b ⊗ b−1x).

In the preceding computations, we used the change b = a−1x, the definition of the mor-
phism s, and the fact that F(x, y)= F(y, x) if y ∈ N , that in turn follows from condition
(4.5).

On the other hand, by the same arguments, the right side of (1.17) can be written as

1

|H |
∑
b∈H

F(b, b−1x)−1(1 + s(b))(b ⊗ b−1x)= 2

|H |
∑
b∈H

F(b, b−1x)−1(b ⊗ b−1x),

so σ actually satisfies equation (1.17).
(ii) It is clear that F is a 2-cochain because the unit element in eG = e and α �= 0. As

far as condition (4.5), it is enough to note that

F(ux, y)

F(y, ux)
= F(y, x)

s(y)−1F(y, x)
= s(y)= s(ux)s(y)

s(uxy)

and

F(ux, uy)

F(uy, ux)
= α−1s(x)−1F(y, x)

α−1s(y)−1F(x, y)
= s(ux)s(uy)

s(xy)
.

(iii) Firstly, we recall that kFG is a coalgebra with coproduct given by

�(x)= 1

2|H |
(∑

a∈H

F(a, a−1x)−1a ⊗ a−1x +
∑
b∈H

F(ub, ub−1x)−1ub ⊗ ub−1x
)

and

�(ux)= 1

2|H |
(∑

a∈H

F(a, ua−1x)−1a ⊗ ua−1x +
∑
b∈H

F(ub−1x, b)−1ub ⊗ b−1x
)
.

Moreover, the counity is defined as ε(ζ ) := 2|G|δ(ζ,e), for ζ ∈ G.
On the other hand, the Cayley–Dickson process discussed in Definition 2.1 applied to

kFH for a fixed α ∈ k \ {0} results in

�′(x)= 1

2

(
�+ α(u ⊗ u) ◦ (σ ⊗ Id) ◦� ◦�

)
(x)

= 1

2|H |
(∑

a∈H

F(a, a−1x)−1
(
a ⊗ a−1x + αs(a−1x)u(a−1x)⊗ ua

))

= 1

2|H |
(∑

a∈H

F(a, a−1x)−1(a ⊗ a−1x)+ α
∑
b∈H

F(b−1x, b)−1s(b)ub ⊗ ub−1x
)

= 1

2|H |
(∑

a∈H

F(a, a−1x)−1(a ⊗ a−1x)+
∑
b∈H

F(ub, ub−1)−1ub ⊗ ub−1x
)
,
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so �′(x)=�(x) for all x ∈ H . Moreover, for the elements ux ∈ G, we have

�′(ux)= 1

2

(
(σ ⊗ u) ◦�+ (u ⊗ Id) ◦� ◦�

)
(x)

= 1

2|H |
(∑

a∈H

F(a, a−1x)−1s(a)(a ⊗ u(a−1x))+
∑
a∈H

F(a, a−1x)−1(u(a−1x)⊗ a)
)

= 1

2|H |
(∑

a∈H

F(a, a−1x)−1s(a)(a ⊗ ua−1x)+
∑
b∈H

F(b−1x, b)−1(ub ⊗ b−1x)
)

= 1

2|H |
(∑

a∈H

F(a, ua−1x)−1a ⊗ ua−1x +
∑
b∈H

F(ub, b−1x)−1ub ⊗ b−1x
)
,

so�′(ux)=�(ux). Finally, ε′ = εF because |G| = 2|H |, and σ = σ ′ since s(ux)= −1.

REMARK 4.6. Note that the morphism σ defined in part (i) of Proposition 4.5 can be
taken as an example of strong convolution σF0 required in part (ii) of Proposition 4.1.

COROLLARY 4.7. Keeping the notation and within the same conditions as in
Proposition 4.5, let us assume in addition that L|k is a field extension with (L, �L, εL)

a cocommutative coassociative k-coalgebra structure.
Under these hypothesis, it holds that the product coalgebra

(L ⊗ kFG, �L⊗F, εL ⊗ εF, IdL ⊗ σ)

is equal to
(
(L ⊗ kFH)′, �′

L⊗F, ε
′
L⊗F, (IdL ⊗ σ)′

)
,

the coalgebra resulting of applying the Cayley–Dickson process to the product coalgebra
L ⊗ kFH.

Proof. Firstly, as a consequence of part (ii) of Proposition 4.1, and taking into account
the same considerations as in the proof of Theorem 3.10, we are reduced to prove the result
for the Cayley–Dickson process, where γ̃ is the multiplication by an scalar α ∈ k.

In order to fix the notation with respect to the formal label u, we establish that (L ⊗
kFH)u = L ⊗ kFHu, interpreting it as the isomorphism

u
( ∑

l∈L,x∈H

l ⊗ x
)

=
∑

l∈L,x∈H

l ⊗ xu

and identifying l ⊗ (x, 0) and l ⊗ (x, 1) with l ⊗ x and l ⊗ xu for all l ∈ L, x ∈ H ,
respectively.

When restricting to L ⊗ kFH , by Proposition 4.5, on the one hand, we have

�L⊗F |L⊗kF H = (Id ⊗� ⊗ Id) ◦�L ⊗�F

= 1

2

(
(Id ⊗� ⊗ Id) ◦ (�L ⊗�F)

+ α(Id ⊗� ⊗ Id) ◦ (
�L ⊗ (((u ◦ σ)⊗ u) ◦� ◦�F)

))

= 1

2

(
(Id ⊗� ⊗ Id) ◦ (�L ⊗�F)

+ α
(
Id ⊗ (((u ◦ σ)⊗ Id) ◦�)⊗ u

) ◦ (�L ⊗ (� ◦�F))
)
.
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On the other hand, we have

�′
L⊗F |L⊗kF H = 1

2

(
(Id ⊗� ⊗ Id) ◦ (�L ⊗�F)

+ α(Id ⊗ (u ◦ σ)⊗ Id ⊗ u) ◦�L⊗kF G,L⊗kF H

◦ (Id ⊗� ⊗ Id) ◦ (�L ⊗�F)
)

= 1

2

(
(Id ⊗� ⊗ Id) ◦ (�L ⊗�F)

+ α(Id ⊗ (u ◦ σ)⊗ Id ⊗ u) ◦ (Id ⊗� ⊗ Id)

◦ (� ⊗�) ◦ (Id ⊗ (� ◦�)⊗ Id) ◦ (�L ⊗�F)
)

= 1

2

(
(Id ⊗� ⊗ Id) ◦ (�L ⊗�F)

+ α(Id ⊗ (u ◦ σ)⊗ Id ⊗ u) ◦ (Id ⊗� ⊗ Id) ◦ (�L ⊗ (� ◦�F))
)
,

where the second equality is true because of the Hexagon Axiom, and the last one because
� is symmetric and L cocommutative.

The proof for the corresponding equality when restricting to L ⊗ kFHu follows
the same pattern and uses similar arguments, while the proofs for the counit and the
coinvolution are straightforward.
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