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Wavepackets obtained as solutions of the flow equations linearised around the mean
flow have been shown in recent work to yield good agreement, in terms of amplitude
and phase, with those educed from turbulent jets. Compelling agreement has been
demonstrated, for the axisymmetric and first helical mode, up to Strouhal numbers
close to unity. We here extend the range of validity of wavepacket models to Strouhal
number St = 4.0 and azimuthal wavenumber m = 4 by comparing solutions of the
parabolised stability equations with a well-validated large-eddy simulation of a
Mach 0.9 turbulent jet. The results show that the near-nozzle dynamics can be
correctly described by the homogeneous linear model, the initial growth rates being
accurately predicted for the entire range of frequencies and azimuthal wavenumbers
considered. Similarly to the lower-frequency wavepackets reported prior to this work,
the high-frequency linear waves deviate from the data downstream of their stabilisation
locations, which move progressively upstream as the frequency increases.
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1. Introduction

The prediction of and reduction of noise radiated by turbulent jets constitute
two challenging technological problems. For commercial aircraft, noise regulations
provide the driving factor, whereas for military applications, the primary concern is the
hearing loss of personnel. Both issues motivate the search for noise-reduction solutions
(Bowes et al. 2009). The conception of effective noise-control strategies relies on
a clear understanding of the underlying flow physics, and on the development of
associated reduced-order models. In addition to the lower computational expense that
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such models present, in comparison with large-eddy or direct numerical simulation,
they have the added advantage of providing physical insight into the mechanisms of
sound generation (Sinha et al. 2014).

The coherent part of the velocity field of high-Reynolds-number turbulent jets
comprises a wavepacket (Jordan & Colonius 2013): a hydrodynamic wave with
amplitude growth due to the Kelvin–Helmholtz instability of the shear layer, followed
by stabilisation and decay. Such structures are characterised by a high degree of
azimuthal, radial and streamwise organisation. While their contribution to the turbulent
kinetic energy is small, they are important for sound radiation on account of the said
organisation.

Wavepacket modelling is based on a linearisation of the Navier–Stokes system
using the mean field as a base flow. The resulting linearised system neglects explicit
nonlinear interactions between wavepackets and turbulence; such interactions can
only occur via the mean flow, established by Reynolds stresses associated with the
energy-containing turbulent eddies (Crighton & Gaster 1976). More recent studies
(McKeon & Sharma 2010; Towne et al. 2015; Jeun, Nichols & Jovanović 2016;
Semeraro et al. 2016) model the aforementioned nonlinear interactions as a forcing
term in the linearised system; wavepackets then arise as optimal flow responses,
obtained by an analysis of the resolvent operator in the frequency domain. As
a consequence of the convective non-normality of the jet, the optimal forcing
is concentrated upstream, near or inside the nozzle, with nearly zero support in
the downstream region. Disturbance growth then occurs downstream due to the
Kelvin–Helmholtz instability of the shear layer (Garnaud et al. 2013; Semeraro et al.
2016). Because of this, the optimal wavepacket can often be computed using a
homogeneous linear model, with an unsteady upstream boundary condition imposed,
and which plays the role of the optimal forcing identified by the resolvent analysis.
The validity of the model is then verified a posteriori, as in Petersen & Samet (1988)
or Gudmundsson & Colonius (2011) for forced and unforced jets respectively. Because
of the slow streamwise variation of the mean-flow characteristics of turbulent jets,
the parabolised stability equations have been found to constitute a suitable dynamic
ansatz, and it is this model that we consider in this work.

The agreement observed between experiment and wavepacket-based reduced-order
models, particularly in regions upstream of the end of the jet potential core, has
motivated many studies. In addition to the round subsonic jets studied in the works
cited above, linear wavepacket models have been used to model coaxial (Gloor,
Obrist & Kleiser 2013) and supersonic jets (Malik & Chang 2000; Ray & Lele
2007; Nichols & Lele 2011; Sinha et al. 2014). For the latter, wavepackets can be
readily extended to the acoustic field to obtain Mach-wave radiation. Recently, Sinha
et al. (2014) compared wavepacket model predictions with results from large-eddy
simulations of cold and heated supersonic jets, and found encouraging agreement
for the peak far-field radiation. Sound radiation by wavepackets in subsonic jets is
more subtle, depending on details of the amplitude envelope (Crighton & Huerre
1990) and the two-point coherence (Cavalieri & Agarwal 2014). These mechanisms
are the subject of ongoing research, which considers either simplified kinematic
sound-source models (Avital & Sandham 1997; Obrist 2009; Maia et al. 2017) or
the coupling of dynamic wavepacket models with an acoustic analogy (Sandham &
Salgado 2008).

The parabolised stability equations (PSE) have also proved useful in providing
a physical interpretation of the mechanisms underpinning noise reductions obtained
by forcing a turbulent jet (Koenig et al. 2016). Parabolised-stability-equation-based
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FIGURE 1. Experimental PSDs for the axial velocity (ux) fluctuation on the jet centreline
for several axial positions (x). The non-dimensionalisation considers the mean velocity of
the jet (U).

transfer functions have been shown to enable real-time estimation of the downstream
evolution of wavepackets in a high-Reynolds-number turbulent jet (Sasaki et al. 2017)
and closed-loop control of fluctuations in a low-Reynolds-number shear layer (Sasaki
et al. 2016).

Nearly all of the cited studies focus on low-frequency disturbances, as wavepackets
are most readily evaluated for these low frequencies. However, high-frequency
fluctuations in turbulent jets are of considerable interest. For instance, it remains
unclear whether high-frequency sound is driven by what is often referred to
as ‘fine-scale turbulence’ or by high-frequency wavepacket motion. How nozzle
conditions influence sound radiation (Harper-Bourne 2010; Fontaine et al. 2015) is
another open question. The extension of wavepacket models to higher frequencies
and azimuthal modes would open up new perspectives for addressing these issues,
and it is this that motivates the work we present here.

One of the central difficulties we face in trying to educe high-frequency wavepackets
from turbulent jets is posed by the small amplitudes of the high-frequency fluctuations.
Figure 1 shows the experimentally measured power spectral densities (PSDs) of the
axial velocity on the centreline of a jet studied previously by this group (Cavalieri
et al. 2013). For Strouhal numbers above one, the spectra fall below the noise floor
of the measurement and cannot be educed for comparison with models.

Furthermore, decomposition of the velocity fluctuations into azimuthal wavenumbers
higher than zero is not possible with single hotwire measurements, as the necessary
spatial information would be unavailable. An azimuthal decomposition could be
accomplished with stereoscopic time-resolved particle image velocimetry (STRPIV)
(Cavalieri et al. 2013; Jaunet, Jordan & Cavalieri 2017), which is limited to low
Strouhal numbers, or a near-field microphone array, which must be located outside the
turbulent region of the jet, where the low amplitudes of high-frequency wavepackets
again preclude accurate measurement.

It is for these reasons that we here work with data provided by the experimentally
validated high-fidelity large-eddy simulation (LES) of Brès et al. (2015). This has
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been shown to closely match the experimentally measured hydrodynamic and acoustic
field of a Mach 0.9 jet, thanks to careful computation of the turbulent boundary layer
inside the nozzle.

Comparisons are made after the application of a spectral proper orthogonal
decomposition (POD) filter to the LES pressure fluctuations. The POD separates
the original data into orthogonal sets, ordered by their energy content. Each set
presents a spatial correlation over significant distances and it is therefore known to
educe the signature of linear wavepackets in turbulent jets (Gudmundsson & Colonius
2011). The first mode, which contains the highest energy content, has been used
in several other studies in comparison with wavepacket formulations, such as the
PSE (Cavalieri et al. 2013; Sinha et al. 2014; Beneddine et al. 2016). Further details
regarding the POD calculation may be found in Towne, Schmidt & Colonius (2017b).

This article is organised as follows. In § 2, a brief description of the LES database
is provided, along with some details of the PSE method. Section 3 presents PSE–LES
comparisons and a discussion of the results. Conclusions are given in § 4.

2. Mathematical model

The LES database corresponds to an isothermal Mach 0.9 turbulent jet, issued
from a convergent-straight nozzle. The simulation was performed using the flow
solver Charles (Brès et al. 2017), developed at Cascade Technologies, and reproduces
the conditions of a companion experiment conducted at the Pprime Institute; this
same simulation has been used in other studies by this group (Schmidt et al. 2017;
Towne et al. 2017a). The Reynolds number, defined as Re = ρUD/µ, where ρ, U,
D and µ are respectively the mean density, velocity, diameter and viscosity of the
jet, is approximately one million. Computation of the far-field noise is based on the
frequency-domain permeable formulation of the Ffowcs Williams–Hawkings equation
(Ffowcs Williams & Hawkings 1969).

The LES data used throughout this work were computed on a 69-million-grid-point
mesh with refined resolution in the jet. To replicate the effects of the boundary layer
trip present in the companion experiment and to ensure an initially turbulent jet, near-
wall adaptive mesh refinement, synthetic turbulence and wall modelling are applied
inside the nozzle. This leads to fully turbulent nozzle-exit boundary layers, as shown
in figure 2, presenting good agreement with the experimental measurements; the only
noticeable difference is for the maximum of root mean square (RMS) values at r =
0.5, with the peak probably missed by the experimental measurements due to limited
spatial resolution.

To facilitate postprocessing and analysis, the data were interpolated from the
original unstructured LES mesh onto structured cylindrical grids with equi-distanced
points in the azimuthal direction, enabling azimuthal decomposition in Fourier
space. The LES results show excellent agreement with experimental far-field noise
measurements up to St= 4.0, as shown in figure 3, which is important for the present
study. Further details of the LES methodology, grid resolution study and validation
with experiments are presented in Brès et al. (2014, 2015, 2016).

For comparison with the PSE solutions, the first spectral POD mode of the pressure
fluctuations obtained from the LES is considered, as in Sinha et al. (2014). The energy
norm for the decomposition was introduced by Chu (1965).

Fluctuations are compared with solutions of the linear PSEs (Herbert 1997). Details
of the PSE formalism, the numerical strategy used for its solution and a validation
can be found in Sasaki et al. (2017) and will not be reproduced here, for the sake
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FIGURE 2. Nozzle-exit boundary layer profiles from experiment (circles) and LES cases
(solid line): (a) time-averaged streamwise velocity; (b) RMS of the streamwise velocity.
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FIGURE 3. Comparison between the LES predicted acoustic field (solid line) and
experiment (circles) at two positions, at 50 diameters from the nozzle, in relation to the
jet axis: (a) φ = 90 and (b) φ = 150.

of brevity. The initial conditions for the PSE, shape functions and eigenvalues, are
obtained from the solution of a generalised eigenvalue problem, derived from the
locally parallel assumption, using the Euler equations for a compressible flow. The
procedure is outlined in Sasaki et al. (2017).

The mean flow is fitted by an expression similar to that used by Fontaine et al.
(2015), which, considering the current non-dimensionalisation, becomes

u(r)=
M
4

[
1− tanh

(
r0

4θ1

[
r
r0
−

r0

r

])] [
1− tanh

(
r0

4θ2

[
r− rs

r0
−

r0

r

])]
, (2.1)

where the parameters r0, rs, θ1 and θ2 are determined via a least-squares fit.
Equation (2.1) permits the sharp gradients and details of the mean flow in the
near nozzle to be accurately reproduced. The radial discretisation follows Lesshafft
& Huerre (2007), with 500 Chebyshev collocation points, half of which are between
r= 0 and r= 0.8D, where D is the diameter of the jet.
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FIGURE 4. Growth rates obtained from a locally parallel Euler calculation close to the
nozzle for m = 0 (solid) and m = 4 (dashed), for seven different axial positions. The
behaviour for x= 0.5 and x= 1.0 is zoomed.

3. Comparison of linear PSE and LES

As mentioned in § 2, prior to initiation of the PSE calculations, a locally parallel
computation is made to obtain the initial shape functions and eigenvalues. The method
is started with the Kelvin–Helmholtz mode, and we are interested in cases where it
is unstable and is expected to dominate the dynamics of the flow. Figure 4 shows
the behaviour of the spatial growth rate, the imaginary part of the wavenumber α,
as a function of the Strouhal number St, for seven axial positions and azimuthal
wavenumbers of m= 0 and m= 4. Very close to the nozzle, the flow is unstable at
a Strouhal number of 8.0. Moving downstream, we observe that stabilisation occurs
rapidly, and at X/D> 0.2, only Strouhal numbers below 3 remain unstable.

It should be noted that very near the nozzle the behaviour of the growth rates for
the different azimuthal wavenumbers is almost the same. This could be interpreted
by noting that the shear-layer thickness is small in this region, when compared with
the azimuthal wavelengths considered, rendering an equivalent trend for the two cases.
Further downstream, where the shear layer is thicker, the differences become more
apparent, as may be observed in figure 4.

The results in figure 4 imply that in order to observe such high-frequency behaviour
in the simulation, one is limited to regions very close to the nozzle-exit plane. Details
of the boundary layer in this region need therefore to be accurately captured.

Comparisons are made with the first POD mode for each frequency, as POD is
known to educe the signature of linear wavepackets, as discussed in the introduction.
Figure 5 shows the real part of the pressure fluctuations of the first POD mode, for
m= 0 and St= 4.1, where the wavepacket character of the flow is evident, particularly
in the upstream region where spatial amplification occurs by the Kelvin–Helmholtz
mechanism. The downstream region displays more complex dynamics, studied recently
by Jordan et al. (2017) and Tissot et al. (2017).
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FIGURE 5. The first POD mode for the axisymmetric pressure fluctuations at St = 4.1
extracted from the LES. The white box highlights the region where the comparisons will
be made with the linear PSE simulation.
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FIGURE 6. The POD and PSE pressure data in (a,c) and (b,d) for St of 2.0 (a,b) and
4.0 (c,d), for the axisymmetric mode, m= 0. Similar trends are observed for intermediate
frequencies and higher azimuthal numbers, until m= 4.

Figure 6 presents a comparison between the PSE prediction and the first POD,
using in both cases the real part of the pressure. The sample Strouhal numbers taken
were 2 and 4, and comparisons were made for m= 0. The free amplitude of the linear
PSE solution was chosen to best match the amplitudes of the POD mode, and the
comparison focuses on the upstream region of amplification of the Kelvin–Helmholtz
wavepacket. In figure 7, the radial shape of the fluctuations is shown, for the same
Strouhal numbers, also for the axisymmetric case. The axial positions x = 0.3 and
x = 0.5 are considered; however, the same trends are seen up to x ≈ 1.0 for these
frequencies.

We observe that the PSE solutions closely match the first POD mode, with a typical
wavepacket shape in x clearly visible in the POD mode and accurately modelled by
the PSE. The growth and decay of the fluctuations in the neighbourhood of r = 0.5
are correctly described by the PSE method. The most significant differences appear
when r is close to zero. For this Mach 0.9 jet, in particular, there are other relevant
modes, corresponding to trapped acoustic waves in the potential core. Such modes,
which decay to zero towards the jet shear layer, are not accounted for in the present
computation and are responsible for the radially oscillatory behaviour seen in the
pressure fluctuations. These modes have been thoroughly studied by (Schmidt et al.
2017) and Towne et al. (2017a), and are outside the scope of this article.

As the Strouhal number is increased, disturbances become more concentrated on
the shear layer, as expected from linear stability. Figures 6 and 7 show results for
m= 0, but similar behaviour was found for azimuthal wavenumbers up to m= 4 and
the intermediate Strouhal numbers.
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FIGURE 7. Comparison of the radial behaviour of the PSDs of the pressure fluctuations
between the LES (solid) and PSE prediction (dashed), for the axisymmetric mode.

In order to present the agreement for several values of the Strouhal number and
axial positions in a compact manner, following Cavalieri et al. (2013), we define the
metric

β(x, St,m)=
〈pPSE(x, r, St,m), pPOD(x, r, St,m)〉
‖pPSE(x, r, St,m)‖‖pPOD(x, r, St,m)‖

, (3.1)

where p is the pressure fluctuation and the inner product is defined as

〈 f (r), g(r)〉 =
∫
∞

0
f (r)g∗(r)r dr. (3.2)

Equation (3.1) provides a measurement of the similarity between the radial shapes at a
given frequency/axial position: β= 1 implies perfect agreement whereas β= 0 implies
that the two functions are completely uncorrelated. Figure 8 shows the behaviour of
this metric for azimuthal numbers varying from 0 to 4. Similarly to our previous
observations (Cavalieri et al. 2013), values above 0.9 are observed for Strouhal
numbers below 1.0. However, significant values of this parameter are also observed
for Strouhal numbers as high as 4.0. The region of agreement shows a correlation
with the region where αi becomes negative, indicating a switch between growth and
decay for the PSE prediction for the wavepackets. When this happens, β rapidly
decreases to values close to zero. For all of the frequency/azimuthal wavenumber
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FIGURE 8. Behaviour of the β metric for azimuthal wavenumbers from 0 to 4. The
dashed line indicates the St–x combination where the PSE render a prediction of stable
behaviour for the fluctuations.

combinations considered, this switch in behaviour occurs further upstream as the
frequency is increased.

As shown by Semeraro et al. (2016) and Towne et al. (2017b), if the nonlinear
terms in the Navier–Stokes system behave as stochastic white-noise forcing, there
exists an equivalence between the first POD mode and the optimal flow response
obtained from a resolvent analysis. Moreover, the convective non-normality typical
of Kelvin–Helmholtz instability leads to optimal forcings concentrated upstream,
often inside the nozzle, as presented in the works of Semeraro et al. (2016) and
Jordan et al. (2017). The linear PSE replace such forcings by an upstream boundary
condition, which explains its success in matching the first POD mode from the
LES. However, close agreement is only obtained for regions of significant spatial
amplification; this is in accordance with the study by Beneddine et al. (2016), which
states a strong convective instability as one of the necessary ingredients for the
validity of the PSE in predicting the spatial structure of the fluctuations. Furthermore,
it should be noted that the white-noise assumption is strong, and nonlinearities can be
expected to comprise colour, with amplitudes varying in space and non-zero coherence
lengths, for instance. This will result in differences between the POD and the PSE,
but for regions of the parameter space with strong Kelvin–Helmholtz amplification,
the flow response appears to be largely independent of the forcing details, and is thus
accurately matched by the linear PSE.

4. Conclusions

A detailed comparison between the PSE and an experimentally validated high-
fidelity LES was undertaken, where the LES data were considered in terms of their
first POD mode. The objective was to evaluate the range of frequencies and azimuthal
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wavenumbers for which the linear PSE accurately model wavepackets in the turbulent
jet. The comparisons reveal a close agreement between the data and the linear model
up to St≈ 4.0 and m= 4, extending significantly the range of validity of wavepacket
models.

The good agreement is primarily observed for the growth phase of the linear waves,
and shows, for the range of St and m considered, that the growth of fluctuation
energy in the near-nozzle region is largely linear, despite the fully turbulent character
of the nozzle boundary layer. The agreement between the PSE and LES deteriorates
downstream of the position where the Kelvin–Helmholtz mode has reached its
maximum. This discrepancy, which had been observed previously in the works of
Gudmundsson & Colonius (2011) and Cavalieri et al. (2013), for St 6 1.0 has been
recently investigated in the works of Jordan et al. (2017) and Tissot et al. (2017),
where the non-modal growth is shown to play an important role in determining the
behaviour of the fluctuations in this region.
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