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In this paper, we give exact solutions for the convective viscous Cahn–Hilliard equation.

This equation with a general symmetric double-well potential and Burgers-type convective

term was introduced by T. P. Witelski (1996 Studies in Applied Mathematics 96, 277–300) to

study the joint effects of nonlinear convection and viscosity. We consider this equation with

a polynomial, generally asymmetric potential. We also consider both Burgers-type and cubic

convective terms. We obtained exact travelling-wave solutions for both cases. For the former

case, with an additional constraint on nonlinearity and viscosity, we also obtained an exact

two-wave solution.
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1 Introduction

The Cahn–Hilliard equation [5, 29] is now a well-established model of phase separation

in binary systems. The basic underlying idea of this model is that for an inhomogeneous

system, e.g. a system undergoing a phase transition, the thermodynamic potential (e.g.

free energy) should depend not only on the order parameter (that is on concentration for

the binary system), but also on its gradient as well. The idea of such dependence was

introduced by Van der Waals [36] in his theory of capillarity. Due to this dependence,

instead of the usual second order, the resulting diffusion equation for the concentration

becomes a fourth-order PDE. It was introduced as early as 1958 [5]. The linearised

version was treated and the corresponding instability of homogeneous state was identified.

However, it was only much later on that an intensive study of the fully nonlinear form

of this equation started [30]. An impressive amount of work has now been done on

the nonlinear Cahn–Hilliard equation, see [29], as well as on its numerous modifications.

The present paper is devoted to studying the following convective-viscous Cahn–Hilliard

equation

ut −
(
α1u − 2α2u

3
)
ux =

(
u3 − δu2 − u − uxx + μut

)
xx
. (1.1)

To understand the meaning of different terms and corresponding special cases, we need

to give some insight into the history of this equation. The classic nonlinear Cahn–Hilliard

equation with cubic polynomial for the homogeneous part of the chemical potential, as
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was studied in the works of Novick–Cohen and Segel [30], corresponds to α1 = α2 = μ = 0,

ut =
(
u3 − δu2 − u − uxx

)
xx

(1.2)

(here and below our scaling and notation differ from those in the original papers). For

this equation, an exact static kink solution was found. As usual, [8], we call ‘kinks/anti-

kinks’ those solutions which approach different constant values at x → ±∞ with a

more or less localised transition region, typically of a tanh-like form. The solutions

with ux > 0 are called kinks and solutions with ux < 0 anti-kinks. If δ � 0, equation

(1.2) represents the system with the asymmetric fourth-order polynomial potential and

possesses an asymmetric kink solution. For the classic Cahn–Hilliard equation (1.2), the

asymmetric potential and correspondingly the static asymmetric kink solution were usually

discarded [30] because for this case the global conservation of the order parameter is

violated. Later several authors introduced the nonlinear convective Cahn–Hilliard equation

(CCHE) in one space dimension [8, 24, 39]. It corresponds to α2 = μ = δ = 0 in equation

(1.1):

ut − αuux =
(
u3 − u − uxx

)
xx

(1.3)

(for the equations with α2 = 0 we will drop the index at α1). Leung [24] proposed this

equation as a continual description of lattice gas phase separation under the influence of

an external field. Similarly, Emmott and Bray [8] proposed this equation as a model for

the spinodal decomposition of a binary alloy in an external field E. As they noticed, if

the mobility (see the mobility definition, e.g., in [7]) is independent of the order parameter

(concentration), the term involving E will drop out of the dynamics. To get nontrivial

results, they presumed the simplest possible symmetric dependence of mobility on the

order parameter, viz. M ∼ 1 − au2. Then, they obtained the Burgers-type convection

term in equation (1.3) with the coefficient α = 2aE. Thus, the sign of α depends both

on the direction of the field and on the sign of a. Witelski [39] introduced the equation

(1.3) as a generalisation of the classic Cahn–Hilliard equation or as a generalisation

of the Kuramoto–Sivashinsky equation [23, 35] by including a nonlinear diffusion term.

In [8], [24], [34], and [37]– [39], several approximate solutions and only two exact static

kink and anti-kink solutions were obtained. The ‘coarsening’ of domains separated by

kinks and anti-kinks was also discussed. The convective Cahn–Hilliard equation with

cubic nonlinearity in the convective term was first derived in a model of kinetically

controlled evolution of two-dimensional crystals [18, 19]. This equation corresponds to

μ = 0 in equation (1.1):

ut − α1uux + 2α2u
3ux =

(
u3 − δu2 − u − uxx

)
xx
. (1.4)

Recently, a somewhat different equation with cubic nonlinearity in the convective term

and containing additional derivatives terms was obtained in [17] in the completely different

context of nonlinear optics, see Section 2 below. Equation (1.4) was approximately solved

in [18]; in [19] the exact travelling-wave solution of this equation was obtained for the

asymmetric potential, that is δ � 0. Higher-order polynomials for both the convective

terms and potential were also considered in [41]. On the other hand, Novick–Cohen

[28] introduced the viscous Cahn–Hilliard equation (VCHE) to include some viscous
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effects which are neglected in the derivation of the classic Cahn–Hilliard equation [5]. It

corresponds to α1 = α2 = δ = 0 in equation (1.1):

ut =
(
u3 − u − uxx + μut

)
xx
. (1.5)

The VCHE could also be derived [1] as a certain limit of the classic phase-field model

(see [4], [9], [32], and [33] and references therein for the derivation of phase-field model

and its relations to other phase-separation models).

To study the joint effects of nonlinear convection and viscosity, Witelski [40] introduced

the convective-viscous-Cahn–Hilliard equation (CVCHE) with a general symmetric double-

well potential F (u):

ut − αuux =

(
dF (u)

du
− uxx + μut

)
xx

. (1.6)

It is worth noting that all results, including the stability of solutions, were obtained

without specifying a particular functional form of the potential. Thus, they are valid

both for the polynomial and logarithmic [29] potential. With an additional constraint

imposed on nonlinearity and viscosity, the approximate travelling-wave solutions were

obtained in [40]. In our previous communication [27], we obtained exact travelling-wave

solutions for several special cases of equation (1.1): (a) α2 = μ = 0; δ � 0, which is

the generalisation of (1.3); (b) α2 = 0; μ � 0, both for δ = 0 and δ � 0 , which

is similar to equation (1.6), but with generally asymmetric polynomial potential; (c)

μ = 0; α1 � 0; α2 � 0, both for δ = 0 and δ � 0 (we were not aware of the existence

of an exact solution for δ � 0 in [19]). For case (a), depending on the signs of α and

δ, there are four cases for the travelling-wave solutions as shown in Figure 1, which is

essentially different from the simple symmetry observed for equation (1.3) [8,24]. For case

(b), with δ = 0, an additional exact two-wave solution was given. The distinction between

the symmetric and asymmetric potential, i.e. zero and non-zero δ, is important and will

be traced throughout the present paper because it reflects the physical difference between

the absence and presence of thermodynamic preference for one of the stationary states.

Interestingly, equation (1.1) with both α2 � 0 and μ � 0 exhibits some new features

which are absent for any of above special cases. This equation is considered in Section 2

where we give exact travelling-wave solutions and discuss several special cases. We also

give the exact solutions for the Gelens–Knobloch equation [17]. In Section 3, we consider

in detail the convective-viscous Cahn–Hilliard equation with the Burgers-type convective

term, i.e. equation (1.6), but with a quartic polynomial potential. We also give derivation

of several results which were only listed in [27]. Both the single- and two-wave exact

solutions are presented. For the latter, the time evolution is discussed in some detail.

In Section 4, we discuss some limiting forms of the CVCH equation and their relations

to some other well-known nonlinear equations. In Section 5, we consider the hyperbolic

modification of the CVCHE (memory effects). In Section 6, we discuss the obtained results.

Despite several hundreds of papers published on the subject of nonlinear Cahn–Hilliard

equation and its modifications, the existing list of exact solutions is surprisingly short

(see above). Our results add to this list one exact static kink/antikink solution, four exact

travelling kink/antikink solutions, and an exact two-wave solution.
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Figure 1. Kinks and anti-kinks for different values of α and δ: a) α = 1 and δ = 1, b) α = 1 and

δ = −1, c) α = −1 and δ = 1, d) α = −1 and δ = −1.

2 Travelling wave solutions of the convective-viscous Cahn–Hilliard equation with a cubic

convective term

Here we give exact travelling-wave solutions of (1.1). As usual, we call the solutions with

ux > 0 as ‘kinks’ , and solutions with ux < 0 as ‘anti-kinks’. Introducing the travelling-

wave coordinate z = x − vt and integrating once, we obtain the following nonlinear

third-order ordinary differential equation

1

2

(
α2u

4 − α1u
2 − 2vu − c

)
=

(
u3 − δu2 − u − uzz − μvuz

)
z
, (2.1)

where c is an arbitrary constant. At z = ±∞, all derivatives equal zero, i.e. the left-hand

side also equals zero. For a large enough c (having the same sign as α2), the fourth-order

polynomial on the left-hand side has at least two real roots u1, u2 (for definiteness we

take u1 < u2). They will be the stationary values at z = ±∞, where the right-hand side

of equation (2.1) equals zero. Then, the polynomial on the left-hand side of (2.1) may be

presented as

α2u
4 − α1u

2 − 2vu − c = (u − u1) (u − u2)
(
α2u

2 + pu + g
)
, (2.2)

Here, we have only three constraints on five unknown constants u1, u2, p, g and v, because

c is an arbitrary constant:

p = α2 (u1 + u2) , (2.3)

g =
[
(u1 + u2)

2 − u1u2

]
α2 − α1, (2.4)

v =
u1 + u2

2

[(
u2

1 + u2
2

)
α2 − α1

]
. (2.5)
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Looking for monotonic solutions, we introduce the ansatz:

du

dz
= −κ (u − u1) (u − u2) . (2.6)

If κ > 0, the solution we are looking for increases monotonically from the smaller

stationary value u1 at z = −∞ to the larger stationary value u2 at z = +∞. According

to the above definition, it is a kink. If κ < 0, the solution decreases from u2 at z = −∞
to u1 at z = +∞, i.e. it is an anti-kink. Actually, equation (2.6) is the simplest possible

polynomial expression, yielding zero values of the derivative uz at z = ±∞. Using the

ansatz, we rewrite equation (2.2) as

α2u
4 − α1u

2 − 2vu − c = − 1

κ

(
α2u

2 + pu + g
)
uz = − 1

κ

(
1

3
α2u

3 +
1

2
pu2 + gu

)
z

, (2.7)

where p and g can be expressed through u1, u2 using equations (2.3) and (2.4), respectively.

Using again the ansatz (2.6), we express the derivatives on the right-hand side of equation

(2.1). Next, inserting equation (2.7) into the left-hand side of equation (2.1), rearranging

the terms, and equating coefficients at the same powers of u, we finally obtain three

constraints:

2κ2 − 1 − α2

6κ
= 0, (2.8)(

3κ2 +
α2

4κ

)
(u1 + u2) − δ + κμv = 0, (2.9)

κ2
[
(u1 + u2)

2 + 2u1u2

]
+ 1 +

α1

2κ
− α2

2κ

[
(u1 + u2)

2 − u1u2

]
+ κμv (u1 + u2) = 0. (2.10)

Equations (2.8)–(2.10) together with (2.5) constitute the system of four algebraic equa-

tions for the four unknown constants κ, u1, u2, and v. If this system is satisfied, the corres-

ponding solutions of the first-order equation (2.6) are simultaneously exact travelling-wave

solutions of equation (1.1). Equation (2.6) is easily integrated yielding

u =
u1 + u2 exp {κ (u2 − u1) (z + φ)}

1 + exp {κ (u2 − u1) (z + φ)} , (2.11)

where φ is an arbitrary constant. It is natural to take the position of the maximal value

of the derivative uz (where uzz = 0), as z = 0; then φ = 0. The solution (2.11) could be

rewritten in the form

u =
u2 + u1

2
+

u2 − u1

2
tanh

[
1

2
κ (u2 − u1) (x − vt)

]
, (2.12)

which is generally an asymmetric kink (for κ > 0), or anti-kink (for κ < 0 ) moving with

the velocity v, equation (2.5). Contrary to the simple functional form of equation (2.12),

the parametric dependence of κ, u1, u2, and v on α1, α2, δ, and μ is quite complicated, see

equations (2.8)–(2.10) and (2.5) and exhibits different families of solutions.

For α2 = 0, equation (2.8) reduces to 2κ2 = 1. Results for this case were briefly listed

in [27] and will be discussed in more detail in the next section. For an arbitrary non-zero

α2 equation (2.8) is a cubic equation. It has three different roots if α2
2 < 8/3, and only

a single root if α2
2 > 8/3, see Figure 2. In [27] for α2 � 0 we considered only μ = 0,
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Figure 2. The roots κ of equation (2.8) as functions of α2.

i.e. the zero viscosity case. In this case for arbitrary α2, the non-zero velocity of the

travelling-wave solution is possible if δ � 0 only, which is evident from equations (2.5)

and (2.9). The non-zero δ means that one of the stationary states is thermodynamically

preferential. If, on the other hand,

3κ2 +
α2

4κ
= 0, (2.13)

i.e. an additional constraint is imposed on α2 and κ, the non-zero velocity becomes possible

for δ = 0 as well. However, for this case, equation (2.13) together with equation (2.8)

completely determines both α2 and κ, i.e. α2 = ∓ 3
2

and κ = ± 1
2
. This means that for

μ = 0 and symmetric potential the travelling-wave solutions are possible only for two

special values of the cubic convective term coefficient. Therefore, without thermodynamic

preference of any stationary state (and without dissipation) the dynamic transition between

them is possible for a very special form of nonlinear ‘forcing’ only.

For the asymmetric potential in equation (1.1), the transition to the non-zero viscosity

μ results in only quantitative changes. However, for the symmetric potential, δ = 0, the

combined action of the cubic nonlinearity and viscosity changes the situation drastically.

For this case, introducing auxiliary variables X = u1 + u2, Y = u2 − u1, we can rewrite

equations (2.9)–(2.10) and (2.5) as(
3κ2 +

α2

4κ

)
X + κμv = 0, (2.14)

3

2

(
κ2 − α2

4κ

)
X2 − 1

2

(
κ2 +

α2

4κ

)
Y 2 + κμvX + 1 +

α1

2κ
= 0, (2.15)

v =
1

2
X

[α2

2

(
X2 + Y 2

)
− α1

]
. (2.16)

To obtain the values of X, Y (i.e. u1, u2 ) and v, the system (2.14)–(2.16) should be solved

for every real root of the cubic equation (2.8). The roots of equation (2.8) yielding the
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‘possibilities’ of nontrivial solutions are shown in Figure 2 as a function of α2. However,

this is only a possibility: for the existence of corresponding kinks and anti-kinks, the

system (2.14)–(2.16) should have real solutions X, Y and v . Eliminating v from this

system, we obtain (
3 +

α2

κ

)
X + κμ

[α2

2

(
X2 + Y 2

)
− α1

]
X = 0, (2.17)

3
(
1 +

α2

κ

)
X2 +

(
1 +

2α2

3κ

)
Y 2 = 4

(
1 +

α1

2κ

)
. (2.18)

The root X = 0 corresponds to the static kink/anti-kink solutions. For α2 = 0, they

coincide with the well-known static solutions [8]. For X � 0 equation, (2.17) reduces to

X2 + Y 2 =
2α1

α2
− 2

μ

(
3

κα2
+ 2

)
. (2.19)

For given α1, α2, and μ any positive solution (X2, Y 2) of the linear system (2.18)–(2.19)

corresponds to the travelling-wave solution (2.12) with u1 + u2 = X and u2 − u1 = Y .

Thus, the simultaneous presence of the cubic convective term and viscosity enables the

existence of the exact travelling-wave solutions without additional constraints imposed on

the parameters, even if neither of the stationary states is thermodynamically preferential.

Mostly, the presence of the higher-order convective term influences the properties of

the nonlinear Cahn–Hilliard equation to a great extent. However, on the whole, it will

not enable travelling-wave solutions in the case of a symmetric potential. Here, we

consider another example of the modified nonlinear Cahn–Hilliard equation with the

cubic nonlinearity in the convective term. It arises in a field quite remote from the

applications mentioned above.

Recently, the convective Cahn–Hilliard equation with the cubic nonlinearity in the

convective term and additional nonlinear odd-order derivative terms was derived by

Gelens and Knobloch [17]. They studied the supercritical complex Swift–Hohenberg

equation (CSHE) focusing on its applications in the field of nonlinear optics (for the

details see [16] and [17]). The CSHE is one of universal, generic equations, which describe

nonlinear systems near the threshold of stability [6, 31]. The general contents of [17] go

far beyond the scope of the present paper. Here, we focus on a particular subject of

the nonlinear phase equations (Sections V and VI of [17]) and, even more narrowly, on

the modified convective Cahn–Hilliard equation which arises in this context. Rewriting

the CSHE in terms of the amplitude and phase gradient, after a careful analysis of

the relevant time, space, phase and amplitude scales, Gelens and Knobloch derived a

single nonlinear equation for small perturbations of the phase gradient above the finite

amplitude spatially homogeneous oscillations. From further on this equation will be called

Cahn–Hilliard–Gelens–Knobloch equation (CHGKE):

ut =
[
−2

(
1 + b̃β̃

)
u − uxx + 2u3

]
xx

+
[
2
(
β̃ − b̃

)
u2 + β̃

(
3u2

x − u4 + 4uuxx
)]

x
, (2.20)

where u is the phase gradient deviation from zero value for the spatially homogeneous

oscillations. In (2.20), β̃ and b̃ are imaginary parts of the constant coefficients at the

fourth-order differential operator and the nonlinear term, respectively, in the CSHE [17].
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To keep some resemblance to the notation in [17], we have used the same letters for these

parameters. However, to avoid confusion with the notation in other sections, we supplied

them with tildes. Looking for the travelling-wave solutions, viz. u(z); z = x − vt, we have

[
−2

(
1 + b̃β̃

)
u − uzz + 2u3

]
zz

+
[
vu + 2

(
β̃ − b̃

)
u2 + β̃

(
3u2

z − u4 + 4uuzz
)]

z
= 0. (2.21)

In the terminology of [17], we are looking for the ‘single domain wall solution’. Denoting

the stationary values at infinity as u1 and u2 (for definiteness presuming again u1 < u2),

we again use the ansatz (2.6). We proceed along the same lines as above: substitute the

ansatz into equation (2.21) and equate to zero coefficients of all powers of u. Denoting

for the convenience u1 + u2 = X and u1u2 = r, we get four algebraic constraints on four

unknown parameters κ, r, X, and v:

κ3 − κ +
β̃

6

(
11κ2 − 1

)
= 0, (2.22)

X

[
κ3 +

β̃

6

(
7κ2 + 1

)]
= 0, (2.23)

r
[
2κ3 + 3β̃κ + β̃

]
= X2

(
β̃ − κ3

)
− 2

(
β̃ − b̃

)
− 2

(
1 + β̃b̃

)
κ, (2.24)

v = X
[
β̃X2 − 2β̃r − 2

(
β̃ − b̃

)]
. (2.25)

If these constraints are satisfied, the solution of the first-order equation (2.6) is sim-

ultaneously a special solution of equation (2.20). For β̃ = 0, equations (2.22) and (2.23)

reduce to κ2 = 1 and X = 0, respectively. Then, the equation (2.21) is reduced to the

CCHE [8, 24]. Considering β̃ � 0, let us assume X � 0; then equations (2.22) and (2.23)

may be compatible only for special values of β̃ and κ. A simple check shows that the

corresponding value of κ should be imaginary. Thus, even for β̃ � 0, the only possibility

is X = 0 and, consequently, v = 0. So only the static symmetric domain wall solutions are

possible. The stationary states are u2 = −u1 =
√

|r|, and the solution (2.12) simplifies to

u =
√

|r| tanh
((

κ
√

|r|
)
x
)
, (2.26)

where the values for κ are given by the solutions of the cubic equation (2.22) and r is

given by

r
[
2κ3 + 3β̃κ + β̃

]
= −2

(
β̃ − b̃

)
− 2

(
1 + β̃b̃

)
κ. (2.27)

Thus, even for a non-zero β̃, the exact single domain wall solutions are only the static

ones.

Of course, in complete analogy to the exact static solutions of the CCHE (where it

was proven both numerically and by the approximate asymptotic analysis [8, 37, 38]),

this does not prevent movement and coarsening for the systems of multiple defects in the

CHGKE, as was observed numerically [17]. The values of κ as the function of β̃ are

shown in Figure 3, where there are three monotonically descending branches of the κ(β̃)

dependence. For β̃ < 0, two sources (kinks) and one sink (anti-kink) solutions are possible,

while for β̃ > 0 one source (kink) and two sinks (anti-kinks) are possible. Again, these

are only the possibilities: for each root κ the negativity of r should be checked. For the
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Figure 3. The roots κ of equation (2.22) as functions of β̃.

CHGKE, unlike the CCHE, the number of κ and (enlarging with |β̃|) asymmetry of their

values are increased, see Figure 3. This may enhance, for the multiple defects system,

the numerically observed irregular behaviour [17]. We see that despite the presence of

the cubic convective term for the CHGKE all exact domain wall solutions are static.

Thus, such a term does not guarantee, by itself, the existence of the exact travelling-wave

solutions.

3 The convective-viscous Cahn–Hilliard equation with the Burgers-type convective term

The convective-viscous Cahn–Hilliard equation (CVCHE) with the Burgers-type con-

vective term and with a general symmetric double-well potential was introduced by

Witelski [40], see equation (1.6). This equation is interesting in several aspects. Firstly, it

explicitly demonstrates that the combined action of the external forcing, represented by

the convective term, and the dissipation, represented by the viscous term, enables stable

travelling-wave solutions even if neither of the stationary states is thermodynamically

preferential. Secondly, as was shown in [1], the viscous CH equation could be obtained

as a limit of zero specific heat from the standard phase-field model [4]. Let us move

‘backwards’ to the non-zero specific heat case, now from the CVCHE. To this end, we

introduce an auxiliary variable ω, which is equal to the expression in the brackets on

the right-hand side of equation (1.6) and add the time derivative ωt to the left-hand

side of this equation. Thus, we arrive at a system of two nonlinear equations for u

and ω. Remarkably, the travelling-wave solutions for this system are closely related to

the travelling-wave solutions for the Penrose–Fife phase field model [9, 26, 31, 32]. If the
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potential is the asymmetric quartic polynomial, (1.6) reduces to

ut − αuux =
(
u3 − δu2 − u − uxx + μut

)
xx
. (3.1)

This is equation (1.1) with α2 = 0 (here and below we drop the lower index of α1). First,

we look for a single travelling-wave solution. The insertion of zero value of α2 into the

algebraic system (2.8)–(2.10) and (2.5) yields 2κ2 = 1, and

3κ2 (u1 + u2) − δ + κμv = 0, (3.2)

1

2

[
(u1 + u2)

2 + 2u1u2

]
+ 1 +

α

2κ
+ κμv (u1 + u2) = 0, (3.3)

v = −α
u1 + u2

2
. (3.4)

For a non-zero δ, i.e. for an asymmetric potential, the solution of the system (3.2)–(3.4)

yields the non-zero velocity v and stationary values u1, u2 for the solutions (2.12) without

any additional limitations on the parameters α, μ, and δ [27]. For the single travelling

wave we will be mainly interested, due to the reason mentioned above, in the case of

symmetric potential δ = 0. Then, neither of the stationary states has a thermodynamic

preference. For this case, from equations (3.2) and (3.4), it follows that

v

(
κμ − 3

α

)
= 0. (3.5)

It is now evident that for

κμα = 3, (3.6)

i.e. for the special balance between the nonlinearity and dissipation, equation (3.5) is

satisfied for an arbitrary v. This is evidently in accord with the above-mentioned result

of Witelski [40]. As opposed to the δ � 0 case, this is an essentially non-equilibrium

situation, where the wave travels due to the precise balance between the external forcing

and dissipation. On the other hand, if equation (3.6) is satisfied, the introduction of the

thermodynamic preference, i.e. non-zero δ, will destroy this balance. Thus, this solution

becomes impossible for the special values of α and μ which satisfy equation (3.6). As was

shown in [40], such solutions are stable. The viscosity μ is positive, so there is always a

kink, κ > 0, for a positive α, i.e. the positive direction of the applied field, see [8], and

an anti-kink for a negative α. However, one has to remember that the sign of α depends

both on the direction of the field and on the sign of the coefficient a in the expression for

mobility [8], see Section 1. For this family of solutions there remains only one constraint

imposed on the stationary values u1, u2, see equation (3.3):

3 (u1 + u2)
2 + (u2 − u1)

2 = 4
(
1 +

α

2κ

)
. (3.7)

As is evident from the form of solution (2.12) and the expression for velocity (3.4), the

absolute value of velocity and asymmetry of the kink are proportional to u1 + u2, while

the amplitude and “steepness” are proportional to u2 − u1. This means that the trivial

constant solution corresponds to u1 = u2. This yields simultaneously the strict upper limit
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on the absolute value of the velocity for this family of solutions:

|v| < vm =
|α|√

3

(
1 +

α

2κ

) 1
2

. (3.8)

Because α = 3
κμ

, the upper limit of the value μ |v|, as determined by equation (3.8),

increases without limit for μ → 0 but approaches a constant value for increasing μ.

The CVCHE (3.1) possesses one more interesting feature: it admits an exact two-wave

solution if an additional constraint is imposed on the parameters. In [27], such a solution

was given for the case of δ = 0. Here, we obtain a solution for the generally asymmetric

potential δ � 0 and afterwards the symmetric potential case will be discussed in some

detail. To obtain this solution, we use Hirota’s method [22]. The first step of this method

is to cast equation (3.1) into a bilinear form using the Hopf–Cole substitution

u = β
Fx

F
. (3.9)

To obtain the bilinear form, we use the ansatz

u3 − u − uxx + μut = γu, (3.10)

where γ is an unknown parameter. Then, it follows from equation (3.1) that

ut − αuux = γuxx. (3.11)

Evidently, if u satisfies both equations (3.10) and (3.11), it satisfies equation (3.1) as

well, but of course, not necessarily vice versa. Thus, our ansatz selects only a special set

of solutions. As is well known, the substitution of equation (3.9) for u into equation (3.11)

yields the linear diffusion equation for F; however only if 2γ = αβ:

Ft = γFxx. (3.12)

The substitution of equation (3.9) into equation (3.10) yields the following bilinear

equation, if β2 = 2:

Fx (3Fxx − δβFx − μFt) − F [Fxxx + (1 + γ)Fx − μFxt] = 0. (3.13)

We look for solution of equation (3.13) in a form of a series

F = 1 + εF (1) + ε2F (2) + ε3F (3) + · · · (3.14)

Terms of order ε are
∂

∂x

[
F (1)
xx + (1 + γ)F (1) − μF

(1)
t

]
= 0, (3.15)

or, integrating and setting integration constant equal to zero,

F (1)
xx + (1 + γ)F (1) − μF

(1)
t = 0. (3.16)
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Terms of order ε2 are

∂

∂x

[
F (2)
xx + (1 + γ)F (2) − μF

(2)
t

]
= F (1)

x

(
3F (1)

xx − δβF (1)
x − μF

(1)
t

)
. (3.17)

If equation (3.17) is homogeneous, F (2) = 0 is a solution. Therefore, for F (2) = 0 to be a

solution, the equation

3F (1)
xx − δβF (1)

x − μF
(1)
t = 0 (3.18)

should be satisfied. If this is the case, for the terms of order ε3 we also have the

homogeneous equation,

∂

∂x

[
F (3)
xx + (1 + γ)F (3) − μF

(3)
t

]
= 0, (3.19)

i.e. F (3) = 0 is a solution of equation (3.19). This means that the series (3.14) could

be terminated, if equations (3.16) and (3.18) are satisfied simultaneously. Substitution of

equation (3.14) into the linear equation (3.12) yields, evidently,

F
(1)
t = γF (1)

xx . (3.20)

Thus, F (1) should satisfy simultaneously three linear equations (3.16), (3.18) and (3.20).

Looking for solutions of equations (3.16), (3.18) and (3.20) in the form

F (1) ∼ exp {ρ (x − vt)} , (3.21)

we get the following equations for ρ and v (γ = 1
2
αβ):

ρ2 + μvρ + (1 + γ) = 0, (3.22)

3ρ2 − δβρ + μvρ = 0, (3.23)

γρ2 + vρ = 0. (3.24)

The system (3.22)–(3.24) is overdetermined; again here there necessarily should be a

constraint on α, μ and δ, reflecting the balance between external forcing, dissipation and

(for δ � 0) thermodynamic preference. Eliminating ρ and v from equations (3.22)–(3.24),

we obtain the following constraint

(αβμ − 6)2 (α + β) = 8δ2 (αμ − β) . (3.25)

Remarkably, for δ = 0 this constraint reduces to αβμ = 6; here β2 = 2 = 1
/
κ2, and

we regain the crucial constraint (3.6), i.e. ακμ = 3. If the condition (3.25) is fulfilled, the

allowed values of ρ and v are

ρ1,2 =
1

4
δβ ± 1

2

√
1

2
δ2 + 2 + αβ, (3.26)

v1,2 = −1

4
αδ ∓ 1

4
αβ

√
1

2
δ2 + 2 + αβ. (3.27)
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Then, the solution F is

F = 1 + exp {ρ1 (x − v1t) + φ1} + exp {ρ2 (x − v2t) + φ2} , (3.28)

where φ1 and φ2 are arbitrary constants. Then, the two-wave solution of equation (3.1) is

u = β
ρ1 exp {ρ1 (x − v1t) + φ1} + ρ2 exp {ρ2 (x − v2t) + φ2}
1 + exp {ρ1 (x − v1t) + φ1} + exp {ρ2 (x − v2t) + φ2} . (3.29)

It is instructive to consider in some detail the time evolution of equation (3.29). To avoid

unnecessary complications, we do this for the physically important case of a symmetric

potential, where all expressions are essentially simplified. For δ = 0, equations (3.26) and

(3.27) reduce to

ρ1,2 = ±σ = ±1

2

√
2 + αβ, (3.30)

v1,2 = ∓v = ∓1

2
αβσ, (3.31)

and solution (3.29) takes the form

u =
σ

κ

exp {σ (x + vt) + φ1} − exp {−σ (x − vt) + φ2}
1 + exp {σ (x + vt) + φ1} + exp {−σ (x − vt) + φ2} . (3.32)

If we select u = 0 at x = 0, it follows that φ1 = φ2 = φ. Let us look at the limits of this

solution both for t → ∞ and t → −∞. For definiteness, we take κ > 0; it follows from

equation (3.6) that α should also be positive. For t → ∞, two waves merge asymptotically

into the well-known static kink [8, 24]

u =
σ

κ
tanh (σx) . (3.33)

Introducing the moving frame z1 = x + vt, we can rewrite (3.29) as

u =

√
1 +

α√
2

exp (σz1) − exp (−σz1 + 2vt)

exp (−φ) + exp (σz1) + exp (−σz1 + 2vt)
. (3.34)

Now, taking limit t → −∞, we obtain

u =

√
1 +

α√
2

exp (σz1)

exp (−φ) + exp (σz1)
, (3.35)

i.e., a single kink moving in the negative direction and connecting u = 0, at z1 → −∞ to

u =
√

1 + α√
2

at z1 → ∞.

On the other hand, introducing the moving frame z2 = x− vt and taking again the limit

t → −∞ we get

u = −
√

1 +
α√
2

exp (−σz2)

exp (−φ) + exp (−σz2)
. (3.36)

This is a single kink moving in the positive direction and connecting u = −√
1+ α√

2
at

z2 → −∞ to zero value at z2 → ∞. So the solution (3.29) describes the kink initially
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Figure 4. The two-wave solution (3.32) of equation (3.1) for σ/κ = 1.3 and φ = 2.

“split” into two parts, moving towards each other and merging asymptotically in t to the

well-known static kink (see Figure 4).

4 Small and large limits of α for CVCHE

As is evident from above, the presence of the convective term changes the properties of

the nonlinear Cahn–Hilliard equation substantially. Hence, it makes sense to consider the

limits of weak and strong external “forcing”, i.e. small and large α limits in CVCHE.

For small α (for definiteness, we presume here α > 0), it is convenient to introduce

W (y, τ) = u(x, t),

y = αx; τ = α2t. (4.1)

Then, equation (3.1) is rewritten as

Wτ − WWy =
(
W 3 − W − α2Wyy + α2μWτ

)
yy
. (4.2)

It is natural to take μ = a/α (also see [40], equation (6.1)); then, a = 3
√

2 corresponds

to an exactly solvable case, see equation (3.6). Solving equations (3.3)–(3.4) for u1 + u2

and u2 − u1, we substitute the corresponding expressions (in terms of v and α) into

equation (2.12). Introducing travelling-wave coordinate η = y − v̄τ, where v̄ = v/α, we

rewrite the stationary solution (2.12) as

w (η) = −v̄ +

[
1 +

α√
2

− 3v̄2

] 1
2

tanh

{
1√
2α

[
1 +

α√
2

− 3v̄2

] 1
2

η

}
. (4.3)

For α → 0, this solution is close to w1 for η < 0, close to w2 for η > 0 and changes

between these values very fast in the narrow region of the width ∼ α at η = 0, where

w1,2 ≈ −v̄ ∓
[
1 − 3v̄2

] 1
2 . (4.4)

For small α, the solution (4.3) is just a special (exact) example of stable solutions

https://doi.org/10.1017/S0956792515000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000285


56 P. O. Mchedlov-Petrosyan

obtained in [40] for the general symmetric double-well potential. To get some direct insight,

we linearise (4.2) in ŵ (y, τ) = W − w (η) and consider the perturbations ∼ exp (θτ + iky)

around the stationary states w1 and w2. This yields (in the limit α → 0) the dispersion

relations

θ1 ≈ −iw1k −
(
3w2

1 − 1
)
k2, (4.5)

θ2 ≈ −iw2k −
(
3w2

2 − 1
)
k2 (4.6)

around stationary states w1 and w2 respectively. For 0 < v̄ < 1
/√

3, the factor (3w2
1 − 1)

is positive, i.e. θ1 has a negative real part and the ‘advancing’ stationary state w1 is

stable. On the other hand, (3w2
2 − 1) is positive for 0 < v̄ < 1

/
2
√

3, i.e. the “receding”

state w2 is linearly stable, while it is negative for 1
/
2
√

3 < v̄ < 1
/√

3, i.e. the “receding”

state is linearly unstable. So this stable solution corresponds to the transition between

‘metastable’ (locally stable) and stable states for the former case and to the transition

between unstable and stable states for the latter case. Another interesting issue would be

the ‘structural stability’ of the solution with respect to a (slight) violation of the condition

(3.6), i.e. a = 2
√

3 + ε. It appears that for a small α the corresponding deviations ∼ O (ε)

arise only in higher-order (in α) terms.

Let us now consider the case of a large α. It was first noticed in [20] that after rescaling

u = U/α in the limit α → ∞, the convective Cahn–Hilliard equation (1.3) reduces to the

famous Kuramoto–Sivashinsky equation [23, 35]:

Ut − UUx = −Uxx − Uxxxx. (4.7)

The latter equation is well known to possess quite complicated and even chaotic spati-

otemporal dynamics. Golovin et al. [20] showed that the CCHE also exhibits, with the

increase of α, a transition from coarsening to roughening. Unlike the CCHE, the CVCHE

contains two generally independent parameters, α and μ. Let us first presume that the

viscosity μ is fixed, while α is increasing. Rescaling u = U/α in equation (3.1) and taking

the limit α → ∞, we obtain, instead of equation (4.7), the following equation:

Ut − UUx = μUtxx − Uxx − Uxxxx. (4.8)

The latter equation may be considered as ‘compound’ Kuramoto–Sivashinsky [23, 35]

and Benjamin–Bona–Mahoney [2] equation. Here, we give three exact travelling-wave

solutions for this equation, corresponding to three possible values of μv. To more closely

resemble the original work [23], we change the sign of U. Introducing the travelling-wave

coordinate z = x − vt, we have the following equation:

−vUz + UUz = −μvUzzz − Uzz − Uzzzz. (4.9)

For the latter equation, we obtained the travelling-wave solution

U = r3 (tanh kz)3 + r2 (tanh kz)2 + r1 tanh kz + r0, (4.10)

where

r3 = 120k3, (4.11)
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r2 = −15k2μv, (4.12)

r1 = 30k

[
−4k2 +

2

19
− 1

152
(μv)2

]
, (4.13)

r0 = v +
1

4
μv

[
40k2 +

7

19
− 13

152
(μv)2

]
. (4.14)

Additionally, we have the system of two nonlinear algebraic equations to determine the

values of the parameters q = k2 and s = (μv)2
/
152,

s (19s − 2) (380q + 247s − 7) = 0, (4.15)

19
[
304q2 + 20q (19s − 2) + 87s

]
= 47291s2 + 11. (4.16)

Evidently, U is an even function of k, so it is enough to consider only
√
q = k > 0. On

the other hand, the sign of μv is determined by the sign of v, so μv = sign (v)
∣∣√s

∣∣. The

system (4.15)–(4.16) has four non-negative solutions:

s = 0; q =
11

76
=

11

4 × 19
; (4.17)

s =
2

19
; q =

1

4
; (4.18)

s =
18

893
=

18

19 × 47
; q =

1

188
=

1

4 × 47
; (4.19)

s =
32

1387
=

32

19 × 73
; q =

1

292
=

1

4 × 73
. (4.20)

In terms of (μv) and k, the first solution (4.17) is μ = 0 and k2 = 11/76, which yields the

classic Kuramoto solution for the Kuramoto–Sivashinski equation [23]. For this solution,

the velocity v is a free parameter. So we consider here only three positive s solutions.

The solution (4.18) corresponds to k2 = 1/4, (μv)2 = 16, and equation (4.10) takes the

following form:

U = 15

[(
tanh

z

2

)3

− sign (v)
(
tanh

z

2

)2

− tanh
z

2

]
+ sign (v)

(
4

μ
+ 9

)
. (4.21)

This is an asymmetric solitary wave, approaching sign (v)
(

4
μ

− 6
)

for z → ±∞. It is

a ‘hump’ for v = 4/μ, and a ‘gap’ for v = −4/μ. The solution (4.19) corresponds to

k2 = 1/ (4 × 47), (μv)2 = (12)2
/
47, and (4.10) takes the form

U =
15

(47)
3
2

[(
tanh

z

2
√

47

)3

− sign (v) 3

(
tanh

z

2
√

47

)2

+ 3 tanh
z

2
√

47

]

+ sign (v)
3√
47

(
4

μ
+

15

47

)
, (4.22)

which is a monotonous asymmetric kink with v = ±12
/ (

μ
√

47
)
, approaching asymptotic

https://doi.org/10.1017/S0956792515000285 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000285


58 P. O. Mchedlov-Petrosyan

values

U+ =
60

(47)
3
2

+ sign (v)
12

μ
√

47
, z → ∞, (4.23)

U− = − 60

(47)
3
2

+ sign (v)
12

μ
√

47
, z → −∞. (4.24)

The solution (4.20) corresponds to k2 = 1/ (4 × 73), (μv)2 = (16)2
/
73, and equa-

tion (4.10) takes the form

U =
15

(73)
3
2

[(
tanh

z

2
√

73

)3

− sign (v) 4

(
tanh

z

2
√

73

)2

+ 5 tanh
z

2
√

73

]

+ sign (v)
4√
73

(
4

μ
+

15

73

)
, (4.25)

i.e. the kink with asymptotic values

U+ =
90

(73)
3
2

+ sign (v)
16

μ
√

73
, z → ∞, (4.26)

U− = − 90

(73)
3
2

+ sign (v)
16

μ
√

73
, z → −∞. (4.27)

Remarkably, the transition from larger to smaller values of |μv| results in a transition

from the “quasi-BBM” solitary wave equation (4.21) to “quasi-KS” kinks, equations (4.22)

and (4.25). Furthermore, for |μv| = 16/
√

73 ≈ 1.873, the difference between the stationary

values is
(
U+ − U−)

≈ 0.228, while for |μv| = 12/
√

47 ≈ 1.750 it is
(
U+ − U−)

≈ 0.372.

This means that if the effect of viscosity is diminished the amplitude of the kink increases.

Thus, for the CVCHE in the limit of a large α (and fixed viscosity), a rather irregular,

Kuramoto–Sivashinsky-like behaviour of solutions may be possible.

Now, let us presume that the viscosity is also scaled with α, μ = ναm, with any positive

m. Then, rescaling u = U/α, x = Xα
m
2 , t = Tα

m
2 and taking the limit α → ∞ yield the

Benjamin–Bona–Mahoney [2] equation

UT − UUX = νUTXX. (4.28)

This equation is known to have unique and stable solutions. So, if the viscosity in the

CVCHE increases with increasing “forcing”, we may expect rather regular behaviour of

solutions.

5 Memory effects in the convective-viscous Cahn–Hilliard equation

As a necessary step, the standard derivation of the Cahn–Hilliard equation [5, 9, 29] uses

(generalised) Fick’s law, i.e. the proportionality between the diffusional flux J and gradient

of the chemical potential ∇Φ [7]. Fick’s law was often criticised for the infinite speed of

the spread of diffusing substance. The most popular alternative is the Maxwell–Cattaneo

approach, which introduces the time delay between the gradient and the flux, see e.g. [10]

for a comprehensive discussion. Here, we give only the one-dimensional formulae, in
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accord with the spirit of the present paper. In the Maxwell–Cattaneo approach, the

mass-conservation, or continuity equation, is not changed:

∂u

∂t
= −∂J

∂x
. (5.1)

However, instead of Fick’s law a more general relation is introduced:

τ
∂J

∂t
+ J = −D

∂

∂x
Φ, (5.2)

where τ is the ‘delay’ , or relaxation time. The integration of (5.2) yields

J = −
t∫

0

(
D

τ

∂

∂x
Φ

)
exp

(
− t − t′

τ

)
dt′. (5.3)

Substituting the latter expression for J into (5.1), we get

∂u

∂t
=

t∫
0

(
D

τ

∂2

∂x2
Φ

)
exp

(
− t − t′

τ

)
dt′. (5.4)

The latter equation is an integro-differential equation with an exponentially decaying

memory kernel. Depending on the form of Φ, it is the diffusion equation or Cahn–Hilliard

equation with ‘memory effects’. On the other hand, differentiation of equation (5.4) or,

alternatively, elimination of J from equations (5.2)–(5.3) leads to the equation

τ
∂2u

∂t2
+

∂u

∂t
=

∂

∂x

(
D

∂

∂x
Φ

)
. (5.5)

Hence, such modification is also called hyperbolic. The hyperbolic modification of the

classic one-dimensional Cahn–Hilliard equation was proposed in [11] to model rapid

spinodal decomposition in a binary alloy. This paper was followed by many others, both

of physical and mathematical nature [12–14], to mention just a few. The hyperbolic

modification of the viscous Cahn–Hilliard equation was also considered in [3], [15]

and [21]. Here, we consider the hyperbolic modification of the CVCHE (3.1); for the sake

of brevity we consider only δ = 0, i.e. the symmetric potential case. Then, equation (5.5)

takes the following form:

τutt + ut − αuux =
(
u3 − u − uxx + μut

)
xx
. (5.6)

Introducing the travelling-wave coordinate z = x − vt, we get

−
(

1

2
αu2 + vu

)
z

=
[
u3 −

(
1 + τv2

)
u − uzz − μvuz

]
zz
. (5.7)

Proceeding as above, we again obtain solution (2.12). Again we have 2κ2 = 1,

v = −α
u1 + u2

2
, (5.8)
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and the crucial condition (3.6), καμ = 3, is necessary. The only difference is that the single

constraint on two stationary values u1, u2 is now

(
3 − τα2

)
(u1 + u2)

2 + (u2 − u1)
2 = 4

(
1 +

α

2κ

)
(5.9)

instead of equation (3.7). For τα2 < 3, this produces only quantitative changes, but

for τα2 > 3 the absolute value of the velocity of the kink will increase with steepness.

However, because of the condition (3.6), the latter inequality is equivalent to μ2 < 6τ.

Usually, τ is considered as a small parameter and the term τutt in equation (5.6) as a

singular perturbation. So for the CVCHE with memory effects the increase of the velocity

with the steepness may occur for extremely low viscosity only.

6 Discussion

The central aim of the present work is to study the joint effect of the nonlinear convective

term and dissipation in the nonlinear Cahn–Hilliard equation. Such a study was pioneered

by Witelski [40] for equation (1.6), i.e. for the case of a general symmetric double-well

potential and Burgers-type convective term. To obtain the approximate travelling-wave

solution, he used a singular asymptotic expansion. From the analysis of the internal shock

layer, it was derived that such stable solutions exist only for a proper balance between

nonlinear effects and dissipation. In the present paper, we have considered both the cubic

and Burgers-type convective terms and the influence of dissipation. Generally, the presence

of the higher-order convective term essentially influences the properties of the solution.

As is shown both for the CCHE with cubic nonlinearity (1.4) and for the CHGKE (2.21),

the number of exact static single-domain-wall solutions and their asymmetry increases.

For the strong forcing, this may enhance quite irregular behaviour of the multiple-wave

system [17]. However, comparing these two equations we can see that while the presence of

the cubic nonlinearity will not generally guarantee the existence of exact travelling-wave

solutions, the presence of dissipation may allow such solutions without any additional

constraints on the parameters. In the case of the Burgers-type convection term (3.1), the

situation is more subtle. Further on it is more convenient to rewrite the solution (2.12)

in a somewhat different form. Solving equations (3.3)–(3.4) for u1 + u2 and u2 − u1, and

substituting into (2.12) we get

u = − v

α
+

[
1 +

α

2κ
+

( v

α

)2

(3 − 2κμα)

] 1
2

× tanh

{
κ

[
1 +

α

2κ
+

( v

α

)2

(3 − 2κμα)

] 1
2

(x − vt)

}
, (6.1)

and a constraint

v

[
κμ − 3

α

]
= δ. (6.2)

Setting μ = 0 in equations (6.1) and (6.2), we return to the solution for the case of the
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CCHE with asymmetric potential considered in [27]:

u = − v

α
+

[
1 +

α

2κ
+ 3

( v

α

)2
] 1

2

tanh

{
κ

[
1 +

α

2κ
+ 3

( v

α

)2
] 1

2

(x − vt)

}
, (6.3)

v = −1

3
αδ. (6.4)

The velocity of this travelling wave is proportional both to α, i.e. to the applied field, and

to the asymmetry of potential δ, roughly speaking to the “thermodynamic driving force”.

So, unlike the travelling-wave solutions of more general form [39], the moving exact

stationary kink/anti-kink solutions exist for δ � 0 only. For the classic Cahn–Hilliard

equation [5], the asymmetric potential, and correspondingly, the static asymmetric kink

solution were usually discarded [29] because for this case the global conservation of the

order parameter is violated. However, there is generally no global conservation for the

CCHE. The very notion of coarsening or “Ostwald ripening”, as considered in the theory

of first-order phase transitions [25], relates to the competitive growth of stable-phase

domains inserted into the metastable phase. In terms of quartic polynomial potential, this

corresponds to unequal depths of two potential wells and δ� 0.

On the other hand, if both nonlinear convective term and viscosity are present in

equation (3.1), the moving exact stationary kink/anti-kink solutions, see equation (6.1),

exist both for δ � 0 and δ = 0. For the former case, the velocity is again proportional

to the asymmetry of the potential. For the latter case, i.e. for a symmetric potential the

solution is

u = − v

α
+

[
1 +

α

2κ
− 3

( v

α

)2
] 1

2

tanh

{
κ

[
1 +

α

2κ
− 3

( v

α

)2
] 1

2

(x − vt)

}
, (6.5)

where v is now a free parameter. However, the existence of these travelling kink/anti-kink

solutions requires the additional constraint on nonlinearity and viscosity, i.e. καμ = 3, see

equations (3.6) and (6.2). Evidently, this is in accord with the result of Witelski [40]. It

is essentially a non-equilibrium situation, where the wave travels due to precise balance

between the external forcing and dissipation. Unlike equation (6.3), for the solution (6.5),

the steepness of the kink is decreasing with velocity. The maximal steepness is achieved

for v = 0, i.e. for a static symmetric kink. On the other hand, the strict upper limit

on the allowed absolute value of the velocity corresponds to u1 = u2, i.e. to the trivial

constant solution. Physically, the increasing absolute value of the velocity increases the

role of the viscous term; additionally, to preserve the balance between the nonlinearity

and dissipation, the steepness should be diminished.

Interestingly, the dependence of the asymmetry of the kink on the velocity is the

same both for equations (6.3) and (6.5). However, for the former case, v is fixed by the

asymmetry of potential, see equation (6.4), while for the latter case the velocity is a

free parameter, |v| < vm. Thus, the presence or absence of asymmetry in the potential

fundamentally influences the existence and properties of exact solutions. As it follows

from the results of [40], for a small α the solution (6.5) should be stable. The direct

exploration of the stability of stationary states u1, u2 in Section 4 has shown that for
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0 < v < α/
√

3 the advancing stationary state u1 is stable, while the receding state u2

is linearly stable for 0 < v < α/2
√

3, and linearly unstable for α/2
√

3 < v < α/
√

3.

Thus, this solution corresponds to the transition between ‘metastable’ and stable states

for the former case, and to the transition between unstable and stable for the latter case.

Application of the same procedure to the solution (6.3) (for a small α) yields the linear

stability of both stationary states, so the solution for μ = 0, δ� 0 (i.e. for the CCHE with

asymmetric potential) corresponds to the transition between metastable and stable states.

The process of transition between the two locally stable states is usually more stable than

the transition between unstable and stable states, so the solution (6.3) should not be less

stable than (6.5).

In contrast to the small α case, the case of a large α is much less conclusive, e.g.,

as was shown in [20] the CCHE exhibits the transition from coarsening to roughening

in the α → ∞ limit. To get some heuristic arguments, we have considered the limit

of a large α in Section 4. Unlike the CCHE, the CVCHE contains two generally in-

dependent parameters α and μ. Presuming the viscosity μ to be fixed and taking limit

α → ∞, we obtain equation (4.8), which may be considered as the compound Kuramoto–

Sivashinsky [23, 35] and Benjamin–Bona–Mahoney [2] equation. We have obtained exact

travelling-wave solutions of this equation corresponding to three possible values of μv,

see equations (4.18)–(4.20). For largest |μv| = 4, there is a single asymmetric ‘hump’

moving in the positive direction, and a single asymmetric ‘gap’ moving in the negative

direction, see equation (4.21). This is reminiscent of the well-known (symmetric) solitary

wave solution for the Benjamin–Bona–Mahoney [2] equation. For the smaller values

|μv| = 16/
√

73 ≈ 1.873 and |μv| = 12/
√

47 ≈ 1.750, there are monotonic (asymmetric)

kinks, solutions (4.25) and (4.22), respectively. So, for a large |μv| the solutions of equa-

tion (4.8) look more like the solutions of Benjamin–Bona–Mahoney [2] equation, and

for a small |μv| it is more like the solutions of Kuramoto–Sivashinsky equation [23, 35].

However, generally it is not clear whether the BBM term may counteract the ‘roughening’,

which is typical for the Kuramoto–Sivashinsky equation.

Now, let us presume that the viscosity is also scaled with α, μ = ναm, with any positive

m. Then, the limit α → ∞ yields the Benjamin–Bona–Mahoney [2] equation (4.28). This

equation is known to have unique and stable solutions. Therefore, we speculate that if the

viscosity increases with increasing ‘forcing’, the solutions of the convective-viscous CH

equation may exhibit a quite regular behaviour for a large α.

For the CVCHE, we also obtained an exact two-wave solution. While the presence of

the viscous term is necessary for the existence of such solution, the solution exists both

for symmetric and asymmetric potentials. For the sake of brevity, only the solution for

the symmetric potential is considered in some detail in Section 3. Physically, the exact

two-wave solution corresponds to the (one-dimensional) space initially (for t → −∞)

divided into three domains: the domains at ±∞, occupied by stable stationary states,

and an intermediate domain in the unstable state u = 0. Thus, the merging of waves

into the well-known static kink could be considered as a special case of (anomalous)

coarsening. For t → −∞, i.e. when the ‘half-waves’ are widely separated, the intermediate

(unstable) domain shrinks linearly with t. For t � 1/vσ, the deviation from the final static

tanh-profile is localised in the transition region |x| ∼ 1/σ and decays exponentially with
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time,

u − σ

κ
tanh (σx) ∼ − sinh (σx) exp (−σvt)

cosh2 (σx)
. (6.6)

Finally, the memory effects (hyperbolic modification) in the convective-viscous equation

(5.6) were briefly discussed. The exact travelling-wave solutions for this equation exist

both for symmetric and asymmetric potential. However, in the present communication, we

consider only the former case. For symmetric potential, the crucial condition (3.6) is again

necessary. The only essential difference from the CVCHE is that due to the memory effect

for a very low viscosity (very strong ‘forcing’), or a very large ‘delay time’, the velocity

may increase with the steepness.
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