

Macroeconomic Dynamics, 1, 1997, 255–277. Printed in the United States of America.

SPLINE APPROXIMATIONS TO
VALUE FUNCTIONS

Linear Programming Approach

MICHAEL A. TRICK
Carnegie Mellon University

STANLEY E. ZIN
Carnegie Mellon University
and
National Bureau of Economic Research

We review the properties of algorithms that characterize the solution of the Bellman
equation of a stochastic dynamic program, as the solution to a linear program. The
variables in this problem are the ordinates of the value function; hence, the number of
variables grows with the state space. For situations in which this size becomes
computationally burdensome, we suggest the use of low-dimensional cubic-spline
approximations to the value function. We show that fitting this approximation through
linear programming provides upper and lower bounds on the solution to the original large
problem. The information contained in these bounds leads to inexpensive improvements
in the accuracy of approximate solutions.

Keywords: Spline Approximations, Value Functions, Linear Programming, Bellman
Equation

1. INTRODUCTION

For a large (and for economists, an interesting) class of nonlinear stochastic dy-
namic programming problems, the Bellman equation can be characterized by a
set of linear restrictions on the value function. Trick and Zin (1993) propose lin-
ear programming algorithms that exploit this feature to find the fixed point of
Bellman’s equation, i.e., the optimal value function. For a finite and discrete prob-
lem, or for a finite discretization of a continuous problem, they show how so-called
constraint-generationalgorithms can (1) provide order-of-magnitude speed gains
over more traditional value-function iteration algorithms, and (2) provide increased
accuracy (without increased complexity) through theadaptive grid generationthat
the linear programming approach affords. The problem remains, however, that for

We thank John Heaton, Ken Judd, Tony Smith, Tom Tallarini, two anonymous referees, and the editor, George
Tauchen, for comments that greatly improved this paper. This research was supported in part by Office of Naval
Research Grant, Grant N00014-92-J-1387. Address correspondence to: Stanley Zin, Graduate School of Industrial
Administration, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

c© 1997 Cambridge University Press 1365-1005/97 $9.00 + .10 255

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

256 MICHAEL A. TRICK AND STANLEY E. ZIN

large problems, benefits of constraint generation are still dwarfed by the “curse
of dimensionality.” This paper investigates new algorithms that allow the linear
programming approach to be applied to much larger problems. Moreover, these
algorithms also allow for a form of adaptation that provides increases in accuracy
at a very small cost.

We reduce the size of the problem by assuming that an approximation to the
value function lies in a space of flexible functional forms, namely, cubic splines.
Cubic splines have a number of attractive qualities. For example, they can greatly
reduce the dimensionality of the problem: A good approximation can be obtained
from a spline with a much smaller number of parameters than the number of un-
restricted value-function ordinates needed to obtain a comparable approximation.
However, the main feature for our purposes is that, even though these functions are
highly nonlinear in the state variables, they are linear functions of their parameters.
Written in terms of splines, theapproximationto the discrete Bellman equation is
linear in the parameters. Therefore, these parameters, and hence the approximate
value functions, can be found usingconstraint-generationlinear programming
techniques. The benefits of solving this problem with constraint generation rather
than, say,least squaresare (1) computational speed, (2) ease of imposing addi-
tional restrictions such as monotonicity of the value function or its derivatives,
and most importantly, (3) the linear programming spline approximation cannot lie
below the exact solution to the discrete value function.

This last feature motivates the accuracy-enhancing adaptations we propose.
Increased accuracy obtains as follows. Take an arbitrary (and perhaps coarse) par-
tition of the finely discretized state space. Use the constraint generation algorithm
to obtain a spline approximation of the value function. This approximate value
function must lie on or above the discrete value function (i.e., the exact value func-
tion calculated directly on the discrete grid). Calculate the optimal actions implied
by this approximation. Calculate the unrestricted value-function ordinates implied
by these approximate actions. Note that because these actions are feasible but not
necessarily optimal (given the approximate nature of the value function they were
constructed from), these values must lie on orbelowthe discrete value function.
We now have an upper and a lower bound on this function. Check where these
bounds differ the most and adapt the spline accordingly, e.g., make the partition
finer at that location, move the partition, or increase the order of the polynomial
over that partition. Use constraint generation to find a new approximation over this
new partition of the state space, and iterate. Stop when the approximation achieves
the desired degree of accuracy. The complexity of the problem does not change
dramatically as this adaptation proceeds, so that accuracy can be improved at a
very low cost.

Many of the benefits we note for spline approximations apply more generally to
other functional approximations. The essential property is the linearity in the un-
known parameters (but not the state variables). For example, Mrkaic et al. (1997)
employ neural-network approximations in a very similar fashion. Schweitzer and
Seidmann (1985) also use linear programming (among other techniques) to com-
pute generalized polynomial approximations to the value function.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 257

We develop our algorithms in the context of the neoclassic stochastic growth
model detailed in Section 2. We compare the speed of linear programming al-
gorithms to conventional value-function iterations in Section 3. In Section 4, we
introduce our spline approximations. The value-function bounds generated by
these approximations are derived in Section 5 and then are used to enhance the
accuracy of the solution in Section 6.

2. LINEAR PROGRAMMING APPROACH

We begin by outlining the basic linear programming approach to solving stochastic
dynamic programming problems in the context of the stochastic growth model.
For time periodst = 1, 2, . . . , the production technology is given by

yt = zt f (kt),

where yt is output produced in periodt , kt is the stock of capital available at
the beginning of periodt , f is a well-behaved production function, and{zt } is a
stationary stochastic process representing the technology shock. The social planner
ranks random consumption sequences,{ct }, according to the expected utility index

U0 = E0

∞∑
t=0

β t u(ct),

where 0< β < 1 is the discount factor,u is a well-behaved within-period util-
ity function, andE0 denotes the period-0 conditional-expectations operator. The
planner chooses a sequence of state-contingent consumption and capital pairs
{ct , kt+1}∞t=1, to maximize utility subject to the constraint

ct + kt+1− (1− δ)kt = zt f (kt),

where 0< δ ≤ 1 is the rate of depreciation of capital. Implicit in this constraint is
a timing assumption that allows the planner to observe the realization ofzt before
making the period-t consumption/investment decision.

The dynamic programming approach to solving this problem uses the Bellman
equation:

v(k, z) = max
k′∈A(k,z)

{u(z f(k)+ (1− δ)k− k′)+ βE[v(k′, z′) | k, z]}, (1)

wherev(k, z) is the value of the optimal plan, given a capital stockk and technology
shockz, andA(k, z) is the set of feasible actions satisfying 0≤ k′ ≤ z f(k) +
(1−δ)k. Givenv, optimal policies obtain from the maximization on the right-hand
side of (1). Closed-form solutions for optimal policies and values are generally
unavailable. This motivates the interest in solutions to numerical examples of these
economies.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

258 MICHAEL A. TRICK AND STANLEY E. ZIN

We restrict our attention to a finite discrete-state version of this economy. That
is, capital and the technology shock are assumed to line in finite sets defined
respectively as

K = {k(1), k(2), . . . , k(nk)
}
,

and
Z = {z(1), z(2), . . . , z(nz)

}
.

The stochastic process for the technology shock is a first-order Markov chain with
transition probabilities given by

πi j = Prob
[
zt = z(j)

∣∣ zt−1 = z(i)
]
.

With this additional notation, we can write equation (1) as

vi j = max
a∈Ai j

{
ui ja + β

nz∑
l=1

π j l val

}
, (2)

where
vi j = v

(
k(i), z(j)

)
,

ui ja = u
(
z(j) f (k(i))+ (1− δ)k(i) − k(a)

)
,

and

Ai j =
{

a | 1≤ a ≤ nk, and z(j) f
(
k(i)
)+ (1− δ)k(i) − k(a) > 0

}
.

Let ni j denote the number of elements in the setAi j .
The maximization in (2) implies a set of inequalities that must be satisfied by

the value function

vi j ≥ ui ja + β
nz∑

l=1

π j l val , (3)

for all i , j , anda ∈ Ai j . It is well known [e.g., Bertsekas (1976) and Ross (1983)]
that finding the smallest set ofvi j ’s that satisfy these constraints amounts to solving
a linear program of the form

min
∑

i j

vi j , (4)

subject to (3).
Linear programming techniques are well known for stochastic dynamic pro-

grams, but generally are dismissed as inefficient. For instance, Puterman (1994,
p. 230), relying on work of Koehler (1976) states that “modified policy iteration
is considerably more attractive computationally than the simplex-method-based
linear programming codes,” citing times worse by a factor of 10. He goes on
to state that despite the difficulties inherent in linear programming, it might be
considered due to “the facility of sensitivity analysis” and “the ability to include
additional constraints.” Our results show that these two possibilities, together with
much faster current linear programming codes, are sufficient to reverse the speed
comparison in many cases.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 259

Constraint generation is a technique for solving linear programs with a large
number of constraints. Rather than have a computer code attempt to solve a large
linear program, the solution procedure begins with a small number of constraints.
The linear program over this subset of constraints is solved. If the result is feasible
to all of the other constraints, then the incumbent solution is optimal. Otherwise,
some of the constraints violated by the solution are added to the linear program
and the linear program is resolved. This process iterates until all constraints are
satisfied.

We adapt the constraint-generation technique to the problem of solving the dis-
crete stochastic dynamic programs. We begin with a small number of constraints,
which correspond to feasible actions, and add constraints only when the current
solution violates them. In the examples below, we solve linear programs in more
than 8,000 variables (value-function ordinates) subject to more than 18.3 million
constraints (restrictions implied by Bellman’s equations). Moreover, we are able
to accomplish this in a little more than 75 min of workstation time. In addition to
solving large problems, constraint generation provides speed gains over solving
the full linear program for a number of reasons: (1) By knowing that the optimal
solution needs only one binding constraint (action) for each state, we can add only
the most violated constraint for each state, rather than possibly a large number
of unneeded constraints; (2) we can precalculate common terms used in multiple
constraints; and (3) we can ignore entire states, and only add them when we have a
good estimate of where their optimal actions occur. As we shall see, these reasons
are sufficient for orders-of-magnitude speedup over the full linear program.

3. SPEED COMPARISONS

In this section, we compare the speed of constraint-generation algorithms to stan-
dard value-function iteration. We do not make direct comparisons with a full range
of competing algorithms. However, because value-function iteration is frequently
used as a benchmark in other studies, these comparisons are implicit.

The numerical example we use for speed comparisons is as follows. The exoge-
nous technology shock is a two-state Markov chain, with a high state ofz2 = 1.377
and a low state ofz1 = 0.726. The transition matrix is

5 =
[

0.975 0.025

0.025 0.975

]
.

This is the high-variance model of Christiano (1990) and corresponds to the log of
the shock having a mean of zero, a variance of 0.1, a high degree of persistence,
and a symmetric ergodic distribution. We choose simple power functions for the
production function,f (k) = kα, and the utility function,u(c) = cρ/ρ. The share
parameter,α, is set at 0.33 and the depreciation rate,δ, is set at zero. The risk-
aversion parameter,ρ, is 0.5. The discount factor,β, is set to 0.98 for most cases;
however, to evaluate the sensitivity of our results to the value ofβ, we also conduct

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

260 MICHAEL A. TRICK AND STANLEY E. ZIN

experiments in whichβ varies over the values{0.75, 0.85, 0.9, 0.95, 0.98, 0.99,
0.999}.

The discrete grid over the capital stock is equally spaced with end points chosen
so that roughly 10% of the points lie belowk∗(z1) and roughly 10% of the points
lie abovek∗(z2) defined by

k∗(z1) =
{

βαz1

[1− (1− δ)β]

} 1
1−α

k∗(z2) =
{

βαz2

[1− (1− δ)β]

} 1
1−α
.

The quantitiesk∗(z1) andk∗(z2) are the deterministic steady-state values for equi-
librium capital whenz1 andz2, respectively, are permanent features of the fixed
technology. This somewhat arbitrary choice of end points for the capital grid pro-
vides an automatic way of ensuring that the solution has a well-dispersed ergodic
set when we vary the parameterβ. If we were more interested in the exact solutions
to this problem rather than the properties of computational algorithms for solving
this problem, then we would want to be more careful in choosing these points and
perhaps tailor these choices to each numerical version of the model being solved.

Starting values for value iteration are chosen as follows. For each point in the
state space, we calculate the steady-state utility as if the smallest feasible capi-
tal stock was the deterministic steady state. This value,u(k)/(1− β), forms the
initial value from which we iterate until convergence. Starting values for value
iteration are an extremely important determinant of the speed of the algorithm:
the better the starting values, the faster the algorithm. The method we adopt for
choosing starting values is a simple automatic method that does not require a
lot of ex-ante information about the solution; hence, it allows for reasonably fair
comparisons with other methods. In particular, we take comparable steps when
starting up the constraint-generation linear programming algorithm described be-
low. Later we discuss the possibility for grid generation to provide more accurate
starting values and a commensurate increase in speed. The convergence criterion
is max(i, j) |vm+1

i j − vm
i j | < 0.000001.

The following experiments were performed on an HP 720 workstation with
32MB memory running HP-UX 8.0. All of the computer codes were written in “C”
and compiled with the operating system’s “cc” compiler. The linear programs were
solved with CPLEX, a commercial code widely available for a number of computer
systems. One idiosyncracy of CPLEX is the relative ease of adding variables to a
linear program, rather than constraints. As a result, in anticipation of our use of
constraint-generation algorithms, we find it more convenient always to solve the
dual of 4, and implement our algorithms with an equivalentvariable generation.

Our intention in these tests was to generate conclusions applicable to more than
just the simple growth model. To this end, we tried to exploit only those features of
the model that have wide applicability. Therefore, all of these codes precalculated
terms when possible, provided the space required was no more thannknz. This
meant that codes could not precalculate all of theui ja but they could precalculate
the (expensive) term that depends only oni and j [(1− δ)ki + kαi zj in this case].

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 261

FIGURE 1. Comparison of value iteration and linear programming.

Similarly, to update after each iteration of value iteration or to generate constraints
in constraint generation, the termβ

∑
j ′π j j ′vaj ′ needs to be calculated only once

for each(a, j). Other aspects specific to the growth model, such as the curvature of
the utility function and the near-linearity of the value function for certain parameter
values, are not explicitly exploited. In particular, we enumerate all feasible actions
when determining the optimal action.

Figure 1 plots the computational speed in seconds against the size of the grid for
the capital stock, for value iteration and linear programming solutions to the base-
case growth model. It is clear from this figure that linear programming provides
dramatic increases in speed. Moreover, computational time appears to be growing
much more slowly for linear programming than for value iteration. For the smallest
problem in this figure,nk= 33, linear programming is almost 80 times faster
than value iteration (0.2 s compared to 15.86 s). For the largest problem in this
figure,nk= 513, linear programming is approximately 13 times faster than value
iteration (297.11 s compared to 3,781.7 s). These results indicate that standard
linear programming can provide at least an order-of-magnitude improvement over
standard value-function iteration for problems of this size. The primary drawback
of standard linear programming is the large amount of memory needed to solve
large problems. However, as discussed above, constraint-generation algorithms
alleviate much of this memory burden. Having established the benefits of the
linear programming approach over value iteration, we now turn to refinements on
the linear programming algorithm, namely, constraint generation.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

262 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 2. Comparison of linear programming, constraint generation, and grid generation.

Figure 2 compares the relative performance of standard linear programming
to the constraint-generation algorithm for solving linear programs. As described
above, constraint generation begins by solving the linear program subject to a
subset of the constraints, then repeatedly adding violated constraints and resolv-
ing, until all constraints are satisfied. For the problem at hand, we implement this
algorithm by beginning with the linear program that includes only the constraints
defined by the smallest feasible action for each point in the state space. At each
iteration, for each state(i, j), we add the constraint corresponding to the action,
a, that has the largest value ofu(i, j,a) +∑ j ′βπ j j ′vk−1(a, j ′), unless this con-
straint is already in the linear program. When each constraint is satisfied to within
0.000001, we conclude that the algorithm has converged. For the smallest problem
in the figure,nk = 33, constraint generation is actually slower than straight linear
programming (0.4 compared to 0.1), however, for the largest problem in this figure,
nk = 513, constraint generation is more than 2.5 times faster than straight linear
programming (115.82 s compared to 297.11 s). Speed is not the only motivation
for constraint generation. Of even greater benefit is the ability to solve very large
problems (as in Figure 3).

Along with standard linear programming and constraint generation, Figure 2
contains results for an algorithm that we term grid generation. The basic idea
behind this algorithm is as follows. We begin by solving the problem using only
a subset of states. We use the solution to the subset to generate good starting
solutions to a larger set of states. We continue until we have solved for all of the

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 263

FIGURE 3. Larger problem.

states. In this case, we begin by solving the problem corresponding tonk = 16,
choosing these 16 points equally spaced over the entire large grid. When we have
found the solution to this small problem, we then add new points to the capital
grid halfway between each of the current points (note that these new points are
also on the large grid), doubling the grid size in the process. For each point that
we add, we include three new constraints: the constraint corresponding to a guess
for the optimal action for the new point (computed as the average of the optimal
actions of its neighbors) and the points on thenk = 32 grid adjacent to this guess.
We also include new constraints corresponding to the actions on this finer grid that
are adjacent to the optimal actions from thenk = 16 problem, because these are
the newly introduced actions that are most likely to be close substitutes for the
original actions. We then optimize this larger problem completely over the set of
capital points (using constraint generation) before adding new points. New points
are added in exactly the same way, doubling the grid size each time, until the full
problem is completely solved. Because, with constraint generation, we already are
solving a sequence of larger and larger linear programs, increasing the grid size in
this way is a natural extension. This approach is similar in spirit to that of Whitt
(1978, 1979) who examined the theoretical aspects of successively finer grids and
showed that it is possible to get upper and lower bounds on the value of a finer
grid based on the solution to a coarser grid.

As we see in Figure 2, grid generation provides a speed gain over simple con-
straint generation comparable to that of constraint generation over standard linear

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

264 MICHAEL A. TRICK AND STANLEY E. ZIN

programming. For the largest-sized problem in this figure, grid generation is more
than four times faster than constraint generation (27 s compared to 115.82 s). Grid
generation is, therefore, more than 10 times faster than standard linear program-
ming. Because memory demands are not as great for these two algorithms (relative
to standard linear programming), we can solve larger problems. Figure 3 continues
the results in the left panel out tonk = 4,097. We can see that the speed gains from
grid generation continue as the size of the problem increases. It is worth noting the
size of the linear programs that we are solving. With a capital grid of 4,097 points,
we solve for 8,194 variables subject to 18,507,872 constraints. Grid generation
solves this large linear program in a little over 75 min.

We also experimented with a grid-generation algorithm for standard value-
function iteration. We began by solving on an initial grid of 16 points using the
value-iteration algorithm described above. Given the solution to this problem,
we add points on the capital grid halfway between each of the current points,
doubling the size of the grid. We then take as the starting value for the next
round of value iteration, the average of the values at the two neighboring points
(given by the solution to thenk= 16 problem). This process is continued until
the full problem has been solved. Although this grid generation improves the
performance of the value-iteration algorithm—the gains are typically on the or-
der of 30% (with a maximum of 90% for thenk = 513 problem)—it is not
enough to make value iteration competitive with either constraint generation or grid
generation.

One of the known drawbacks of value iteration is its sensitivity to the degree of
persistence and the degree of discounting in the problem being solved. Our base
case already has a high degree of persistence in the technology shock and has
no depreciation in the capital stock. To examine the relative performance of our
algorithms, we solve the base-case model withnk = 1,025 for a grid of values for
the discount factor:β ∈ {0.75, 0.8, 0.9, 0.95, 0.98, 0.99, 0.995, 0.999}. Figure 4
plots the computation time for grid generation and for value-function iteration
against these values of the discount factor. In fact, standard value iteration takes
a prohibitively long time to converge for large values ofβ. We, therefore, exploit
a very specific feature of the problem at hand to speed up the algorithm. This
goes against our objective of providing results that are likely to be true beyond
this simple model, but it does make the comparisons we have in mind feasible.
Specifically, when searching for the optimal action for each point in the state space,
we begin at the current action and search by increasing the value of the action
until the maxim and decreases. This allows us to terminate the search before
conducting a full enumeration of the action space. The monotonicity that this
procedure exploits is a property that can be shown to hold at the optimum. It
typically also holds at earlier iterations, provided that the initial conditions are
increasing in the capital stock. We increase the speed of this algorithm further
by exploiting the grid-generation method of obtaining accurate starting values, as
described above. With this problem-specific speedup, value iteration can be faster
than grid generation for small values forβ. The important point to note, however, is

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 265

FIGURE 4. Sensitivity to discounting.

that computational speed for grid generation is almost unaffected by increasing the
values ofβ. In constrast, note the extremely rapid increase in computational time for
value iteration (2,205 s for value iteration compared to 88.69 s for grid generation
atβ = 0.999). Constraint generation, though slower than grid generation, is also
insensitive to the value ofβ.

4. DIMENSION REDUCTION THROUGH SPLINE APPROXIMATIONS

In this section we explore the possibility of reducing the size of the linear pro-
gram we solve through the use of cubic-spline approximations. Throughout this
section we retain the same parameterizations as above with two exceptions. We
increase the curvature of the utility function by setting the parameterρ equal
to −5.0. Because this greatly increases the precautionary savings motive on the
part of the representative consumer, we expand the state spaceK to include the
interval [5,800].

Note that these numerical values imply strong persistence in the dynamics of
the capital stock because the exogenous shock is very persistent, the capital stock
doesn’t depreciate, and the agent has a very low rate of time preference (i.e., the
agent is very patient). Moreover, the large value of the risk-aversion parameter will
impute a high degree of curvature to the value function. Combining these features
makes this model a challenge to solve.

Figure 5 plots the ergodic distribution function for the capital stock for a so-
lution on a fairly fine grid,nk= 4,097. That is, the economy described above is

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

266 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 5.Ergodic distribution function for capital stock for a solution on a gridnk = 4,097.

solved (exactly) on this grid. Ergodic probabilities are computed by solving the
equation

5p = p,

where5 is the 8,194× 8,194 matrix of transition probabilities for the optimal cap-
ital actions, andp is the 8,194× 1 vector of ergodic probabilities. For comparison,
a uniform distribution function on (0, 500) and a normal distribution with mean
196.35 and standard deviation 92.15 are plotted on the same graph. Note that the
ergodic distribution for the capital stock is more like a normal distribution than the
uniform, though it is not symmetric (capital is bounded below by zero). We use
ergodic probabilities to compare features of various solutions.

Figure 6 demonstrates how a solution deteriorates when a coarser grid,nk =
1,025 (roughly one quarter the size of that in Figure 5), is used as an approximation.
Moments of this approximation are given in Table 1. Constraint generation has
proven useful for solving dynamic programs whennknz is large. However, should
these dimension get too large, then the number of variables, i.e., value-function
ordinates, in the linear program may make the solution algorithm infeasible. We
now show how approximating the value function with a flexible functional form

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 267

TABLE 1. Moment comparisons

Algorithm µ = E(k) [E(k− µ)2]1/2 [E(k− µ)3]1/3 [E(k− µ)4]1/4

nk = 4,097 196.3489 92.1525 76.3402 120.8191
Splinenp = 40 195.6602 92.1934 76.1663 120.8491
Splinenp = 20 167.6257 83.5304 69.4390 108.9115
Splinenp = 10 5.5678 5.5736 12.0165 17.7886
nk = 2,049 178.9011 82.0057 66.5746 107.3697
nk = 1,025 187.8145 82.4057 58.4772 104.7454
Adaptive spline I 159.4942 78.2545 68.3564 103.6734
Adaptive spline II 174.2334 83.4206 68.9132 108.6981

FIGURE 6. Approximate ergodic distribution for capital stock for solution on a gridnk =
1,025.

can greatly reduce the number of variables and still permit solution by linear
programming.

The cubic-spline approximate value function, ˜v(k(i), z(j)), is defined by

np∑
l=1

1
(
k(i) ∈ Kl

)[
γ
(l , j)
0 + γ (l , j)1 k(i) + γ (l , j)2

(
k(i)
)2+ γ (l , j)3

(
k(i)
)3
]
,

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

268 MICHAEL A. TRICK AND STANLEY E. ZIN

where{Kl }, l = 1, 2, . . . ,np, is a partition ofK, 1(k(i) ∈ Kl)= 1 if k(i) ∈ Kl and 0
otherwise, andγ ={γ (l , j)0 , γ (l , j)1 , γ (l , j)2 , γ (l , j)3 ; j = 1, 2, . . . ,nz, l = 1, 2, . . . ,np},
are the constant parameters of the spline approximation.

Continuity of this function ink requires the restrictions

γ
(l , j)
0 + γ (l , j)1 k̃(l , l + 1)+ γ (l , j)2 k̃(l , l + 1)2+ γ (l , j)3 k̃(l , l + 1)3

= γ (l+1, j)
0 + γ (l+1, j)

1 k̃(l , l + 1)+ γ (l+1, j)
2 k̃(l , l + 1)2+ γ (l+1, j)

3 k̃(l , l + 1)3

(5)

for all j andl = 1, 2, . . . ,np − 1, wherek̃(l , l + 1) is the point that “joins”Kl

andKl+1.
Continuity of the first derivative of the function ink requires the restrictions

γ
(l , j)
1 + 2γ (l , j)2 k̃(l , l + 1)+ 3γ (l , j)3 k̃(l , l + 1)2

= γ (l+1, j)
1 + 2γ (l+1, j)

2 k̃(l , l + 1)+ 3γ (l+1, j)
3 k̃(l , l + 1)2. (6)

Similarly, for the second derivative

γ
(l , j)
2 + 3γ (l , j)3 k̃(l , l + 1) = γ (l+1, j)

2 + 3γ (l+1, j)
3 k̃(l , l + 1), (7)

and the third derivative

γ
(l , j)
3 = γ (l+1, j)

3 . (8)

The approximate value function is nonlinear in the state variablek. Note, how-
ever, that it is still linear inγ , i.e., the cubic-spline parameters. Therefore, the
solution to this approximate problem is the solution to the linear program

min
γ

∑
i, j

np∑
l=1

1
(
k(i) ∈ Kl

)
F (l , j)

3

(
k(i)
)

(9)

subject to the restrictions

np∑
l=1

1
(
k(i) ∈ Kl

)
F (l , j)

3

(
k(i)
) ≥ ui ja + β

nz∑
m=1

π jm

np∑
l=1

1
(
k(a) ∈ Kl

)
F (l ,m)

3

(
k(a)
)
,

(10)
where the cubic polynomial is given by

F (l , j)
3 (x) = γ (l , j)0 + γ (l , j)1 x + γ (l , j)2 x2+ γ (l , j)3 x3.

Continuity of the function and its derivatives requires the additional restrictions
given in (5)–(8).

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 269

FIGURE 7. Approximate ergodic distribution for capital stocknp = 20.

Note the reduction in the number of variables in (9) compared to (4). For ex-
ample, whennp = 20, nk = 4,097, andnz = 2, solving for the value-function
ordinates involves 8,194 variables in the linear program, whereas solving for the
cubic-spline approximation involves only 160 variables.

Figure 7 plots the ergodic distribution for an approximate solution that uses a
cubic spline overK with 20 equal-sized partitions. Continuity ink is imposed on
the level and the first derivative of the value function. This distribution lies to the
left of the exact distribution (i.e., the distribution of the exact solution fornk =
4,097), which is further reflected in the moments in Table 1.

Figure 8 highlights a hazard inherent in the use of spline approximations. It
is not difficult to generate convex approximate value functions in a situation in
which the true value function is globally concave. In this case, the spline approx-
imation with a partition of 10 admits a “hump” just to the left of the first “join
point.” The consequence of this is evident in Table 1: The ergodic distribution
is truncated at a very low value of the capital stock. Judd and Solnick (1994)
provide methods for shape preservation that enable one to impose monotonicity
and concavity on spline approximations. They show that incorporating these con-
straints can significantly improve the accuracy of these approximations without
increasing the complexity of the spline (e.g., increasing the number of partitions

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

270 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 8. Example of nonconvexity,np = 10.

over the state space). We would anticipate a comparable increase in accuracy from
incorporating Judd–Solnick-type restrictions in our algorithms; however, because
we found that the nonconcavities in our problem do not arise for splines with 20 or
more partitions, we do not impose their restrictions on the solutions that we report
below.

Finally, we compute a solution with 40 partitions (320 variables). This solution
is too close to the exact solution to demonstrate graphically. The moments are
given in Table 1 and are extremely close to those of the exact solution.

5. VALUE-FUNCTION BOUNDS

The use of linear programming as a method for solving for the cubic-spline ap-
proximation to the value function has an additional benefit. The approximation
always must lie above the exact discrete value function. This property is easily
seen through a simple two-dimensional example.

Assume that the growth model described above is deterministic(nz = 1). Fur-
ther assume that the capital stock can take on only two values(nk = 2). This
implies that there are two variables and (at most) four restrictions in the linear

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 271

FIGURE 9. Two-dimensional example.

program in (4) and (3). Assign the following numerical values to the instantaneous
utilities:

u11 = 3.0 u12 = 1.0

u21 = 9.0 u22 = 3.5

and setβ = 0.5. The resulting restrictions on the value function are

v1 ≥ u11+ βv1⇒ v1 ≥ 3+ 0.5v1 (1, 1)

v1 ≥ u12+ βv2⇒ v1 ≥ 1+ 0.5v2 (1, 2)

v2 ≥ u21+ βv1⇒ v2 ≥ 9+ 0.5v1 (2, 1)

v2 ≥ u22+ βv2⇒ v2 ≥ 3.5+ 0.5v2 (2, 2)

These restrictions are depicted in Figure 9.
The solution to this dynamic program is depicted by point A in Figure 9. The

optimal policy is to take action 2 in state 1 and action 1 in state 2. The optimal
value in state 1 is 7.33 and the optimal value in state 2 is 12.67. If we were to

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

272 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 10.Value function bounds (high shock):np = 20.

reduce the dimensionality of this problem by imposing, say, the linear restriction
v1 = v2, the linear program with this restriction would have a solution at point B
in the figure. The value-function ordinates are equal to each other at a level of 18.
This implies action 1 be taken in state 1 and action 1 in state 2. If we calculate the
unrestricted value of these actions, the result is point C with the value in state 1
equal to 6 and the value in state 2 equal to 12.

This simple example demonstrates a general property of a cubic-spline approx-
imate value function solved with linear programming. The approximation always
must lie above the exact discrete value function. Moreover, the actions implied by
this approximation generate unrestricted values that must lie below the exact dis-
crete value function (because these actions are feasible but suboptimal). Through
these simple upper and lower bounds on the exact discrete value function, we
get valuable information about the accuracy of the approximation. That is, if the
bounds are close to each other, the approximate solution is accurate.

The proof that the cubic-spline approximate value function is an upper bound
on the exact discrete value follows directly from the following Lemma.

LEMMA 1. For any x and y inRn define the vector z∈ Rn as z(x, y) =
min(x, y)where themin is taken componentwise. Let P be the polyhedron defined
by (3). If x ∈ P and y∈ P then z(x, y) ∈ P.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 273

FIGURE 11.Approximate ergodic distribution: fixed partition vs. adaptive partition.

Proof. Consider two feasible solutions to (4),v1 andv2 with typical components
v1

i j andv2
i j . Let zi j be a typical component ofz(v1, v2). We need to show that

zi j ≥ ui ja + β
nz∑

l=1

π j l zal ,

for all (i, j).
Consider an instance in whichzi j = v1

i j . Then, we know that

zi j ≥ ui ja + β
nz∑

l=1

π j l v
1
al .

However, becausezal ≤ v1
al by definition, it follows that

zi j ≥ ui ja + β
nz∑

l=1

π j l zal .

The same would be true if we began with an instance in whichzi j = v2
i j . Therefore,

z(v1, v2) is a feasible solution to (4).

THEOREM 1. The cubic-spline approximate value function is an upper bound
on the exact discrete value function.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

274 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 12.Adaptive spline accuracy (maxnp = 20).

Proof. Letv∗ be the solution to (4) and letvs be the cubic-spline approximate
solution to (4). Forvs to be an upper bound onv∗, it must be thatz(v∗, vs) = v∗.
If this is not the case, thenz(v∗, vs) is a feasible solution to (4) by the Lemma
and it has a smaller value for the objective function thanv∗, which contradicts the
definition ofv∗.

As discussed above, the lower bound to the exact discrete value function is
found by finding the unrestricted values implied by the spline-approximate ac-
tions. Note that the theorem could be stated in more general terms because nothing
specific about the structure of splines per se was used in the proof. That is, any
approximation method that is amenable to fitting with linear programming (specif-
ically, those that are linear in unknown parameters) will bound the exact discrete
value function.

Figure 10 demonstrates these bounds (with partition size of 20) for a particularly
difficult-to-approximate region of the parameter space.

6. ADAPTIVE SPLINE GENERATION

The bounds discussed above can be used to refine the accuracy of a given solution.
When the bounds are far apart for a particular region of the state space, the spline

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 275

FIGURE 13.Approximate ergodic distribution: fixed partition vs. (relative) adaptive partition.

approximation can be adapted accordingly. That is, either a finer partition or a
richer polynomial can be given to that region of the state space. We opt for the
former of these two options and maintain a cubic spline throughout. The model
can be resolved with the new parameterization, the new accuracy can be checked,
and so on. The process stops when a desired level of accuracy is achieved.

Figure 11 plots the ergodic distribution of an approximation that follows the
following adaptation rule. Start with 10 equal partitions, solve the cubic-spline
approximation using constraint generation, and locate the partition that has the
greatest distance between upper and lower bounds on the value function. Split
this partition in half and iterate until the approximation has 20 partitions. For
comparison, the distributions of the “exact” solution and the fixed partition of
size 20 also are plotted in Figure 11. Note that this particular form of adaptation
does not generate much additional accuracy, on average. The adaptation gets closer
to the exact solution at very small values of capital but is farther away for high
values. The reason for this can be seen in Figure 12 wherepercentagedeviations of
the bounds are plotted for the final adapted solution. This particular rule overem-
phasizes the dramatic absolute distance at the low end of the state space. There is
little accuracy to be gained over this region; therefore, this adaptation sacrifices
accuracy over the rest of the distribution where the relative distance between the
bounds is actually much greater.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

276 MICHAEL A. TRICK AND STANLEY E. ZIN

FIGURE 14. (Relative) Adaptive spline accuracy (maxnp = 20).

To address this issue, we adopt an alternative form of adaptation. Start with
10 equal partitions, solve the cubic-spline approximation using constraint genera-
tion, and locate the partition that has the greatestrelativedistance between upper
and lower bounds on the value function. Split this partition in half and iterate until
the approximation has 20 partitions. The results for this rule are given in Figure 13.
From this figure, it is clear that this is a much more reasonable adaptation rule,
which also can be seen from the moments in Table 1. Figure 14 reveals that relative
accuracy in this example is within 1%.

7. FINAL REMARKS

The preliminary performance of our linear-programming-based adaptive spline
generation demonstrates that this method has a number of advantages over com-
peting approaches. Future work will focus on developing this algorithm for other
economic models, in particular, those with higher-dimensional state spaces. For
example, Johnson et al. (1993) used conventional spline approximations for a series
of stochastic water-supply reservoir problems with multidimensional state spaces.
They found that higher-dimensional splines offered significant improvements over
standard discretization methods (although for dimensions higher than three, their
algorithms are still very time-consuming). In addition, exploring alternative

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

SPLINE APPROXIMATIONS 277

functional approximations other than splines, e.g., neural networks as in Mrkaic
et al. (1997), also holds promise for expanding the scope of linear programming
algorithms, and the accuracy adaptations they provide, to a broader class of eco-
nomic models.

REFERENCES

Bertsekas, D. (1976)Dynamic Programming and Stochastic Control. New York: Academic Press.
Christiano, L.J. (1990) Linear-quadratic approximation and value-function iteration: A comparison.

Journal of Business and Economic Statistics8, 99–114.
Johnson, S.A., J.R. Stedinger, C.A. Shoemaker, Y. Li, & J.A. Tejada-Guibert (1993) Numerical solution

of continuous-state dynamic programs using linear and spline interpolation.Operations Research
41, 484–500.

Judd, K. & A. Solnick (1994) Numerical Dynamic Programming with Shape-Preserving Splines.
Manuscript, Hoover Institution.

Koehler, G.J. (1976) A case for relaxation methods in large scale linear programming. In G. Guardabassi
& A. Locatelli (eds.),Large Scale Systems Theory and Applications, 293–302. Pittsburgh: IFAC.

Mrkaic, M., M. Trick & S.E. Zin (1997) Neural Networks as Polyhedral Approximations to Markov
Decision Problems. Working paper, Carnegie Mellon University.

Puterman, M.L. (1994)Markov Decision Processes: Discrete Stochastic Dynamic Programming. New
York: John Wiley & Sons, Inc.

Ross, S.M. (1983)Introduction to Stochastic Dynamic Programming. Orlando: Academic Press.
Schweitzer, P.J. & A. Seidmann (1985) Generalized polynomial approximations in Markovian decision

processes.Journal of Mathematical Analysis and Applications110, 568–582.
Trick, M.A. & S.E. Zin (1993) A Linear Programming Approach to Solving Stochastic Dynamic

Programs. Working paper, Carnegie Mellon University.
Whitt, W. (1978) Approximations of dynamic programs, I.Mathematics of Operations Research3,

231–243.
Whitt, W. (1979) Approximations of dynamic programs, II.Mathematics of Operations Research4,

179–185.

https://doi.org/10.1017/S1365100597002095 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597002095

