
The Journal of Symbolic Logic

Volume 86, Number 1, March 2021

CHARACTERIZING EXISTENCE OF AMEASURABLE

CARDINAL VIA MODAL LOGIC

GURAM BEZHANISHVILI, NICK BEZHANISHVILI, JOEL LUCERO-BRYAN, AND JAN VAN MILL

Abstract. We prove that the existence of a measurable cardinal is equivalent to the existence of a

normal space whose modal logic coincides with the modal logic of the Kripke frame isomorphic to the

powerset of a two element set.

§1. Introduction. In this paper we exhibit a new connection between topological
semantics of modal logic and set theory.More precisely, let the diamondD= (D, ≤)
be the partially ordered Kripke frame isomorphic to the powerset of a two element
set (see Figure 1). We prove that the existence of a measurable cardinal is equivalent
to the existence of a normal space whose modal logic is the modal logic of D. This
adds to several known connections between modal logic and set theory (see, e.g.,
[1–3, 8, 13]).
We recall that in topological semantics of modal logic,✷ is interpreted as interior

and hence ♦ as closure. Under this interpretation, the modal logic of the class
of all topological spaces is the well-known modal system S4. Kripke frames for
S4 are quasi-ordered sets, which can be thought of as special topological spaces,
known as Alexandroff spaces, in which each point has a least open neighborhood
(see Section 2.2 for details). For these spaces topological semantics coincides with
Kripke semantics. Thus, Kripke completeness implies topological completeness for
logics above S4. It is natural to ask which modal logics (above S4) are complete
for other classes of topological spaces. Since topological spaces arising fromKripke
frames are usually not even T1, it is nontrivial to prove topological completeness
results above S4with respect to spaces satisfying higher separation axioms. One such
class is the class of Tychonoff spaces. By a celebrated theorem of Tychonoff, these
are exactly the subspaces of compact Hausdorff spaces. In [5] we initiated the study
of modal logics arising from Tychonoff spaces. On the one hand, this yielded a new
notion of dimension in topology, called modal Krull dimension. On the other hand,
it provided a new concept of Zemanian logics which generalizes the well-known
modal logic of Zeman.
It is known that extremally disconnected spaces are topological models of the

modal logic S4.2, and hereditarily extremally disconnected spaces are topological
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Figure 1. The Kripke frameD= (D, ≤) where D = {r,w0,w1,m}.

models of the modal logic S4.3. In [6] we showed that a modal logic above S4.3 is a
Zemanian logic iff it is the logic of a hereditarily extremally disconnected Tychonoff
space. The simplest modal logic above S4.2 that is not above S4.3 is the logic of D.
In this paper we show that topological completeness of the logic of D with respect
to a normal space is equivalent to the existence of a measurable cardinal. Whether
‘normal’ can be weakened to ‘Tychonoff’ remains an open problem.
We conclude the introduction by briefly describing the key ingredients of the

proof. In Theorem 3.4 we give a necessary and sufficient condition for the logic
of a normal space to coincide with the logic of the diamond D. In Section 4 we
utilize this result to prove that the existence of a normal space Z whose logic is the
logic of D implies the existence of a measurable cardinal. By Theorem 3.4, D is an
interior image of Z. We next show that without loss of generality we may assume
that the inverse image of the root r ofD is a singleton {a}. Utilizing this, we obtain
ultrafiltersU0 andU1 on two families F0 and F1 consisting of subsets of the inverse
images ofw0 andw1, respectively. Applying a result of Urysohn, we show that either
U0 or U1 is closed under countable intersections, from which the existence of a
measurable cardinal follows.
In Section 5 we prove that the existence of a measurable cardinal κ implies the

existence of a normal spaceZ whose logic is the logic ofD. By utilizing a κ-complete
ultrafilter on κ, we exhibit a subspace Z of the Čech–Stone compactification
â(κ×ù) of the discrete space κ×ù. We then show that Z is normal and satisfies
Theorem 3.4, implying that the logic of Z is the logic ofD.

§2. Preliminaries. In this section we recall the necessary background frommodal
logic, its topological semantics, and measurable cardinals.

2.1. Modal logic. We use [9] as the main reference for modal logic. Modal
formulas are built in the usual way using countably many propositional letters,
the classical connectives ¬ (negation) and → (implication), the modal connective
✷ (necessity), and parentheses. We employ the standard abbreviations: ∧ (conjunc-
tion), ∨ (disjunction), and ♦ (possibility).
The well-known modal system S4 of Lewis is the least set of formulas containing

the classical tautologies, the axioms
✷(p→ q)→ (✷p→✷q),

✷p→ p,

✷p→✷✷p,
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and closed under the inference rules of
Modus Ponens ϕ, ϕ→øø ,

substitution ϕ(p1,...,pn)
ϕ(ø1,...,øn)

,

necessitation ϕ
✷ϕ .

A Kripke frame is a pair F = (W,R) whereW is a set and R is a binary relation
onW. As usual, for w ∈W we let

R(w) = {v ∈W | wRv} and R–1(w) = {v ∈W | vRw};

and for A⊆W we let

R(A) =
⋃

{R(w) | w ∈ A} and R–1(A) =
⋃

{R–1(w) | w ∈ A}.

Kripke semantics of modal logic recursively assigns to each formula a subset of
a Kripke frame F by interpreting each propositional letter as a subset of W, the
classical connectives as Boolean operations in the powerset ℘(W ), and ✷ as the
operation ✷R on ℘(W ) defined by

✷R(A) = {w ∈W |R(w)⊆ A}.

Consequently, ♦ is interpreted as the operation ♦R on ℘(W ) defined by

♦R(A) =R
–1(A).

Let ϕ be a modal formula and F = (W,R) a Kripke frame. Call ϕ valid in F,
written F |= ϕ, provided ϕ evaluates toW for every assignment of the propositional
letters. If ϕ is not valid in F, then we say that ϕ is refuted in F, and write F 6|= ϕ. The
logic of F is the set of modal formulas valid in F; in symbols L(F) = {ϕ | F |= ϕ}.
A Kripke frame F is called an S4-frame if R is reflexive and transitive. The name

is justified by the well-known fact that S4 is sound and complete with respect to
S4-frames.

2.2. Topological semantics. Topological semantics interprets ✷ as topological
interior (and consequently ♦ as topological closure). Specifically, for a topological
space X, the propositional letters are assigned to subsets of X, the classical
connectives are computed as the Boolean operations in ℘(X ), and ✷ is interpreted
as the interior operator i : ℘(X )→ ℘(X ), where iA is the greatest open subset
of X contained in A. Consequently, ♦ is interpreted as the closure operator
c : ℘(X )→ ℘(X ), where cA is the least closed subset of X containing A.
Let ϕ be a modal formula and X a space. Call ϕ valid in X, denoted X |= ϕ,

provided ϕ evaluates to X for every assignment of the propositional letters. If ϕ is
not valid in X, then we say that ϕ is refuted in X, and write X 6|= ϕ. The logic of X is
the set of formulas valid in X ; symbolically, L(X ) = {ϕ | X |= ϕ}. It is well known
that S4 is sound and complete with respect to topological spaces.
There is a close connection between topological semantics and Kripke semantics

for S4. Let F= (W,R) be an S4-frame. Call U ⊆W an R-upset of F if w ∈ U and
wRv imply v ∈ U . The set of R-upsets of F is a topology ôR onW in which every
point w has a least neighborhood, namelyR(w). Such spaces are called Alexandroff
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spaces. We call (W,ôR) the Alexandroff space of F. For a modal formula ϕ, we have

F |= ϕ iff (W,ôR) |= ϕ.

Thus, topological semantics generalizes Kripke semantics for S4, and hence Kripke
completeness for logics above S4 implies topological completeness. However, since
Alexandroff spaces are usually not even T1-spaces, such topological completeness is
not guaranteed with respect to, for example, normal spaces.
We recall that a topological space X is

• extremally disconnected (ED) if the closure of each open set is open;
• resolvable if X is the union of two disjoint dense subsets of X ;
• irresolvable if X is not resolvable;
• hereditarily irresolvable (HI) if every subspace of X is irresolvable.

Let

grz=✷(✷(p→✷p)→ p)→ p

be the Grzegorczyk axiom and

ga=♦✷p→✷♦p

the Geach axiom (see, e.g., [9]). It is well known that

X is ED iff X |= ga;
X is HI iff X |= grz.

2.3. Modal Krull dimension and Cantor–Bendixson rank. We recall the notions of
modal Krull dimension and Cantor–Bendixson rank of a topological space. This
will be utilized in Section 3. We recall that a subset N of a space X is nowhere dense
if icN =∅.

Definition 2.1 [5, Section 3]. Define the modal Krull dimension mdim(X ) of a
topological space X recursively as follows:

mdim(X ) =– 1 if X =∅,
mdim(X )≤ n if mdim(N )≤ n – 1 for each N nowhere dense in X,
mdim(X ) = n if mdim(X )≤ n but mdim(X ) 6≤ n – 1,
mdim(X ) =∞ if mdim(X ) 6≤ n for all n =– 1,0,1,2, ... .

Let
bd1 = ♦✷p1→ p1,
bdn+1 = ♦(✷pn+1∧¬bdn)→ pn+1 for n ≥ 1.

Theorem 2.2 [5, Theorem 3.6]. Let X be a nonempty space and n ≥ 1. Then

mdim(X )≤ n – 1 iff X |= bdn.

For nonempty scattered Hausdorff spaces, there is a close connection between
modal Krull dimension and Cantor–Bendixson rank. For Y ⊆ X , let dY be the set
of limit points of Y and for an ordinal α, let dαY be defined recursively as follows:

d0Y = Y,

dα+1Y = d(dαY ),

dαY =
⋂

{dâY | â < α} if α is a limit ordinal.
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The Cantor–Bendixson rank of X is the least ordinal ã satisfying dãX = dã+1X . It is
well known that a space X is scattered iff there is an ordinal α such that dαX =∅.
Thus, the Cantor–Bendixson rank of a scattered space X is the least ordinal ã such
that dãX =∅.
Let X be a nonempty scattered Hausdorff space and n ∈ ù. Then the Cantor–

Bendixson rank of X is n+1 iff dnX 6= ∅ and dn+1X = ∅, which by [7, Theorem
4.9] happens iff mdim(X ) = n.

2.4. Measurable cardinals. We use [14, 15] as standard references for set theory,
and also rely on [10] as the main reference for measurable cardinals. Let S be a set
andU a free ultrafilter on S. We denote infinite cardinals by κ, the first uncountable
cardinal by ù1, and recall thatU is

• κ-complete if
⋂

K ∈ U for any family K ⊆ U of cardinality < κ;
• countably complete if U is ù1-complete (that is, U is closed under countable
intersections).

Definition 2.3 [10, Chapter 8]. An uncountable cardinal κ is

• measurable if there exists a κ-complete free ultrafilter on κ;
• Ulam-measurable if there exists a countably complete free ultrafilter on κ.

Remark 2.4. While in [10] it is not assumed that measurable cardinals are
uncountable, it is common to make such an assumption.

It is clear that everymeasurable cardinal is Ulam-measurable, and it is well known
(see, e.g., [10, Theorem 8.31]) that the existence of an Ulam-measurable cardinal
implies the existence of a measurable cardinal.

§3. A necessary and sufficient condition for L(Z) = L(D). The proof of our main
result that the existence of a measurable cardinal is equivalent to the existence of a
normal space Z such that L(Z) = L(D) consists of two parts. In Section 4 we prove
necessity, whereas sufficiency is proved in Section 5. Both of these proofs utilize a
characterization of when L(Z) is equal to L(D), which is given in Theorem 3.4 of
this section.
We start by recalling that a map f : X → Y between spaces is interior if f is both

continuous and open. If in addition f is onto, then we call Y an interior image of
X. If Y is the Alexandroff space of an S4-frame F, then we say that F is an interior
image of X. If X is the Alexandroff space of an S4-frameG, then we say that F is an
interior image of G.
An interior map generalizes the well-known notion of a p-morphism between S4-

frames. Let F = (W,R) and G = (V,S) be S4-frames and f : V →W a mapping.
We recall that f is a p-morphism provided f–1R–1(w) = S–1f–1(w) for each w ∈W .
It is well known that f is a p-morphism iff f is an interior map upon viewing F
and G as Alexandroff spaces. Just as p-morphic images preserve validity in Kripke
semantics, interior images preserve validity in topological semantics.

Lemma 3.1 [4, Proposition 2.9]. Let X and Y be spaces.

(1) If Y is an interior image of X, then L(X )⊆ L(Y ).
(2) If Y is an open subspace of X, then L(X )⊆ L(Y ).
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We also recall that an S4-frame F = (W,R) is rooted if there is w ∈W (a root
of F) such thatW =R(w). We utilize the following lemma.

Lemma 3.2 [6, Lemma 6.2]. Let F be a finite rooted S4-frame and X a nonempty
space. If F |= L(X ), then F is an interior image of an open subspace of X.

Remark 3.3. Lemma 3.2 is a consequence of [5, Lemma 3.5], which generalizes
Fine’s result [12, Section 2, Lemma 1] to topological semantics.

Theorem 3.4. Let Z be a normal space. Then L(Z) = L(D) iff the following five
conditions are satisfied :

(1) Z is ED.
(2) Z is HI.
(3) mdim(Z) = 2.
(4) D is an interior image of Z.
(5) Any finite rooted S4-frame F = (W,R) that is an interior image of Z is an
interior image of D.

Proof. First suppose that L(Z) = L(D). We show that the five conditions are
satisfied.
(1) SinceD has a maximum, D |= ga. Thus, Z |= ga, and hence Z is ED.
(2)AsD is a finite poset (partially ordered set), it follows from [9, Proposition 3.48]

that D |= grz. Hence, Z |= grz, implying that Z is HI.
(3) Because the depth of D is 3, we have that D |= bd3 and D 6|= bd2 by [9,

Proposition 3.44]. Therefore,Z |= bd3 andZ 6|= bd2. Thus,mdim(Z)= 2byTheorem
2.2.
(4) Because D |= L(Z), Lemma 3.2 yields an open subspace U of Z and an onto

interior map g :U →D. Then there is z ∈U with g(z) = r. Since normal spaces are
regular, it follows from (1) that Z is a regular ED-space. Applying [11, Theorems
6.2.6 and 6.2.25] gives that Z is zero-dimensional. Hence, there is clopen V in Z
such that z ∈ V ⊆ U . Noting that the restriction of g to V is an interior mapping
ontoD, it follows from [7, Lemma 5.4] that D is an interior image of Z.
(5) Suppose that F is a finite rooted S4-frame such that F is an interior image

of Z. Then F |= L(Z) = L(D). It follows from Lemma 3.2 that F is an interior
image of an open subspaceU ofD (viewed as an Alexandroff space). Furthermore,
F |= grz,ga,bd3. Therefore, since F is finite and rooted, F is a poset that has a
maximum and is of depth ≤ 3 (see, e.g., [9, Proposition 3.48, Corollary 3.38, and
Proposition 3.44]).
We consider three cases based on the depth of F. If the depth of F is 1, then W

is a singleton and it is clear that F is an interior image of D. Next suppose that the
depth of F is 3. Then F refutes bd2. Therefore,U refutes bd2, and hence the depth of
U is > 2. Since the depth ofD is 3 and U ⊆D, it follows that the depth of U is ≤ 3
and hence is 3. As the only open subspace ofD whose depth = 3 isD, it follows that
U =D and hence F is an interior image of D. Finally, suppose that the depth of F
is 2. Since F is a rooted poset with a maximum, F is isomorphic to the two element
chain (see Figure 2). It is easy to see that mapping the root of D to the root of F
and all the other points of D to the maximum of F is an onto interior map.
Conversely, suppose that (1)–(5) are satisfied. By (4),D is an interior image of Z.

Lemma 3.1(1) then yields that L(Z)⊆ L(D). Conversely, suppose that L(Z) 6⊢ϕ. By
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Figure 2. The two element chain.

A

B0 B1

M

Figure 3. Depiction of Z partitioned by the fibers of f.

(3) and Theorem 2.2, bd3 is a theorem of L(Z). Therefore, by Segerberg’s theorem
(see, e.g., [9, Theorem 8.85]), L(Z) is complete with respect to finite rooted L(Z)-
frames. Thus, there is a finite rooted L(Z)-frame F such that F 6|= ϕ. As F is an
L(Z)-frame, by Lemma 3.2, F is an interior image of an open subspace U of Z. Let
f :U → F be an onto interior map. It follows from (2) thatU is HI. Thus,U |= grz,
which implies that F |= grz by Lemma 3.1(1). Therefore, F is a poset since F is finite.
Let z ∈U map to the root of F. Because Z is normal (and hence regular), it follows
from (1) that Z is zero-dimensional. Thus, there is a clopen subset V of Z such that
z ∈ V and V ⊆U . Then the restriction of f to V is an interior mapping of V onto
F. It follows from (1) that F has a maximum since F is finite. Hence, F is an interior
image ofZ by [7, Lemma 5.4]. By (5), F is an interior image ofD. Therefore,D 6|=ϕ,
and hence L(D) 6⊢ ϕ. Thus, L(Z) = L(D). ⊣

§4. Necessity. In this section we prove that the existence of a normal space Z
such that L(Z) = L(D) implies the existence of a measurable cardinal. Let Z be
a normal space such that L(Z) = L(D). It follows from Theorem 3.4 that Z is a
(zero-dimensional) normal ED-space of modal Krull dimension 2 such thatD is an
interior image of Z.

Definition 4.1. Let f : Z → D be an onto interior mapping. As shown in
Figure 3, denote the fibers of f by

M = f–1(m),

B0 = f
–1(w0),

B1 = f
–1(w1),

A= f–1(r).

Convention 4.2. Since the diamond D= (D, ≤) is a poset, for w ∈D we write
↑w and ↓w instead of R(w) and R–1(w), respectively.
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A = {a}

B0 B1

M

Figure 4. Reducing A to a singleton.

Lemma 4.3.

(1) The subset M is open and dense in Z.
(2) Any nonempty nowhere dense subset N of Z \M is discrete.

Proof. (1) Because f is interior and m is the maximum of D, we have that
M = f–1(m) is open and cM = cf–1(m) = f–1(↓m) = f–1(D) =Z.
(2) By (1), Z \M is nowhere dense in Z. Because mdim(Z) = 2, the definition

of modal Krull dimension gives that mdim(Z \M ) ≤ 1 and mdim(N ) ≤ 0. As
N 6= ∅, we have that mdim(N ) = 0. Thus, N is discrete by [5, Remark 4.8 and
Theorem 4.9]. ⊣

Lemma 4.4. There is a normal subspace U of Z such that U ∩A is a singleton and
L(U ) = L(D).

Proof. Let a ∈ A. Because A is a nonempty nowhere dense subset of Z \M , it
follows from Lemma 4.3(2) that A is discrete. Since Z is zero-dimensional, there is
a clopen subset U of Z such that {a} = U ∩A. As U is closed in Z, the subspace
U is normal. Because U is open in Z, the restriction f|U of f to U is interior. Since
U ∩A 6= ∅, we have that r ∈ f(U ). As f(U ) is an upset, D = ↑r ⊆ f(U ) ⊆ D.
Therefore, f|U is onto and D is an interior image of U. By Lemma 3.1, L(U ) ⊆
L(D) = L(Z)⊆ L(U ), so L(U ) = L(D), completing the proof. ⊣

By Lemma 4.4, we may assume without loss of generality that A is a singleton,
say {a}, yielding that Z =M ∪B0∪B1∪{a} (see Figure 4).

Lemma 4.5. We have that a 6∈ cN for any nowhere dense subset N of the subspace
B0∪B1.

Proof. We first show that N ∪A is nowhere dense in Z \M . Let U be open in
Z \M with U ⊆ c(N ∪A). Since A is closed, U ⊆ c(N )∪A. Therefore, U \A ⊆
c(N )\A= c(N )∩ (B0∪B1), which is the closure of N relative to B0∪B1. Because
U \A is open andN is nowhere dense in B0∪B1, we have thatU \A=∅, soU ⊆A.
SinceA is a closed nowhere dense subset ofZ \M , we have thatU =∅. Thus,N ∪A
is nowhere dense inZ \M . By Lemma 4.3(2),N ∪A is discrete. Consequently, there
is an open set V in Z such that {a}= V ∩ (N ∪A). As

V ∩N ⊆ V ∩ (N ∪A) = {a} ⊆ Z \ (B0∪B1)⊆ Z \N,

it must be the case that V ∩N =∅, so a 6∈ cN . ⊣
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Definition 4.6. For each i ∈ {0,1}, let Xi = Bi ∪{a}.

We next partition B0 and B1 and define ultrafilters on these partitions. For this
we utilize the following lemma, which is an easy consequence of Zorn’s lemma, so
we skip its proof.

Lemma 4.7. For each i ∈ {0,1}, there is a familyFi of subsets ofXi that is maximal
with respect to the following two properties:

(1) Each F ∈ Fi is a nonempty clopen in Xi such that a 6∈ F ;
(2) The family Fi is pairwise disjoint.

Definition 4.8. For each i ∈ {0,1}, let Ni = Bi \
⋃

Fi and put N =N0∪N1.

Lemma 4.9.

(1) N is closed in Z.
(2) There is a clopen subspace U of Z such that U ∩N =∅ and L(U ) = L(D).

Proof. (1) Let i ∈ {0,1}. As Xi is closed in Z, to see that N is closed in Z it
suffices to show thatNi is closed inXi . Since

⋃

Fi is a union of clopen subsets ofXi ,
it is open in Xi . Therefore, Ni is contained in Ni ∪{a}= Xi \

⋃

Fi , which is closed
(in both Xi and Z). Thus, cNi ⊆Ni ∪{a}. To see that cNi =Ni , we show that Ni is
nowhere dense in B0∪B1 and utilize Lemma 4.5 to obtain that a 6∈ cNi .
We have thatNi =Bi ∩ (Ni ∪{a}) is closed in Bi . Thus, we only need that

⋃

Fi is
dense in Bi to see thatNi is nowhere dense in Bi , and hence in B0∪B1. Let z ∈Bi . If
z 6∈ c(

⋃

Fi), then as Xi is zero-dimensional, there is clopen V in Xi such that z ∈V
and V ∩

⋃

Fi =∅. Since z 6= a, we may assume that a 6∈V (by shrinking V further
if necessary). But this contradicts the maximality of Fi because the family {V }∪Fi
satisfies the conditions of Lemma 4.7. Thus, z∈c(

⋃

Fi), and so
⋃

Fi is dense in Bi .
(2) Since {a} and N are closed in the zero-dimensional normal space Z, there is

U clopen in Z such that a ∈ U and U ∩N =∅. Because U is open, the restriction
of f as defined in Definition 4.1 is an interior map from U to D. To see that it is
onto, observe that U ∩M 6=∅ sinceM is dense in Z, and both U ∩B0 and U ∩B1
are nonempty because a ∈ cB0,cB1 and a ∈U . Therefore,D is an interior image of
U, and so L(U )⊆ L(D) = L(Z)⊆ L(U ) by Lemma 3.1. Thus, L(U ) = L(D). ⊣

As a consequence, without loss of generality, we may assume that Z = U where
U is as in Lemma 4.9(2). It follows thatN =∅, and hence Fi is a partition of Bi for
i = 0,1. We now construct ultrafiltersU0 andU1 on F0 and F1, respectively. Let N
be the collection of neighborhoods of a; that is, V ∈N iff a is an interior point of V.

Definition 4.10. For each i ∈ {0,1}, let Gi = {Fi(V ) | V ∈ N } where

Fi(V ) = {F ∈ Fi | V ∩F 6=∅}.

Lemma 4.11. Let i ∈ {0,1}.

(1) Gi has the finite intersection property, and so there is an ultrafilter Ui on Fi
containing Gi .

(2) For each subset Γ of Fi we have Γ ∈ Ui iff a ∈ c(
⋃

Γ).

Proof. (1) Because a ∈ cBi = c(
⋃

Fi), for each V ∈ N we have that
⋃

F∈Fi

(V ∩F ) = V ∩
⋃

Fi 6=∅,
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0

•

g

Bi Bj

M

Figure 5. The frame F and function g :Z→W .

implying that there is F ∈Fi such thatV ∩F 6=∅, so Fi(V ) 6=∅. LetV1, ...,Vn ∈N .
Then

⋂n
j=1Vj ∈ N , which gives

n
⋂

j=1

Fi(Vj)⊇ Fi





n
⋂

j=1

Vj



 6=∅.

Thus, Gi has the finite intersection property, and hence is contained in an ultrafilter
Ui .
(2) First suppose that Γ ∈ Ui . If a 6∈ c(

⋃

Γ), then there is an open V ∈ N such
that V ∩

⋃

Γ =∅. Therefore, Fi(V )∩Γ =∅, contradicting Fi(V )∩Γ ∈ Ui . Thus,
a ∈ c(

⋃

Γ).
Conversely, suppose that a ∈ c(

⋃

Γ) and Γ 6∈ Ui . Let Γ
′ = Fi \Γ. SinceUi is an

ultrafilter, Γ′ ∈ Ui , and so a ∈ c(
⋃

Γ′) by the preceding paragraph. Then the frame
F= (W,R) shown in Figure 5 is an interior image of Z via the mapping g :Z→W
given by

g(z) =























1 if z ∈M,
v0 if z ∈

⋃

Γ,
v1 if z ∈

⋃

Γ′,
v2 if z ∈ Bj where j 6= i,
0 if z = a.

By Theorem 3.4, F is an interior image of D, which is a contradiction since
|D|= 4< 5 = |W |. Thus, Γ ∈ Ui . ⊣

Let I0 and I1 be the maximal ideals corresponding to U0 and U1, respectively;
that is, Ii = {Γ⊆ Fi | Γ 6∈ Ui} for i ∈ {0,1}. We show that one of Ii is closed under
countable unions. For this we recall a result ofUrysohn, which requires the following
definition.

Definition 4.12. Two subsets A,B of a topological space X are separated if

cA∩B =∅=A∩ cB.

Lemma 4.13 (Urysohn). Let X be a normal space. If A and B are separated Fó-
subsets of X, then there are disjoint open subsets U and V of X such that A ⊆ U and
B ⊆ V .

https://doi.org/10.1017/jsl.2021.5 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.5


172 G. BEZHANISHVILI, N. BEZHANISHVILI, J. LUCERO-BRYAN, AND J. VANMILL

Proof. See, e.g., [11, Exercise 2.7.2(a)]. ⊣

Lemma 4.14. The sets B0 and B1 are separated.

Proof. Let i ∈ {0,1}. Because f is interior, we have

cBi = cf–1(wi) = f
–1(↓wi) = f

–1({wi,r}) = Bi ∪{a}.

Therefore,

cB0∩B1 ⊆ (B0∪{a})∩B1 =∅ and B0∩ cB1 ⊆ B0∩ (B1∪{a}) =∅.

Thus, B0 and B1 are separated. ⊣

Lemma 4.15. Either I0 or I1 is closed under countable unions.

Proof. Suppose that I1 is not closed under countable unions, so there is
a countable subset ∆1 of I1 such that Γ1 :=

⋃

∆1 6∈ I1. Then Γ1 ∈ U1, and
Lemma 4.11(2) yields that a ∈ c(

⋃

Γ1). Consider an arbitrary countable subset
∆0 of I0 and let Γ0 =

⋃

∆0. Recall for each i ∈ {0,1} that Xi is closed in Z and each
element of Fi (and hence of Γi) is clopen in Xi , implying that

⋃

Γi is an Fó-subset
of Z. Because

⋃

Γ0 ⊆ B0 and
⋃

Γ1 ⊆ B1, Lemma 4.14 yields that
⋃

Γ0 and
⋃

Γ1
are separated. By Lemma 4.13, there are disjoint open subsets U and V of Z such
that

⋃

Γ0 ⊆ U and
⋃

Γ1 ⊆ V . Because Z is ED, cU and cV are disjoint, yielding
that c(

⋃

Γ0) and c(
⋃

Γ1) are disjoint. As a ∈ c(
⋃

Γ1), it follows that a 6∈ c(
⋃

Γ0).
By Lemma 4.11(2), Γ0 6∈ U0, so Γ0 ∈ I0. ⊣

It follows fromLemma4.15 that eitherU0 orU1 is a countably complete ultrafilter
on F0 or F1, respectively. Thus, as a consequence of Section 2.4, we obtain:

Lemma 4.16. Either |F0| or |F1| is an Ulam-measurable cardinal. Thus, there exists
a measurable cardinal.

Consequently, we have proved the following result.

Theorem 4.17. If there exists a normal space Z such that L(Z) = L(D), then there
exists a measurable cardinal.

§5. Sufficiency. In this sectionwe show that the existence of ameasurable cardinal
implies the existence of a normal space whose logic is the logic of the diamond. Let
κ be a measurable cardinal. We let â(κ×ù) be the Čech–Stone compactification
of the discrete space κ×ù. We view â(κ×ù) as the Stone space of ultrafilters
on κ×ù. We identify κ×ù with the principal ultrafilters on κ×ù which are the
isolated points of â(κ×ù). We also recall that the sets

â(S) := {U ∈ â(κ×ù) | S ∈ U},

where S ⊆ κ×ù, form a clopen basis of â(κ×ù).
Following the notation of Section 4, define a subspace Z of â(κ×ù) to be

M ∪B0 ∪B1 ∪{a} where M = κ×ù and B0, B1, and {a} are the subsets of the
remainder of â(κ×ù) defined as follows.
LetU be a κ-complete ultrafilter on κ. ThenU is a point in the remainder of âκ.

For each n ∈ù, themappingα 7→ (α,n) is an injection of κ into κ×ù. This mapping
yields a homeomorphic embedding fn : âκ→ â(κ×ù) such that the image of âκ
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is câ(κ×{n}) where câ is closure in â(κ×ù). Let Un = fn(U). Then for each
S ⊆ κ×ù, we have that â(S) is a clopen neighborhood of Un iff U ×{n} ⊆ S for
some U ∈ U. Set B1 = {Un | n ∈ ù}.
Similarly, let V be a free ultrafilter on ù and α ∈ κ. Then the mapping n 7→ (α,n)

gives rise to a homeomorphic embedding gα : âù→ â(κ×ù) such that the image
of âù is câ({α}×ù). Let Vα = gα(V). Then for each S ⊆ κ×ù, we have that
Vα ∈ â(S) iff {α}×V ⊆ S for some V ∈ V. Set B0 = {Vα | α ∈ κ}.
Let a be the filterA generated by the filter base B := {U ×V |U ∈ U,V ∈ V}.

Lemma 5.1. The filterA is a free ultrafilter on κ×ù such thatA ∈ câB0∩ câB1.

Proof. For each S ⊆ κ×ù, let Sn = {α | (α,n) ∈ S} for each n ∈ ù, JS = {n |
Sn ∈ U}, and US =

⋂

{Sn | n ∈ JS}∩
⋂

{κ \Sn | n ∈ù \JS}. Then US ∈ U because
U is κ-complete, Sn ∈ U for each n ∈ JS , and κ \Sn ∈ U for each n ∈ ù \JS .
If JS ∈V, thenUS×JS ∈B. Let (α,n)∈US×JS , soα ∈US andn ∈ JS . Therefore,

α ∈ Sn, yielding (α,n) ∈ S. Thus, US × JS ⊆ S, and hence S ∈ A. Suppose that
JS 6∈V. Thenù \JS ∈V, yielding thatUS×(ù \JS)∈B. Let (α,n)∈US×(ù \JS),
so α ∈ US and n ∈ ù \JS . Therefore, α ∈ κ \Sn, so α 6∈ Sn, and hence (α,n) 6∈ S.
Thus, S and US × (ù \JS) are disjoint, so US × (ù \JS) ⊆ (κ×ù) \S, and hence
(κ×ù) \S ∈ A. Consequently, S ∈ A or (κ×ù) \S ∈ A, yielding that A is an
ultrafilter.
We next show that A ∈ câB0. Let â(S) be a clopen neighborhood of A. Then

S ∈A, so (κ×ù)\S 6∈A. Therefore,JS ∈V, andhenceUS×JS ⊆S by the argument
in the previous paragraph. Because US ∈ U, there is α ∈ US . Then {α}× JS ⊆
US ×JS ⊆ S. As JS ∈ V, we have that {α}×JS ∈ Vα , which implies that S ∈ Vα .
Thus, Vα ∈ â(S), so B0∩â(S) 6=∅, and hence A ∈ câB0. Similarly, there is n ∈ JS
such thatUS×{n} ⊆US×JS ⊆ S. AsUS×{n} ∈Un, we have thatUn ∈ â(S), and
henceA ∈ câB1. Consequently,A ∈ câB0∩câB1, which also implies thatA is a free
ultrafilter. ⊣

Definition 5.2. Let Z =M ∪B0∪B1∪{a} be the subspace of â(κ×ù) where

M = κ×ù,

B0 = {Vα | α ∈ κ},

B1 = {Un | n ∈ ù},

a =A.

Figure 6 depicts basic open neighborhoods of the points of Z in the remainder of
â(κ×ù) which are drawn either at the top or at the right of the picture.

Lemma 5.3. Let α ∈ κ, n ∈ù,U ∈U, V ∈V, i ∈ {0,1}, and c denote closure in Z.

(1) c(U ×{n}) = (U ×{n})∪{Un} is clopen in Z.
(2) c({α}×V ) = ({α}×V )∪{Vα} is clopen in Z.
(3) Bi is discrete in Z.
(4) cBi = Bi ∪{A}.

Proof. (1) Since câ(U ×{n}) is clopen in â(κ×ù), it is sufficient to show that
câ(U ×{n})∩Z = (U ×{n})∪{Un}. For the right-to-left inclusion it is sufficient
to show that Un ∈ câ(U ×{n}). Let â(S) be a clopen neighborhood of Un. Then
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Figure 6. The space Z and some basic open neighborhoods.

there is A ∈ U such that A×{n} ⊆ S. As A∩U ∈ U, we have∅ 6= (A∩U )×{n} ⊆
â(S)∩ (U ×{n}). Therefore,Un ∈ câ(U ×{n}). For the reverse inclusion, let z ∈Z
and z /∈ (U ×{n})∪ {Un}. Define S = (κ×ù) \ (U ×{n}). Then z ∈ â(S) and
â(S)∩ (U ×{n}) =∅. Thus, z /∈ câ(U ×{n}).
(2) This is similar to (1).
(3) This follows from (1) and (2).
(4) By Lemma 5.1, A ∈ câ(B0)∩Z = cB0. Since we have that Z \ (B0 ∪{A}) =

⋃

m∈ù c(κ×{m}), it is open in Z by (1), so B0 ∪{A} is closed in Z. Thus, cB0 =
B0∪{A}. Similarly, Lemma 5.1 and (2) give that cB1 = B1∪{A}. ⊣

Lemma 5.4. The space Z is normal.

Proof. LetA andB be disjoint closed subsets ofZ. Then a 6∈A or a 6∈B .Without
loss of generality wemay assume that a 6∈B . Being a subspace of a zero-dimensional
space, Z is zero-dimensional. As B is closed and a ∈ Z \B , there is a clopen subset
C of Z such that a ∈ C and C ⊆ Z \B . Because B is a filter base generating A,
there areU ∈U andV ∈V such that a =A∈ â(U ×V )∩Z ⊆C ⊆Z \B . Without
loss of generality we may assume that C = â(U ×V )∩Z. Let

F = {c(κ×{n}),c({α}×V ) | n ∈ ù \V and α ∈ κ \U} .

Then F is a partition of Z \C . By Lemma 5.3, each F ∈ F is clopen in Z and has
exactly one limit point. Therefore, since A∩F,B ∩F are disjoint closed sets in F, at
least one ofA∩F,B ∩F must consist of only isolated points, hence must be clopen.
Thus, each F ∈ F can be written as a disjoint union of two clopen sets FA and FB
such that A∩F ⊆ FA and B ∩F ⊆ FB .
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Let FA = {FA | F ∈ F }, FB = {FB | F ∈ F }, S = C ∪
⋃

FA, and T =
⋃

FB . We
have that bothS andT are open since each is a unionof clopen sets.As {C}∪FA∪FB
is pairwise disjoint, S and T are disjoint. We have that A = (A∩C )∪ (A \C ) ⊆
C ∪

⋃

FA = S. Similarly, B ⊆
⋃

FB = T . Thus, Z is normal. ⊣

Lemma 5.5. The diamond D is an interior image of Z.

Proof. Define f :Z→D by

f(z) =















m if z ∈M,
w0 if z ∈ B0,
w1 if z ∈ B1,
r if z =A.

It is clear that f is a well-defined onto map. To prove that f is interior, it is sufficient
to show that f–1↓w = cf–1(w) for each w ∈D. SinceM is dense in Z, we have

f–1↓m = f–1(D) =Z = cM = cf–1(m).

Because Z is T1, we have

f–1↓r = f–1(r) = {A}= c{A}= cf–1(r).

Let i ∈ {0,1}. By Lemma 5.3(4),

f–1↓wi = f
–1({wi,r}) = Bi ∪{A}= cBi = cf–1(wi).

Consequently, f is interior. ⊣

Lemma 5.6. The space Z is a scattered ED-space of Cantor–Bendixson rank 3.

Thus, Z is HI and mdim(Z) = 2.

Proof. SinceZ ⊇ κ×ù and κ×ù is dense in â(κ×ù), we have thatZ is dense in
â(κ×ù).Asâ(κ×ù) is anED-space andadense subspace of anED-space is anED-
space,Z is ED. It follows fromLemma 5.3 that d3Z = d2(B0∪B1∪{a}) = d{a}=∅

and d2Z = d(B0 ∪B1 ∪{a}) = {a} 6= ∅. Therefore, Z is scattered and of Cantor–
Bendixson rank 3. Thus, Z is HI and mdim(Z) = 2 (see Section 2.3). ⊣

Lemma 5.7. Let F = (W,R) be a finite rooted S4-frame. If F is an interior image
of Z, then F is an interior image of D.

Proof. Westart byobserving someproperties ofFwhich follow fromLemma5.6.
Since Z is HI and mdim(Z) = 2, it follows from Section 2.2 that the formulas grz
and bd3 are valid inZ. As F is an interior image ofZ, these formulas are also valid in
F by Lemma 3.1(1). Therefore, R is a partial order, hence F has a unique root, and
the depth of F is ≤ 3 (see, e.g., [9, Propositions 3.44 and 3.48]). In addition, since Z
is ED, so is F. Thus, as F is rooted, F has a maximum (see, e.g., [9, Corollary 3.38]).
Let r be the root and m the maximum of F.
We consider three cases based on the depth of F. First, suppose that the depth of

F is 1. ThenW is a singleton and it is clear that F is an interior image of D. Next
suppose that the depth of F is 2. Since F is a rooted poset with a maximum, F is
isomorphic to the two element chain (see Figure 2). It is easy to see that mapping
the root of D to the root of F and all the other points of D to the maximum of F is
an onto interior map.
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Finally, suppose that the depth of F is 3. Let f : Z →W be an interior mapping
onto F. Since each z ∈M is isolated and f is interior, we have that f(z) = m.
Thus, M ⊆ f–1(m). We next show that f–1(r) = {A}. Because f is onto, there is
z ∈f–1(r). AsM ⊆f–1(m), we have that z ∈Z \M . If z 6=A, then z ∈B0∪B1, and
in either case Lemma 5.3 yields a clopen subsetU ofZ such that {z}=U ∩(B0∪B1).
Moreover, since z 6=A, we may assume thatA 6∈U . As f is interior and U is open,
f(U ) is an R-upset of F. Therefore, f(U ) =W since r = f(z) ∈ f(U ). On the
other hand,

f(U ) = f
(

[U ∩ (B0∪B1)]∪ (U ∩M ))⊆ f({z}∪M )

= f({z})∪f(M ) = {r}∪{m} 6=W.

The obtained contradiction proves that z =A. Thus, f–1(r) = {A}.
Let F0 and F1 be the partitions of B0 and B1 obtained via the fibers of f in B0

and B1, respectively. We prove that there is a unique A0 ∈ F0 such that A ∈ cA0. A
similar proof yields a unique A1 ∈ F1 such thatA ∈ cA1.
Because F is finite, F0 is finite, so

A ∈ cB0 = c
(

⋃

F0

)

=
⋃

A∈F0

cA.

Therefore, there is A0 ∈ F0 such that A ∈ cA0. To see that A0 is unique, let U =
{α | Vα ∈ A0}. We show that U ∈ U. If not, then κ \U ∈ U, so â((κ \U )×ù)∩Z
is a clopen neighborhood ofA. IfVα ∈ â((κ \U )×ù)∩A0, then α ∈U , giving that
(κ \U )×ù and {α}×ù are disjoint. Thus,Vα ∈ â((κ \U )×ù)∩â({α}×ù) =∅.
The obtained contradiction proves that U ∈ U. Now, if A ∈ F0 is distinct from A0
andA∈ cA, then similarlywe haveU ′ := {α |Vα ∈A}∈U. AsA0 andA are disjoint,
we have the contradiction∅=U ∩U ′ ∈U. Similarly,V := {n |Un ∈A1} ∈V. Thus,
C := â(U ×V )∩Z is a clopen neighborhood ofA.
The restriction of f to C is clearly an interior map, and it is onto sinceA ∈C and

f(A) = r. Observe thatW = f(C ) has at most four elements because

f(C ) = f(C ∩M )∪f(C ∩B0)∪f(C ∩B1)∪f(C ∩{a})

= f(C ∩M )∪f(A0)∪f(A1)∪{f(A)}.

As F has depth 3, we have that F is isomorphic to either the three element chain or
D. Consequently, F is an interior image ofD. ⊣

Lemma 5.8. The logic of Z is L(D).

Proof. By Lemmas 5.4–5.7, Z satisfies the conditions of Theorem 3.4. Thus,
L(Z) = L(D). ⊣

As a consequence of Lemmas 5.4 and 5.8 we arrive at the main result of this
section.

Theorem 5.9. If there exists a measurable cardinal, then there exists a normal

space Z such that L(Z) = L(D).

Putting Theorems 5.9 and 4.17 together yields the main result of the paper:

Theorem 5.10. There exists a measurable cardinal iff there exists a normal space

Z such that L(Z) = L(D).
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We conclude the paper by the following open problem:

Problem 5.11. In Theorem 5.10 can ‘normal’ be replaced by ‘Tychonoff’?

Clearly the interesting implication is to prove that the existence of a Tychonoff
space whose logic is L(D) implies the existence of a measurable cardinal.
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