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COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS

VERA FISCHER, SY D. FRIEDMAN, DIEGO A. MEJÍA, AND DIANA C. MONTOYA

Abstract. We introduce a forcing technique to construct three-dimensional arrays of generic extensions
through FS (finite support) iterations of ccc posets, which we refer to as 3D-coherent systems. We use them
to produce models of new constellations in Cichoń’s diagram, in particular, a model where the diagram can
be separated into 7 different values. Furthermore, we show that this constellation of 7 values is consistent
with the existence of a Δ13 well-order of the reals.

§1. Introduction. In this paper, we provide a generalization of the method of
matrix iteration, to which we refer as 3D-coherent systems of iterations and which
can be considered a natural extension of the matrix method to include a third
dimension. That is, if a matrix iteration can be considered as a system of partial
orders 〈Pα,� : α ≤ �, � ≤ �〉 such that whenever α ≤ α′ and � ≤ � ′ then Pα,� is
a complete suborder of Pα′ ,�′ , then our 3D-coherent systems are systems of posets
〈Pα,�,� : α ≤ �, � ≤ �, � ≤ �〉 such that whenever α ≤ α′, � ≤ � ′, � ≤ �′ thenPα,�,�
is a complete suborder of Pα′ ,�′,�′ . As an application of this method, we construct
models where Cichoń’s diagram is separated into different values, one of them with
7 different values.Moreover, thesemodels determine the value of a, which is actually
the same as the value of b, and we further show that such models can be produced
so that they satisfy, additionally, the existence of a Δ13 well-order of the reals.
The method of matrix iterations, or 2D-coherent systems of iterations in our
terminology, has already a long history. It was introduced by Blass and Shelah
in [2], to show that consistently u < d, where u is the ultrafilter number and d
is the dominating number. The method was further developed in [4], where the
terminology matrix iteration appeared for the first time, to show that if κ < 	 are
arbitrary regular uncountable cardinals then there is a generic extension in which
a = b = κ < s = 	. Here a, b and s denote the almost disjointness, bounding, and
splitting numbers respectively. In [4], the authors also introduce a new method for
the preservation of amad (maximal almost disjoint) family along amatrix iteration,
specifically a mad family added by Hκ (Hechler’s poset for adding a mad family,
see Definition 4.1), a method which is of particular importance for our current
work. Later, classical preservation properties for matrix iterations were improved
byMej́ıa [18] to provide several examples of models where the cardinals in Cichoń’s
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diagram assumemany different values, in particular, a model with 6 different values.
Since then, the question of how many distinct values there can be simultaneously
in Cichoń’s diagram has been of interest for many authors, see for example [6] (a
model of 5 values concentrated on the right) and [13] (another model of 6 different
values), and lies behind the development of many interesting forcing techniques.
Very recently, the method of matrix iterations was used by Dow and Shelah [5] to
solve a long-standing open question in the area of cardinal characteristics of the
continuum, namely, that it is consistent that the splitting number is singular.
Further motivation for this project was to determine the value of a in classical FS
(finite support) iterations of ccc posetsmodels where no dominating reals are added.
To recall some examples, a classical result of Kunen [17] states that, under CH, any
Cohen poset preserves a mad family of the ground model. This result was improved
by Steprans [24], who showed that, after adding 
1-many Cohen reals, there is a
mad family in the corresponding extension which is preserved by any further Cohen
poset (without assuming CH). Additionally, Zhang [25] proved that, under CH, any
finite support iteration of E (the standard poset adding an eventually different real,
see Definition 1.3) preserves a mad family from the ground model. As the family
preserved in Steprans’ result is added byC
1 = H
1 , we considered the preservation
theory of Brendle and the first author [4] to see in which cases a mad family added
byHκ (for an uncountable regular κ) can be preserved through FS iterations of ccc
posets. If such an FS iteration can be redefined as a matrix iteration where Hκ is
used to add amad family as in [4] and the preservation theory applies, then the mad
family added by Hκ is preserved through the iteration. Thanks to this and to the
fact that random forcing and E fit into the preservation framework (Lemmas 4.10
and 4.8), we generalize both Steprans’ and Zhang’s results by providing a general
result about FS iterations preserving the mad family added byHκ (Theorem 4.17).
In view of the previous result, it is worth asking whether such a result can be
extended to matrix iterations like those in [18]. By analogy, if it is possible to add an
additional coordinate forHκ to a matrix iteration and produce a 3D iteration (3D-
coherent system in our notation) where the preservation theory from [4] applies,
then the mad family added by Hκ is preserved. Even more, the third dimension
allows us to separate b from other cardinals in Cichoń’s diagram (which was not
possible in [18]) and get a further division in Cichoń’s diagram. In particular, the
3D-version of the matrix iteration from [18] for the consistency of 6 different values
yields a model of 7 different values in Cichoń’s diagram.
In addition, we show that these new constellations of Cichoń’s diagram are con-
sistent with the existence of a Δ13 well-order of the reals. Combinatorial properties of
the real line (which canbe expressed in terms of its cardinal characteristics) aswell as
the existence of nicely definable combinatorial objects (like maximal almost disjoint
families) in the presence of a projective well-order on the reals havebeen investigated
intensively in recent years. In [7] it is shown for example that various constellations
involving a, b, and s are consistent with the existence of a Δ13 well-order, while in
[8] it is shown that every admissible assignment of ℵ1 and ℵ2 to the characteristics
in Cichoń’s diagram is consistent with the existence of such a projective well-order.
There is one main distinction between the various known methods for generically
adjoining projective well-orders: methods relying on countable support S-proper
iterations like in [7, 8], and methods using finite support iterations of ccc posets,
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e.g., [9–11]. In order to show that our new consistent constellations of Cichoń’s
diagram admit the existence of a Δ13 well-order of the reals, we further develop the
second approach. Namely, we build up the method of almost disjoint coding which
was introduced in [10] and in particular answer one of the open questions stated
in [8].
The paper is organized as follows. In Section 2 we present some well known
preservation theorems. In Section 3 we introduce the notion of 3D-iteration and
review the preservation properties for matrix iterations from [4, 18] which can be
applied quite directly to 3D-coherent systems (even to arbitrary coherent systems).
In Section 4 we review the method of preservation of a mad family along a matrix
iteration as introduced in [4] and obtain similar results regardingE and the random
algebra.As a consequence,weprove inTheorem4.17 our generalization of Steprans’
result discussed above, which is one of the main results of this paper.
Section 5 contains our main results about Cichoń’s diagram. We evaluate the
almost disjointness number in various constellations in which the value of a was
previously not known, and obtain a model in which there are 7 distinct values in
Cichoń’s diagram. Let �0 ≤ �1 ≤ κ ≤ � ≤ 
 be regular uncountable cardinals, and
let 	 ≥ 
.
Theorem 1.1. Assume 	<�1 = 	. Then, there is a ccc poset forcing add(N ) = �0,
cov(N ) = �1, b = a = κ, non(M) = cov(M) = �, d = 
 and non(N ) = c = 	.

Elaborating on the method of almost disjoint coding as developed in [10], we
show in Section 6 that the constellations of Section 5 are consistent with the existence
of a projective well-order of the reals whenever the associated cardinal values do not
exceed ℵ
 (even though we conjecture that the result remains true with arbitrarily
large cardinal values). In particular, we outline the proof of the following:

Theorem 1.2. InL, let �0 < �1 < κ < � < 
 < 	 be uncountable regular cardinals
and, in addition, 	 < ℵ
 . Then, there is a cardinal preserving forcing extension of L in
which there is aΔ13 well-order of the reals and, in addition, add(N ) = �0, cov(N ) = �1,
b = a = κ, non(M) = cov(M) = �, d = 
 and non(N ) = c = 	.

Section 7 contains some further discussions and open questions.

We recall some standard ccc posets we are going to use throughout this paper.

Definition 1.3 (Standard forcing that adds an eventually different real). Define
the forcing notion E with conditions of the form (s, ϕ) where s ∈ 
<
 and ϕ :

 → [
]<ℵ0 such that ∃n < 
∀i < 
(|ϕ(i)| ≤ n). Denote the minimal such n by
width(ϕ). The order inE is defined as (t, �) ≤ (s, φ) iff s ⊆ t, ∀i < 
(ϕ(i) ⊆ �(i))
and ∀i ∈ |t|� |s |(t(i) /∈ ϕ(i)).
Clearly E is �-centered and adds a real which is eventually different from the reals
in the ground model. We will use also the following notation. If Ω is a nonempty
set, BΩ is the cBa (complete Boolean algebra) B(2Ω×
)/N (2Ω×
). Here, B(2Ω×
)
denotes the standard product �-algebra and N (2Ω×
) denotes the �-ideal of null
subsets of 2Ω×
 with respect to the standard product measure. Note that BΩ �
B := B
 when Ω is countable. Also, for any nonempty set Γ, BΓ := limdir{BΩ :
Ω ⊆ Γ countable}. Denote by R the class of all random algebras, that is, R :=
{BΓ : Γ 
= ∅}. Recall Cohen forcing CΓ := Fn(Γ × 
, 2) which is the poset of
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finite partial functions from Γ × 
 to 2 ordered by reverse inclusion. Put C = C
 .
Another well-known poset which we will make use of is the localization poset (see
for example [1]). For convenience, we repeat its definition:

Definition 1.4. LOC is the poset of all ϕ ∈ ([
]<ℵ0 )
 such that
(i) for all n ∈ 
, |ϕ(n)| ≤ n, and
(ii) there is a k ∈ 
 such that for all but finitely many n, |ϕ(n)| ≤ k.

The extension relation is defined as follows: ϕ′ ≤ ϕ if and only if ϕ(n) ⊆ ϕ′(n) for
all n < 
.

§2. Preservation properties for FS iterations. Wereview the theory of preservation
properties for FS iterations developed by Judah and Shelah [15] and Brendle [3].
A similar presentation also appears in [13, Section 3].

Definition 2.1. R := 〈X,Y,�〉 is a Polish relational system if the following is
satisfied:

(i) X is a perfect Polish space,
(ii) Y is a nonempty analytic subspace of some Polish space and
(iii) �=

⋃
n<
 �n for some increasing sequence 〈�n〉n<
 of closed subsets of

X × Y such that (�n)y = {x ∈ X : x �n y} is nwd (nowhere dense) for all
y ∈ Y .

For x ∈ X and y ∈ Y , x � y is often read y �-dominates x. A family F ⊆ X is
R-unbounded if there is no real in Y that �-dominates every member of F . Dually,
D ⊆ Y is a R-dominating family if every member of X is �-dominated by some
member of D. b(R) denotes the least size of a R-unbounded family and d(R) is the
least size of a R-dominating family.
Say that x ∈ X is R-unbounded over a setM if x 
� y for all y ∈ Y ∩M . Given a
cardinal 	 say that F ⊆ X is 	-R-unbounded if, for any Z ⊆ Y of size < 	, there is
an x ∈ F which is R-unbounded over Z.
By (iii), 〈X,M(X ),∈〉 is Tukey-Galois belowR whereM(X ) denotes the �-ideal

of meager subsets of X . Therefore, b(R) ≤ non(M) and cov(M) ≤ d(R). Fix, for
this section, a Polish relational system R = 〈X,Y,�〉 and an uncountable regular
cardinal �.

Remark 2.2. Without loss of generality, Y = 

 can be assumed. The reason is
that, by the existence of a continuous surjection f : 

 → Y , the Polish relational
system R′ := 〈X,

,�′〉, where x �′

n z iff x �n f(z), behaves much like R in
practice. Namely, R is Tukey-Galois equivalent to R′ and moreover, the notions
	-R-unbounded and 	-R′-unbounded are equivalent. Also, for posets, the notions
of �-R-good and �-R′-good (see the definition below) are equivalent.

Definition 2.3 (Judah and Shelah [15]). A poset P is �-R-good if, for any P-
name ḣ for a real in Y , there is a nonempty H ⊆ Y of size < � such that � x 
� ḣ
for any x ∈ X that is R-unbounded overH .
Say that P is R-good when it is ℵ1-R-good.
Definition 2.3 describes a property, respected by FS iterations, to preserve specific
types of R-unbounded families. Concretely,
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(a) any �-R-good poset preserves every �-R-unbounded family from the ground
model and

(b) FS iterations of �-cc �-R-good posets produce �-R-good posets.
Posets that are �-R-goodwork to preserve b(R) small and d(R) large since, whenever
F is a �-R-unbounded family, b(R) ≤ |F | and � ≤ d(R).
Clearly, �-R-good implies � ′-R-good whenever � ≤ � ′ and any poset completely
embedded into a �-R-good poset is also �-R-good.
Consider the following particular cases of interest for our main results.

Lemma 2.4 ([18, Lemma 4]). Any poset of size < � is �-R-good. In particular,
Cohen forcing is R-good.

Example 2.5. (1) Preserving nonmeager sets: Consider the Polish relational
system Ed := 〈

,

, 
=∗〉where x 
=∗ y iff x and y are eventually different,
that is, x(i) 
= y(i) for all but finitely many i < 
. By [1, Theorems 2.4.1 and
2.4.7], b(Ed) = non(M) and d(Ed) = cov(M).

(2) Preserving unbounded families: LetD := 〈

,

,≤∗〉 be the Polish relational
system where x ≤∗ y iff x(i) ≤ y(i) for all but finitely many i < 
. Clearly,
b(D) = b and d(D) = d.
Miller [21] proved that E is D-good. Furthermore, 

-bounding posets,
like the random algebra, are D-good.

(3) Preserving null-covering families: Let b : 
 → 
 � {0} such that∑i<

1
b(i) <

+∞ and let Edb := 〈Rb ,Rb, 
=∗〉 be the Polish relational system where Rb :=∏
i<
 b(i). Since Edb is Tukey–Galois below 〈N (Rb),Rb , 
�〉 (for x ∈ Rb the
set {y ∈ Rb : ¬(x 
=∗ y)} has measure zero with respect to the standard
Lebesgue measure on Rb), cov(N ) ≤ b(Edb) and d(Edb) ≤ non(N ).
By a similar argument as in [3, Lemma 1∗], any 
-centered poset is �-Edb-
good for any 
 < � infinite. In particular, �-centered posets are Edb-good.

(4) Preserving “union of null sets is not null ”: For each k < 
 let idk : 
 → 

such that idk(i) = ik for all i < 
 and put H := {idk+1 : k < 
}. Let
Lc := 〈

,S(
,H),∈∗〉 be the Polish relational system where

S(
,H) := {ϕ : 
 → [
]<ℵ0 : ∃h ∈ H∀i < 
(|ϕ(i)| ≤ h(i))},
and x ∈∗ ϕ iff ∃n < 
∀i ≥ n(x(i) ∈ ϕ(i)), which is read x is localized by ϕ.
As a consequence of Bartoszyński’s characterization (see [1, Theorem 2.3.9]),
b(Lc) = add(N ) and d(Lc) = cof(N ).
Any 
-centered poset is �-Lc-good for any 
 < � infinite (see [15]) so,
in particular, �-centered posets are Lc-good. Moreover, subalgebras (not
necessarily complete) of random forcing are Lc-good as a consequence of a
result of Kamburelis [16].

The following are the main general results concerning the preservation theory
presented so far.

Lemma 2.6. Let 〈Pα〉α<� be a �-increasing sequence of ccc posets and P� =
limdirα<�Pα . If Pα+1 adds a Cohen real ċα over V Pα for any α < �, then P� forces
that {ċα : α < �} is a �-R-unbounded family of size �.
Theorem 2.7. Let � ≥ � be an ordinal and 〈Pα, Q̇α〉α<� an FS iteration of
nontrivial �-R-good ccc posets. Then, P� forces b(R) ≤ � and d(R) ≥ |�|.
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Proof. See [13, Corollary 3.6]. �

§3. Coherent systems of FS iterations.
Definition 3.1 (Relative embeddability). Let M be a transitive model of ZFC
(or a finite large fragment of it), P ∈M and Q posets (the latter not necessarily in
M ). Say that P is a complete subposet of Q with respect toM , denoted by P�M Q,
if P is a suborder of Q and every maximal antichain in P that belongs toM is also
a maximal antichain in Q.

Recall that in this case, ifN ⊇M is another transitive model of ZFC withQ ∈ N
andG isQ-generic overN thenG ∩P is P-generic overM andM [G ∩P] ⊆ N [G ].
Moreover, if Ṗ′ ∈ M is a P-name of a poset, Q̇′ ∈ N is a Q-name of a poset and
�Q,N Ṗ′�MP Q̇′, thenP∗Ṗ′�MQ∗Q̇′. In particular, ifM = N = V (the universe),
then P ∗ Ṗ′ �Q ∗ Q̇′ whenever P�Q and �Q Ṗ′ �V P Q̇′.

Definition 3.2 (Coherent system of FS iterations). A coherent system (of FS
iterations) s is composed by the following objects:

(I) a partially ordered set I s and an ordinal �s,
(II) a system of posets 〈Psi,� : i ∈ I s, � ≤ �s〉 such that

(i) Psi,0 � Psj,0 whenever i ≤ j in I s, and
(ii) Psi,� is the direct limit of 〈Psi,� : � < �〉 for each limit � ≤ �s,

(III) a sequence 〈Q̇si,� : i ∈ I s, � < �s〉 where each Q̇si,� is a Psi,�-name for a poset,
Psi,�+1 = Psi,� ∗ Q̇si,� andPsj,� forces Q̇si,� �V Ps

i,�
Q̇sj,� whenever i ≤ j in I s and

Psi,� � Psj,� .

Note that, for a fixed i ∈ I s, the posets 〈Psi,� : � ≤ �s〉 are generated by an FS
iteration 〈P′

i,� , Q̇
′
i,� : � < 1 + �

s〉 where Q̇′
i,0 = Psi,0 and Q̇

′
i,1+� = Q̇si,� for all � < �

s.
Therefore (by induction) P′

i,1+� = Pi,� for all � ≤ �s and, thus,Psi,� �Psi,� whenever
� ≤ � ≤ �s.
On the other hand, by Lemma 3.6, Psi,� � Psj,� whenever i ≤ j in I s and � ≤ �s.
For j ∈ I s and � ≤ �s we write V sj,� for thePsj,�-generic extensions. Concretely, if
G is Psj,�-generic over V , V

s
j,� := V [G ] and V

s
i,� := V [P

s
i,� ∩ G ] for all i ≤ j in I s

and � ≤ �. Note that V si,� ⊆ V sj,�.
We say that the coherent system s has the ccc if, additionally, Psi,0 has the ccc and

Psi,� forces that Q̇
s
i,� has the ccc for each i ∈ I s and � < �s. This implies thatPsi,� has

the ccc for all i ∈ I s and � ≤ �s.
We consider the following particular cases.

(1) When I s is a well-ordered set, we say that s is a 2D-coherent system (of FS
iterations).

(2) If I s is of the form {i0, i1} ordered as i0 < i1, we say that s is a coherent pair
(of FS iterations).

(3) If I s = �s × �s where �s and �s are ordinals and the order of I s is defined as
(α, �) ≤ (α′, � ′) iff α ≤ α′ and � ≤ � ′, we say that s is a 3D-coherent system
(of FS iterations).

For a coherent system s and a set J ⊆ I s, s|J denotes the coherent system with
I s|J = J , �s|J = �s and the posets and names corresponding to (II) and (III)
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defined as for s. And if � ≤ �s, s�� denotes the coherent system with I s�� = I s,
�s�� = � and the posets for (II) and (III) defined as for s. Note that, if i0 < i1 in
I s, then s|{i0, i1} is a coherent pair and s|{i0} corresponds just to the FS iteration
〈P′
i0 ,�
, Q̇′
i0,�
: � < 1 + �s〉 (see the comment after (III)).

If t is a 3D-coherent system, for α < � t, tα := t|{(α, �) : � < �t} is a 2D-coherent
system where I tα has order type �t. For � < �t, t� := t|{(α, �) : α < �t} is a
2D-coherent system where I t

�

has order type � t.
In particular, the upper indices s are omitted when there is no risk of ambiguity.

Concerning consistency results about cardinal characteristics of the real line,
Blass and Shelah [2] produced the first 2D-coherent system to obtain that u < d
is consistent with large continuum. This was followed by new consistency results
by Brendle and Fischer [4] and Mej́ıa [18] where Blass’ and Shelah’s construc-
tion (which consists, basically, of 2D-coherent systems as formalized in Definition
3.2(1)) is formulated and improved. For their results, the main features of the pro-
ducedmatrix of generic extensions 〈Vα,� : α ≤ �, � ≤ �〉 from a 2D-coherent system
m, as illustrated in Figure 1, are:

(F1) For α < �, there is a real cα ∈ Vα+1,0 which “diagonalizes” Vα,0 (e.g., R-
unbounded over Vα,0 for a fixed Polish relational system R, or diagonalizes
it in the sense ofDefinition 4.2) and, through the coherent pairm|{α,α+1},
cα also diagonalizes all the models in the α-th row, that is,Vα,� for all � ≤ �
(Lemmas 3.6 and 4.13).

(F2) Assume that � (the top level of thematrix) has uncountable cofinality.Given
any column of the matrix, any real in the model of the top is actually in
some of the models below, that is, R∩V�,� =

⋃
α<� R∩Vα,� for every � ≤ �

(Lemma 3.7 and Corollary 3.9).

To prove the main results of this paper, we extend this approach to 3D rectangles
of generic extensions which help us separate more cardinal invariants at the same
time. In a similar fashion as a matrix above, such a construction starts with a
matrix of posets and “coherent” FS iterations emanate from each poset, which is
formalized inDefinition 3.2(3) as 3D-coherent systems. Figure 2 illustrates this idea.
More generally, Definition 3.2 can be used to define multidimensional rectangles of
generic extensions, though applications are unknown for dimensions ≥ 4.

Figure 1. Matrix of generic extensions (2D-coherent system).
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Figure 2. 3D rectangle of generic extensions (3D-coherent system).

The feature (F1) can also be applied in general to coherent systemsofFS iterations
since any such system is composed of several coherent pairs of FS iterations. For
coherent pairs, (F1) for “R-unbounded over a model” has been well understood
in [2, 4, 18] whose results we review below. For the remainder of this section, fix
M ⊆ N transitive models of ZFC and a Polish relational system R = 〈X,Y,�〉
coded inM (in the sense that all its components are coded inM ).
Recall that S is a Suslin ccc poset if it is aΣ11 subset of



 (or another uncountable
Polish space) and both its order and incompatibility relations are Σ11. Note that if S
is coded inM then SM �M SN .

Lemma 3.3 ([18, Theorem 7]). Let S be a Suslin ccc poset coded inM . IfM |= “S
is R-good” then, in N , SN forces that every real in X ∩N which is R-unbounded over
M is R-unbounded overMSM .
Corollary3.4. LetΓ ∈M be a non-empty set. IfM |= “BΓ isR-good” thenBNΓ ,
in N , forces that every real in X ∩ N which is R-unbounded overM is R-unbounded
overMBMΓ .
Lemma 3.5 ([4, Lemma 11], see also [20, Lemma 5.13]). Assume P ∈ M is a
poset. Then, in N , P forces that every real in X ∩N which is R-unbounded overM is
R-unbounded overMP.
Lemma 3.6 (Blass and Shelah [2], [4, Lemmas 10, 12 and 13]). Let s be a coherent
pair of FS iterations as in Definition 3.2(2). Then, Pi0,� � Pi1 ,� for all � ≤ �.
Moreover, if ċ is a Pi1 ,0-name of a real in X , � is limit and Pi1,� forces that ċ is
R-unbounded over Vi0,� for all � < �, then Pi1,� forces that ċ is R-unbounded over
Vi0,�.
Note that if c is a Cohen real overM then c isR-unbounded overM byDefinition
2.1(iii). In fact, all the unbounded reals used in our applications are actually Cohen.
Now we turn to discuss feature (F2). We aim to have such a property for 3D-
coherent systems but, as they are composed of several 2D-coherent systems, it is
enough to understand (F2) for 2D-coherent systems. This was already noted in
[2] and formalized in [4, Lemma 15] (see Corollary 3.9), which we generalize as
follows.
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Lemma 3.7. Let m be a ccc 2D-coherent system with Im = � + 1 an ordinal and
�m = �. Assume that

(i) � has uncountable cofinality,
(ii) P�,0 is the direct limit of 〈Pα,0 : α < �〉, and
(iii) for any � < �,P�,� forces “Q̇�,� =

⋃
α<� Q̇α,�” wheneverP�,� is the direct limit

of 〈Pα,� : α < �〉.
Then, for any � ≤ �,P�,� is the direct limit of 〈Pα,� : α < �〉. In particular,P�,� forces
that R ∩ V�,� =

⋃
α<� R ∩ Vα,� .

Proof. We proceed by induction on �. The case when � is not successor is clear,
so we just need to deal with the successor step. Assume that the conclusion holds for
�. If p ∈ P�,�+1 then p = (r, q̇) where r ∈ P�,� and q̇ is a P�,�-name of a member of
Q̇�,� . By (iii), there is a maximal antichain {pn : n < 
} in P�,� such that pn decides
q̇ = q̇n ∈ Q̇αn,� for some αn < � and some Pαn,�-name q̇n.

1 By (i), (ii) and the
induction hypothesis, there is an α < � above all αn such that {pn : n < 
} ⊆ Pα,�
and r ∈ Pα,� . Therefore, q̇ is a Pα,�-name of a member of Q̇α,� and p ∈ Pα,�+1. �
The 2D and 3D-coherent systems constructed to prove our main results can be
classified in terms of the following notion.

Definition 3.8 (Standard coherent system of FS iterations). A ccc coherent
system of FS iterations s is standard if

(I) it consists, additionally, of:
(i) a partition 〈Ss, C s〉 of �s,
(ii) a function Δs : C s → I s so that Δs(i) is notmaximal in I s for all i ∈ C s,
(iii) a sequence 〈Ss� : � ∈ Ss〉 where each Ss� is either a Suslin ccc poset or a

random algebra, and
(iv) a sequence 〈Q̇s� : � ∈ C s〉 such that each Q̇s� is aPsΔs(�),�-name of a poset

which is forced to be ccc by Psi,� for all i ≥ Δs(�) in I s, and
(II) it satisfies, for any i ∈ I s and � < �s, that

Q̇si,� =

⎧⎨
⎩
(Ss�)

V si,� if � ∈ Ss,
Q̇s� if � ∈ C s and i ≥ Δs(�),
1 otherwise.

As in Definition 3.2, the upper index s may be omitted when it is clear from the
context.

All the standard coherent systems in this paper are constructed by recursion on
� < �. Tobemoreprecise,we startwith somepartial order of ccc posets 〈Pi,0 : i ∈ I 〉
as in Definition 3.2(II)(i), fix the partition in (I)(i) and, by recursion, the posets
Pi,� and names Q̇i,� for all i ∈ I , along with the function Δ and the sequence of
Suslin ccc posets in (I)(iii) (though in some cases Δ and the sequence of Suslin ccc
posets are fixed before the recursion), are defined as follows: when Pi,� has been
constructed for all i ∈ I , we distinguish the cases � ∈ S and � ∈ C . In the first case,
S� is chosen; in the second, we choose Δ(�) and then we define the (PΔ(�),�-name of

1It is implicit in this proof that the names considered for the members of Q̇α,� are canonical in the
sense described by the mentioned maximal antichains.
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a) poset Q̇� as in (I)(iv). After this, the iterations continue withPi,�+1 = Pi,� ∗Q̇i,� as
indicated in (II). It is clear that the requirements in Definition 3.2 for a ccc coherent
system are satisfied.
In practice, a standard coherent system as above is constructed by using posets
adding generic reals and the cases whether � ∈ S or � ∈ C indicate how generic
the real is. Namely, when � ∈ S, S� adds a real that is generic over Vi,� for all
i ∈ I , which means that we add a full generic real at stage �; on the other hand,
when � ∈ C we just add a restricted generic in the sense that Q̇� adds a real which
is generic over VΔ(�),� but not necessarily over Vi,� when i 
≤ Δ(�), for instance,
if Q̇� is a name for DVΔ(�),� , at the �-step the Hechler real added is generic only
over VΔ(�),�. This approach of adding full and restricted generic reals is useful for
controlling many cardinal invariants at the same time like in [2, 4, 18] and this
work.
It is clear that any standard 2D-coherent system satisfies the hypothesis (iii) of
Lemma 3.7 whenever (i) and (ii) are satisfied. Therefore,

Corollary 3.9 ([4, Lemma 15]). If m is a standard 2D-coherent system with
Im = � + 1 and an ordinal and �m = � satisfying (i) and (ii) of Lemma 3.7 then, for
any � ≤ �, P�,� is the direct limit of 〈Pα,� : α < �〉. In particular, P�,� forces that
R ∩V�,� =

⋃
α<� R ∩ Vα,�.

The results presented in this section can be summarized in the following result.

Theorem 3.10 ([18,Theorem10&Corollary 1]). Letm be a standard 2D-coherent
system with Im = � + 1 (an ordinal ), �m = � and R = 〈X,Y,�〉 a Polish relational
system coded in V . Assume that

(i) for any � ∈ S and α ≤ �, Pα,� forces that Q̇α,� = S
Vα,�
� is R-good and

(ii) for any α < � there is a Pα+1,0-name ċα of a R-unbounded member of X over
Vα,0.

Then, for any � ≤ � and α < �, Pα+1,� forces that ċα is R-unbounded over Vα,� . In
addition, ifm satisfies (i) and (ii) of Lemma 3.7 thenP�,� forces b(R) ≤ cf(�) ≤ d(R).

Proof. The first statement is a direct consequence of Lemmas 3.3, 3.5, and 3.6.
For the second statement, note that Corollary 3.9 implies that, in V�,�, {cα� : � <
cf(�)} is a cf(�)-R-unbounded family where 〈α� : � < cf(�)〉 ∈ V is an increasing
cofinal sequence of �, so b(R) ≤ cf(�) ≤ d(R) follows. �

§4. Preservation of Hechler mad families. We review from [4] the theory of pre-
serving, through coherent pairs of FS iterations, a mad family added by Hechler’s
poset for adding an a.d. family (see Definition 4.1). This theory is quite similar
to the approach in Section 3. Additionally, we show in Lemmas 4.8 and 4.10 that
random forcingB and the eventually different forcingE fit well into this framework.

Definition 4.1 (Hechler [14]). For a setΩ define the posetHΩ := {p : Fp×np →
2 : Fp ∈ [Ω]<ℵ0 and np < 
}. The order is given by q ≤ p iff p ⊆ q and, for any
i ∈ nq � np, there is at most one z ∈ Fp such that q(z, i) = 1.
If G is HΩ-generic over V then A = AG := {az : z ∈ Ω} is an a.d. family where
az ⊆ 
 is defined as i ∈ az iff p(z, i) = 1 for some p ∈ G . Moreover, V [G ] = V [A]
and, when Ω is uncountable, A is mad in V [G ] (see [14]).
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If Ω ⊆ Ω′ it is clear that HΩ � HΩ′ and even the (HΩ-name of the) quotient
HΩ′/HΩ is nicely expressed (see, e.g., [4, Section 2]). On the other hand, if C is an
⊆-chain of sets then H⋃ C = limdirΩ∈CHΩ. Therefore, if � is an ordinal, H� can be
obtained by an FS iteration of length � where Hα is the poset obtained in the α-th
stage of the iteration and Hα+1/Hα , which is �-centered, is the α-th iterand. Since
HΩ only depends on the size of Ω, this implies that HΩ has precaliber 
1 (though
this can be proved directly by a Δ-system argument). Moreover, if Ω is nonempty
and countable thenHΩ � C and, if |Ω| = ℵ1, then HΩ � C
1 .
From now on, fix transitive models M ⊆ N of ZFC. We define below a diag-
onalization property to preserve mad families like the one added by Hechler’s
poset.

Definition 4.2 ([4, Definition 2]). Let A = 〈az〉z∈Ω ∈ M be a family of infinite
subsets of 
 and a∗ ∈ [
]ℵ0 (not necessarily in M ). Say that a∗ diagonalizes M
outsideA if, for all h ∈M , h : 
× [Ω]<ℵ0 → 
 and for anym < 
, there are i ≥ m
and F ∈ [Ω]<ℵ0 such that [i, h(i, F ))�⋃

z∈F az ⊆ a∗.
Given a collection A of subsets of 
, the ideal generated by A is defined as

I(A) := {x ⊆ 
 : x ⊆∗ ⋃
a∈F
a for some finite F ⊆ A}.

Lemma 4.3 ([4, Lemma 3]). If a∗ diagonalizesM outside A then |a∗ ∩ x| = ℵ0
for any x ∈M � I(A).
Corollary 4.4. Let � be an ordinal of uncountable cofinality and let 〈Mα〉α≤� be an
increasing sequence of transitiveZFCmodels such that [
]ℵ0∩M� =

⋃
α<� [
]

ℵ0∩Mα .
Assume thatA = {aα : α < �} ∈M� is a family of infinite subsets of
 such that, for
any α < �, A�α ∈ Mα and aα ∈ Mα+1 diagonalizesMα outside A�α. Then, for any
x ∈ [
]ℵ0 ∩M� , there exists an α < � such that |x ∩ aα| = ℵ0. If, additionally, A is
almost disjoint, then A is mad inM� .

Lemma 4.5 ([4, Lemma 4]). Let Ω be a set, z∗ ∈ Ω and A := {az : z ∈ Ω} the
a.d. family added by HΩ. Then, HΩ forces that az∗ diagonalizes VHΩ�{z∗} outside
A�(Ω � {z∗}).
Though it is well-known that, for Ω uncountable, the a.d. family added byHΩ is
mad (as mentioned earlier), this follows from Corollary 4.4 and Lemma 4.5 since
HΩ ∼= H� for some ordinal � of uncountable cofinality.
The main idea for mad preservation in [4] is that, when ccc 2D-coherent systems
are constructed, the first column, along with a mad family A = {aα : α < �},
satisfies the hypothesis of Corollary 4.4 (e.g., Pα,0 = Hα for all α ≤ �) and each
aα is preserved to diagonalize the models in the α-th row outside A�α (that is, the
second case of (F1) at the beginning of Section 3). For this purpose, we present
the following results related to the preservation of the property in Definition 4.2
through coherent pairs of iterations.
Lemma 4.6 ([4, Lemma 11]). Let P ∈M be a poset. If N |= “a∗ diagonalizesM
outside A” then

NP |= “a∗ diagonalizesMP outside A”.

Corollary 4.7. If N |= “a∗ diagonalizesM outside A” then
NCN |= “a∗ diagonalizesMCM outside A”.
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Lemma 4.8. If N |= “a∗ diagonalizesM outside A” then
NEN |= “a∗ diagonalizesMEM outside A”.

Proof. Let ḣ ∈ M be an E-name for a function from 
 × [Ω]<ℵ0 into 
. Work
withinM and fix a nonprincipal ultrafilterD on
 (inM ). For s ∈ 
<
 and n < 

define hs,n : 
 × [Ω]<ℵ0 → 
 + 1 as

hs,n(i, F ) = min{j < 
 : (∀ϕ, width(ϕ) ≤ n)((s, ϕ) � ḣ(i, F ) > j)}.
Claim 4.9. hs,n(i, F ) ∈ 
 for all i < 
 and F ∈ [Ω]<ℵ0 .
Proof. Assume not, so there is a sequence of slaloms 〈ϕj〉j<
 of width≤ n such
that (s, ϕj) � ḣ(i, F ) > j. Define the slalom ϕ∗ as

ϕ∗(i) = {m < 
 : {j < 
 : m ∈ ϕj(i)} ∈ D}.
Since D is a filter, width(ϕ∗) ≤ n, so (s, ϕ∗) ∈ E. Now, there are (t, �) ≤ (s, ϕ∗)
and j0 < 
 such that (t, �) � ḣ(i, F ) = j0. By the definition of ϕ∗ and since D is
an ultrafilter,

{j < 
 : ∀i ∈ |t|� |s |(t(i) /∈ ϕj(i))} ∈ D
so that set is infinite. For any j > j0 in that set, (t, �) is compatible with
(s, ϕj) and, therefore, any common stronger condition forces j0 = ḣ(i, F ) > j, a
contradiction. �
Now, in N , fix m < 
 and p = (s, ϕ) ∈ EN with n := width(ϕ). As
a∗ diagonalizes M outside A, there are i ≥ m and F ∈ [Ω]<ℵ0 such that
[i, hs,n(i, F )) �

⋃
z∈F az ⊆ a∗. By definition of hs,n, (∀ϕ, width(ϕ) ≤ n)((s, ϕ) �

ḣ(i, F ) > hs,n(i, F )) is a true Π11-statement inM so, by absoluteness, it is also true
in N . Therefore, there is a q ∈ EN stronger than p that forces ḣ(i, F ) ≤ hs,n(i, F )
and then we conclude that q forces [i, ḣ(i, F ))�

⋃
z∈F az ⊆ a∗. �

Lemma 4.10. If N |= “a∗ diagonalizesM outside A” then
NBN |= “a∗ diagonalizesMBM outside A”.

Proof. In the standard proof that B is 

-bounding (see for example [1]) it is
shown that, for any p ∈ B, ε ∈ (0, 1) and ẋ a B-name for a real in 

 , there are
q ≤ p and g ∈ 

 such that q � ẋ ≤ g and 	(p � q) ≤ ε	(p) where 	 is the
Lebesgue measure. We are going to use this fact to prove the lemma.
Fix ḣ ∈M aB-name for a function from
×[Ω]<ℵ0 to
, p ∈ BN andm < 
. By
theLebesguedensityTheorem there is a clopennonempty setC such that 	(C�p) <
1
4	(C ). Now, inM , find g : 
 × [Ω]<ℵ0 → 
 such that, for any F ∈ [Ω]<ℵ0 , there
is a qF ≤ C in B with 	(C � qF ) ≤ 1

4	(C ) that forces ∀i < 
(ḣ(i, F ) ≤ g(i, F )).
Then, in N , there are i ≥ m and F ∈ [Ω]<ℵ0 such that [i, g(i, F ))�⋃

z∈F az ⊆ a∗,
so qF forces [i, ḣ(i, F )) �

⋃
z∈F az ⊆ a∗. As 	(p ∩ qF ) > 1

2�(C ), p ∩ qF ∈ BN is
stronger than p and forces [i, ḣ(i, F ))�

⋃
z∈F az ⊆ a∗. �

Corollary 4.11. Let Γ ∈ M be a nonempty set. If N |= “a∗ diagonalizes M
outside A” then

NBNΓ |= “a∗ diagonalizesMBMΓ outside A”.
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Proofs of both Lemmas 4.8 and 4.10 use an argument similar to that of the
proof that the respective posets are D-good (the compactness argument for E and


-bounding for B).
Question 4.12. Assume S is a Suslin ccc poset coded in M such thatM |=“S is
D-good” and N |= “a∗ diagonalizesM outside A”. Does one have:

NSN |= “a∗ diagonalizesMSM outside A”?

Lemma 4.13 ([4, Lemma 12]). Let s be a coherent pair of FS iterations, Ȧ a Pi0 ,0-
name for a family of infinite subsets of 
 and ȧ∗ a Pi1 ,0-name for an infinite subset of

 such that

�Pi1 ,�
“ȧ∗ diagonalizes Vi0,� outside Ȧ”

for all � < �. Then, Pi0,� � Pi1,� and �Pi1 ,�
“ȧ∗ diagonalizes Vi0,� outside Ȧ”.

The results above are summarized as follows when considering standard 2D-
coherent systems.

Theorem 4.14. Let m be a standard 2D-coherent system with Im = � + 1 an
ordinal and �m = � satisfying (i) and (ii) of Lemma 3.7 and, for each α < �, let ȧα be
a Pα+1,0-name of an infinite subset of 
 such that Pα+1,0 forces that ȧα diagonalizes
Vα,0 outside {ȧε : ε < α} and P�,0 forces Ȧ = {ȧα : α < �} to be an a.d. family. If
S� ∈ {C,E} ∪R for all � ∈ S then P�,� forces that Ȧ is mad and a ≤ |�|.
Proof. Lemmas 3.9, 4.6, 4.8, 4.10, and 4.13 imply that 〈Vα,� : α ≤ �〉 and A
satisfy the hypothesis of Corollary 4.4, so A is mad in V�,�. �
Remark 4.15. (1) Other mad families can be considered in this theory of
preservation, for instance, the mad family added by an FS iteration of
Mathias–Prikry posets. Given an a.d. family A ⊆ [
]ℵ0 , let F (A) ⊆ [
]ℵ0
be the closure of {
 � a : a ∈ A} ∪ {
 � n : n < 
} under finite inter-
sections. Note that the generic real a∗ added by the Mathias-Prikry poset
M(F (A)) is almost disjoint from all the members of A and |a∗ ∩ x| = ℵ0
for every x ∈ V � I(A). Moreover,M(F (A)) forces that a∗ diagonalizes V
outsideA. Thus, for an ordinal � with uncountable cofinality, the FS iteration
〈Pα, Q̇α〉α<� with Q̇α = M(F (A�α)) adds an a.d. family A = {aα : α < �}
where each aα is the Mathias real added by Q̇α . By Corollary 4.4, P� forces
that A is mad.

(2) Any FS iteration of length 
1 of nontrivial ccc posets adds a mad family of
size ℵ1 (so it forces a = ℵ1), actually, the mad family is defined from the
Cohen reals added at limit stages. To understand this, it is enough to note
that, if A ∈ V is a countable a.d. family, then C � M(F (A)), so any Cohen
generic defines anM(F (A))-generic.

Remark 4.16. A version of the previous theorem was originally proved by Bren-
dle and the first author [4] for a special case where Mathias–Prikry posets with
ultrafilters are considered. In the same way, Mathias-Prikry posets can be incorpo-
rated into standard 2D-iterations as in Definition 3.8. This was done by the third
author in [19] to obtain consistency results about the cardinal invariants p, s, r,
and u in relation with those in Cichoń’s diagram. But thanks to Lemmas 4.8 and
4.10, andRemark 5.9, the constructions there can bemodified to force, additionally,
b = a (like in Theorem 5.8).

https://doi.org/10.1017/jsl.2017.20 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2017.20


COHERENT SYSTEMS OF FINITE SUPPORT ITERATIONS 221

The following is a generalization of a result of Steprans [24] which shows that
the maximal almost disjoint family added by the forcing Hκ is indestructible after
forcing with some particular posets. Steprans’ result can then be deduced when
κ = 
1 (so H
1 = C
1 ) and Q̇� = C for all � < �.

Theorem 4.17. Let κ be an uncountable regular cardinal. After forcing with Hκ,
any FS iteration 〈P�, Q̇�〉�<� where each iterand is either
(i) in {C,E} ∪R or
(ii) a ccc poset of size < κ

preserves the mad family added byHκ.

Proof. We reconstruct the iteration Hκ followed by 〈P� , Q̇�〉�<� as a standard
2D-coherent system m so that Pmκ,� = Hκ ∗ P� for all � ≤ �. The construction goes
as follows (see Definition 3.8):

(1) Im = κ + 1 and �m = �.
(2) For each α ≤ κ, Pmα,0 = Hα .
(3) Thepartition 〈Sm, Cm〉of�m corresponds to the set of ordinals in the iteration
where a poset coming from (i) or (ii) is used. In other words, � ∈ Sm if (i)
holds for Q̇� , and � ∈ Cm otherwise.

(4) The functions Δm : Cm → κ and the sequences 〈Sm� : � ∈ Sm〉 and 〈Q̇m� : � ∈
Cm〉 are constructed by recursion on � < � along with the FS iterations of
the 2D-coherent system. We split into the following cases:
• If � ∈ Sm define Sm� to be one of the posets in the set {C,E} ∪ R

depending on what P� forces Q̇� to be.
• If � ∈ Cm we define both Δm(�) and Q̇m� , the latter as a PmΔm(�),0-name.
Since � ∈ Cm we have that Q̇� is a Pmκ,�-name for a ccc poset of size < κ,
hence without loss of generality we can assume that the domain of Q̇�
is an ordinal �� < κ (not just a name). By Lemma 3.7, Q̇� is (forced by
Pmκ,� to be equal to) a P

m
α,�-name Q̇

m
� for some α < κ. So put Δ

m(�) =
α + 1.2

Notice thatm satisfies the assumptions of Theorem 4.14 for themad familyA added
by Hκ, so A is still mad in V mκ,�. �
Remark 4.18. When κ = 
1 in Theorem 4.17, by Remark 4.15(2) the result still
holds when H
1 is replaced by any FS iteration of length with cofinality 
1. This is
an alternative (and also a generalization) of Zhang’s result [25] which states that,
under CH, there is a mad family in the ground model which stays mad after an FS
iteration of E.

§5. Consistency results on Cichoń’s diagram. In this section, we prove the consis-
tency of certain constellations in Cichoń’s diagram where, additionally, the almost
disjointness number can be decided (equal to b). For all the results, we fix uncount-
able regular cardinals �0 ≤ �1 ≤ κ ≤ � ≤ 
 and a cardinal 	 ≥ 
. We denote the
ordinal product between cardinals by, e.g., 	 · �.
2Though it would be fine to put Δm(�) = α, we prefer α + 1 because we additionally have that, for

any � < κ of uncountable cofinality and for any � ≤ �, R ∩ V�,� = R ∩⋃
α<� Vα,� .
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The following summarizes the results in [18, Section 3] but in addition we get that
b = a can be forced.

Theorem 5.1. Assume 	 = 	<κ and 	′ ≥ 	 with (	′)ℵ0 = 	′. For each of the items
below, there is a ccc poset forcing the corresponding statement.

(a) add(N ) = �0, cov(N ) = �1, b = a = non(M) = κ and cov(M) = c = 	.
(b) add(N ) = �0, cov(N ) = �1, b = a = κ, non(M) = cov(M) = � and

d = non(N ) = c = 	.
(c) add(N ) = �0, b = a = κ, cov(I) = non(I) = � for I ∈ {M,N} and

d = c = 	.
(d) non(N ) = ℵ1, b = a = κ, d = 	 and cov(N ) = c = 	′.

Proof. The proofs are basically the same as in [18] combined with the methods
of preservation of mad families developed in Section 4. We sketch these proofs for
completeness. For all the items, start adding a mad family withHκ.

(a) Construct an iteration as in the last part of [18, Theorem 2]. To be more
precise, perform an FS iteration 〈Pα, Q̇α〉α<	 where each Q̇α is either
(i) a �-linked subposet of LOC of size < �0,
(ii) a subalgebra of B of size < �1 or
(iii) a �-centered subposet of D of size < κ.
The iteration is constructed by a book-keeping device so that any �-linked
subposet of LOC of size < �0 that lives in a intermediate step is used in a
further step of the iteration. Likewise in relation to (ii) and (iii).
ByTheorem4.17,P	 forces a ≤ κ.On theother hand, by similar arguments
as in [18, Theorem 2], the other equalities are forced. We just show some of
them.
add(N ) = �0. The inequality add(N ) ≤ �0 follows from both the fact that
add(N ) = b(Lc) (see Example 2.5(4)) and that all the posets we are
using in the iteration are �0-Lc-good, so Theorem 2.7 applies and we get
b(Lc) ≤ �0. On the other hand, add(N ) ≥ �0 follows from the book-keeping
corresponding to (i).
cov(M) = c = 	. The inequality cov(M) ≥ 	 is a simple consequence of
the equality cov(M) = d(Ed) together with Theorem 2.7; on the other hand,
c ≤ 	 because, in the ground model, |Hκ ∗ P	| ≤ 	.

(b) As in (a), perform an FS iteration 〈Pα, Q̇α〉α<	·� as in [18, Theorem 3] where
each Q̇α is either
(i) a �-linked subposet of LOC of size < �0,
(ii) a subalgebra of B of size < �1,
(iii) a �-centered subposet of D of size < κ or
(iv) E.
By counting arguments, the FS iteration is constructed so that, for any
α < �, each �-linked subposet of LOC of size < �0 living in V	·α is
used in the iteration at stage 	 · α + � for some � < 	. Likewise for (ii)
and (iii).

(c) Perform an FS iteration 〈Pα, Q̇α〉α<	·� as in [18, Theorem 4]. In this case,
each Q̇α is either:
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(i) a �-linked subposet of LOC of size < �0,
(ii) a �-centered subposet of D of size < κ or
(iii) B.
Counting arguments are used as in (b).

(d) After the iteration in (a) force with B	′ . �
Now we turn to prove some consistency results with standard 3D-coherent
systems (see Definitions 3.2(3) and 3.8). Recall that, if t is such a system with
I t = (� + 1)× (� + 1), standard 2D-coherent systems tα can be extracted for each
α ≤ � and t� for each � ≤ �. When referring to Figure 2, we call the vertical axis
the α-axis, the axis pointing “perpendicular to the sheet of paper” is the �-axis and
the horizontal axis is the �-axis. To get a picture of these 2D-systems, in Figure 2,
tα is the 2D-system obtained by restricting the 3D rectangle to the horizontal plane
on α (i.e., fixing α on the α-axis), while t� is the restriction to the vertical plane
on � (i.e., fixing � on the �-axis). These 2D-coherent systems allow us to directly
apply the results in the previous sections to 3D-coherent systems. In consequence,
we have the following general result for standard 3D-coherent systems.

Theorem 5.2. Let t be a standard 3D-coherent system with I t = (� +1)× (� +1)
and m a standard 2D-coherent system with Im = � + 1 and �m = � such that
Pα,�,0 = Ptα,�,0 = Pmα,� for all α ≤ � and � ≤ �. Let R = 〈X,Y,�〉 be a Polish
relational system coded in V . Assume

(I) m satisfies the hypotheses of either
(i) Lemma 3.7(i) and (ii) and Theorem 3.10 with 〈ċα : α < �〉 and R, or
(ii) Theorem 4.14 with Ȧ = {ȧα : α < �}
(note that, in either case, � has uncountable cofinality),

(II) all the posets that form m are nontrivial (see Definition 3.8(iii) and (iv)),
(III) all the posets that form t are nontrivial (see Definition 3.8(iii) and (iv)),
(IV) � and � have uncountable cofinality,
(V) for � ∈ S = St, Q̇α,�,� is forced to be R-good by Pα,�,� for all α ≤ � and
� ≤ �, and

(VI) if (I)(ii) is assumed then S� ∈ {C,E} ∪ R for all � ∈ S.
Then, P�,�,� forces

(a) non(M) ≤ cf(�) ≤ cov(M),
(b) b(R) ≤ min{cf(�), cf(�)} ≤ max{cf(�), cf(�)} ≤ d(R),
(c) b(R) ≤ min{cf(�), cf(�), cf(�)} ≤ max{cf(�), cf(�), cf(�)} ≤ d(R) when
(I)(i) is assumed and

(d) a ≤ |�| when (I)(ii) is assumed.
Proof. (a) Any FS iteration of length � of uncountable cofinality adds cofi-
nally cf(�)-many Cohen reals which witness non(M) ≤ cf(�) ≤ cov(M).
Also note that the FS iteration 〈P�,�,� , Q̇�,�,� : � < �〉 generates the final
extension V�,�,� of the coherent system t.

(b) We look at the 2D-coherent system t� . As the chain of posets 〈P�,�,0 : � ≤ �〉
is generated by an FS iteration of ccc posets, for a fixed cofinal sequence
〈�� : � < cf(�)〉 in � of limit ordinals, for each � < cf(�) there is a P�,��+1 ,0-
name ċ′� for a Cohen real over V�,�� ,0. Thus, t� and 〈ċ′� : � < cf(�)〉 satisfy the
hypotheses of Theorem 3.10 by (V), so P�,�,� forces b(R) ≤ cf(�) ≤ d(R).
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Besides, since b(R) ≤ non(M) and cov(M) ≤ d(R), (a) immediately implies
b(R) ≤ cf(�) ≤ d(R).

(c) We first look at the 2D-coherent system m. By Theorem 3.10, Pα+1,�,0 forces
that ċα is R-unbounded over Vα,�,0 for every α < �. Now, we apply Theorem
3.10 to t� to conclude that b(R) ≤ cf(�) ≤ d(R).

(d) By Theorem 4.14 applied to the 2D-coherent system m, each ȧα is forced by
Pα+1,�,0 to diagonalize Vα,�,0 outside Ȧ�α for each α < � and furthermore,
using the same theorem one more time for the coherent system t� , Pα+1,�,�
forces that ȧα diagonalizes Vα,�,� outside Ȧ�α. Thus, the maximality of A is
preserved in V�,�,� and so a ≤ |�|. �

In our applications and in accordance with the previous result, we consider
standard 3D-coherent systems where 〈Pα,�,0 : α ≤ �, � ≤ �〉 is generated by a
standard 2D-coherent system.

Definition 5.3. Given ordinals � and �, define the following standard 2D-
coherent systems.

(1) The system mC(�, �) where
(i) Im

C(�,�) = � + 1,
(ii) P

mC(�,�)
α,0 = Cα for each α ≤ �, and

(iii) �m
C(�,�) = �, S = �, C = ∅ and S� = C for all � < �.

(2) The system m∗(�, �) where
(i) Im

∗(�,�) = � + 1,
(ii) P

m∗(�,�)
α,0 = Hα for each α ≤ �, and

(iii) �m
∗(�,�) = �, S = �, C = ∅ and S� = C for all � < �.

If both � and � have uncountable cofinality, it is clear that both mC(�, �) and
m∗(�, �) satisfy (I) and (II) of Theorem 5.2, moreover, the former satisfies (I)(i) and
the latter satisfies (I)(ii). These standard 2D-coherent systems are the starting point
for the 3D-coherent systems constructed to prove the main results below.
Note that in Theorems 5.6(b), 5.7(c) and (d) we cannot say anything about a
because full Hechler generics are added (see the discussion about full and restricted
generics after Definition 3.8) so mad families are not preserved anymore in the way
proposed in Section 4. For these results we start withmC(·, ·). For the results where
we can force b = a we start with m∗(·, ·) (we can start with mC(·, ·) as well, but a
should be ignored in that case). Observe that the results below are three-dimensional
versions of the 2D-coherent systems constructed in [18, Section 6].
We first prove that there is a constellation of Cichoń’s diagram with 7 different
values as illustrated in Figure 3.

Theorem 5.4. Assume 	<�1 = 	. Then, there is a ccc poset forcing add(N ) = �0,
cov(N ) = �1, b = a = κ, non(M) = cov(M) = �, d = 
, and non(N ) = c = 	.

Proof. LetV be the groundmodelwhereweperformanFS iterationwhich comes
from the standard 3D-coherent system t constructed as follows. Fix a bijection
g = 〈g0, g1, g2〉 : 	→ κ × 
 × 	.
(1) � = κ + 1, � = 
 + 1 and � = 	 · 
 · �.
(2) 〈Pα,�,0 : α ≤ κ, � ≤ 
〉 is obtained from m∗(κ, 
).
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Figure 3. Cichoń’s diagram as in Theorem 5.4.

(3) Consider 	 ·
 ·� as the disjoint union of the 
 ·�-many intervals I� = [l� , l�+1)
(for � < 
 · �) of order type 	. Let S := {l� : � < 
 · �} and C = �� S (note
that l� = 	 · �).

(4) A function Δ = 〈Δ0,Δ1〉 : C → κ × 
 such that the following properties are
satisfied:
(i) For all � < �, both Δ0(�) and Δ1(�) are successor ordinals,3

(ii) Δ−1(α+1, �+1)∩{l�+1 : � < 
 ·�} is cofinal in � for any (α, �) ∈ κ×
,
and

(iii) for fixed � < 
 ·� and e < 2, Δ(l� +2+2 ·ε+ e) = (g0(ε)+1, g1(ε)+1)
for all ε < 	.

(5) S� = E for all � ∈ S.
(6) Fix, for each α < κ, � < 
 and � < 
 · �, two sequences 〈 ˙LOC

�

α,�,�〉�<	
and 〈Ḃ�α,�,�〉�<	 of Pα,�,l� -names for all �-linked subposets of the localization
forcing LOC

Vα,�,l� of size < �0 and all subalgebras of random forcing B
Vα,�,l�

of size < �1, respectively.
Given � ∈ C , define Q̇� according to the following cases.
(i) If � = l� +1 then Q̇� is a PΔ(�),�-name for the posetDVΔ(�),� , the Hechler
poset adding a dominating real ḋ� over the model VΔ(�),�.

(ii) If � = l� + 2 + 2ε with ε < 	 then Q̇� = ˙LOC
�

g(ε).

(iii) If � = l� + 2 + 2ε + 1 with ε < 	 then Q̇� = Ḃ
�
g(ε).

We prove that Vκ,
,� satisfies the statements of this theorem.

Claim 5.5. IfX ∈ Vκ,
,� is a set of reals of size< �, then there are (�, �) ∈ 
×(
·�)
so that X ∈ Vκ,�,l� . Furthermore, if |X | < κ, then there is also an α less than κ such
that X ∈ Vα,�,l� .
Proof. As cf(�) = � and Vκ,
,� is obtained by an FS iteration of length �, there
is a � < 
 · � such that X ∈ Vκ,
,l� (because {l� : � < 
 · �} is cofinal in �). Now,
look at the 2D-coherent system tκ and apply Corollary 3.9 to find a � < 
 so that
X ∈ Vκ,�,l� . In the case that |X | < κ, apply Corollary 3.9 to t� to find an α < κ so
that X belongs to Vα,�,l� . �
add(N ) = �0. For the inequality add(N ) ≥ �0 take an arbitrary set X of reals in
Vκ,
,� of size< �0 so, byClaim 5.5, there is a triple of ordinals (α, �, �) ∈ κ×
×(
 ·�)
3Both ordinals Δ0(�) and Δ1(�) are successor because, if they are limits of uncountable cofinality

and we force with DVΔ(�),� above (Δ(�), �) and trivial otherwise, then R ∩ VΔ(�),�+1 may not be R ∩⋃
α<Δ0(�),�<Δ1(�)

Vα,�,�+1.
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such that X ∈ Vα,�,l� . In Vα,�,l� , there is a transitive model N of (a large enough
finite fragment of) ZFC such that X ⊆ N and |N | < �0. Then, there exists an
� < 	 such that LOC

�
α,�,� = LOCN . Put ε = g−1(α, �, �) and �′ = l� + 2 + 2ε, so

Q�′ = LOC
�
α,�,� = LOCN adds a generic slalom over N and, therefore, it localizes

all the reals in X .
To obtain the converse inequality, apply Theorem 2.7 to 〈Pκ,
,� , Q̇κ,
,�〉�<� and �0.
cov(N ) = �1. This case is similar to the one above. To get cov(N ) ≥ �1 take an
arbitrary family Z of Borel null sets coded in Vκ,
,� of size < �1 so, by Claim 5.5,
there exists (α, �, �) ∈ κ × 
 × (
 · �) such that the sets in Z are already coded
in Vα,�,l� . Hence, as in the previous argument, there exists an ordinal � < 	 such
that the generic random real added by B

�
α,�,� avoids all the Borel sets in Z. Put

ε = g−1(α, �, �) and �′ = l� + 2 + 2ε + 1, so Q�′ = B
�
α,�,� and the random real it

adds is already in Vα+1,�+1,�′+1.
Conversely, since the posets we use in the FS iteration 〈Pκ,
,� , Q̇κ,
,�〉�<� are
�1-Edb-good posets and cov(N ) ≤ b(Edb), Theorem 2.7 implies that, in Vκ,
,�,
b(Edb) ≤ �1.
non(M) = cov(M) = �. The inequalities non(M) ≤ � ≤ cov(M) follow from
Theorem 5.2(a). Conversely, from the cofinally �-many eventually different reals
added by the iteration 〈Pκ,
,�, Q̇κ,
,�〉�<�, we force the inequalities cov(M) ≤ � and
non(M) ≥ �.
add(M) = b = a = κ. Given a family F of reals in Vκ,
,� of size < κ, we can
find a (α, �, �) ∈ κ × 
 × (
 · �) such that F ∈ Vα,�,l� . We use now the restricted
dominating reals {ḋ� : � < 
 · �}. Since (Δ)−1(α + 1, � + 1) ∩ {l� + 1 : � < 
 · �}
is cofinal in �, there exists a � ′ ∈ [�, 
 · �) such that Δ(l�′ + 1) = (α + 1, � + 1)
and then the real ḋ�′ added by Qα+1,�+1,�′ , where �′ = l�′ + 1, dominates all the
reals in F .
On the other hand, a ≤ κ follows from Theorem 5.2 which guarantees that the
mad family added along the α-axis, which lives in the model Vκ,0,0, still remains
mad in the final extension Vκ,
,�.
d = cof(M) = 
. For Vκ,
,� |= d ≥ 
 we just use Theorem 5.2. Conversely, to
see V P |= d ≤ 
 note that the argument above shows that the family of (restricted)
dominating reals {ḋ� : � < 
 · �} is dominating in Vκ,
,�.
non(N ) = cof(N ) = c = 	. As d(Edb) ≤ non(N ), from Theorem 2.7 we have
that, in Vκ,
,�, d(Edb) ≥ |�|= 	. Certainly, c ≤ 	 holds because |Pκ,
,�| = 	. �
Theorem 5.6. Assume 	<�0 = 	. Then, for any of the statements below, there is a
ccc poset forcing it.

(a) add(N ) = �0, b = a = κ, cov(I) = non(I) = � for I ∈ {M,N}, d = 
 and
cof(N ) = c = 	.

(b) add(N ) = �0, cov(N ) = κ, add(M) = cof(M) = �, non(N ) = 
 and
cof(N ) = c = 	.

(c) add(N ) = �0, cov(N ) = b = a = κ, non(M) = cov(M) = �, d =
non(N ) = 
 and cof(N ) = c = 	.

Proof. Fix a bijection g : 	→ κ × 
 × 	. All the 3D-coherent systems we use in
this proof are of the form t where
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(1) � = κ+1, � = 
 +1 and � = 	 · 
 ·�, the latter of which is the disjoint union
of 
 · �-many intervals {I� := [l� , l�+1) : � < 
 · �} of length 	 where each
l� := 	 · �.

(2) S = {l� : � < 
 · �} and C = � � S.
(3) For (a) and (c) 〈Pα,�,0 : α ≤ κ, � ≤ 
〉 comes from m∗(κ, 
) and, for (b), it
comes from mC(κ, 
).

(4) A function Δ = 〈Δ0,Δ1〉 : C → κ × 
 such that the following properties are
satisfied:
(i) For all � < �, both Δ0(�) and Δ1(�) are successor ordinals,
(ii) Δ−1(α+1, �+1)∩{l�+1 : � < 
 ·�} is cofinal in� for each (α, �) ∈ κ×
;
additionally, for (c), Δ−1(α + 1, � + 1) ∩ {l� + 2 : � < 
 · �} is cofinal
in � and

(iii) for fixed � < 
 · �, Δ(l� + n0 + ε) = (g0(ε) + 1, g1(ε) + 1) for all ε < 	,
where n0 = 2 for (a) and (b), and n0 = 3 for (c).

For each of the items below, t is defined appropriately.

(a) For all � ∈ S, S� = B. Fix, for each α < κ, � < 
 and � < 
 · �, a sequence
〈 ˙LOC

�

α,�,�〉�<	 of Pα,�,l� -names for all �-linked subposets of LOC
Vα,�,l� of size

< �0. For � ∈ C , Q̇� is defined according to the following cases.
(i) If � = l� +1 then Q̇� is a PΔ(�),�-name for the poset D

VΔ(�),� which adds a
dominating real ḋ� over VΔ(�),�.

(ii) If � = l� + 2 + ε for some ε < 	, then Q̇� = ˙LOC
�

g(ε).
Most of the arguments for each of the cardinal characteristics are identical
as the ones presented in Theorem 5.4, so we just present the missing ones.
non(N ) ≤ � ≤ cov(N ). It holds because we add cofinally �-many random
reals (corresponding to the coordinates � ∈ S).
cof(N ) ≥ 	. It is a consequence of both the fact that cof(N ) = d(Lc) and
Theorem 2.7 which gives us d(Lc) ≥ |�|= 	.

(b) For all � ∈ S, S� = D and, for � ∈ C , Q̇� is defined as in (a) but, in (i), we
consider BVΔ(�),� instead.
Recall that, in this construction, our base 2D-coherent system comes from
mC(κ, 
). The argument to prove that Vκ,
,� satisfies (b) is similar to (a) and
to the proof of Theorem 5.4. For instance,
cov(N ) = κ and non(N ) = 
. Given a family X of Borel-null sets coded in
V P of size < κ, we can find (α, �, �) ∈ κ× 
 × (
 ·�) such that all the sets in
X are already coded in Vα,�,l� . Since Δ

−1(α+1, �+1)∩{l� +1 : � < 
 ·�} is
cofinal in �, there exists � ′ ∈ [�, 	) such that Δ(l�′ + 1) = (α + 1, � + 1) and
then the random real ṙ�′ added by Q̇α,�,�′ with �′ = l�′ + 1 avoids all the sets
in X . Note that this same argument also proves that the set {ṙ� : � < 
 · �} is
not null, so non(N ) ≤ 
.
Conversely, cov(N ) ≤ b(Edb) ≤ κ and 
 ≤ d(Edb) ≤ non(N ) are direct
consequences of Theorem 5.2.
b = d = �. Since the cofinally �-many dominating reals added by

〈Pκ,
,� , Q̇κ,
,�〉�<� forms a scale of length �.
(c) For all � ∈ S, S� = E. For � ∈ C , Q̇� is defined according to the following
cases
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(i) If � = l� + 1, then Q̇� is a PΔ(�),�-name for the poset D
VΔ(�),� .

(ii) If � = l� + 2, then Q̇� is a PΔ(�),�-name for the poset BVΔ(�),� .
(iii) Otherwise, like (ii) of the proof of (a). �

Theorem 5.7. Assume 	ℵ0 = 	. Then, for any of the statements below there is a
ccc poset forcing it.

(a) add(N ) = cov(N ) = b = a = κ, non(M) = cov(M) = �, d = non(N ) =
cof(N ) = 
 and c = 	.

(b) add(N ) = b = a = κ, cov(I) = non(I) = � for I ∈ {M,N}, d =
cof(N ) = 
 and c = 	.

(c) add(N ) = cov(N ) = κ, add(M) = cof(M) = �, non(N ) = cof(N ) = 

and c = 	.

(d) add(N ) = κ, cov(N ) = add(M) = cof(M) = non(N ) = �, cof(N ) = 
,
and c = 	.

Proof. The 3D-coherent systems we use in this proof are of the form t where:

(1) � = κ + 1, � = 
 + 1 and � = 	 · 
 · � is a disjoint union of {I� = [l� , l�+1) :
� < 
 · �} as in Theorem 5.4.

(2) C = {l� : � < 
 · �} and S = � � C .
(3) For items (a) and (b) 〈Pα,�,0 : α ≤ κ, � ≤ 
〉 comes from m∗(κ, 
); for (c)
and (d), it comes from mC(κ, 
).

(4) A function Δ = 〈Δ0,Δ1〉 : C → κ × 
 such that the following properties are
satisfied:
(i) For all � < �, both Δ0(�) and Δ1(�) are successor ordinals and
(ii) Δ−1(α + 1, � + 1) ∩ {l� : � < 
 · �} is cofinal in �.

(a) Put S� = E for all � ∈ S. For � ∈ C , Q̇� = LOCVΔ(�),� .
We just prove add(N ) = cov(N ) = b = κ and d = non(N ) = cof(N ) =

. If X is a set of reals in Vκ,
,� of size< κ, there is a (α, �, �) ∈ κ× 
× (
 ·�)
such that X ∈ Vα,�,l� . Since Δ−1(α + 1, � + 1) ∩ {l� : � < �} is cofinal in �,
there exists a � ′ ∈ [�, 	) such that Δ(l�′) = (α+1, � +1) and then the slalom
ϕ̇�′ added by Q̇α,�,l�′ localizes all the reals in X . Note that {ϕ̇� : � < 
 · �}
witnesses cof(N ) ≤ 
.
The inequalities b, cov(N ) ≤ κ and 
 ≤ d,non(N ) follow directly from
Theorem 5.2.

(b) Put S� = B for all � ∈ S and, for � ∈ C , Q̇� is as in (a).
(c) Put S� = D for all � ∈ S and, for � ∈ C , Q̇� is as in (a).
(d) For � ∈ S, if it is odd then S� = D, but when it is even then S�+1 = B. For
� ∈ C , Q̇� is defined as in (a). �

We present some other models of constellations of the Cichoń diagram known
from [18], where additionally b = a holds.

Theorem 5.8. (a) If 	<�1 = 	 then there is a ccc poset forcing add(N ) = �0,
cov(N ) = �1, b = a = non(M) = κ, cov(M) = d = 
 and non(N ) = c = 	.

(b) If 	<�0 = 	 then there is a ccc poset forcing add(N ) = �0, cov(N ) = b = a =
non(M) = κ, cov(M) = d = non(N ) = 
 and cof(N ) = c = 	.

(c) If 	ℵ0 = 	 then there is a ccc poset forcing add(N ) = non(M) = a = κ,
cov(M) = cof(N ) = 
 and c = 	.
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Proof. For (a) use the construction in [18, Theorem 20], for (b) see [18, Theorem
16] and for (c) see [18, Theorem 11] but, for the 2D-coherent systems, obtain the
first column by forcing with Hκ instead. �
Remark 5.9. By slightly modifying the forcing constructions in Theorems 5.6(b)
and 5.7(c),(d), it is possible to force, additionally, b = a = �. This is thanks
to the following idea observed by the anonymous referee, for which we are very
grateful. Modify the construction only at steps of the form 	 · 
 · � with � < �.
Assume that we have already constructed a P0,0,	·
·�′+1-name ȧ�′ of an infinite
subset of 
 (this is a Mathias-Prikry generic real added by P0,0,	·
·�′+1) for each
�′ < �, so that P0,0,	·
·� forces that A�� = {ȧ�′ : �′ < �} is an a.d. family. Put
Q̇α,�,	·
·� = Q̇0,0,	·
·� = M(F (A��)) for each α ≤ κ, � ≤ 
 (see Remark 4.15). Let
ȧ� be a P0,0,	·
·�+1-name of theM(F (A��))-generic real. Note that this real is also
M(F (A��))-generic over Vκ,
,	·
·�+1 because F (A��) does not depend on α and � ,
and the generic real with respect to any Vα,�,	·
·� is essentially the same. Thus, as in
Remark 4.15, Pκ,	,	·
·� forces that A = {a� : � < �} is a mad family. On the other
hand, asM(F (A��)) is �-centered, the arguments to deduce the values of the other
cardinal invariants remain intact.

Remark 5.10. In Theorems 5.1, 5.4, 5.6, and 5.8(a) and (b) we can slightly
modify the constructions to force, additionally, MA<�0 . For instance, in (6) of the
proof of Theorem 5.4 we use, instead of 〈LOC

�
α,�,�〉�<	, an enumeration 〈Q̇�α,�,�〉�<	

of all the (nice) Pα,�,l� -names for all the ccc posets with domain an ordinal < �0.
In (6)(ii), Q̇� = Q̇

�
g(ε) whenever Pκ,
,� forces Q̇

�
g(ε) to be ccc, otherwise, Q̇� is just

a name for the trivial poset. In a similar way, we can additionally force MA<κ in
Theorems 5.7 and 5.8(c).

§6. Δ13 well-orders of the reals. There has been significant interest in the study of
possible constellations among the classical cardinal characteristics of the continuum
in the presence of a projective, in fact Δ13-definable, well-order of the reals (see [7,8,
10]). Answering a question of [8], we show that each of the constellations described
in the previous section is consistent with the existence of such a projective well-order.
Since the proofs for the different constellations are very similar, we will only outline
the proof of the following theorem.

Theorem 6.1. InL, let �0 < �1 < κ < � < 
 < 	 be uncountable regular cardinals
and, in addition, 	 < ℵ
 . Then there is a cardinal preserving forcing extension of the
constructible universe, L, in which there is a Δ13 well-order of the reals and in addition
add(N ) = �0, cov(N ) = �1, b = a = κ, non(M) = cov(M) = �, d = 
 and
non(N ) = c = 	.

For convenience we fix natural numbers n1 < · · · < n6 such that �0 = 
n1 ,
�1 = 
n2 , κ = 
n3 , � = 
n4 , 
 = 
n5 , 	 = 
n6 . We will work over the constructible
universe L and we will use the method of almost disjoint coding as it is developed
in [10]. We will use the following two notions. We will say that a transitive ZF−

modelM is suitable if
M
n6
exists and
M

n6
= 
L

M
n6
(here ZF− denotes ZF−minus the

power set axiom). For subsets x, y of 
, let x ∗y = {2n : n ∈ x}∪{2n+1 : n ∈ y}
and let �(x) = {2n + 2 : n ∈ x} ∪ {2n + 1 : n /∈ x}. Note that if x, y and a, b are
pairs of subsets of 
 such that �(x ∗ y) ⊆ �(a ∗ b), then x = a and y = b.
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We will start with a general outline of the proof of Theorem 6.1. Our forcing
construction can be viewed as a two stage process: a preliminary stage in which
we prepare the universe, followed by a coding stage in which we will not only
adjoin a well-order of the reals with a Δ13-definition, but also provide the desired
constellations of the cardinal characteristics. The second stage of our forcing con-
struction recursively adjoins a well-order of the reals, which we denote “ < ” and
for which we will give an explicit definition later. To give a Δ13-definition of this
well-order, we will make use of a nicely definable sequence S̄ = 〈Sα : α < �〉
(where � = 	 · 
 · �) of stationary, co-stationary subsets of 
n6−1. Once we fix such
a sequence, for each α < � we will adjoin a closed unbounded subset Cα of 
n6−1
which is disjoint fromSα . Then with the help of n6−2many almost disjoint codings,
we will encode each club Cα into a subset Xα of 
1.4 Finally we will guarantee that
the above kill of stationarity is accessible to all countable suitable models: using
localizing posets, we will adjoin the characteristic functions of subsets Yα of 
1,
such that Yα codes Xα and such that every countable suitable model containing
an initial segment of Yα will encode an appropriate “local version” of a kill of
stationarity. With this, the first stage of our construction will be complete and we
will denote by V the corresponding generic extension of L. The coding stage will
be a modification of the construction providing Theorem 5.4, a modification which
will allow us to adjoin the desired Δ13-definition. For every pair of reals x, y such
that x < y, we will generically adjoin a real r, which almost disjointly codes the
sets Yα+m for m ∈ �(x ∗ y) (here α will be given by a bookkeeping function).
Thus in particular, r will code the inequality x < y by encoding a pattern of sta-
tionarity, nonstationarity for the sequence 〈Sα+m : m ∈ 
〉. A key feature of the
entire construction is the fact that the coherent system of iterations which we use
to provide the final generic extension does not add reals which accidentally encode
a kill of stationarity. This leads to the following Δ13-definition of the well-order:
x < y if and only if there is a real r such that for every countable suitable model
M containing r there is an ordinal α < �M such that (L[r])M � ∀m ∈ 
(SMα+m
is non-stationary iff m ∈ �(x ∗ y)).
Now we turn to a more detailed account of the construction. Let � = 	 · 
 · �
and let f : � → 	 be a canonical bijection. For each α < �, letWα be the L-least
subset of 
n6−1 coding f(α). In the following, we will refer to Wα as the L-least
code of α modulof, or simply theL-least code of α. We start with a nicely definable
sequence S̄ = 〈Sα : α < �〉 of stationary, co-stationary subsets of 
n6−1. Using
bounded approximations, for each α < �, we add a closed unbounded subset Cα of

n6−1 which is disjoint from Sα .

5 Following the notation of [10], for a set of ordinals
X , Even(X ) denotes the set of all even ordinals in X . Now, reproducing the ideas
of [10], we can find subsets Zα ⊆ 
n6−1 such that

(∗)α : If � < 
n6−1 andM is a suitable model such that 
n6−2 ⊆ M, 
M
n6−1 = � ,

Zα ∩ � ∈ M, then M � �(
M
n6−1, Zα ∩ �), where �(
M

n6−1, X ) is the formula

“Even(X ) codes a triple (C̄ , W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo

4The sets Xα will encode also additional information, which is necessary for our construction.
5For each α < � take P0α to be the poset of all bounded subsets of 
n6−1 with extension relation

end-extension and then take P0 =
∏
α<� P

0
α with supports of size < 
n6−1.
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fM of ordinals ᾱ, ¯̄α < �M = 
M
n6 ·
M

n5 ·
M
n4 respectively such that ¯̄α is the largest

limit ordinal not exceeding ᾱ, and C̄ is a club in 
Mn6−1 disjoint from S
M
ᾱ ”.

For each m = 1, . . . , n6 − 2, let S̄m = 〈Smα : α < 
n6−m〉 be a nicely definable in
L
n6−m−1 sequence of almost disjoint subsets of
n6−m−1. Successively using almost
disjoint coding with respect to the sequences S̄m (see [10]), we can code the sets Zα
into subsets Xα of 
1 with the following property.6

(∗∗)α : If 
1 < � ≤ 
2 andM is a suitable model with 
M
2 = � , {Xα} ∪ 
1 ⊆ M,

thenM � ϕ(
M
n6−1, Xα), where ϕ(


M
n6−1, X ) is the formula: “Using the sequences

({S̄m}m=n6−2m=1 )M, the set X almost disjointly codes a subset Z of 
M
n6−1 whose even

part codes the triple (C̄ , W̄ , ¯̄W ) where W̄ , ¯̄W are the L-least codes modulo fM

of ordinals ᾱ, ¯̄α < �M, respectively, such that ¯̄α is the largest limit ordinal not
exceeding ᾱ, and C̄ is a club in 
M

n6−1 disjoint from S
M
ᾱ ”.

Finally, using the posets L(Xα+m,Xα) for α ∈ Lim(�) (for a set of ordinals C ,
Lim(C ) denotes the set of limit ordinals in C ), m ∈ 
 from [10, Definition 1], we
can add the characteristic functions of subsets Yα+m of 
1 such that:7

(∗∗∗)α+m: If � < 
1,M is suitable with 
M
1 = � , Yα+m ∩ � ∈ M, then M �

ϕ(
M
n6−1, Xα+m ∩ �) ∧ ϕ(
M

n6−1, Xα ∩ �).
With this, the preliminary stage of the construction is complete. We denote by

P0 the finite iteration of forcing notions described above, that is P0 = P0 ∗P1 ∗P2.
Note that P0 is 
-distributive (the proof is almost identical to [10, Lemma 1]) and
so in particular P0 does not add new reals. Let V = LP0 and let B̄ = 〈B�,m : � <

1, m ∈ 
〉 ∈ L be a nicely definable sequence of almost disjoint subsets of 
. As
in the proof of Theorem 5.4 partition � into intervals I� = [l� , l�+1) for � < 
 · �,
where l� = 	 · �, and let

C0 = {2 · � ′ + 1 : � ′ < 
 · �}.
Furthermore let C ∗

0 =
⋃{[l� , l�+1) : � ∈ C0}, let S∗ = {l� : � ∈ 
 · �� C0} and let

C ∗
1 = � � (S

∗ ∪ Lim(C ∗
0 )).

Modifying the 3D-coherent system from the proof of Theorem 5.4, we will define
inV = LP0 a standard 3D-coherent system t∗where � t

∗
= κ+1, �t

∗
= 
+1,�t

∗
= �,

St
∗
:= S∗, C t

∗
= C ∗ = � � S∗. The sole difference between t of Theorem 5.4 and

t∗ is the �-th step of the FS iterations of which t∗ consists, when � ∈ Lim(C ∗
0 ). For

notational simplicity, P∗
α,�,� = Pt

∗
α,�,� , Q̇

∗
α,�,� = Q̇t

∗
α,�,� , V

∗
α,�,� = V

t∗
α,�,�, Δ

∗ = Δt
∗
:

� → κ × 
 and so on, while without the asterisk we refer to the components of t,
that is, Pα,�,� = Ptα,�,� and so on. Note that Lim(C

∗
0 ) ⊆ C ∗ and so in particular for

� ∈ Lim(C ∗
0 ) we will be adjoining restricted generic reals.

The starting point at � = 0 for t∗ is the same as for t, that is, P∗
α,�,0 = Pα,�,0 for

all α ≤ κ and � ≤ 
. The tasks achieved by the posets Q̇α,�,� for � ∈ S (in the
6Take X 1α := Zα and for each m = 1, . . . , n6 − 2, let Pmα be the almost disjoint coding of Xmα

via S̄m (into Xm+1α ). Define P1,m =
∏
α<� P

m
α with supports of size < 
n6−m−1 and take P

1 =

P1,1 ∗ · · · ∗ P1,n6−2. Note that Xα = Xn6−1α , the generic of Pn6−2α for each α.
7Take P2 =

∏
α∈Lim(�)

∏
m∈
 L(Xα+m, Xα) with countable supports.
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notation of the proof of Theorem 5.4) can be achieved by the corresponding posets
Q̇∗
α,�,� in our modified construction for � ∈ S∗, and similarly the tasks achieved by
the posets Q̇α,�,� for � ∈ C can be accomplished by the posets Q̇∗

α,�,� for � ∈ C ∗
1 .

Thus, in order to complete the proof of Theorem 6.1, we are left with describing
the �-th step for � ∈ Lim(C ∗

0 ) of this modified construction. It is useful to think of
�∗� = 〈Pi,� : i ∈ I t∗〉, for � ∈ Lim(C ∗

0 ) as a coding sectionof the 3D-coherent system.
The reason is that the iterands 〈Q∗

Δ∗(�),� : � ∈ Lim(C ∗
0 )〉 (and correspondingly Q∗

i,�

for i ≥ Δ∗(�)) will be used to introduce a Δ13-definition of a well-order of the reals,
which is to be recursively defined along the iteration. First, we describe this natural
well-order of the reals, which arises not only in the modified construction which
we are to define, but also in every coherent system we have considered so far in
this paper, provided that the corresponding forcing construction is done over the
constructible universe L.
Our modified 3D-iteration will have the property that for α∗ ≤ κ, �∗ ≤ 
 and
�∗ ≤ �, if Gα∗,�∗,�∗ is a P0 ∗ P∗

α∗,�∗,�∗ -generic filter over L then

L[Gα∗ ,�∗,�∗ ] ∩ R = L[{ȧα[Gα+1,0,0] : α < α∗} ∪ {ċ� [G0,�+1,0] : � < �∗}
∪ {u̇α∗,�∗,�[Gα∗,�∗,�+1] : � < �∗}] ∩ R,

where {ȧα : α < κ} is (the set of names of) the mad family added by Hκ , ċ� is
the Cohen real added by Pα,�+1,0 (which does not depend on α) and u̇α,�,� is a
P0 ∗ P∗

α,�,�+1-name for the generic real added by Q̇α,�,� . Note that, for � ∈ S∗,
P0 ∗ P∗

α,�,�+1 forces u̇α,�,� = u̇0,0,� and, for � ∈ C ∗, if α ≥ Δ∗0 (�) and � ≥ Δ∗1(�)
then P0 ∗ P∗

α,�,�+1 forces u̇α,�,� = u̇Δ∗(�),�, otherwise, u̇α,�,� is just forced to be ∅.
Thus, we only need to look at u̇� := u̇0,0,� when � ∈ S∗ and to u̇� := u̇Δ∗(�),�
when � ∈ C ∗.
By recursion on α∗ ≤ κ, P0 ∗ P∗

α∗,0,0 forces that there is a well-order of the
reals <̇α∗,0,0 which depends only on {ȧα : α < α∗} such that it has <̇α,0,0 as an
initial segment for every α < α∗; by recursion on �∗ ≤ 
, for every α∗ ≤ κ,
P0 ∗ P∗

α∗,�∗,0 forces that there is a well-order of the reals <̇α∗,�∗,0 which depends
only on {ȧα : α < α∗} ∪ {ċ� : � < �∗} such that it has <̇α∗,�,0 as an initial segment
for every � < �∗ and it contains <̇α,�∗,0 (not necessarily as an initial segment)
for every α < α∗; and by recursion on �∗ ≤ �, for all α∗ ≤ κ and �∗ ≤ 
,
P0 ∗ P∗

α∗,�∗,�∗ forces that there is a well-order of the reals <̇α∗,�∗,�∗ depending only
on {ȧα : α < α∗} ∪ {ċ� : � < �∗} ∪ {u̇α∗,�∗,� : � < �∗} so that it has <̇α∗,�∗,�
as an initial segment for all � < �∗ and contains <̇α,�,�∗ (not necessarily as an
initial segment) for every α ≤ α∗ and � ≤ �∗. We denote <̇�∗ = <̇κ,
,�∗ . Therefore,
P0 ∗ P∗

κ,
,�∗ forces that <̇� is an initial segment of <̇�∗ for all � < �
∗ and P0 ∗P∗

κ,
,�

forces

<̇� =
⋃

{<̇� : � < �}
which will be the name of the desired well-order. Our modified construction will be
done in such a way, that in LP0∗P∗

κ,
,� the reals 〈u̇�[G ] : � ∈ Lim(C ∗
0 )〉 will give rise

to a Δ13-definition for the well-order <̇�[G ].
Now, we turn to the precise definition of the iterands Q∗

� for � ∈ Lim(C ∗
0 ). We

will work in V . For each � ∈ Lim(�), we will define a Pκ,
,� name Ȧ� for a subset
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of [�, � + 
). Similarly to the construction in [10], for each ε ∈ [
n6 , 
n6+1), fix
(in L) a bijection iε : {〈�0, �1〉 : �0 < �1 < ε} → Lim(
n6 ). Fix � ∈ Lim(C ∗

0 ).
Then � = l� + � for some � ∈ C0 and � < 
n6(= 	). Suppose P∗

α,�,� has been

defined for all α ≤ κ, � ≤ 
. Consider the P∗
κ,
,l�
-names �̇0, �̇1 of ordinals for which

it is forced that 〈�̇0, �̇1〉 = i−1o.t.(<̇l� )(�). Furthermore, let Ȧ� be the P
∗
κ,
,l�
-name of

� + (
 � �(x�
�̇0
∗ x�
�̇1
)), where x�� is the �-th real in L[Gκ,
,l� ] ∩ [
]ℵ0 according to

the well-order <̇l� . By Corollary 3.9, there are α < κ and � < 
 such that �̇0, �̇1 and
Ȧ� are P∗

α,�,l�
-names. Put Δ∗(�) = (α + 1, � + 1) and

Q̇∗
� :=

{
〈s0, s1〉 ∈ [
]<ℵ0 ×

[ ⋃
m∈�(x�

�̇0
∗x�
�̇1
)

Y�+m × {m}
]<ℵ0}

,
where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊆ t1, s0 is an initial segment of t0 and
(t0 � s0) ∩ B�,m = ∅ for all 〈�,m〉 ∈ s1.
Note that the real u� = uΔ∗(�),� adjoined by Q

∗
� almost disjointly via the sequence

B̄ codes the sets Y�+m for m ∈ �(x��0 ∗ x
�
�1
). That is, for every m ∈ �(x��0 ∗ x

�
�1
),

we have � ∈ Y�+m iff |u� ∩ B�,m| < 
. Consider a countable suitable model M
containing u� and let N := (L[u�])M. Then N is a suitable countable model,

M
1 = 


N
1 and furthermore Y�+m ∩ 
N

1 ∈ N for each m ∈ �(x��0 ∗ x
�
�1
) and so by

(∗∗∗)�+m we have
N � ϕ(
N

n6−1, X�+m ∩
N
1 ) ∧ ϕ(
N

n6−1, X� ∩
N
1 ).

Then by (∗∗)�+m and (∗∗)�, we can conclude that there is a ¯̄� < �N such
that for each m ∈ �(x��0 ∗ x

�
�1
), SN¯̄�+m is nonstationary. To describe the above

property of the real u� , we will say that u� codes a stationarity pattern for
�(x��0 ∗ x

�
�1
).8

This completes the construction of themodified standard 3D-coherent system. In
addition, for every � ∈ Lim(�)\Lim(C ∗

0 ) define Ȧ� to be the canonical P
∗
0,0,�-name

for the interval [�, �+
). Since all posets used to control the cardinal characteristics
in Theorem 5.4 are �-linked, as well as the one we used in our coding sections, one
can reproduce the proof of [10, Lemma 3] to show that if G is P0 ∗ P∗

κ,
,�-generic
over L, then for each � ∈ ⋃

�∈Lim(�) Ȧ�[G ] there is no real in L[G ] encoding a
closed unbounded set disjoint from S� . For brevity, we will say that in our final
generic extension there is no accidental coding of a kill of stationarity by a real. This
leads to the following Σ13-definition of<�. Let G be a P0 ∗P∗

κ,
,�-generic over L and
let x, y be reals in L[G ]. Then:

x<̇�[G ]y iff there is a real r such that for every countable suitable model M
such that r ∈ M, there is ¯̄α < �M such that for all m ∈ �(x ∗ y), (L[r])M �
(S ¯̄α+m is not stationary).

8The properties ofP0 ∗P∗
κ,
,� will guarantee that form ∈ 
 \�(x��0 ∗ x

�
�1
), SN¯̄�+m is stationary inN .

Thus the stationarity, nonstationarity pattern of 〈S ¯̄�+m : m ∈ 
〉 in N exactly codes the ordered pair
〈x��0 , x

�
�1
〉.
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Indeed, if x, y are reals in LP0∗P∗
κ,
,	 such that x<̇�[G ]y, our bookkeeping guar-

antees that for some � ∈ Lim(C ∗
0 ), x = x

�
�0
, y = x��1 , where � = l� + �

for some � < 	, and so the real u� codes a stationarity pattern for �(x ∗ y)
at �.
Now, suppose x, y are reals in LP0∗P∗

κ,
,� , with the property that for some real r,
for every countable suitable modelM such that r ∈ M, there is ¯̄α < �M such that
for all m ∈ �(x ∗ y), (L[r])M � (S ¯̄α+m is not stationary). By Löwenheim-Skolem
Theorem, this property holds for arbitrarily large modelsM containing the real r

and so in particular it holds in H
P0∗P∗

κ,
,	

Θ , where Θ is sufficiently large. Thus, there
is some � < �, such that for every m ∈ �(x ∗ y), LΘ[r] � (S�+m is nonstationary).
Since there is no accidental coding of a kill of stationarity by a real, the ordinal �
must be in Lim(C ∗

0 ) and so the u� adjoined by Q
∗
Δ∗(�),� codes a stationarity pattern

for�(a ∗ b), where a <� b are the reals given by the bookkeeping function at stage
� of the iteration. But then �(x ∗ y) ⊆ �(a ∗ b), which implies that x = a, y = b
and so indeed x <� y.

§7. Discussion and questions. Though the 3D-coherent systems we constructed
yield models of several values in Cichoń’s diagram, it is still restricted (as in [18])
to constellations where the right side of the diagram assumes at most 3 different
values. So far, the only known model of more than 3 values on the right (actually
5) is constructed in [6] with a proper 

-bounding forcing by a large product of
creatures (though it is restricted to cov(N ) = d = ℵ1).
As discussed before Corollary 3.9, in all our constructions we only add two types
of generic reals: full generic reals and restricted generic reals. Different types of
generic reals could be considered (like a real which is restricted generic in some
plane but full generic in the perpendicular plane), but the known attempts so far
destroy the complete embedability of the posets in the system and, therefore, the
construction collapses. Success in this problem of using a different type of generic
real in 3D-coherent systems would lead to models where more than 3 different
values can be obtained in the right side of Cichoń’s diagram. For instance,
Question 7.1 ([18, Section 7]). Is it consistent with ZFC that cov(M) < d <
non(N ) < cof(N )?
It seems natural to expect that similar 3D-systems of iterations can be helpful in
providing models in which, for example, b, s, and a are pairwise distinct. There are
three ZFC admissible constellations: s < b < a, b < s < a, and b < a < s. The
consistency of s = ℵ1 < b < a holds in Shelah’s original template model [23], while
the consistency of ℵ1 < s < b < a has been obtained by the first and third author of
the current paper using the iteration of nondefinable (i.e., not Suslin) posets along
a Shelah template (see [12]). The consistency of b < s < a (assuming the existence
of a supercompact cardinal) is due to D. Raghavan and S. Shelah [22], and has been
recently announced at the Oberwolfach Set Theory Meeting, February 2017. Thus,
one of the most prominent remaining open questions is the following:
Question 7.2 ([4, Section 6]). Is it consistent with ZFC (even assuming large
cardinals) that b < a < s?
We should point out though, that if we are to construct a 3D-system for the
above constellation, in order to increase s, we have to include in the construction,
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nondefinable, ccc posets which adjoin nonrestricted, unsplitting reals (e.g., we could
adjoin full Mathias-Prikry generics). This leads however to many serious technical
problems.
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