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We use high-resolution velocity measurements in a jet-stirred zero-mean-flow facility
to investigate the topology and energy transfer properties of homogeneous turbulence
over the Reynolds number range Reλ ≈ 300–500. The probability distributions of
the enstrophy and strain-rate fields show long tails associated with the most intense
events, while the weaker events behave as random variables. The high-enstrophy and
high-strain structures are shaped as tube-like and sheet-like objects, respectively, the
latter often wrapped around the former. Both types of structures have thickness that
scales in Kolmogorov units, and display self-similar topology over a wide range of
scales. The small-scale turbulence activity is found to be strongly correlated with
the large-scale activity, suggesting that the phenomenon of amplitude modulation
(previously observed in advection-dominated shear flows) is not limited to specific
production mechanisms. Observing the significant variations in spatially averaged
enstrophy, we heuristically define hyperactive and sleeping states of the flow:
these also correspond to, respectively, high and low levels of large-scale velocity
gradients. Moreover, the hyperactive and sleeping states contribute very differently
to the inter-scale energy flux, characterized via the nonlinear transfer term in the
Kármán–Howarth–Monin equation. While the energy cascades to smaller scales along
the jet-axis direction, a weaker but sizable inverse transfer is observed along the
transverse direction; a behaviour so far only observed in spatially developing flows.
The hyperactive states are characterized by very intense energy transfers, while the
sleeping states account for weaker fluxes, largely directed from small to large scales.
This implies that the form of energy cascade depends on the presence (or absence)
of intense turbulent structures. These results are at odds with the classic concept of
the energy cascade between adjacent scales, but are compatible with the view of a
cascade in physical space.

Key words: homogeneous turbulence, intermittency, turbulent flows

1. Introduction
It has long been recognized that turbulent flows contain regions of considerable

spatio-temporal coherence, embedded in disorganized background motions. Following
the increasingly common observation of such coherent structures in experiments and
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simulations, they have often been attributed a prominent role in signature aspects
of turbulence, including the intermittent nature of the fluctuations and the cascade
of energy. However, their precise topology, scaling properties, dynamics and overall
significance remain the subject of intense debate. These questions represent the focus
of the present study, specifically in the context of homogeneous turbulence. The body
of relevant literature is vast, and in the following we survey only selected themes.

Early experimental investigations of the fine-scale fluctuations (characterized
via velocity gradients) suggested that turbulence is populated by compact vortical
structures (Batchelor & Townsend 1949; Kuo & Corrsin 1971). This was later
confirmed by visualizations (Douady, Couder & Brachet 1991) and direct numerical
simulations (DNS) of homogeneous isotropic turbulence (Siggia 1981; Kerr 1985).
These appeared populated by long tubular filaments of intense vorticity, whose
spottiness could account for the intermittent nature of the velocity gradients (She,
Jackson & Orszag 1991; She & Leveque 1994; Jiménez & Wray 1998). The seminal
study of Jiménez et al. (1993) established that the filament diameter and length are
of the order of the Kolmogorov and integral scale of the turbulence, respectively
(although the recent work of Elsinga et al. (2017) indicates their length also scales
in Kolmogorov units). Some authors, stressing that vortex filaments are long-lived,
attributed them great significance in the turbulence dynamics (She, Jackson & Orszag
1990), while others saw them as inactive debris from the fragmentation of larger
structures such as vortex sheets (Jiménez et al. 1993).

The distribution of strain rate, which determines the local dissipation of turbulent
kinetic energy, is also known to be highly intermittent (Batchelor & Townsend
1949; Landau & Lifshitz 1959), an observation with far-reaching implications, which
eventually led Kolmogorov to refine his original similarity theory (Kolmogorov
1941) in order to include the variability of dissipation (Kolmogorov 1962). The
topology of high-dissipation regions is less clear compared to high-enstrophy regions,
but these have often been described as sheets of Kolmogorov length thickness
surrounding the vortex tubes (e.g. Vincent & Meneguzzi 1994; Ganapathisubramani,
Lakshminarasimhan & Clemens 2008; Bermejo-Moreno, Pullin & Horiuti 2009).
The mutual nonlinear interaction of enstrophy and dissipation is evident from their
presence in each other’s transport equations (Tsinober 2001) and is crucial to the
structure and evolution of three-dimensional turbulence (Lüthi, Tsinober & Kinzelbach
2005; Buxton & Ganapathisubramani 2010). Despite their universal nature, some
aspects of this dynamics is likely dependent on the Reynolds number Reλ (based on
the Taylor microscale, λ), at least before sufficiently high values are reached. Recent
DNS at higher Reλ than before possible (of order 103) indicated that events of
extremely high enstrophy and dissipation are often concurrent and collocated (Yeung,
Donzis & Sreenivasan 2012; Yeung, Zhai & Sreenivasan 2015), and that the spatial
organization of the coherent structures display qualitative changes with increasing Reλ
(Elsinga et al. 2017).

The evolution and interplay of enstrophy and strain rate appear essential to the
inviscid stretching, deformation, and ultimate breakdown of large eddies into smaller
ones. This cascade of energy was first pictured by Richardson (1920) and Obukhov
(1941) as local in space (i.e. a process pertaining to spatially localized eddies that
shrink, grow, merge or split), and then famously theorized by Kolmogorov (1941)
as being local in scale (the energy being transferred from eddies of a certain size
to those immediately smaller). For high enough Reynolds numbers, the range of
cascading scales is expected to be sufficiently wide to admit a self-similar description,
and indeed various phenomenological models based on scale-invariant (fractal and
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multi-fractal) frameworks have been proposed (Mandelbrot 1974; Paris & Frisch
1985; Meneveau & Sreenivasan 1991). Individual coherent structures in homogeneous
turbulence were also shown to possess fractal features, both in their shape and
spatial organization (Moisy & Jiménez 2004). Indeed, while most cascade models
follow Kolmogorov’s view of a local-in-scale process (Biferale 2003), other studies
maintained Richardson’s original perspective and focused on the physical space, often
in a Lagrangian framework. Among them, Meneveau & Lund (1994) followed the
evolution of a blob of fluid and its turbulent kinetic energy, confirming the picture of a
forward cascade towards smaller scales and quantifying its temporal rate. Goto (2008)
described a mechanism by which pairs of vortex tubes stretch smaller nearby vortices.
Yang, Pullin & Bermejo-Moreno (2010) characterized Lagrangian structures using
differential-geometry descriptors and suggested that their shape became independent
from initial conditions after an eddy turnover time. Leung, Swaminathan & Davidson
(2012) used a bandpass filtering procedure and confirmed that axial stretching of
tubular structures acts to transfer energy across eddies of different sizes. Cardesa,
Vela-Martín & Jiménez (2017) leveraged the algorithm introduced by Lozano-Durán
& Jiménez (2014) to track coherent structures and showed that, on average, eddies
of a given scale are born from eddies twice as large and die while giving birth to
eddies twice as small.

While the classic theory of Kolmogorov (1941) remains the most successful and
influential model of turbulence phenomenology, it is also known to have severe
limitations. Partly, as mentioned, these come from neglecting the intermittency of
the velocity fields, which significantly affect the scaling of the moments of velocity
differences (Sreenivasan & Antonia 1997). Partly, they are due to the assumption of
a local and unidirectional cascade, ignoring non-local effects that may lead to ‘direct
and bidirectional coupling between large and small scales’ (Tsinober 2001). While in
three-dimensional turbulence the flux of energy to smaller scales dominates on average,
sizeable backscatter of energy from smaller to larger scales was detected both in scale
space (e.g. via filtering techniques relevant to sub-grid-scale modelling, Piomelli et al.
1991; Aoyama et al. 2005) and in physical space (Lozano-Durán & Jiménez 2014;
Cardesa et al. 2017). These have important implications for modelling, especially
via large-eddy simulations (Meneveau & Katz 2000). In fact, recent experimental
(Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015) and numerical (Alves
Portela et al. 2017) studies of near-wake turbulence found that inverse energy fluxes
can even dominate the ensemble-averaged statistics along specific orientations in
scale space. As for the issue of locality, Yeung & Brasseur (1991) found that
high wavenumbers are affected by low-wavenumber anisotropic forcing because of
non-local triadic interactions. In homogeneous and isotropic flows, the net transfer
remains mostly local due to significant cancellations among the non-local interactions
(Domaradzki & Carati 2007; Cardesa et al. 2015). Still, multiple research groups
observed coupling between distant scales. Vortex filaments were observed to generate
from shear layer structures, allowing for direct energy transfer between distant scales
(Vincent & Meneguzzi 1994; Ishihara, Kaneda & Hunt 2013; Hunt et al. 2014;
Elsinga et al. 2017). Several studies reported that large-scale anisotropy was reflected
on the dissipative scales even at relatively high Reλ (Shen & Warhaft 2000; Antonia,
Zhou & Romano 2002; Ouellette et al. 2006, among others; see Carter & Coletti
2017 for a recent review of the literature on this subject). Chien, Blum & Voth (2013)
used an oscillating-grid system to demonstrate that fluctuations of the energy input
left their footprint on all scales down to the dissipative range. In the last decade,
several turbulent boundary layer studies described the amplitude modulation of the
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near-wall motions by those in the outer region (Hutchins & Marusic 2007; Chung &
McKeon 2010; Guala, Metzger & McKeon 2010; Ganapathisubramani et al. 2012).
Recently Buxton & Ganapathisubramani (2014) and Fiscaletti et al. (2016) showed
that a correlation between the amplitude of distant scales manifested itself also in
turbulent mixing layers.

Most of the studies cited above, like numerous others focused on these themes,
leveraged the ability of DNS to provide fine-grained details for all quantities of
interest. While today these can rival with the highest Reλ achieved in laboratory, they
remain extremely computationally expensive. Moreover, the resolution requirements
for reproducing the fine-scale features of intermittent events are more stringent
compared to traditional criteria based on the average dissipation (Bermejo-Moreno
et al. 2009; Yeung et al. 2015). Experimental investigations remain essential, but
the information is usually measured with finite accuracy and at a limited number
of locations. Single-point measurements (e.g. by hot-wire, which account for
the bulk of the available experimental results) rely on Taylor’s hypothesis, the
limitations of which are well known (Zaman & Hussain 1981; Del Álamo &
Jiménez 2009; Fiscaletti, Ganapathisubramani & Elsinga 2015). This assumption
is not required by particle-based techniques such as particle image velocimetry (PIV)
and particle tracking velocimetry (PTV). Recently these have greatly improved their
capabilities thanks to progress in imaging hardware and processing, and can now
yield three-dimensional velocities with high accuracy (Westerweel, Elsinga & Adrian
2013; Discetti & Coletti 2018). Three-dimensional PTV has provided significant
insight in Lagrangian dynamics (Voth et al. 2002; Lüthi et al. 2005; Xu et al. 2014,
among others), but seeding density limitations usually prevent retrieval of spatial
fields. Tomographic PIV provides volumetric measurements and has enabled detailed
examination of the full velocity-gradient tensor (Elsinga & Marusic 2010; Lawson &
Dawson 2015; Buxton, Breda & Chen 2017), but this is challenging at high Reynolds
numbers due to resolution limits. The latest advances in tomographic PTV (Schanz,
Gesemann & Schröder 2016) appear to overcome such limitations, but have not
been applied to fundamental turbulence research yet. Two-dimensional (2-D) PIV has
proved capable of retrieving in-plane velocity fields with wide dynamic spatial range
(needed to cover distant scales) down to the Kolmogorov length, even for relatively
high Reynolds numbers (De Silva et al. 2014; Fiscaletti, Westerweel & Elsinga 2014;
Saw et al. 2016, 2018; Carter & Coletti 2017). While two-dimensional sections
of three-dimensional flows can be misleading (Perry & Chong 1994), the in-plane
components can provide important physical insight on the topology of high-enstrophy
and dissipation structures (Fiscaletti et al. 2014; Saw et al. 2016) and via the reduced
velocity-gradient tensor (Cardesa et al. 2013; Rabey, Wynn & Buxton 2015).

In the present study, we examine the small-scale features of a homogeneous
anisotropic turbulent flow in the range Reλ ≈ 300–500 using two-dimensional PIV
data. We first examine the small-scale structure of the turbulence as permitted by
planar measurements, showing results consistent with previous studies where the
full 3-D topology was characterized. We then investigate the correlation between
strain rate and enstrophy at small scales with velocity fluctuations at larger scales.
Finally, we look at the inter-scale transfer of energy, providing some complementary
insight with respect to previous results mostly obtained from DNS and pointwise
measurements. The new contributions of the present work, which will be put in
the context of the considered Reynolds number, are the following. It is shown that
there is strong interaction between distant scales, with a clear amplitude modulation
between scales that to date had been reported only in convective shear flows. The
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influence of the large-scale energy input is felt most strongly by the smallest scales,
which is at odds with universality arguments. The nonlinear transfer of energy is
found to be a combination of forward and inverse cascade in different sectors of
scale space, a feature that so far had only been noticed in non-equilibrium flows. It
is also shown that the states of the flow characterized by intense and weak turbulence
activity contribute very differently to the cascade process. These findings would not
be derivable from standard simulations of homogeneous turbulence. While the planar
nature of the measurements affects the quantitative results, it is not expected to
qualitatively alter the conclusions. This is partly because the incompleteness of the
measurable information is alleviated by the assumption of statistical axisymmetry –
an assumption corroborated by a large body of literature as discussed below. The
paper is organized as follows. The experimental apparatus and methodology are
briefly described in § 2. In § 3 we analyse the enstrophy and strain-rate fields and the
individual structures educted from them. In § 4 we consider the correlation between
the small-scale and large-scale turbulence activity. In § 5 we investigate the energy
transfer in scale space. In § 6 we summarize and discuss the results, and give an
outlook for future work.

2. Apparatus and methodology
2.1. Homogeneous turbulence chamber

The experimental apparatus used in this study was presented and qualified in Carter
et al. (2016) and Carter & Coletti (2017), and only a brief description will be given
here. It consists of a 5 m3 transparent chamber in which two identical panels facing
each other issue 256 turbulent air jets. The latter are individually actuated in random
sequence, following the timing algorithm proposed by Variano & Cowen (2008) and
implemented in a similar water facility by Bellani & Variano (2014). A region of
approximately homogeneous turbulence with almost zero mean shear and negligible
mean flow is generated at the centre of the chamber over a volume of approximately
0.5× 0.7× 0.4 m3. The Reynolds number can be tuned by adjusting the average firing
time of the jets (µon), as increasing the latter leads to an increase of both the integral
length scale and the root mean square (r.m.s.) velocity fluctuations.

Several features of the facility make it well suited for investigating turbulence
structure and energy transfer dynamics. First, the size of the homogeneous region is
substantially greater than the integral scales of the flow, which allows for the natural
development of the energy cascade without major effects of the boundary conditions.
The achievable Reynolds number (Reλ ≈ 500) is sufficient for the development of an
inertial subrange (Ishihara, Gotoh & Kaneda 2009). In addition, the lack of mean
velocity gradients simplifies the physics at the large scales, removing shear-production
mechanisms (Mydlarski & Warhaft 1996; Biferale & Toschi 2001). The large degree
of homogeneity allows us to neglect the effect of spatial gradients on the turbulent
kinetic energy transfer. Finally, the lack of mean flow is beneficial for the PIV
accuracy, as the full dynamic range is associated with the turbulent fluctuations.

2.2. Experimental data set
We analyse measurements from the data set presented by Carter & Coletti (2017).
Briefly, planar PIV is performed along the x1–x2 symmetry plane at the centre of the
chamber, where x1 is the direction along the jet axis and x2 is vertical. The flow
is seeded with 1–2 µm oil droplets, illuminated by a 532 nm Nd:YAG laser and
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FIGURE 1. (Colour online) Strain rate (a) and enstrophy (b) from an instantaneous
flow realization sample at Reλ = 496. The colour bar range in (a) has its maximum at
approximately 30 times the overall mean strain rate.

µon (s) u′ (m s−1) u′1/u
′

2 LL (mm) ε (m2 s−3) η (mm) τη (m s) λ (mm) Reλ

0.2 0.54 1.41 90 0.81 0.26 4.4 8.7 304
0.4 0.65 1.47 98 1.06 0.24 3.8 8.7 361
1.6 0.78 1.67 128 1.24 0.24 3.6 9.5 476
3.2 0.77 1.72 140 1.19 0.24 3.6 10.0 496

TABLE 1. Basic turbulence statistics for the four investigated flow configurations. The
r.m.s. velocity u′ and the longitudinal integral scale LL are based on weighted averages
between directions x1 and x2 (Carter & Coletti 2017). See text for definition of Taylor
microscale Reynolds number Reλ.

imaged by a 4 megapixel CCD camera with a 200 mm Nikon lens, yielding a field
of view of 4.7 cm by 4.7 cm. Velocity fields are processed using an iterative cross-
correlation algorithm, with final interrogation windows of 32 pixel × 32 pixel and
50 % overlap. The final vector spacing corresponds to ∼1.5η, which is sufficient to
resolve the dissipative scales of motion (Hearst et al. 2012). Spatial derivatives are
calculated with a second-order central difference scheme, after applying a Gaussian
filter with kernel width matching the interrogation window size. For each case, 2000
uncorrelated realizations are acquired at 7.25 Hz. Figure 1 displays the strain-rate
and enstrophy fields (see (3.3) and (3.4) in the following section) for one sample
realization at Reλ = 496. Both fields exhibit high spatial intermittency, with long and
corrugated structures of high strain and more compact but still complex structures
of high enstrophy. In the following, we will discuss how this is consistent with the
view of the fine-scale structure of turbulence gained by previous experiments and
simulations.

Basic flow statistics for the four considered cases are reported in table 1. The
large-scale quantities (such as the integral length scale and r.m.s. velocity) are based
on separate measurements performed under the same jet-firing conditions on a larger
field of view (27 cm by 27 cm), also presented in Carter & Coletti (2017). The
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integral scale LL is obtained using a weighted average between the longitudinal
integral lengths scales along directions x1 and x2 as described by Carter et al. (2016).
The planar symmetry results in large-scale anisotropy, quantified by the ratio u′1/u

′

2
(here and in the following, the subscript i is used for the component along direction
xi, and the prime denotes r.m.s. quantities). For the considered range of jet-firing
parameters, increasing µon leads to an increase in both Reλ and the anisotropy ratio
u′1/u

′

2. The relationship between the two quantities is approximately linear, thus any
trend with Reλ in our data implies a similar trend with u′1/u

′

2. The anisotropy persists
to the fine scales, with second-order moments of the velocity gradients consistent
with axisymmetric turbulence (Carter & Coletti 2017). We thus calculate the mean
dissipation directly from the measured velocity gradients using the axisymmetric
relation by George & Hussein (1991):

ε = ν[−〈a2
11〉 + 2〈a2

12〉 + 2〈a2
21〉 + 8〈a2

22〉], (2.1)

where aij= ∂ui/∂xj are the components of the velocity-gradient tensor and the brackets
denote the ensemble average over space and time. This estimate of the dissipation
agrees well with that based on the second-order structure function (Carter et al. 2016)
and is used to calculate the Kolmogorov length scale η= (ν3/ε)1/4 and time scale τη=
(ν/ε)1/2, where ν is the kinematic viscosity of air. The Taylor microscale is defined as
λ=

√
15u′2/ε, from which Reλ = u′λ/ν. Because small-scale isotropy is not satisfied

in the present flow, these definitions of λ and Reλ are regarded as conventional.

3. Structure of strain rate and enstrophy
3.1. Strain-rate and enstrophy fields

We first characterize the spatial structure of the strain-rate and enstrophy fields, defined
as the symmetric and anti-symmetric parts of the velocity-gradient tensor A. In matrix
notation,

S =
A+ AT

2
, (3.1)

Ω =
A− AT

2
, (3.2)

for which the (squared) strain-rate and enstrophy are, respectively,

s2
= SijSij = tr(S2), (3.3)

ω2
=ωiωi =−2tr(Ω2), (3.4)

where ω = ∇ × u is the vorticity vector. From the planar PIV data we can only
determine the four components in the upper-left 2× 2 block of the full 3× 3 velocity-
gradient tensor. As mentioned above, this partial information is not sufficient to fully
describe the flow topology. Still, as will be shown, the turbulence structure captured
by the 2-D fields is at least consistent with the results of previous experiments and
simulations containing the full 3-D information.

In figure 2 we plot the probability density functions (PDFs) of s2 and ω2 for
Reλ = 496 (qualitatively similar to the other cases). In panel (a) the abscissa is
linear, highlighting the long tails indicative of strong intermittency. As expected,
the intermittent behaviour is more pronounced for enstrophy than for strain rate
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FIGURE 2. Strain rate and enstrophy PDF in semilog (a) and log–log (b) coordinates for
the case Reλ = 496 with dashed lines corresponding to chi-squared distributions of order
3 and 5. These are offset to the right for clarity, and otherwise overlap with the left tails
of the experimental data corresponding to weak values of strain rate and enstrophy. The
joint PDF is shown in (c) with contours ranging between 10−1 (inner) and 10−6 (outer)
by decade, the dashed lines have slope 1, and the dotted lines are through s2/〈s2

〉= 1 and
ω2/〈ω2

〉 = 1.

(Kerr 1985; Chen, Sreenivasan & Nelkin 1997). In panel (b) the same PDFs are
plotted in log–log scale, revealing long straight tails that characterize the small values
of both quantities. The probability of low-intensity events is likely overestimated
in the two-dimensional measurements compared to the three-dimensional fields
(Ganapathisubramani et al. 2008). However, these long tails were also identified
by the DNS of Yeung et al. (2012), who argued they correspond to samples close to
the Gaussian core of the velocity-gradient PDFs. Such events are expected to follow
chi-square distributions, which describe the behaviour of sum-of-squares of normal
random variables. In particular, by continuity, weak enstrophy and weak dissipation
events should follow chi-square distributions of order three and five, respectively. The
present data are in excellent agreement with these theoretical curves (dashed lines in
figure 2b). Extremely small ω2 events are relatively common (and more frequent than
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extremely small s2 events), which is consistent with the phenomenological picture that
large-enstrophy areas are isolated and surrounded by large regions of low vorticity
(Jiménez et al. 1993; Yeung et al. 2012).

In the DNS data of Yeung et al. (2012) the right tails of the PDFs for both
enstrophy and dissipation approach one another at high Reynolds number, supporting
theoretical arguments that extreme values of both quantities should scale in a similar
manner (Nelkin 1999; Chevillard & Meneveau 2007). This effect, however, is fully
apparent only for fluctuations thousands of times higher than the mean (Yeung et al.
2015), and therefore it is not surprising that our data do not show this tendency in the
PDFs. On the other hand, Yeung et al. (2012) also show that the joint PDF (JPDF)
of dissipation and enstrophy has an increasingly symmetric and pointy shape in the
first quadrant at high Reλ (see their figure 3b). The JPDF of s2 and ω2 for our data
reproduce this pattern (figure 2c) well, confirming that the most intense fluctuations
of both quantities tend to occur simultaneously (see also Worth & Nickels 2011).

In the following we will devote significant attention to regions of high strain rate
and high enstrophy. As a first way of probing the size of such regions, we evaluate
the spatial coherence of the s2 and ω2 fields via the spatial autocorrelation functions:

RSS = 〈s2(x)s2(x+ r)〉, (3.5)
Rωω = 〈ω2(x)ω2(x+ r)〉, (3.6)

which in homogeneous flows depend on the separation vector r and not on the
position x. Figure 3 shows both functions (normalized by the space–time variance of
the respective fields) with separations along both x1 and x2 (normalized by η), for
the representative Reλ = 496 case. Despite the large-scale anisotropy, no measurable
difference is found based on the orientation of r. As both functions approximate
an exponential decay for separations smaller than O(10η), we define characteristic
lengths as the separations at which the normalized curves drop to 1/e. As they are
based on spatial autocorrelations, these scales should be interpreted as approximate
rather than precise estimates of the size of individual structures. This yields a length
scale of ∼10η for high-strain regions and ∼7η for high-enstrophy regions. The
latter is consistent with filaments of intense vorticity reported to have diameters
between 4η and 10η (Jiménez et al. 1993; Ishihara et al. 2013). Strong dissipative
regions have also been described as having thickness of order ∼10η, but with a
sheet-like rather than tubular shape (Moisy & Jiménez 2004; Ganapathisubramani
et al. 2008). Both RSS and Rωω exhibit long tails with significant level of correlation
(above 0.1 over the entire measurement window). This appears consistent with the
dual-scale nature of the high-enstrophy tubes and high-dissipation sheets, which
were found to have length/width of the order of the integral scale (Jiménez et al.
1993; Ganapathisubramani et al. 2008). The correlation levels for strain rate are
significantly higher than for enstrophy, which is also consistent with the accepted
topological picture: the imaging plane is more likely to cut through large portions
of high-dissipation sheets than through long sections of vortex tubes parallel to it.
Higher tails of RSS were also found in the PIV measurements of Fiscaletti et al.
(2014) in a turbulent jet.

In figure 3(b) we show a comparison of Rωω for the different Reλ cases, showing
good collapse of all curves especially at small separations. This is consistent with the
expected Kolmogorov scaling of the thickness of the vorticity filaments, which has
been shown to apply not only to homogeneous turbulence (Jiménez et al. 1993) but
also boundary layers (Herpin et al. 2013). Similar levels of collapse are found for RSS
(not shown).
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FIGURE 3. Normalized autocorrelations of strain rate and enstrophy (3.5) and (3.6) in each
direction for the case Reλ = 496 (a) and the autocorrelation of enstrophy along direction
r1 for all cases (b).

A widespread view of the small-scale turbulence structure is one in which tubular
vortices are flanked by high-strain regions (Kerr 1985; Vincent & Meneguzzi 1994;
Cadot, Douady & Couder 1995; Ganapathisubramani et al. 2008; Worth & Nickels
2011; Lawson & Dawson 2015). The mutual distance between the regions of strain
and rotation is probed here by calculating the cross-correlation between s2 and the
swirling strength λci, defined as the imaginary part of the complex eigenvalue of the
local velocity-gradient tensor (Zhou et al. 1999):

RS,λ = 〈s2(x)λci(x+ r)〉. (3.7)

Here λci is used in place of enstrophy as it identifies regions of fluid rotation without
being affected by local shear. As they are based on 2-D velocity fields, regions of
high swirling strength are interpreted as vortices of axis almost perpendicular to
the measurement plane. The cross-correlation (normalized by its maximum value) is
plotted in figure 4 for Reλ=304 and 496, showing a peak at separations of 4–5η. This
is smaller than the ∼9η separation in a similar plot obtained by Fiscaletti et al. (2014)
in a turbulent jet; but it is consistent with the study of Elsinga et al. (2017) who
performed conditional averaging in the strain eigenframe of homogeneous isotropic
turbulence, and found vortical structures with cores located 4η from the maximum
peak of dissipation. Yeung et al. (2015) reported examples of extreme dissipation and
enstrophy events occurring at distances of 2–3η from each other.

3.2. Individual structures of high strain rate and high enstrophy
The balance between rate of strain and enstrophy is often visualized using Q, the
second invariant of the velocity-gradient tensor, which can be written as (e.g. Soria
et al. 1994)

Q=Qω +QS, (3.8)

where

Qω =
1
4ω

2, (3.9)

QS =−
1
2 s2. (3.10)
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FIGURE 4. Correlation coefficient between strain rate and swirling strength for Reλ= 304
(squares) and Reλ = 496 (diamonds).

Lawson & Dawson (2015) recently gave a remarkable example of how the Q field,
and in particular the topology of regions with Q > 0 (rotation-dominated) and
Q < 0 (strain-dominated), can be used to describe fundamental fine-scale turbulence
dynamics. Here we utilize the 2-D version of these quantities to define two sets of
discrete structures: those characterized by high enstrophy and those characterized by
high strain. We first define thresholds τω and τs such that connected regions that
satisfy Qω > τω〈Qω〉 and QS < τS〈QS〉 are identified as high-enstrophy and high-strain
objects, respectively (which we will refer to as Qω structures and QS structures).
In order to choose appropriate thresholds, we analyse the percolation behaviour
of the structures, as first proposed by Moisy & Jiménez (2004) in their study in
homogeneous turbulence. The procedure was later applied to coherent structures in
several configurations, including channel flows (Lozano-Durán, Flores & Jiménez
2012) and free shear flows (Dong et al. 2017). For high values of the threshold,
we expect to find a few small objects within the field of view, which grow in size
and in number as the threshold is reduced. As the latter is further lowered, the
objects start to merge, thus their number decreases until a single macro-structure
occupies the entire domain. Figure 5 illustrates this behaviour in a sample realization
at Reλ= 304, with the Qω field binarized by a range of threshold levels. We disregard
objects that touch the border of the field of view, as their full spatial extent could
be underestimated. This selection criterion may bias the detection towards smaller
objects, but it was verified that none of the conclusions drawn were qualitatively
affected by it.

Figure 6 shows the percolation diagram of both types of structures for the
Reλ = 496 case, plotting the total number of identified objects and their average
area (normalized by the Kolmogorov unit area η2) as a function of the threshold
value. The other Reλ cases give similar results. The high-enstrophy objects follow
the expected trend, with the maximum number of identified structures occurring in
the middle of the percolation crisis (i.e. the threshold range over which the average
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FIGURE 5. (Colour online) Normalized instantaneous Qω field (a) with resulting binary
fields at thresholds τ = 0.1 (b), τ = 2.0 (c) and τ = 10 (d) for a sample at Reλ = 304.

structure size drops steeply). The average area of the high-strain objects displays
a non-monotonic trend, due to several large structures touching the image borders
and being discarded for low values of τS; their number, however, follows a similar
trend to the high-enstrophy objects. Therefore, we choose for simplicity τω = τS = τ .
Various values are considered, and the results are qualitatively similar in the range
2 6 τ 6 6. Taking the maximization of the number of objects as a criterion for
choosing the threshold (Lozano-Durán et al. 2012), we select τ = 2. Because we
aim to describe the structure topology, in the following analysis we discard objects
comprising less than 25 grid cells (the grid being defined by the velocity vector
spacing). This corresponds to ∼80η2, roughly the area of a circle of radius 5η. While
smaller objects may be dynamically significant, the results are only weakly dependent
on this limit, and we find that the conclusions remain essentially unchanged lowering
the threshold down to 16 grid cells.

Figure 7 displays the probability distribution of the normalized object areas
A/η2, for the representative case Reλ = 496. The distributions for both Qω and
QS structures approximate, although over a limited size range, a power-law decay
P(A) ∼ A−α, with α ≈ 4/3 (such a size range was found to be somewhat extended
when including objects touching the border). This suggests self-similarity in the
structure shape, possibly associated with the scale-invariant properties of the turbulent
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FIGURE 6. Percolation diagram for the case Reλ=496, with the total number of structures
(solid, logarithmic scale) and the mean area (dashed, linear scale) for QS (squares) and Qω

(circles) structures.
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FIGURE 7. PDF of structure areas for Reλ = 496 in log–log coordinates for QS (squares)
and Qω (circles) structures. The dashed line corresponds to a power law with exponent
−4/3.

field (Sreenivasan 1991; Moisy & Jiménez 2004). Moisy & Jiménez (2004) considered
the volume PDFs for three-dimensional structures of intense strain and enstrophy, and
found power-law decays with α ≈ 2 for both. As will be discussed later, the relation
between the scale-invariant exponents of 3-D objects and their corresponding 2-D
cross-sections is not trivial.

In order to characterize the physical size of the intense structures, we consider the
inner and outer dimensions R1 and R2, i.e. the side length of the largest inscribed
and the smallest circumscribed squares, respectively. These were previously used to
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FIGURE 8. PDFs of the largest inscribing square side length R1/η for QS (a) and Qω (b)
structures. (c,d) PDFs of the ratio of R1 to the smallest circumscribing square side length
R2 for Reλ = 496.

describe 3-D coherent structures and their 2-D cross-sections in various turbulent
flows (Catrakis & Dimotakis 1996; Moisy & Jiménez 2004; Lozano-Durán et al.
2012; Dong et al. 2017). Figure 8(a,b) displays the distributions of R1 for QS and
Qω structures, respectively. The inner dimension is a measure of the thickness of the
branches forming each object, and as such is not expected to be strongly biased by the
fact that the objects are sections of 3-D structures. The values are narrowly distributed
around 2–4η for both object types, with no discernible dependence on the Reynolds
number. This is consistent with the expected Kolmogorov scaling of high-enstrophy
tubes and high-dissipation sheets (Jiménez et al. 1993; Ganapathisubramani et al.
2008; Herpin et al. 2013), and agrees with our estimates from the autocorrelation
plots (figure 3). Moreover, the absence of specific trends (e.g. with the size of the
structures) corroborates the observation of Lozano-Durán et al. (2012) and Dong et al.
(2017) that even large coherent structures are essentially clusters of thin branches
with dissipative-scale thickness.

Although the quantitative measurement of the structure outer dimensions may be
biased by the 2-D nature of the experiments, it is still instructive to compare the
ratio R1/R2 for Qω and QS structures and for different Reλ. Figure 8(c,d) indicates
that high-strain objects are more elongated, while high-enstrophy objects are more
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FIGURE 9. (Colour online) (a) Instantaneous thresholded Q field (a) for the case Reλ =
496 and τ = 2. Outlines for strain rate (blue) and enstrophy (red) with overlap (grey).
(b) PDFs of overlap fraction for strain-rate structures (black) and enstrophy (grey). The
symbols are for each case, with Reλ = 304 (squares), 361 (circles), 476 (triangles) and
496 (diamonds).

compact. This is consistent with the former being cuts through sheet-like structures,
and the latter being cuts through tubular structures (Fiscaletti et al. 2014). Again, no
influence of the Reynolds number can be seen in the present range.

Despite the flow anisotropy, the intense structures show no preferential orientation
in the measurement plane. This is tested using two methods. In the first one, an
ellipse is fitted to the outline of each identified object. In the second method, the
axes of gyration of the object are calculated using the Q values as weights. Neither
the ellipse axes nor the axes of gyration show preferential alignment in the x1–x2

plane (not shown). Previous studies in homogeneous turbulent shear flows showed
that high-vorticity filaments tend to align approximately with the direction of mean
extensive strain (Rogers & Moin 1987). Here the lack of preferential alignment likely
reflects the negligible mean shear/strain.

As noted above, figure 2 strongly suggests that the intense strain and enstrophy
events are often concurrent. To quantify the extent to which they overlap, we consider
the intersections of Qω and QS structures. Figure 9 shows a sample realization with
outlines of high-strain and high-enstrophy objects in blue and red, respectively, and
the overlap areas shaded in grey. The overlap area fractions are calculated for each
object of both classes and plotted as PDFs in figure 9(b) for all investigated Reλ. The
PDFs only concern structures with an overlap of 10 % or more of their area, which are
approximately 45 % of the total. The Qω structures tend to have significantly greater
fractions of their area overlapping with QS structures than vice versa. This supports
the view that regions of high dissipation often surround the cores of high-vorticity
tubes. Yeung et al. (2015) also showed how the highest enstrophy regions are often
subsumed by high-dissipation envelopes. There does not appear to be a trend with
Reynolds number within the range considered here.

The complex shape of the intense structures can be characterized by their fractal
dimension using the box-counting method. This was previously applied to turbulent
coherent structures, for example by Moisy & Jiménez (2004) and Lozano-Durán et al.
(2012), and to clusters of inertial particle in turbulence by Baker et al. (2017). Each
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FIGURE 10. Normalized box counts for the 100 largest strain-rate structures (a) and
enstrophy structures (b) for the case Reλ = 496. The dashed lines indicate power laws of
R−1.46, with the dotted line at the upper limit for evaluating the box-counting dimensions.

two-dimensional object is circumscribed within a square which is divided into non-
overlapping squares of side R. The number N of squares having some overlap with
the object is a decreasing function of R. If N(R) follows a power law N∼R−D over a
range of R, the exponent D is interpreted as the fractal dimension of the object. Larger
structures provide a wider scale range, hence more robust estimates of D. Figure 10
shows plots N(R) for the 100 largest QS and Qω structures for the representative case
Reλ = 496, with a clear power-law behaviour over more than one decade. Over the
box length range 2 < R/η < 28, we find fractal dimensions DS ≈ Dω ≈ 1.46 for the
100 largest high-strain and high-enstrophy objects, respectively. For 3-D structures
(and using similar thresholds) Moisy & Jiménez (2004) reported DS≈ 1.75 and Dω ≈

1.65 (although they reported a decreasing trend of Dω with increasing thresholds).
The fractal dimension of a 3-D object (D3D) and that of its 2-D cross-section (D2D)
are often considered related by the additive rule D3D = D2D + 1 (Mandelbrot 1982).
This usually applies to scale-invariant boundaries, such as the turbulent/non-turbulent
interface (Sreenivasan & Meneveau 1986; de Silva et al. 2013), but is not generally
valid for the area/volume of fractal objects if the third direction is not homogeneous
(Tang & Marangoni 2006). Analyses of crystal aggregates rather suggest D3D = S ·
D2D, with the factor S ≈ 1.3–1.5 (Tang & Marangoni 2006; Schmitt & Heymsfield
2010), which supports the argument of Schmitt & Heymsfield (2010) that D3D/3 =
D2D/2 for isotropic structures. The comparison of our results with Moisy & Jiménez
(2004) is consistent with this view. Beside the exact value of the fractal dimension,
it is apparent that the intense structures identified in our data possess a largely scale-
invariant topology.

4. Scale interaction
4.1. Correlation between large-scale and small-scale motion

After characterizing the fine-scale structures of the flow in the previous section, we
investigate whether (and how) they correlate with the large-scale turbulence activity.
We first apply the approach used by Fiscaletti et al. (2016) in their DNS study of
a mixing layer, adapting it to our planar measurements. A set of points (x̃1, x̃2) is
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defined over a grid of resolution λ covering the domain. For each realization, the
small-scale activity is represented at each of these points by the spatial r.m.s. of the
vorticity,

A(x̃1, x̃2)=

√√√√ 1
N

N∑
i=1

[(ωi − ω̄)2], (4.1)

where ωi is the out-of-plane vorticity at the ith measurement point within the
square centred at (x̃1, x̃2), and the overbar indicates averaging over the N points
in each square (N ≈ 800, depending on the Reynolds number). (We choose this
definition to be consistent with Fiscaletti et al. (2016), but we remark that using
strain instead of vorticity yields analogous conclusions.) We examine the correlation
of A with the large-scale velocity fluctuations and large-scale velocity gradients. The
former are defined as the difference between the locally averaged (overbar) and the
ensemble-averaged (bracketed) velocities, for each in-plane component:

uL,1(x̃1, x̃2)= |U1(x̃1, x̃2)− 〈U1〉(x̃1, x̃2)|, (4.2)
uL,2(x̃1, x̃2)= |U2(x̃1, x̃2)− 〈U2〉(x̃1, x̃2)|, (4.3)

where we consider absolute values because positive and negative fluctuations around
the negligible mean flow are equivalent. To construct the large-scale velocity gradients,
we apply a Gaussian filter of width λ to obtain the velocity components UL,1 and UL,2,
and use a central difference scheme to calculate

gL(x̃1, x̃2)=
1
N

N∑
i=1

√(
dUL,1

dx̃2

)2

i

+

(
dUL,2

dx̃1

)2

i

. (4.4)

Only the shear components of the gradients are included, which are verified to be the
dominant ones. The choice of the Taylor microscale to separate small and large scales
finds some conceptual basis on the dissipation spectrum peaking at a wavelength close
to λ (Fiscaletti et al. 2016) and was shown to be an appropriate cut-off by Buxton &
Ganapathisubramani (2014). In the present flow, λ is 35–40 times larger than η and
10–15 times smaller than L.

Figure 11 presents, for the representative case at Reλ = 496, plots of the
small-scale vorticity normalized by its mean value and conditioned on the large-scale
velocity fluctuations and velocity gradients. Both types of conditioning show a
degree of correlation: intense small-scale vorticity is concurrent to both large-scale
velocity fluctuations and large-scale velocity gradients. This is consistent with early
(Bandyopadhyay & Hussain 1984) and several more recent studies in turbulent shear
flows (Hutchins & Marusic 2007; Chung & McKeon 2010; Guala et al. 2010; Buxton
& Ganapathisubramani 2014; Fiscaletti et al. 2016), but to the best of our knowledge
this is the first time that such coupling is reported in shear-less homogeneous
turbulence. A strong large-scale/small-scale interaction in the present flow is consistent
with our finding that the anisotropy, imposed at the energy-injection scales by the jet
arrays, propagates through the dissipation range (Carter & Coletti 2017).

Comparing panels (a) and (b) in figure 11, it is also clear that the small-scale
activity is more clearly correlated with the coarse-grained velocity gradients than with
the velocity fluctuations, in agreement with Fiscaletti et al. (2016). We calculate the
correlation coefficient:

RgA =
∑
(x̃1,x̃2)

gL(x̃1, x̃2)A(x̃1, x̃2)

‖gL(x̃1, x̃2)‖ ‖A(x̃1, x̃2)‖
, (4.5)
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FIGURE 11. Normalized small-scale vorticity A/〈A〉 conditioned on (a) the large-scale
velocity fluctuation uL,1 (squares) and uL,2 (circles) and (b) the large-scale velocity
gradients for the case Reλ = 496.

where ‖�‖ denotes the length norm (i.e. the sum of the element magnitudes). The
ensemble-averaged values are RgA = 0.64 for Reλ = 304 and 361, and RgA = 0.7 for
Reλ = 476 and 496. Because the correlation is between simultaneous small-scale and
large-scale signals, it is a measure of a direct mutual influence, rather than the result
of a multi-step cascade process. Fiscaletti et al. (2016) found that RgA was uniformly
close to unity across the mixing layer they investigated. A lower correlation coefficient
here is likely a consequence of the 2-D nature of the measurements. Indeed Fiscaletti
et al. (2016) showed that using a large-scale gradient signal based on a reduced
number of shear terms caused a substantial drop in the correlation coefficient.

Voth and co-workers utilized another approach to investigate the interaction between
large and small scales, which consists of conditioning the velocity structure functions
on the concurrent large-scale velocity fluctuation (Blum et al. 2011; Chien et al.
2013). In particular, they considered the longitudinal second-order structure function
〈δq2
〉 = 〈[(u(x + r) − u(x)) · r/|r|]2〉, and studied the effect of conditioning them on

the velocity sum
∑

u = [u(x + r) + u(x)], taken as a measure of the instantaneous
large-scale velocity. In doing so they isolated the effect of large-scale intermittency,
i.e. the fluctuations in the energy input, as opposed to the small-scale intermittency
that classically refers to the extreme events in the dissipation range that lead to
anomalous scaling (Sreenivasan & Antonia 1997). It was found that, in several
examples of turbulent flows displaying homogeneity over a substantial range of
scales, the structure functions had larger values when the large-scale velocity was
large. The behaviour did not depend on the choice of the components used for the
velocity sum, indicating it was not caused by a kinematic correlation between sums
and differences of the same measurements (Blum et al. 2011). Here, in order to
avoid ambiguities related to the choice of the velocity components, we consider
the energy 〈δq2

〉 = 〈δuiδui〉, which we approximate as 〈δu2
1〉 + 2〈δu2

2〉 assuming
axisymmetry (e.g. Gomes-Fernandes et al. 2015), and condition on the energy sum∑

q = |
∑

u1| + 2|
∑

u2|. These are plotted in figure 12(a,b) for separations along x1
and x2, respectively, and confirm the findings by Voth and co-workers. The same
qualitative results are obtained when using different velocity components, and do not
depend on the Reynolds number within the considered range.

Blum et al. (2011) found that passive grid turbulence was the exception within
the palette of turbulent flows they considered (which also included forced DNS
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FIGURE 12. Energy structure function conditioned on the large-scale velocity sum (as
defined in the text) along direction x1 (a) and x2 (b) for the case Reλ = 496.

simulations, active-grid turbulence, and various types of zero-mean-flow stirred tanks),
as it did not show significant dependence of the structure functions on the large-scale
velocity. For this, they offered two possible explanations. First, they observed that
the passive grid turbulence was homogeneous over a larger range of scales, and thus
hypothesized that the lack of homogeneity in the other cases could cause sweeping of
fluid with uneven energy into the detection region, leading to the observed dependence.
The present results do not support this explanation, since the present flow has a large
degree of homogeneity over a region much larger than the integral scale (Carter et al.
2016). Alternatively, Blum et al. (2011) suggested that the large-scale dependence
would be stronger if significant energy is present over scales larger than the integral
one. This is likely to be the case in the present system (as in any stirred-flow
chamber), where the largest scales can only be bounded by the size of the apparatus.

The use of kinetic energy instead of velocity components amplifies an effect
already noticed (though only in some cases, and much weaker) by Blum et al. (2011)
and Chien et al. (2013): the dependence on the large scales is stronger for smaller
separations. This is in contrast with the notion of the small scales approaching
universality (Kolmogorov 1941). Blum et al. (2011) already noticed that variations in
the energy input would cause the dissipation length scales to fluctuate, which could
explain this behaviour. Taken together, these results point to a strong influence of the
variability in the energy input, with significant cross-talk between relatively distant
scales of motion.

4.2. Hyperactive and sleeping states of turbulence
Irrespective of the forcing mechanism, the energy at the large scales (inertial and
above) is expected to have significant fluctuations, which cannot be completely
smoothed by mixing (Meneveau & Sreenivasan 1991; Mouri et al. 2006). These
are reflected in variations of the dissipation rate over similar scales, compromising
small-scale universality (Landau & Lifshitz 1959; Chien et al. 2013). Following this
classic train of thought, in this section we explore the variability of the small-scale
turbulence activity, in connection to the large scales.

As a simple way of evaluating fluctuations over inertial scales, we perform spatial
averages over the field of view (the length of which is about 200η or ≈ LL/3), and
consider the variability within each data set. In figure 13 we present the magnitude
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FIGURE 13. (Colour online) Spatially averaged enstrophy and strain rate ranked from
largest to smallest (b) and sample enstrophy fields at the indicated level ranks (a)
illustrating the appearance of fields ranging from hyperactive to sleeping for the case
Reλ = 496.

of spatially averaged enstrophy in each of the 2000 realizations acquired at Reλ= 496,
sorted in decreasing order. The shape of the curve simply reflects that the spatially
averaged enstrophy varies within the realization set as a random function. Inset
in the plot are markers corresponding to the displayed snapshots of the enstrophy
fields at various percentiles, illustrating the large differences between instantaneous
realizations of the flow. Defining arbitrary thresholds at the 10th and 90th percentiles,
in the following we will refer to the bottom 10 % realizations (in terms of enstrophy
levels) as sleeping states, and the top 10 % as hyperactive states. We remark that
these terms refer to instantaneous levels of small-scale activity, and not to any
temporal persistence of such states, which could not be evaluated with the present
measurements. The sleeping samples include snapshots with a spatially averaged
enstrophy ω2 6 0.35〈ω2

〉, while in the hyperactive samples ω2 > 1.85〈ω2
〉. The

definition is heuristic; the thresholds are chosen as trade-offs to isolate strongly and
weakly turbulent states, while keeping a sufficient number of samples for statistical
analysis. The conclusions we will draw, however, are fairly insensitive to the exact
threshold levels, as verified by testing top/bottom limits between 5 and 20 %. For all
investigated Reynolds numbers, using strain rate instead of enstrophy leads to a very
similar shape of the distribution, and almost identical sorting of the snapshots.

Naturally, the hyperactive states typically include a large number of intense small-
scale events: e.g. for the case at Reλ = 496 each such state contains, on average,
approximately sixteen Qω structures and six QS structures. On the other hand, the
sleeping states contain one Qω structure in every two samples and one QS structure in
every four samples, on average. The results in § 4.1 also indicate that intense small-
scale activity is highly correlated with simultaneous large-scale activity. Therefore, we
expect the realizations characterized by high enstrophy to also display strong coarse-
grained velocity gradients, and vice versa. Figure 14 shows, for the representative case
Reλ = 496, the PDF of gL for all 2000 realizations, and compares it with PDFs of
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FIGURE 14. (Colour online) Distribution of the large-scale velocity gradient normalized
by the small-scale r.m.s. vorticity for all samples (squares), hyperactive samples (circles)
and sleeping samples (triangles).

the hyperactive and sleeping subsets. The large-scale velocity gradients are typically
much stronger for the former and much weaker for the latter. In the next section, we
shall demonstrate how the sleeping and hyperactive states are also associated with very
different dynamics of inter-scale energy transfer.

The present classification of flow states bears resemblance to the active/hibernating
phases associated with strong/weak wall shear stresses in channel flows over
transitional and weakly turbulent regimes, as identified by Graham (2014) in the
context of drag reduction. Those, in turn, resemble the quiescent and bursting phases
identified by Jiménez & Moin (1991) in minimal channel flow units, which were
shown to display similar temporal variabilities to randomly chosen sub-domains in
larger simulations (Jiménez 2012). The present flow is homogeneous and highly
turbulent, thus the analogy with low Reynolds number wall-bounded flows is
qualitative.

We note that the high temporal variability within our data sets is not specific to the
jet-firing forcing: this is approximately steady over the acquisition time, the velocity
fluctuations are Gaussian with no detectable temporal frequency content, and the high-
order moments of the velocity gradients are in close agreement with grid turbulence
results at similar Reλ (Carter et al. 2016; Carter & Coletti 2017). On the other hand,
the specific distribution of enstrophy (and dissipation) among different realizations
is expected to depend on the size of the measurement domain. Our field of view
is limited to about one third of the integral scale, thus the dynamics in it tends to
be spatially correlated. This may enhance the differences between hyperactive and
sleeping states, compared to larger windows where the spatial average would include
regions with very different levels of activity. Still, as reminded above, fluctuations over
inertial scales are inherent to the turbulence dynamics, and therefore the results are
expected to depend only weakly on the details of our definition.

5. Scale-to-scale energy transfer

The previous section painted the picture of a complex interaction among the
turbulent energy at different scales. However, the correlation-based tools we have
utilized so far do not provide information on the dynamics of such interaction. The
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aim of the present section is to describe the average inter-scale energy transfer in the
present flow, by analysing the structure function 〈δq2

〉 and its evolution equation. We
first summarize the theoretical context in which the results will be presented.

5.1. Kármán–Howarth–Monin equation
We leverage the framework of the generalized Kármán–Howarth equation, i.e. the
evolution equation for the second-order structure function, first derived by von
Kármán & Howarth (1938) for homogeneous isotropic turbulence, and later extended
to account for inhomogeneity and anisotropy (Monin & Yaglom 1975; Hill 2002).
This is sometimes termed the Kármán–Howarth–Monin equation (Frisch 1995) or
Kármán–Howarth–Monin–Hill equation (Vassilicos and co-workers), and has been
recently used in experimental and numerical studies to probe the magnitude, direction
and orientation of the inter-scale energy flux in a variety of flows (Lamriben, Cortet
& Moisy 2011; Danaila, Antonia & Burattini 2012; Gomes-Fernandes et al. 2015;
Valente & Vassilicos 2015; Alves Portela et al. 2017). Briefly, given two points
x = X + r/2 and x′ = X − r/2, one considers the differences in mean velocity,
fluctuating velocity, and pressure: δUi ≡ Ui − U′i , δui ≡ ui − u′i and δp ≡ p − p′,
respectively. Moving to the coordinate system attached to the midpoint X and
separation r, one derives (Hill 1997, 2002; Danaila et al. 2012)

∂〈δq2
〉

∂t
+

(
Uk +U′k

2

)
∂〈δq2

〉

∂Xk
+
∂〈δukδq2

〉

∂rk
+
∂〈δUkδq2

〉

∂rk

=−2〈δuiδuk〉
∂δUi

∂rk
− 〈(uk + u′k)δui〉

∂δUi

∂Xk
−

∂

∂Xk

(
〈(uk + u′k)δq

2
〉

2

)
−

2
ρ

∂〈δukδp〉
∂Xk

+ ν

[
2
∂2

∂r2
k
+

1
2
∂2

∂X2
k

]
〈δq2
〉 − 2ν

[〈(
∂ui

∂xk

)2
〉
+

〈(
∂u′i
∂x′k

)2
〉]
+ 〈δukδf 〉. (5.1)

On the left-hand side, we have the unsteady term, the mean flow advection term,
and the nonlinear and linear inter-scale transfer rates. The first two terms on the
right-hand side describe the turbulence production by mean flow gradients, followed
by terms representing the turbulent transport, the diffusion by viscosity in scale space
and physical space, the dissipation rate of turbulent kinetic energy, and the energy
input/forcing (for details on each term see Gomes-Fernandes et al. 2015; Valente &
Vassilicos 2015; Alves Portela et al. 2017). Here we focus on the nonlinear inter-scale
energy transfer 4Π = (∂〈δukδq2

〉)/(∂rk), i.e. the scale-space divergence of the energy
flux, the latter being embodied by the third-order structure function 〈δukδq2(r)〉. This
describes how the nonlinear interactions redistribute the energy 〈δq2

〉 within scale
space, and in locally homogeneous turbulence Π is expected to balance the two-point
average dissipation rate εr = ν/2[〈(∂ui/∂xk)

2
〉 + 〈(∂u′i/∂x′k)

2
〉] = (ε + ε ′)/2 over the

inertial range. This Π–ε equilibrium is at the core of the Richardson–Kolmogorov
cascade (see Vassilicos 2015, for a recent review on the subject). The balance can
be made more specific considering that, in spherical coordinates, only the radial
component of the nonlinear transfer Πr = (1/4)1/r2(∂/∂r)(r2

〈δurδq2(r)〉) makes a
net contribution to the transport of energy across scales. Thus, the average of Πr
over all solid angles is expected to be negative (corresponding to energy cascading
from larger to smaller scales) for all separations, and to balance the dissipation rate
over the inertial range. Recent experimental and numerical studies indicate that, in
non-homogeneous and non-isotropic flows such as the turbulent near-wake past grids
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and obstacles, simultaneous forward (towards smaller scales) and inverse (towards
larger scales) transfers of energy can occur simultaneously in different directions,
although the global forward cascade is respected (Gomes-Fernandes et al. 2015;
Alves Portela et al. 2017).

5.2. Inter-scale energy transfer
We make simplifications consistent with the assumption of axisymmetry (Carter &
Coletti 2017). In particular, following Gomes-Fernandes et al. (2015), we calculate
the second-order and third-order structure functions as 〈δq2

〉 = 〈δu2
1〉 + 2〈δu2

2〉 and
〈δuiδq2

〉= 〈δuiδu2
1〉+2〈δuiδu2

2〉, respectively. However, this assumption is not restrictive
in that the qualitative conclusions we will draw do not depend on the type of weighted
summation used to calculate the energy structure function. We examine the results
in scale space using spherical coordinates (r, θ, φ) of zenith direction x1, with θ

the polar angle between the separation vector r and the x1 direction, and φ the
homogeneous azimuthal angle. The statistics are computed in Cartesian coordinates
and bi-linearly interpolated onto a polar grid corresponding to the φ = 0 plane,
comprising 112 radial separations and 56 solid angles between θ = 0 (parallel to x1)
and θ = π/2 (parallel to x2). In figure 15 we show maps of the structure functions
in the (r1, r2) scale space (ri denoting separations in direction xi) for Reλ = 361 and
496. These two cases illustrate the influence of varying anisotropy ratio (see table 1)
although, as already discussed, the simultaneous change in Reynolds number does not
allow us to isolate the effect. The turbulent kinetic energy appears distributed with
approximate spherical symmetry, despite anisotropy at the largest scales (Batchelor &
Stewart 1950). The iso-lines of 〈δq2

〉 depart from circularity for increasing large-scale
anisotropy (figure 15a,b), although the effect is small compared to the variation of
individual velocity components (Carter & Coletti 2017). The third-order structure
functions are more interesting. Figure 15(c,d) presents vectors oriented along the
energy flux, overlaid onto contours of its magnitude. In locally isotropic turbulence
that follows a classic equilibrium cascade, all vectors strictly point radially inward.
Instead, in the present anisotropic flow the nonlinear interactions produce a significant
redistribution of energy not only across different scales, but also within spherical
shells. Moreover, there appears to be a sizeable region of scale space, approximately
aligned with the radial direction r2, where the flux is pointing towards larger scales.

The latter observation suggests the possibility, within a portion of scale space, of
a backscatter of energy from smaller to larger scales. As discussed in Alves Portela
et al. (2017), the third-order structure function pointing outward is not a sufficient
condition for the energy to be cascading from small to large scales; an additional
condition is Πr being positive, i.e. the inter-scale energy being transferred in the same
direction. Figure 16(a,b) shows, for the case Reλ = 361, the radial components of
the third-order structure function, side by side with the nonlinear energy transfer rate.
The scale-space distributions of both quantities mirror each other, confirming the co-
existence of both forward and inverse nonlinear cascades of energy, over polar angles
smaller and larger than θ ≈ 50◦, respectively. This coexistence of opposing cascades is
found in all considered cases, as well as the non-zero polar flux. The latter appears to
be the consequence of the anisotropy breaking the spherical symmetry. The magnitude
of the energy cascade is, on average, substantially larger in the sector characterized
by forward energy transfer, suggesting that the classic cascade from large to small
scales dominates. This is confirmed in figure 16(c), where we plot the polar average
of Πr, normalized by the dissipation rate, as a function of separation for all cases.
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with dotted lines along 50, 100, 150 and 200. (c,d) Third-order structure functions
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〉/u3
η coloured by magnitude for two cases.

The radial transfer of energy is strictly negative, indicating a predominantly forward
cascade, for all separations. For the higher Reλ cases, the ratio Πr/εr is of order one
for separations larger than about 50η, which roughly corresponds to the inertial range
(Carter & Coletti 2017), indicating that the expected equilibrium cascade behaviour
is retrieved. The oscillations are partly due to lack of statistical convergence due to
the limited sample size, which at the larger separations can account for approximately
20 % uncertainty in the third-order structure function: see appendix A.

These results corroborate recent findings by Gomes-Fernandes et al. (2015) and
Alves Portela et al. (2017). These authors examined various locations in fully
turbulent wakes with well-defined −5/3 energy spectra as predicted by Kolmogorov
(1941), and demonstrated the coexistence of both forward and inverse cascade
behaviours in different directions in scale space. Our configuration also displays
a −5/3 spectrum over a significant wavenumber range (Carter et al. 2016). However,
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η

(a) and the radial component of the nonlinear scale-to-scale energy transfer normalized
by εr (b) for the case Reλ = 361 with zero-level contours (solid lines). The solid angle-
averaged nonlinear transfer Π∗r is shown for all cases in (c) normalized by εr.

unlike the above-mentioned wake flows, it is quasi-homogeneous, free of significant
shear and with negligible mean flow advection compared to the turbulent fluctuations.
In this condition the advection, shear production and linear transfer terms are expected
to be at most secondary. This is confirmed in appendix B, where we present contour
maps of all terms in (5.1) for the Reλ = 496 case, and the approximations made
to estimate them. Alves Portela et al. (2017) prudently remarked that mechanisms
related to inhomogeneity might have influenced their findings. However, the present
analysis indicates that forward and inverse energy transfer may coexist, both leaving
distinct statistical footprints, even in quasi-homogeneous turbulence.

Perhaps the most evident trait our flow configuration shares with those studied by
Gomes-Fernandes et al. (2015) and Alves Portela et al. (2017) is the anisotropy. It
does indeed seem obvious that the maps of energy flux vectors and transfer rates in
figures 14 and 15 and are strongly influenced by the anisotropy in the flow, which
breaks the spherical symmetry expected in perfectly homogeneous and isotropic
turbulence. However, it may not be trivial to determine a direct correspondence
between the scale-space orientation of the energy transfer and the type of anisotropy.
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The present case approximates prolate axisymmetric turbulence (in the terminology of
Bewley et al. 2012), i.e. with stronger turbulence activity along the axis of symmetry.
Such approximation was found to apply reasonably well also to grid turbulence and
plane cylinder wakes (George 1992; Mi & Antonia 2010; Rabey et al. 2015), therefore
one could expect strong similarities between our study and those of Gomes-Fernandes
et al. (2015) and Alves Portela et al. (2017). However, the former showed energy
backscatter along the streamwise direction, while the latter found such behaviour in
either streamwise or cross-stream direction depending on the location. Evidently other
factors beyond the anisotropy ratio influence the orientation of the cascade in these
different cases. In the following, we specifically consider the relation between the
inter-scale energy transfer and the instantaneous turbulence structure, as described by
the enstrophy and dissipation fields.

5.3. Energy transfer in hyperactive and sleeping states
The cascade of kinetic energy in scale space is the consequence of the evolution and
mutual interaction of turbulent structures in physical space (Davidson 2004). A mutual
hierarchy of dissipative structures is also central to the successful cascade model
theorized by She & Leveque (1994). While different (and sometimes conflicting) views
of the exact cascading mechanisms have been proposed (for example concerning the
role of vortex stretching, Tsinober 2001; Goto 2008), the consensus is that enstrophy
and strain rate (and their production/destruction) are the key quantities in the process.
In § 4.2 we showed how, in the imaged portion of the present flow, the spatially
averaged enstrophy and strain rate vary broadly from one realization to another,
leading us to the definition of hyperactive and sleeping states. These were found to
contain very large and very small numbers of intense structures, respectively. Given
the prominent role of high-enstrophy and high-strain features in the energy transfer
process, we conjecture that the analysis carried out in § 5.2 will yield qualitatively
different results when confined to hyperactive versus sleeping states. This is verified
in the following.

In figure 17 we display contour maps of the radial portion of the nonlinear energy
transfer rate Πr (normalized by the two-point average dissipation εr) calculated using
only hyperactive (panels a and c) and sleeping (panels b and d) states, for the cases
Reλ = 361 and 496. Figure 17(a,b) can be directly compared with the unconditioned
map in figure 16(b). Given the smaller sample size (200 versus 2000 realizations)
and since Πr, is a gradient of 〈δuiδq2

〉, the uncertainty in the conditioned third-order
structure function is larger (see appendix A) and propagates into Πr. However, it
does not overshadow the qualitative trends. In hyperactive states, the energy transfer
is highly enhanced and directed towards smaller scales over almost the entire space
of separations. The pattern is similar to figure 16(b), in that separations closer to
θ = 0 are associated with strong forward inter-scale fluxes, while those closer to θ =
π/2 show weaker and even inverse fluxes. Compared to the unconditioned map, the
backscatter is limited to smaller pockets. On the other hand, in sleeping states the
Πr distribution is fundamentally different: the energy transfer is depressed by at least
an order of magnitude, and directed towards larger scales over a large portion of
scale space, especially for orientations close to θ = 0. These features are found in all
investigated cases; while they appear more pronounced at higher Reλ, a clear trend
cannot be discerned over the considered range.

In conclusion, the states characterized by intense enstrophy and strain rate appear
primarily responsible for the inter-scale transfer of energy. In these realizations the
cascade is mostly directed from larger to smaller scales, but there are also sizeable
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Reλ = 496 (c,d). The lines along zero indicate the transition from forward (F) to inverse
(I) energy transfers.

portions of scale-space with significant backscatter. Moreover, because the fine-scale
activity in these states is strongly correlated with intense large-scale velocity gradients
(addressed in § 4.2), a significant portion of the transfer might be due to distant-scale
interactions, incompatible with Kolmogorov’s phenomenology. Sleeping states account
for weak energy transfers, and their contribution to the polar-averaged Πr is indeed
marginal. Their local-in-space transfers, however, are not negligible, and interestingly
they are predominantly directed towards larger scales. Energy backscatter, as discussed
in § 1, has important consequences for the theoretical understanding and numerical
modelling of turbulent flows. In this perspective the background turbulent fluctuations,
often overlooked (Tsinober, Ortenberg & Shtilman 1999), may play a significant role
and probably deserve more attention. We remark, however, that the stronger inverse
transfers in the sleeping states happen in portions of scale space where the overall
cascade is forward. Therefore, in the present flow, the sleeping states do not account
for the inverse cascade in the transverse direction highlighted in figure 15. These
are rather due to the much stronger inverse transfers in the hyperactive states. This
is consistent with the argument of Meneveau & Sreenivasan (1991) that significant
backscatter requires strong intermittent fluctuations.
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In recent years the topics of energy cascade and intermittency in turbulence have
been tackled with novel analytical and numerical tools, notably through decimation
of the Navier–Stokes equations, which are evolved on a restricted set of Fourier
modes (Frisch et al. 2012; Lanotte et al. 2015; Ray 2015; Buzzicotti et al. 2016). In
particular this approach has been used to probe the connection between intermittent
small-scale structure and the inter-scale energy transfer. For the three-dimensional
case, it was found that the cascade is robust to even a severe decimation of the
modes, while intermittency is quenched as soon as the effective dimension of the set
is decreased just below the integer value of 3 (Lanotte et al. 2015). A connection may
be drawn between the non-intermittent realizations of such artificial class of flows
and the sleeping states identified here, also considering that the most intense inverse
transfers are found in the hyperactive states. However, further research is required to
determine whether the present type of experiments can be used to corroborate those
analytical and numerical results for which full 3-D information is crucial.

6. Conclusions

We have used two-dimensional PIV measurements of a laboratory flow to examine
the fine-scale structure of homogeneous turbulence, the interaction between scales
small and large, and the energy transfer across them. Those topics have been
the focus of numerous past investigations (although rarely using quantitative flow
imaging), and therefore we have tried to place our results in the context of existing
views, however incomplete. The study has leveraged a jet-stirred zero-mean-flow
chamber that produces anisotropic and (to a good approximation) homogeneous
turbulence over a volume much larger than the integral length. This removes the
influence of boundaries, shear-driven mechanisms and convective effects, and reduces
possible impacts of inhomogeneities on the two-point statistics. We find trends
which are qualitatively independent of Reynolds number in the considered range,
Reλ ≈ 300–500. While the latter is arguably sufficient to produce an inertial range
(or at least a scaling range, Qian 1997), finite Reynolds number effects could be
significant and need to be evaluated in future studies examining similar aspects. Also,
the variation of large-scale anisotropy with Reλ in the data sets does not allow us to
disentangle these effects.

The analysis of the enstrophy and dissipation agrees with previous findings,
including recent numerical results which had not yet been compared with experiments
(Yeung et al. 2012, 2015). These fields show highly intermittent distributions, with
significant probability of events hundreds of times more intense than the mean
values. The extremely weak events show clear chi-square scaling over many decades,
indicating that over those ranges the velocity gradients are essentially random
variables. The instances of extremely strong dissipation and enstrophy tend to happen
concurrently, in agreement with theoretical arguments and recent simulations at very
high Reynolds numbers. The instantaneous realizations suggest, and the statistical
analysis confirms, that the high-enstrophy and high-dissipation regions are shaped as
tube-like and sheet-like objects, respectively, whose thickness is 4–8η and the largest
dimension can be of the order of the field of view (approximately 200η). The intense
structures tend to form large connected objects of scale-invariant topology with
definite fractal dimensions (Moisy & Jiménez 2004). In keeping with the concurrency
of extreme events for both fields, high-dissipation and high-enstrophy structures often
overlap, the former usually wrapped around the latter. Kolmogorov scaling collapses
the data in the considered range of Reynolds numbers reasonably well.
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The small-scale activity, characterized by the level of enstrophy (or, analogously,
dissipation) spatially averaged over each instantaneous realization, is found to be
strongly correlated with the large-scale fluctuations. This echoes several recent
observations of amplitude modulation between distant scales. However, those were
reported in advection-dominated shear flows, and often explained by convective
mechanisms (Buxton & Ganapathisubramani 2014). Here instead mean advection and
shear are negligible, and the distant-scale correlation is clearer when using large-scale
velocity gradients, which are Galilean invariant. This suggests that the cross-talk
between large and small scales is ubiquitous in turbulence, and not connected to
a specific production mechanism. The dependence on the large-scale energy input,
quantified by the conditioned energy structure function, is stronger at the smaller
scales, contrary to arguments of small-scale universality (Kolmogorov 1941). This
may be a consequence of the dissipation rate (and therefore the Kolmogorov length)
fluctuating along with the energy input (Blum et al. 2011).

The wide temporal variation of turbulence activity has prompted us to isolate
states of the flow with especially high (hyperactive) and low (sleeping) levels of
strain rate and enstrophy. These are also characterized by an abundance/lack of
discrete structures, and strong/weak large-scale velocity gradients. Moreover, the
hyperactive and sleeping states contribute very differently to the inter-scale energy
transfer. The latter is characterized in scale space by the nonlinear transfer term in
the Kármán–Howarth–Monin equation, which is confirmed to dominate the present
quasi-homogeneous configuration. The polar map of both the energy transfer and
the third-order structure function indicate a forward cascade to smaller scales along
the jet-axis direction, and an inverse cascade to larger scales along the transverse
direction. Qualitatively similar behaviours were recently found in wake turbulence
(Gomes-Fernandes et al. 2015; Alves Portela et al. 2017), but in very inhomogeneous
regions of the flow. The hyperactive states are characterized by very intense energy
transfers, while the sleeping states show much weaker fluxes, largely directed from
small to large scales.

These results trigger several considerations on some of the open issues mentioned
in § 1, starting with the relevance of the intense coherent structures in homogeneous
turbulence. The small volume fraction occupied by these objects (Moisy & Jiménez
2004), while connecting them to the intermittent nature of turbulence, also calls
into question their dynamic importance. As noted by Jiménez & Wray (1998), there
is no reason for the cascading process to start with filaments of the order of the
Kolmogorov scale, and such filaments more likely represent the last stage in the
energy transfer process (Goto 2008). On the other hand, the apparent correlation
between turbulence activity at distant scales suggests also a different possibility, i.e.
that the small intense structures are produced directly from much larger ones in a
one-step process. While such non-local interactions in scale space conflict with the
view of Kolmogorov (1941), they are compatible with the original cascade picture of
Richardson (1920) in physical space. Indeed, the indicators we have utilized in § 4.1
ultimately tell us that the small-scale activity is enhanced at the same locations and
instants at which the large-scale fluctuations are strong. Moreover, the self-similar
geometry of the coherent structures over a wide range of scales suggests that merging
and break-up of eddies (with associated transfer of energy in physical space) are
prevalent. Recent numerical efforts in Lagrangian tracking of coherent structures
highlight the importance of this cascade in physical space, both for understanding
and modelling of turbulence dynamics (Lozano-Durán & Jiménez 2014; Cardesa et al.
2017). The present experimental results support this view.

When seen in the classic scale-space framework, the transfer of energy in the
present flow is clearly a combination of forward and inverse cascade. Instantaneously,
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this is the case for all turbulent flows (even homogeneous and isotropic), with large
fluctuations of both positive and negative inter-scale fluxes which can be decomposed
in coexisting direct and inverse cascades (Aoyama et al. 2005; Alexakis 2017).
However, only recent studies in the near region of wake/grid turbulence by Vassilicos
group demonstrated cases in which the ensemble-average transfer is towards larger
scales over a large portion of the separation space. Our results in approximately
homogeneous turbulence suggest that this phenomenon may be common to a much
larger class of flows. Here the anisotropy is clearly the feature that allows the inverse
energy transfer to manifest itself. Still, identifying the specific underlying mechanism
may not be a trivial task, and is deferred to future studies. This will likely require
the examination of both real-space and scale-space dynamics.

The completeness of information achievable by DNS would enable the exploration
of these themes in greater depth. However, numerically setting up a homogeneous
anisotropic flow similar to the present one may not be straightforward. Homogeneity
and anisotropy are both needed to highlight key aspects discussed here while
keeping the minimal turbulence dynamics; but simulations that generate homogeneous
anisotropic turbulence usually do so in presence of shear, stratification or rotation. As
was discussed in Carter & Coletti (2017), the ability to isolate anisotropy without the
superposition of these complex mechanisms is a distinctive feature of this experimental
facility. Additionally, distant-scale interactions can only be investigated if the low
wavenumbers are not contaminated by the forcing, and this poses a severe constraint
on DNS (Davidson 2004). Future numerical efforts designed to take these issues into
account are warranted.

It is possible that the specific forcing we utilize also plays a role in determining
the direction of the energy transfer. Several authors have remarked that both real
and artificial turbulence configurations with non-vanishing helicity exhibit an inverse
cascade behaviour (Waleffe 1992; Biferale, Musacchio & Toschi 2012; Herbert et al.
2012; Alexakis 2017). Helical structures are among the dominant coherent motions
of axisymmetric jets (e.g. Iqbal & Thomas 2007). It seems likely that the interactions
between the turbulent jets in our facility would destroy this organization (unlike in
von Kármán flows, where the swirling motion is continuously imposed by the forcing
and boundary conditions, Herbert et al. 2012). Yet, one cannot exclude that part of
it could survive in the apparently homogeneous turbulence region, influencing the
direction of the energy fluxes.

Several studies, including this one, have shown how the fluctuation of the energy
input, referred to as large-scale (or integral-scale) intermittency, leaves its footprint on
the local dissipation rate. As discussed in detail elsewhere (Frisch 1995; Mouri et al.
2006; Chien et al. 2013), this was the original sense of Landau’s famous footnote
criticizing Kolmogorov’s notion of small-scale universality (Landau & Lifshitz 1959);
his comment did not address the intense dissipation events that lead to anomalous
scaling, i.e. the so-called small-scale (or internal) intermittency, although Kolmogorov
(1962) gave him credit for it. If, however, the small coherent structures are connected
to coarse-grained velocities and velocity gradients, then large-scale and small-scale
intermittency may be more closely related than usually thought. The large scales
being non-universal, a similar view would put in question the notion of universality
of the small scales, which instead received strong support not only at very large (e.g.
Saddoughi & Veeravalli 1994) but even at moderate Reynolds numbers, at least in
terms of scaling behaviour (Schumacher et al. 2014). While an accepted paradigm
to reconcile universality and distant-scale interaction has not yet emerged, the recent
analysis of several turbulent flows in the strain-rate eigenframe has suggested the
existence of a prevalent flow pattern which may account for many of the observations:
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FIGURE 18. (Colour online) Relative uncertainty erel/|〈δuiδq2
〉| of the third-order structure

function for the cases Reλ = 361 (a–c) and 496 (d–f ) for all samples (a,d), hyperactive
samples (b,e) and sleeping samples (c,f ). The dotted contour is drawn at 10 % of relative
uncertainty.

a shear layer structure containing swirling motions and formed between large regions
of uniform flow (Elsinga & Marusic 2010; Elsinga et al. 2017).

Future experimental studies will overcome the limitations of the present measure-
ments, including their two-dimensional nature, the limited dynamic spatial range,
and the lack of temporal resolution. These prevented us from characterizing the
spatial organization of the discrete structures, and the large-scale motions most often
correlated with their appearance. In the future, using three-dimensional imaging and/or
very large camera sensors, it will be interesting to verify whether the small vortices
are clustered around shear layer structures, as indicated by Ishihara et al. (2013)
and Hunt et al. (2014). Such experiments should ideally be time-resolved in order
to determine the temporal correlation between events at different scales, which is
especially important to better understand the energy transfer dynamics in physical
space.
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Appendix A. Uncertainty in third-order structure functions
We estimate the statistical uncertainty of the third-order structure functions (20 : 1

confidence level) as erel = ±1.96σ/
√

N (Benedict & Gould 1996), where σ is the
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variance of 〈δuiδq2
〉 and N is the number of independent samples at separation r. The

variance and the number of samples are computed at each location in scale space and
the relative uncertainty is plotted in figure 18 for the cases Reλ = 361 and 496.

Appendix B. Calculation of terms in Kármán–Howarth–Monin equation

The terms in the Kármán–Howarth equation (5.1) are approximated as follows,
invoking axisymmetry and using similar notation to Valente & Vassilicos (2015):

(i) The unsteady term 4At= ∂〈δq2
〉/∂t= 0 by virtue of collecting time-independent

samples.
(ii) The mean flow advection term 4A= (Uk +U′k/2)∂〈δq

2
〉/∂Xk is approximated as

4A≈
(

U +U′

2

)
∂〈δq2

〉

∂X1
+ 2

(
V + V ′

2

)
∂〈δq2

〉

∂X2
(B 1)

in figure 19(a) and is found to be negligible.
(iii) The nonlinear scale-to-scale transfer 4Π = ∂〈δukδq2

〉/∂rk is a divergence in scale
space calculated in spherical coordinates as

4Π = 4(Πr +Πθ)=
1
r2

∂

∂r

(
r2
〈δurδq2

〉
)
+

1
r sin θ

∂

∂θ

(
sin θ〈δuθδq2

〉
)
. (B 2)

Only the radial portion Πr contributes to the overall transfer of energy and is
plotted in figure 19(b).

(iv) The linear scale-to-scale transfer 4ΠU = ∂〈δUkδq2
〉/∂rk is obtained analogously

to Π , as it is also a divergence in spherical coordinates:

4ΠU,r =
1
r2

∂

∂r

(
r2
〈δUrδq2

〉
)

(B 3)

and is shown in figure 19(c).
(v) The production 4P = −2〈δuiδuk〉∂δUi/∂rk − 〈(uk + u′k)δui〉∂Ui/∂Xk is approxi-

mated (noting that V ≈W ≈ 0) as

4P ≈ 2〈δu2
1〉
∂U1

∂x1
+ 4〈(u2 + u′2)δu1〉

∂U1

∂x2
. (B 4)

This is the same relation used to approximate the production by Valente &
Vassilicos (2015) and Gomes-Fernandes et al. (2015) for their grid-generated
flows, which have similar symmetries to the present flow. The production is
shown in figure 19(d) and although it is not negligible it remains below 0.25εr

over the field of view.
(vi) The transport term 4T =−∂/∂Xk(〈(uk + u′k)δq

2
〉/2) is approximated as

4T ≈−
∂

∂X1
(〈(u1 + u′1)δq

2
〉/2)− 2

∂

∂X2
(〈(u2 + u′2)δq

2
〉/2). (B 5)

The turbulent transport is plotted in figure 19(e) and is negligible for the present
flow.
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FIGURE 19. (Colour online) Mean flow advection A/εr (a), radial nonlinear scale-to-scale
transfer Πr/εr (b), radial linear scale-to-scale transfer ΠU,r/εr (c), production P/εr (d),
turbulent transport Tu/εr (e), viscous spatial diffusion Dν,X/εr ( f ), viscous scale-to-scale
diffusion Dν/εr (g) for the case Reλ = 496.

(vii) Diffusion terms arise both in scale space in and physical space, which we
separate and calculate as

4Dν,X = ν

[
1
2
∂2

∂X2
k

]
〈δq2
〉 ≈

ν

2

[
∂2

∂X2
1
〈δq2
〉 + 2

∂2

∂X2
2
〈δq2
〉

]
(B 6)
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in physical space and

4Dν = 2ν
[
∂2

∂r2
k

]
〈δq2
〉 ≈

2ν
r2

∂

∂r

(
r2 ∂

∂r
〈δq2
〉

)
(B 7)

in scale space. They are plotted in figures 19( f ) and 19(g), respectively. The
spatial diffusion is found to be negligible in all cases, as is the scale-to-scale
diffusion except for very small separations, as expected.

(viii) The dissipation term is twice the dissipation evaluated at points x and x′,
4εr = 2ν [〈(∂ui/∂xk)

2
〉 + 〈(∂u′i/∂x′k)

2
〉 = 2(ε + ε ′) ≈ 4ε. As one approaches zero

separation, the dissipation term balances with the scale-to-scale viscous diffusion
term Dν .

The pressure–velocity term cannot be directly evaluated from our velocity
measurements. The form of the forcing term is also not known for the present
flow. The sum of both terms can be indirectly evaluated from the balance, and is
found to be comparable to the nonlinear transfer term.
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