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Characterisations of the parabola

STEVEN J. KILNER, DAVID L. FARNSWORTH

1. Introduction
Three familiar properties of a parabola are that it is the locus of points

that are equidistant from the focus and the directrix, that it can be created by
an intersection of a plane and a cone, and that incoming rays parallel to the
axis are reflected to a single point. The first two are often used as
definitions, and the third may be used as an alternative definition or
characterisation.

We present a set of eight diverse properties, including the focusing
property, which are also sufficient conditions for a curve to be a parabola. It
is startling that there are so many different characterisations of the parabola.
The conditions have been selected for their varied mathematical nature and
the assorted methods of proof that appear to be most informative or
efficient. None are included that use three dimensions or require input of
another conic section, except for circles. The conditions are proved to be
sufficient by utilising algebra, geometry of triangles and circles, differential
equations, functional equations, and judicious choices of coordinates.

Statements and proofs of necessary conditions or properties of parabolas
abound in the literature and textbooks, unlike statements and proofs of
sufficient conditions. For this reason, and since the proofs of necessity are
generally straightforward, they are not presented.

Section 2 contains an introduction to parabolas. Section 3 presents the
focusing property and the locus that uses the focus and directrix, which are among
the best-known properties of the parabola and are characterisations. Section 4
contains six additional characterisations of the parabola and their proofs.

2.  The parabola
There are many ways of defining a parabola. Geometrically, one often

finds a parabola to be defined as the collection of all points in the Euclidean
plane whose distance to a fixed point (the focus) is equal to its distance to a
fixed line (the directrix). Another common definition from analytic
geometry identifies a parabola as the intersection of a right circular cone and
a plane that is parallel to one of the cone’s generating lines. We define a
parabola in the analytic sense that is described below. As a matter of
convenience, occasionally, we refer to an equation  as a parabola,
provided that the graph of all points satisfying the equation is a parabola.

y = y (x)

Many individuals first encounter a parabola in an introductory algebra
course as the graph of a quadratic equation of the form .
A more general algebraic definition of a parabola is the graph of all points in
the -plane satisfying a quadratic equation of the form

y = ax2 + bx + c

xy

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0
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with . Degenerate cases, such as , which
is the line  and has , are excluded. While the above
equation is more general, a change of the coordinate system involving
nothing more than a rotation allows the equation to be expressed in the form

B2 − 4AC = 0 x2 − 2xy + y2 = 0
y = x B2 − 4AC = 0

y = ax2 + bx + c. (1)
Furthermore, if one changes the coordinate system using rotations and
translations, that is, rigid motions, the equation can be written

y =
x2

4p
with p > 0, (2)

which is a standard form [1, pp. 122-141], [2, pp. 666-673]. Rigid motions
preserve geometric properties such as angles, area, distance, and tangency,
which are the basis of our eight sufficient conditions for a curve to be a
parabola. Therefore, as desired, we take the liberty of choosing a convenient
coordinate system in our proofs, so as to result in (1) or (2), which define
as a function of .

y
x

A contraction or expansion of at least one coordinate is required to
simplify (2) further to , for example [3, pp. 84-85]. Those
transformations are not employed here, since unlike rigid motions they can
alter the geometric properties that are in the eight characterisations of the
parabola.

y = x2

For uniformity, all figures, except Figures 4(a) and (c), display the
parabola in (2) with .p = 1

3.   Two of the most common properties of parabolas
The first condition that we present is the reflection, focusing, or optical

property. It corresponds to an application where there is a location for a
point source of light (the focus) that produces a beam of light that is parallel
to the axis. In reverse, it says that the curve focuses a beam of light that is
parallel to the axis to one point. The law of reflection says that on the side of
the curve that contains the focus, the angle that an outgoing or incoming ray
makes with the tangent line of the curve at the point of intersection is equal
to the angle between the tangent line and the ray from or to the focus. Refer
to Figure 1.

Rotating the parabola in (2) in three dimensions about the -axis gives

, which is a surface called a paraboloid of revolution. Antennae

and mirrors are often manufactured using this shape [4, p. 271], [5, p. 752],
[6]. A significant implication of Theorem 1 is that antenna and mirror
designers cannot find a simple, one-piece device other than a paraboloid for
broadcasting or focusing parallel rays.

y

y =
x2 + z2

4p
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FIGURE 1: The reflection or focusing property, where  (Theorem 1)α = β

Theorem 1: A sufficient condition for the differentiable function
to be a quadratic polynomial function (parabola) is that there is a line  and
point  on the line, such that on the side of the curve containing  each line

 that is parallel to  intersects  in one point  and the angle
between  and the tangent line at  is equal to the angle between the
tangent line at  and the line containing  and .

y = y (x)
L

F F
L1 L y = y (x) P

L1 P
P P F

Proof: Choose the coordinate system so that the line  is the -axis and the
point  has coordinates  with . Take the equation of the line
to be , where for now suppose that . This line intersects the
graph of  at the point , where . The slope of the
tangent line  at  is

L y
F (0, p) p > 0 L1
x = x1 x1 > 0

y = y (x) P (x1, y1) y1 = y (x1)
L2 P

y1′ = y′ (x1) = tan θ, (3)
where  is the positive angle from the -axis to . See Figure 1. The
positive angle  from  to  is . Line  contains  and . The
positive angle from  to  is given by

θ x L2
α L2 L1

1
2π − θ L3 P F

L3 L2

β = α =
π
2

− θ.

The positive angle  from  to  isφ L1 L3

φ = π − 2α = π − 2 (1
2π − θ) = 2θ. (4)
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Using (4), equation (3) can be written as

y1′ = tan (1
2φ) =

1 − cos φ
sin φ

=
1 −

p − y1

(p − y1)2 + x2
1

x1

(p − y1)2 + x2
1

=
(p − y1)2 + x2

1 − (p − y1)
x1

. (5)

By dropping the subscripts and letting

w = y − p, (6)
(5) becomes

dw
dx

=
w2 + x2 + w

x
. (7)

Since (7) is a homogeneous differential equation, set

w = x  u (x) (8)
[7, pp. 13-14], [8, pp. 71-72]. Equation (7) becomes

1
u2 + 1

 
du
dx

=
1
x

.

Integrating results in

ln (u + u2 + 1) = ln x + ln C
[9, pp. 63, 80]. Solving for  yieldsu

u =
C
2

 x −
1

2Cx
. (9)

From (6), (8) and (9),

y = w + p = xu + p =
C
2

 x2 + p −
1

2C
, (10)

which is an example of (1) for .x > 0
For , lines ,  and  are replaced by their reflections in the -

axis. Therefore, for ,  is a reflection in the -axis of a curve
in the family (10). From (10), the differentiability condition requires that the
same  is used for . The point where  is determined by
continuity. Thus (10) is the function for all real numbers and is a special
case of (1). If , then (2) is obtained. 

x1 < 0 L1 L2 L3 y
x < 0 y = y (x) y

C x < 0 x = 0

C = 1
2p

The criterion in Theorem 2 contains the standard locus definition. See
Figure 2(a), where the points  of the parabola are equidistant from the
focus  and directrix . It supplies a way to construct or draw a parabola. Its
statement does not require differentiability, and its proof is very elementary.
This definition is ancient, since it can be traced back to at least Pappus of
Alexandria (c. 290–c. 350) [10, pp. 8-10].

P
F L
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FIGURE 2(a): The common locus definition (Theorem 2)

Theorem 2: A sufficient condition for the function  to be a
quadratic polynomial function (parabola) is that there exists a point  and a
line  such that each point of  is equidistant from  and .

y = y (x)
F

L y = y (x) F L

Proof: Take  to be  with  and  to be . Label an
arbitrary point of  as  with coordinates .
From the construction, . Setting the distance between  and  equal
to the distance between  and  gives

F (0, p) p > 0 L y = −p
y = y (x) P (x1, y1) = (x1, y (x1))

y1 ≥ 0 F P
P L

(x1 − 0)2 + (y1 − p)2 = y1 + p

or

x2
1 + y2

1 − 2py1 + p2 = y2
1 + 2py1 + p2.

Omitting the subscripts and solving for  gives (2), that is, .y y =
x2

4p

As Ogilvy [3, p. 76] points out, this characterisation is equivalent to the
locus of the centres of all circles that pass through the point  and are
tangent to line . Figure 2(b) shows 17 of those circles, where the focus  is
(0, 1), the directrix  is , and the centres are on the parabola. The
radius of each circle is equal to the two distances in Theorem 2.

F
L F

L y = −1

Another point-by-point construction of a parabola is shown in Figure
2(c) [1, p. 92], [11, p. 220]. It uses a ruler and compasses. Select point
with , which is the centre of all circles in a family of circles whose
radii are  with , and is the focus of the parabola. For each value
of , the points of intersection of the circle  and

the horizontal line  are on the parabola . This can be seen by

substituting  into the equation of the circle, which gives .
The parameter  can be eliminated between  and  to give

(0, p)
p > 0

p + a a ≥ 0
a (x − 0)2 + (y − p)2 = (p + a)2

y = a y =
x2

4p
y = a x = ±2 ap

a x = ±2 ap y = a
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, which is (2). For each point on the parabola, the radius of the circle

and the vertical distance to the directrix , which is , are  and
are the two distances in Theorem 2.

y =
x2

4p
L y = −p p + a

y

y = y (x)

x
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FIGURE 2(b): The common locus definition (Theorem 2)
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FIGURE 2(c): The common locus definition (Theorem 2)
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4.   Six characterisations of the parabola
4.1. Constructions based on a pedal curve, hypotenuses as tangent lines,

and centres of circumcircles
The line that is determined by the construction in Theorem 3 is called the

pedal curve of the parabola with respect to the pedal point, which is the focus,
since the points of the pedal curve are at the foot of perpendicular lines. Refer
to Figure 3. Another way to express this condition is to say that the locus of
the vertices of all right angles for which one side  is tangent to the parabola
and the other side  contains the focus is a line, which is the pedal curve and
is the -axis in Figure 3. For more about pedal curves, see [11, pp. 227-229],
[12, pp. 439-440], and [13, pp. 26-27]. Conversely, the pedal point  and the
pedal curve can be used to construct tangent lines to the curve.

L1
L2

x
F

y = y (x)

− 2 −1 0

1

1

2

2

3

3 x

y

F
L2 L1

y = 0
Q

FIGURE 3: The pedal-curve construction (Theorem 3)

Theorem 3: A sufficient condition for the differentiable function
to be a quadratic polynomial function (parabola) is that the intersection
points of all tangent lines to  with their perpendicular line through
a fixed point are distinct and collinear.

y = y (x)

y = y (x)

Proof: Without loss of generality, take the point to be  with
and the line of intersections to be . The hypothesis says that the
tangent line  must meet its perpendicular line  through  on the line

. Let  be their point of intersection. Since  passes through
and , its slope is , provided that . In order for  to be 0,  must
be vertical.  For each value of , including , the corresponding
tangent line  to the curve has the equation

F (0, p) p > 0
y = 0

L1 L2 F
y = 0 Q (q,  0) L2 F

Q −p
q q ≠ 0 q L2

q q = 0
L1

y =
q
p

(x − q) . (11)
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The curve  is the envelope of the family of its tangent lines. Recall
that the envelope of a set of curves is a curve that intersects a member of the
set in one point, and the envelope and the respective member share their
tangent direction at the point of intersection [14, p. 273], [15, pp. 171-179].
To determine the envelope, differentiate (11) with respect to the parameter

, which gives  or

y = y (x)

q 0 =
x
p

− 2 
q
p

q =
x
2

. (12)

Substituting (12) into (11) yields (2), that is, . The criterion that the

points  be distinct, precludes degenerate solutions, such as the line
 for which tangent lines to all points on the curve are the curve

itself and there is only one point of intersection .

y =
x2

4p
Q

y = x − p
(p,  0)

The next characterisation is that an arc of a parabola is created as the
envelope of a set of hypotenuses. See Figure 4. A family of right triangles
sharing the vertex  at the right angle and directions for their legs along
lines  and  produces the hypotenuses along . The sum of the lengths of
the legs is required to be a constant. A parabola may be defined by taking
the domain in the formula for the arc to be the -axis.

Q
L1 L2 L3

x

y = y (x)
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− 1
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FIGURE 4: The envelope of the hypotenuses of a set of right triangles (Theorem 4)

Theorem 4: A sufficient condition for the differentiable function
to be an arc of a quadratic polynomial function (parabola) is that the arc is
tangent to the hypotenuse of every right triangle in a family of right triangles
that share a common vertex at the right angle, whose legs are in the same
fixed directions, and the sum of the lengths of whose legs is a fixed
constant.

y = y (x)
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Proof: Place the right angle of the triangle at the point  with
and legs along , which is , and , which is . The
triangle's other two vertices are  with  and

 with . The hypotenuse, which contains  and ,
lies on , which has the equation

Q (0, −h) h > 0
L1 y = −x − h L2 y = x − h

P1 (x1, −x1 − h) x1 < 0
P2 (x2, −x2 − h) x2 > 0 P1 P2

L3

y =
(x2 − h) − (x1 − h)

x2 − x1
 (x − x1) + (−x1 − h) . (13)

The lengths of the legs are  and ,
where  is the distance function. The condition says that

D (Q, P1) = − 2x1 D (Q, P2) = 2x2
D

− 2x1 + 2x2 = 2K or x2 = x1 + K (14)
for  a constant, which may be freely chosen. Equation (14) says that

 and . Substituting from (14) into (13) gives
K > 0

−K < x1 < 0 0 < x2 < K

y = (1 +
2x1

K ) x − (2x1 + h +
2x2

1

K ) , (15)

which are the tangent lines to their envelope.
To find the envelope, eliminate the parameter  in the tangent lines.

Differentiating (15) with respect to  gives . Substituting
this into (15) yields

x1
x1 x1 = 1

2 (x − K)

y =
x2

2K
+

K
2

− h for −K < x < K,

which are graphed in Figure 4 with ,  and  for . Selecting

 gives  for .

K = h 2h 4h h = 1

K = 2h y =
x2

4h
−2h < x < 2h

In the extreme cases where  or  approach zero, the hypotenuse
collapses onto the leg which is tangent to the parabola at the end point of the
leg. The legs and the hypotenuse are tangent to the arc. Thus, the arc is said
to be inscribed in each triangle with sides along ,  and , even though
the arc is exterior to the triangle.

x1 x2

L1 L2 L3

The following characterisation involves the construction of a set of
triangles. See Figure 5, which shows one of the triangles, with vertices ,
and , whose circumcentre  is a point of the parabola. A perpendicular
bisector of a triangle is a line that is perpendicular to a side at the midpoint
of the side. The perpendicular bisectors of a triangle's sides meet in a point,
which is called the circumcentre of the triangle and is the centre of the
triangle's circumscribed circle. The circle is called the circumcircle,
contains the vertices of the triangle, and always exists for any triangle. See
[3, pp. 117-120], [16, pp. 502-506, 511-515, 521-531], and [17, pp. 10-18]
about these geometric ideas.

A B
C P
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y = y (x)
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FIGURE 5: The locus of the centres of the circumcircles of triangles (Theorem 5)

Theorem 5: A sufficient condition for the function  to be a
quadratic polynomial function (parabola) is that its curve is the locus of the
circumcentres of a set of all triangles that have the same vertex in common
and whose sides opposite the common vertex lie on the same line and have
the same fixed length.

y = y (x)

Proof: For specificity, coordinates are given for the triangles' vertices. The
common vertex of all the triangles is  with . The opposite
sides have constant length  and are on the -axis. The set of triangles
is parameterised by , which is the -coordinate of the end-point of the
opposite sides that is closer to the origin, so the other two vertices are

and . By using symmetry, only positive values of  need to

be considered.

A (0,  2p) p > 0
2k > 0 x

t x
B (t,0)

C (t + 2k
t
|t|

,  0) t

Two perpendicular bisectors of each triangle meet at the circumcentre of
the triangle. The perpendicular bisector of the side  is the vertical line ,
whose equation is . The side that contains vertices  and  has
slope . Its perpendicular bisector is the line , which has equation

BC L1
x = t + k A B

−2p / t L2

y = p +
t

2p (x −
t
2) . (16)

The point  of intersection of  and  has -coordinateP L1 L2 x
x = t + k (17)

and -coordinate as in (16). Eliminating the parameter  between (16) and
(17) gives

y t

y =
x2

4p
+

4p2 − k2

4p
,
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which is an example of (1). Setting  gives (2). The circumcircles do
not have to be constructed, since the intersections of lines  and  are the
parabola's points.

k = 2p
L1 L2

4.2.   Two geometric properties
Geometric characterisations, such as those in Theorems 6 and 7, are

appealing. Their proofs are less intricate than those of some of the other
characterisations. The apparent simplicity of the conditions does not mean
that they call upon little information, since tangent lines at all points of the
curve are involved. The trivial solution of a line is precluded by the
requirement that the solution is a non-linear function. Refer to Figure 6.

P

y = y (x)

x

y

L1 L2

− 2.5

2.5

−5 −2 .5 0 2.5 5

5

FIGURE 6: The slope of the chord is the mean of the slopes of the tangent lines at 
and  (Theorem 6), and the -coordinate of  is the mean of the -coordinates of 

and  (Theorem 7)

P1
P2 x P x P1

P2

Theorem 6: A sufficient condition for the non-linear differentiable function
 with no linear portions to be a quadratic polynomial function

(parabola) is that the slope of the chord between arbitrarily selected distinct
points  and  is the
arithmetic mean of the slopes of the tangent lines at  and .

y = y (x)

P1 (x1, y1) = P1 (x1, y (x1)) P2 (x2, y2) = P2 (x2, y (x2))
P1 P2

Proof: By a rigid motion of the coordinates, the origin (0, 0) can be moved

to  with . Then the slope of the chord is  with

 and , and the mean of the slopes of the tangent lines is
. Dropping the subscript and equating the slope of the chord

and the mean give the differential equation

P1 (x1, y (x1)) y (x1) = 0
y2

x2
x2 ≠ 0 y2 ≠ 0
1
2 (0 + y′ (x2))

y′ =
2y
x

, (18)
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whose solution is

y = Cx2 (19)
with , which is an example of (2). The requirement that  be
non-linear rules out .

C ≠ 0 y = y (x)
C = 0

Theorem 7: A sufficient condition for the non-linear differentiable function
 with no linear portions to be a quadratic polynomial function

(parabola) is that the tangent lines at any pair of distinct points
 and  meet in a point

whose -coordinate is , which is the arithmetic mean of the -
coordinates of  and .

y = y (x)

P1 (x1, x2) = P1 (x1, y (x1)) P2 (x2, y2) = P2 (x2, y (x2)) P
x 1

2 (x1 + x2) x
P1 P2

Proof: Use the same coordinates as in the proof of Theorem 6. The criterion
says that the coordinates of  are . The tangent line at  isP (1

2x2,  0) P2

y = y2 + y2′ (x − x2) .
where . Since  is on the tangent line, ,
which gives (18) and hence (19).

y2′ = y′ (x2) P 0 = y2 + y2′ (−1
2x2)

4.3.  An area formula implies a parabola
The final characterisation is at least unexpected, if not very surprising.

Refer to Figure 7.  The characterisation says that the validity of a formula
for the area of an inscribed triangle implies that the curve is a parabola. An
inscribed triangle is required to have its interior completely on one side of
the curve. The formula contains only the -coordinates of the three points on
the curve.

x

y = y (x)

x

y

P1

P2

4

3

3

2

2

1

10−4 −3 −2 −1

−1

P3

FIGURE 7: An area formula for all inscribed triangles implies that the curve is a
parabola (Theorem 8)
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Theorem 8: A sufficient condition for the twice differentiable function
to be a quadratic polynomial function (parabola) is that any three distinct
points , , that satisfy  with , form
an inscribed non-degenerate triangle and the formula for the area of the
triangle with vertices at the points is 

y (x)

(xi, yi) i = 1,  2,  3 y = y (x) x1 < x2 < x3

C (x3 − x2) (x3 − x1) (x2 − x1)
for a single value of  for the curve.C

Proof: Since , , and thus
. Since all triangles using any three points are inscribed in the curve,

the curve must be concave up or concave down.  Without loss of generality,
assume that it is concave up. The determinant in the expression below is
positive, and the criterion can be expressed

x1 < x2 < x3 (x3 − x2) (x3 − x1) (x2 − x1) > 0
C > 0

1
2 | | = C (x3 − x2) (x3 − x1) (x2 − x1) ,

x1 y1 1

x2 y2 1

x3 y3 1

where , . The left-hand side is a formula for the area
of a triangle, given the coordinates of its vertices in a counterclockwise
order [1, p. 28], [18, p. 202]. If the curve is concave down, the proof
proceeds by interchanging two rows of the determinant. In the determinant,
subtract row 1 from rows 2 and 3. By expanding the altered determinant, the
criterion becomes the functional equation

yi = y (xi) i = 1,  2,  3

(x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) = 2C (x3 − x2)(x3 − x1)(x2 − x1).

Applying  gives
d2

dx2
1

(x3 − x2) y1″ = 4C (x3 − x2)
and, since ,x3 − x2 ≠ 0

y1″ = 4C.
Omitting the subscript and integrating twice implies that

y = 2Cx2 + C1x + C2,
that is (1), where  and  are constants of integration.C1 C2
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