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Existing audio tools handle the increasing amount of
computer audio data inadequately. The typical
tape-recorder paradigm for audio interfaces is inflexible
and time consuming, especially for large data sets. On the
other hand, completely automatic audio analysis and
annotation is impossible using current techniques.
Alternative solutions are semi-automatic user interfaces
that let users interact with sound in flexible ways based
on content. This approach offers significant advantages
over manual browsing, annotation and retrieval.
Furthermore, it can be implemented using existing
techniques for audio content analysis in restricted
domains. This paper describes MARSYAS, a framework
for experimenting, evaluating and integrating such
techniques. As a test for the architecture, some recently
proposed techniques have been implemented and tested.
In addition, a new method for temporal segmentation
based on audio texture is described. This method is
combined with audio analysis techniques and used for
hierarchical browsing, classification and annotation of
audio files.

1. INTRODUCTION

There is a growing amount of audio data available on
the Internet and elsewhere today. The traditional tape-
recorder sample-playback paradigm for browsing, locat-
ing, manipulating and skimming audio is cumbersome
and inflexible. The main reason is that it treats audio
data as a linear block of samples. Traditional informa-
tion retrieval (IR) (van Rijsbergen 1979), used by many
of the popular Web search engines, uses computer-
readable text as data and offers the ability to quickly
locate and browse large amounts of data using the famil-
iar search and ‘ranked by similarity’ interface. Unfortu-
nately, there are no equivalent methods available for
audio.

An obvious solution to the problem of handling large
amounts of audio data is to annotate it with textual
information and then use traditional IR techniques for
searching. This approach works well and has the advant-
age of using well-known and supported techniques. On
the other hand, using current interfaces, human annota-
tion of audio is extremely time consuming.

Recently, a number of techniques for automatic ana-
lysis of audio information have been proposed (Foote
1999). These approaches work reasonably well for
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restricted classes of audio. Based on these techniques, a
completely automatic annotation system for audio could
be envisioned. Although not impossible in theory, there
are two problems with such an approach. The first is that
current systems are not perfect and, therefore, annotation
errors are inevitable. This problem has to do with the
current state of the art, so it is possible that in the future
it will be solved. There is a second problem, however,
that is more subtle and not so easy to address. Audio,
and especially music, is heard and described differently
by each listener. There are, however, attributes of audio
that most listeners will agree upon, like the general
structure of the piece, the style, etc. Ideally, a system for
annotation should automatically extract as much
information as it can and then let the user edit and
expand it.

This leads to a semi-automatic approach that com-
bines both manual and fully automatic annotation into a
flexible, practical user interface for audio manipulation.
This paper describes a framework for building audio
analysis tools and integrating them using a semi-
automatic graphical interface. The framework has been
designed to be flexible and to accommodate new algo-
rithms easily.

In addition, a new approach to segmentation of audio
files based on texture is described. The combination of
temporal segmentation and sound classification signi-
ficantly reduces the overhead of manual annotation and
forms a powerful foundation for audio analysis applica-
tions. Moreover, it can be used to improve classification
performance by using a texture-adaptive window size for
integrating classification results.

1.1. Applications

There are several possible application areas for semi-
automatic audio analysis tools. Digital video libraries are
an active area of research that could benefit from the
development of such tools. The Informedia project at
Carnegie Mellon (Hauptmann and Witbrock 1997) con-
tains a terabyte of data. Indexing the archive is done
using a combination of speech-recognition, image ana-
lysis and keyword searching techniques. Audio analysis
and browsing tools would enhance the current indexing
techniques, especially for the regions that do not contain
speech.
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Detecting speech segments is very important for auto-
matic speech recognition systems, especially when
dealing with real-world multimedia data. Moreover,
detecting if a speaker is male or female or determining
his/her identity improves recognition performance.

More generally, audio analysis tools can be used to
implement signal responsive algorithms. A compression
algorithm, for example, knowing that a signal contains
speech can use a method that takes advantage of speech
characteristics to achieve a higher compression rate.
Responding to parameters of analysed audio can also be
used by interactive algorithms performing animation or
sound synthesis in virtual reality simultations and com-
puter games.

There are many libraries of sound effects and instru-
ment samples available. Due to their large size, search-
ing for a particular sound can be a daunting task. Using
audio-similarity retrieval techniques and fast browsing
can greatly accelerate this process.

1.2. Related work

A number of techniques for audio analysis have recently
been proposed. In this section, some of these systems,
relevant to our work, will be briefly described. A more
complete overview can be found in Foote (1999).

A robust multi-feature music speech discriminator is
described in Scheirer and Slaney (1997). A similar dis-
criminator is used in Rossignolet al. (1998) to initially
separate speech from music and then detect phonemes
or notes accordingly. A multi-feature classifier based on
spectral moments for recognition of steady-state instru-
ment tones is described in Fujinaga (1998).

A retrieval-by-similarity system for isolated sounds
has been developed at Muscle Fish LLC (Wold, Blum,
Keislar and Wheaton 1996). Users can search for and
retrieve sounds by perceptual and acoustical features,
can specify classes based on these features and can ask
the engine to retrieve similar or dissimilar sounds.

Speech Skimmer (Arons 1997) is an example of push-
ing audio interaction beyond the tape-recorder metaphor.
The user can audition spoken documents at several times
real-time, using time compression techniques and seg-
mentation based on pitch. Hidden Markov Models are
used in Boreczky and Wilcox (1998) and Kimber and
Wilcox (1996) for segmentation and analysis of recorded
meetings by speaker.

2. FRAMEWORK

All these projects use similar features, classifications and
algorithms for different tasks. Therefore, in the design
of our system, we made an effort to abstract the common
elements and use them as architectural building blocks.
This facilitates the integration of different techniques
under a common framework and interface. In addition,
it helps rapid prototyping since the common elements

are written once, and developing and evaluating a new
technique or application requires writing only the new
task-specific code.

Typically, sound analysis systems follow a bottom-up
processing architecture where sensory information flows
from low-level signals to higher-level cognitive repre-
sentations. However, there is increased evidence that the
human auditory system uses top-down as well as
bottom-up information flow (Slaney 1997). A top-down
(prediction-driven) approach has been used for computa-
tional auditory scene analysis (Ellis 1996). An extension
to this approach with a hierarchical taxonomy of sound
sources is proposed in Martin (1998). In the design of
our framework, we tried to have a flexible architecture
that can support these models of top-down flow and hier-
archical classification as well as traditional bottom-up
processing.

2.1. Architecture

The framework is named MARSYAS after a Greek
mythological figure. The initials stand for MusicAl
Research SYstem for Analysis and Synthesis. It is
implemented using a client–server architecture. The
server written in C++, contains all the signal processing
and pattern recognition modules optimised for perform-
ance. The client, written in Java, contains only the user
interface code and communicates with the computation
engine via sockets.

This breakdown has the advantage of decoupling the
interface from the computation code and allows different
interfaces to be built that use the same underlying com-
putational functionality. For example, the server can be
accessed by different graphical user interfaces, scripting
tools, web crawlers, etc. Both the server and the client
run on Solaris, SGI, Linux and Windows (95, 98 and
NT) platforms.

Special attention was given to abstracting the audio
analysis process using object-oriented programming
techniques. Abstract classes are used to provide a
common API for the building blocks of the system, and
inheritance is used to factor out common operations. The
main classes of the system can roughly be divided into
two categories: process-like objects and data-structure-
like objects.

Process objects:

Transformations are the low-level signal processing
units used by the system. They take as input a frame
of sound samples and output a transformation of that
frame. Some examples are: power spectral density,
cepstrum, windowing, digital filtering.

Features process a frame of sound samples and output
a vector which, unlike transformations, is reduced
significantly in dimensionality. They typically use
sound transformations for their calculations. Because
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the output is a vector, several ‘physical’ features can
be combined. For example, both spectral centroid and
roll-off involve the calculation of power spectral den-
sity, and it is possible to bundle them together into
one feature for increased performance or to use them
separately for rapid prototyping.

Memories are circular buffers that hold previously cal-
culated features for a limited time. They are used to
compute means and variances of features over large
windows without recomputing the features. They can
have different sizes depending on the application.

Iterators break up a sound stream into frames. For each
frame they use features and memories to calculate a
feature vector. The result is a time-series of feature
vectors which is called the feature map. Typically,
there is a different iterator for each classification
scheme. For example, a silence/non-silence iterator
uses energy as a feature and has no memories. A
more complicated iterator like the music/speech iter-
ator uses nine features and two memories (of different
size) for feature calculation.

Classifiers take as input a feature vector and return its
estimated class. They are trained using labelled fea-
ture maps.

Segmentors take as input feature maps and output a
signal with peaks corresponding to segmentation
boundaries.

Data structure objects:

Vectors are the basic data components of the system.
They are float arrays tagged with sizes. Operator
overloading is used for vector operations to avoid
writing many nested loops for signal processing code.
The operator functions are inlined and optimised. The
resulting code is easy to read and understand without
compromising performance.

Sound dataobjects contain samples of audio as vectors
with additional header information such as sample
rate, channels, etc.

Feature mapsare time-series of feature vectors. Feature
maps can be class labelled for evaluation and train-
ing.

Time regionsare time intervals tagged with annotations
information.

Time lines are lists of time regions.
Time treesare arbitrary trees of time regions. They rep-

resent a hierarchical decomposition of audio into suc-
cessively smaller segments (see figure 1).

All the objects contain methods to read/write them to
files and transport them using the socket interface. For
example, a calculated feature map can be stored and
used to evaluate different classifiers without having to
redo the feature calculation for each classifier.

Although the objects form a natural bottom-up hier-
archy, top-down flow of information can be expressed

Figure 1. Segmentation peaks and corresponding time tree.

in the framework. As a simple example, a silence feature
can be used by an iterator for music/speech to avoid
calculating features on silent frames. Similarly, hierarch-
ical classification can be expressed using multiple itera-
tors with different features.

2.2. Features

In our system we have implemented a number of the
features that have been proposed in the literature. These
features form a pool from which different algorithms can
pick specific features depending on the specific task.
Many classification algorithms, for example, must be
invariant to loudness so they would not use energy as a
feature. On the other hand, a segmentation algorithm
would probably include energy as one of the features
indicating a change in texture.

Some of the currently supported features, with refer-
ences to systems that describe and use them, are given
below.

Spectral centroid is the balancing point of the spec-
trum. It can be calculated using

whereAI is the amplitude of frequency binI of the
spectrum (Woldet al. 1996, Scheirer and Slaney
1997, Fujinaga 1998, Rossignolet al. 1998).

Spectral momentsare statistical measures that charac-
terise the shape of the spectrum (Fujinaga 1998).

Spectral flux is the 2-norm of the difference between
the magnitude of the short time Fourier transform
(STFT) spectrum evaluated at two successive sound
frames. The STFT is normalised in energy (Scheirer
and Slaney 1997, Rossignolet al. 1998).

Pitch is a pitch estimate for the frame and can be calcu-
lated using various different techniques (Rabiner,
Cheng, Rosenberg and McGonegal 1976).
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Harmonicity is measure of how strong the pitch percep-
tion for a sound is (Woldet al. 1996). It can also be
used for voiced/unvoiced detection.

Mel-frequency cepstral coefficients (MFCC)are com-
monly used in speech recognition (Kimber and
Wilcox 1996, Scheirer and Slaney 1997). They are a
perceptually motivated compact representation of the
spectrum (Hunt, Lennig and Mermelstein 1996).

Linear prediction (LPC) reflection coefficients are
used in speech research as an estimate of the speech
vocal tract filter (Makhoul 1975).

Other features supported include zero crossings,
RMS, spectral roll-off and others. For all these features,
means, variances and higher-order statistics over larger
time windows can be calculated using memories. New
features can easily be added to the system by writing
only the code for computing the feature value from a
frame of sound samples.

2.3. Classifiers

Currently, two statistical pattern recognition classifiers
are implemented as part of the system. For a more com-
plete description of these classifiers and statistical pat-
tern recognition in general, refer to Duda and Hart
(1973).

The Gaussian (MAP) classifier assumes each class can
be represented as a multi-dimensional normal distribu-
tion in feature space. A labelled data set is used to train
the classifier by calculating the parmeters for each par-
ticular class. This classifier is typical of parametric stat-
istical classifiers that assume a particular form for the
class probability density functions.

Unlike parametric classifiers, the K-nearest-neighbour
classifier directly uses the training set for classification
without assuming any mathematical form for the under-
lying class probability density functions. Each sample is
classified according to the class of its nearest neighbour
in the training data set. In K-NN, the K nearest-
neighbours are calculated and voting is used to deter-
mine the class.

Due to the flexibility of the architecture, new and
more advanced classifiers can easily be added. Gaussian
mixture and neural network classifiers are currently
under development. The ability to have different classi-
fiers allows trade-off between classification speed and
accuracy, depending on the application.

2.4. Framework evaluation

The data used for evaluating the system consists of about
two hours of audio data. There are forty-five minutes
of speech, forty-five minutes of music, and about thirty
minutes of mixed audio. Radio, live recordings of
speech, compact discs and movies representing a variety
of speakers and music styles were used as data sources.

As a test for the architecture, a music/speech discrim-
inator similar to the one described in Scheirer and
Slaney (1997) and Rossignolet al. (1998) was imple-
mented. The implementation was used to test and refine
the design of the framework. The discriminator runs in
real time on an SGI 02 workstation. Figure 2 shows the
layout and information flow of the implementation.

The performance of our system for music/speech dis-
crimination is comparable to the recognition accuracy of
current systems (Scheirer and Slaney 1997, Rossignolet
al. 1998) (90.1% for the K-NN(5) classifier). A direct
comparison is impossible due to the differences in data
sets and classifiers. We use a cross-validation testing
framework (Scheirer and Slaney 1997) to ensure that the
evaluation is not dependent on the particular test and
training sets we have used.

In addition, an instrument identification system for
steady-state tones similar to Fujinaga (1998) has been
implemented. Similarity retrieval as described in Wold
et al. (1996) is also supported.

3. SEGMENTATION

Segmentation is based on the idea that transitions in
audio texture will result in sudden changes of values in
most of the features. This idea is consistent with research
in psychoacoustics (Bregman 1990) where multiple per-
ceptual cues are combined to indicate the onset of a new
sound event.

The algorithm works in four stages:

(1) A time series of feature vectorsVt is calculated by
iterating over the sound file. Each feature vector can
be thought of as a short description of the corres-
ponding time-frame.

(2) A distance-metric∆t = ||Vt − Vt−1|| is calculated
between successive frames of sound. In our imple-
mentation we use a Mahalonobis distance. It is
defined by

(2) D(x,y) = (x − y)T Σ−1(x − y),

whereΣ is the feature covariance matrix calculated
from the training set. Other distance metrics, pos-
sibly using relative feature weighting, can also be
used.

(3) The derivative d∆t/dt of the distance signal is taken.
Thresholding is then used for finding the peaks of
the result. The derivative of the distance will be low
for slowly changing textures and high during
sudden transitions. Therefore, the peaks roughly
correspond to texture changes.

(4) Peaks are picked using simple heuristics and used
to create the segmentation of the signal into time
regions. As a heuristic example, a minimum dura-
tion between successive peaks can be set to avoid
small regions. The result is stored as a time line (i.e.
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Figure 2. Music speech detector.

a list of time intervals) and can be used for browsing
and annotating (see figure 1).

3.1. Combining segmentation and classification

Most of the classification methods proposed in the liter-
ature report improved performance if the classification
results are integrated over larger time windows. How-
ever, using fixed size integration windows blurs the
transition edges between classes. Usually, test data con-
sist of files that do not contain transitions to simplify the
evaluation; therefore this problem does not show up. In
real-world data, however, transitions exist and it is
important to preserve them.

The described segmentation method provides a nat-
ural way of breaking up the data into regions based on
texture. These regions can then be used to integrate clas-
sification results. That way, sharp transitions are pre-
served and the classification performance is improved
because of the integration. Initial experiments in a
number of different sound files confirm this fact. A more
detailed quantitative evaluation of how this method com-
pares to fixed-window integration is under way.

3.2. Segmentation results

The method has been tested using various sound files
from our data set. Representative examples include
detecting a guitar solo entrance or a cymbal crash,
change of speaker, transitions from music to speech, and
musical structure for cyclic (ABAB type) pop songs.

The segmentation results are difficult to evaluate
quantitatively because they depend on the choice of fea-
tures and parameter values like the memory-size, peak-
threshold, distance-metric, and others. Typically, the
resulting regions are perceptually meaningful. For now,
fine-tuning of the parameters is done by the user (or
the programmer) depending on the desired result. For
example, lowering the peak-threshold results in more

and smaller regions. Automatic parameter adjustment is
investigated.

4. USER INTERFACE

The interface looks like a typical tape-recorder style
waveform-editor. However, in addition to the typical
play, fast-forward, rewind and stop buttons, it allows
skipping by either user-defined fixed duration blocks or
time lines containing regions of variable duration. These
time lines are created either by hand or automatically
using the segmentation method described above.

Skipping and annotating using regions is much faster
than manual annotation, in the same way that finding a
song on a CD is much faster than finding it on a tape.

The user can select a region and retrieve similar
sounds. Another possibility is to classify the region
using one of the available classification schemas like the
music/speech discriminator. Finally, each time region
can be annotated by multiple keywords.

In addition, the user can combine time regions to form
a time tree that can be used for multi-resolution brows-
ing and annotation. The tree captures the hierarchical
nature of music pieces, and can therefore be used for
musical analysis.

5. APPLICATIONS

The initial description of MARSYAS appeared in
Tzanetakis and Cook (1999a). A more detailed descrip-
tion of the segmentation algorithm as well as some user
experiments performed for evaluation are given in
Tzanetakis and Cook (1999b). A number of different
applications have been developed using our system.
Most of them are undergraduate senior theses and class
projects in Princeton. Some examples are an instrument
family classification system and a content-based music
library system. In addition, we have investigated the use
of MPEG audio compressed data as a basis for feature
calculation. Finally, the user interface has been used to
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conduct user experiments on how humans annotate and
segment audio (Tzanetakis and Cook 2000).

6. FUTURE WORK

On the interface side, we plan to support multiple time
lines and fast keyword search in annotations. Another
interesting application of our segmentation scheme is
audio thumbnails. For each region, a characteristic seg-
ment has to be selected. These segments are then used
to create a shorter summary version of the original
soundfile.

On the computational side, we are investigating using
a more perceptually accurate front end to the system. A
number of computational models of the ear physiology
have been proposed in the literature (Slaney and Lyon
1990, 1993) and can be used as a basis for feature calcu-
lation.

Most attempts to build music analysis systems in the
past have tried to extract content by first transcribing the
music into symbolic notation and then using music
theory to characterise it. This approach has been chal-
lenged by Scheirer (1996) and Martin, Scheirer and
Vercoe (1998). Current systems try to analyse structure
and content directly from features calculated from the
audio signal. Such systems can easily be implemented
and evaluated using our framework. As a simple
example of music analysis, the structure of cyclic pop
songs can be revealed using our segmentation scheme.
We believe that a combination of our segmentation
scheme with beat tracking methods (Scheirer 1998) can
offer significant information for music style identifica-
tion and music analysis.

Finally, we plan to write a Web crawler that will auto-
matically create segmentation time lines and annotations
for files on the Web.

7. SUMMARY

We designed and implemented a flexible framework for
building and integrating audio analysis tools. A number
of existing techniques were implemented and tested to
evaluate the framework. A new method for audio seg-
mentation based on texture was presented. This method
combined with the analysis tools and using a semi-
automatic user interface offers significant improvements
for audio searching, annotation and browsing. In addi-
tion, it can be used to improve classification perform-
ance by using the results of the segmentation to adapt-
ively change the classification integration window size.
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