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ABSTRACT

In this paper, we first propose a statistical model, called the Coherent Incurred
Paid model, to predict future claims, using simultaneously the information con-
tained in incurred and paid claims. Thismodel does not assume log-normality of
the levels (or normality of the growth rates) and is semi-parametric since it only
specifies the first and the second moments; however, in order to evaluate the
impact of the normality assumption, we also propose a benchmark Gaussian
version of our model. Correlations between growth rates of incurred and paid
claims are allowed and the tail development period is estimated. We also pro-
vide methods for computing the Claim Development Results and their Values
at Risk in the semi-parametric framework. Moreover, we show how to take into
account the updating of the estimation in the computation of the Claim Devel-
opment Results. An application highlights the practical importance of relaxing
the normality assumption and of updating the estimation of the parameters.
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1. INTRODUCTION

One of the more important problems that non-life insurance companies have to
solve is the evaluation of the reserve risk. Such an evaluation necessitates a two-
step modelling. The first step requires a method of prediction of the ultimate
claims. The second defines and computes a measure of the reserve risk based on
these predictions. Let us consider more precisely these two steps.

There exists a large literature dealing with the first step. Most methods are
based either on cumulated payments or on incurred losses. However, there are
important works proposingmodels using both sources of information.Halliwell
(1997, 2009) and Venter (2008) used a regression approach. Quarg and Mack
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(2004) introduced the Munich Chain Ladder (MCL) involving a modification
of theChain Ladder development factors based on incurred-paid ratios. Liu and
Verrall (2010) developed a bootstrap estimation of the predictive distributions
based on the MCL method. Dahms (2008) and Dahms et al. (2009) proposed
the complementary loss ratio method (CLRM), which is similar to the MCL
method but also allows for the study of uncertainty measures like the mean
square errors of predictions (MSEP). Posthuma et al. (2008) suggested a mul-
tivariate model conditioned on equality of the total paid and incurred losses.
Merz and Wüthrich (2010) proposed a probabilistic model, the Paid Incurred
Chain (PIC) model, combining in a rigorous way the two kinds of information.
This work has been followed by several extensions incorporating new features:
tail development factors (Merz and Wüthrich, 2013), dependence (Happ and
Wüthrich, 2013; Peters et al., 2014) or individual claims (Pigeon et al., 2014).

The second step of the modelling is the definition and the computation of
the reserve risk and it has also been extensively studied. Following recommenda-
tions of regulatory authorities, the more popular measure is based on the Claim
Development Result (CDR) defined as the difference between the prediction of
the ultimate claims today and in 1 year time. More precisely, the measure of
the reserve risk is the 99.5% quantile of the opposite of the CDR, and it can
be viewed as an evaluation of the under-provisioning: this is the so-called Value
at Risk (VaR) notion. (see Wüthrich and Merz (2013)). This measure has been
used in the context of the CLRM (Dahms et al., 2009) and in the context of the
PIC method (Happ et al., 2012).

In the present paper, we consider both steps of the modelling strategy. We
propose a statistical method, the Coherent Incurred Paid (CIP) method, using
simultaneously information based on paid and incurred claims. This method is
semi-parametric in the sense that it specifies parametrically the first- and second-
order moments of the variables of interest but otherwise leaves their probability
distributions completely free. However, since the (log) normal distributions have
been often considered in the literature, we also propose a benchmark parametric
approach based on these distributions. More precisely, in the parametric case,
we use a conditional approach in the spirit of Posthuma et al. (2008); in the semi-
parametric case, we only propose parametric specifications of the expectations
and of the variance–covariance matrix of the bidimensional vector composed
of the rates of increase of the cumulated payments and incurred losses implying
the equality of the payments and of the incurred losses at the ultimate develop-
ment year. The whole distribution is estimated by non-parametric kernel meth-
ods. In the parametric case, the estimation method is the Maximum Likelihood
(ML) method, whereas in the semi-parametric approach, the parameters are
estimated by the Pseudo Maximum Likelihood (PML) method (see Gourier-
oux et al. (1984)). These methods are flexible enough to incorporate correlation
between the rates of increase of the cumulated payments and of the incurred
losses at various development years, to allow for specifications also depending
on the accident year and to estimate the date at which predictions of the ulti-
mate claims based on both kinds of information become equal. Our approach
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also allows to compute reserve risk measures, in particular, the CDR and their
VaR and it is possible to evaluate the impact of the non-Gaussian features of
the variables on these measures as well as their sensitivity to the updating of the
parameter estimations at the end of the year defining the CDR’s. An application
on incurred claims and cumulated payments corresponding to a line of busi-
ness Motor Body Liability-Insurance highlights several points. First, our CIP
method is easily implementable. Second, the projected values of the incurred
claims and cumulated payments corresponding to the largest observed devel-
opment years are very different. Third, these values are also very different from
the ones provided by the Chain Ladder method, and the CIPmethod provides a
unique ultimate value which is located between the ultimate values of the Chain
Ladder method. Fourth, the results of our CIPmethodmay also be significantly
different from those of the PIC methods. Fifth, in the computation of the VaRs
of the CDRs, it is crucial to take into account the non-Gaussianity of the rates
of increase and the updating of the estimations.

The paper is organized as follows. Section 2 carefully describes the contribu-
tions of the paper and their connections with the literature. Section 3 describes
the Gaussian CIP model, the estimation of its parameters and of the tail devel-
opment year, the computation of predictions as well as CDR’s and their VaR’s.
Section 4 generalizes these results to a semi-parametric framework in which
Gaussianity is no longer assumed. Section 5 proposes an application. Section 6
provides concluding remarks. Proofs and data are gathered in appendices.

2. CONTRIBUTIONS OF THE PAPER AND COMPARISON
WITH THE LITERATURE

2.1. Statistical models and methods

One of the main objectives of the present paper is to propose a distribution
free approach, only based on a parametric specification of the first- and second-
order moments of the variables. Moreover, since the number of parameters does
not depend on the number of observations, we avoid the “incidental” issue (see
Neyman and Scott (1948), Lancaster (2000) and Moreira (2009)) and we can
use the results of the PML theory, in particular, we can test the significativity
of the parameters. We also propose a benchmark (log) Gaussian version of our
approach; in this case, the statistical method is the standard ML approach and
the consequences of the (log) Gaussian assumption can be evaluated.

In comparison, the PIC method is a parametric Bayesian approach (except
for the variance parameters) based on independent Gaussian rates of increase
of payments and incurred losses, the number of parameters increasing with the
size of the triangle. In the PIC method, the payments and the incurred losses
are not treated symmetrically. In a first version (Merz and Wüthrich, 2010), the
payments are listed first and then incurred losses, implying that the variance of
the log-payments (resp. log-incurred losses) is an increasing (resp. decreasing)
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function of the development year, whereas in a second version (Happ and
Wüthrich, 2013), it is the opposite situation. In our approach, we avoid this
choice and this asymmetric treatment which could provide different results in
particular in the non-Gaussian case. Distribution-free methods are proposed by
Liu and Verrall (2010) who use a bootstrap approach of theMCL, and by Peters
et al. (2010) who propose Bayesian and classical bootstrap methods applied to
all the Chain Ladder parameters. In our paper, the distribution-free aspect is
treated by using non-parametric kernel methods. Another difference between
our approach and the others is that we do not impose the same stochastic be-
haviour across the accident years.

2.2. Dependence

The original PIC method has been extended in order to take into account the
dependence between the observations, in particular, the dependence between the
rates of increase of the payments and of the incurred losses in a given accident
year. Happ and Wüthrich (2013) assumed that the incurred losses increments
are correlated with the claims payments at present and future dates. Peters et al.
(2014) adopted a copula approach. In our approach, the variance–covariance
matrix of all the rates of increase of payments and incurred losses of a given
accident year is full, in the sense that all the correlations (between the cumulated
payments and the incurred losses at a same or a different development year) are
allowed to be non-zero and the structure of the variance–covariance matrix is a
natural consequence of the equality between the payments and incurred losses
at the last development year (see Proposition 3.1).

2.3. Ultimate development year

The ultimate development year is unknown. This problem has been treated in
the Chain Ladder context by the introduction of “tail development factors” (see
Boor, 2006). Merz and Wüthrich (2010) also considered the tail development
factors within their PIC method. In our paper, we adopt a different approach.
The ultimate development date is considered as an additional parameter and an
estimation method is proposed.

2.4. Reserve risk measures

Several papers used the mean square error prediction (MSEP) as a risk measure.
In Happ andWüthrich (2013), theMSEP is applied to the total ultimate claims,
whereas in Dahms et al. (2009) and Happ et al. (2012), it is applied to the CDR.
In Peters et al. (2010), both the MSEP and the VaR of the total ultimate claims
are considered. In our paper, we follow the recommendation of Solvency II and
we consider the VaR of the CDR’s.Moreover, this can be done in a distribution-
free framework.
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2.5. Sensitivity of the CDR VaR

In our paper, we study two points which are not considered in the literature: the
sensitivity of the CDR VaR’s to non-Gaussianity and to parameter estimation
updating. The application on real data show that this sensitivity is huge and,
therefore, should not be neglected.

3. A GAUSSIAN CIP MODEL

The main objective of this paper is to propose a semi-parametric model that
makes no assumptions about the probability distributions but only on their first-
and second-order moments. However, since the Gaussian assumption is very
often retained in the literature, we start with a Gaussian version of our model,
which will be a useful benchmark.

3.1. Notations

We denote, respectively, by Pi, j and Ii, j , the cumulated payments and incurred
losses for accident year i and development year j . The calendar year is i + j .
We also use the following notations:

X1,i, j = log Pi, j ,
X2,i, j = log Ii, j ,

Xi, j =
(
X1,i, j
X2,i, j

)
,

Y1,i, j = X1,i, j − X1,i, j−1 = log Pi, j
Pi, j−1

,

Y2,i, j = X2,i, j − X2,i, j−1 = log Ii, j
Ii, j−1

,

Yi, j =
(
Y1,i, j
Y2,i, j

)
.

We assume that Xi, j is observed for

i = 1, . . . , n,
j = 0, . . . , n − 1,
1 ≤ i + j ≤ n,

and, consequently, Yi, j is observed for

i = 1, . . . , n − 1,
j = 1, . . . , n − 1,
2 ≤ i + j ≤ n.

Akey assumption, throughout the paper, is that there is an ultimate develop-
ment year N ≥ n−1, in general not observed, such that X1,i,N = X2,i,N for all i ,
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and the models proposed will have to satisfy this constraint. We also introduce
the notations:

Yi = (Y′
i,1, . . . ,Y

′
i,n−i )

′ of size 2(n − i),
Ỹi = (Y′

i,1, . . . ,Y
′
i,N)′ of size 2N,

Ỹ1,i = (Y1,i,1, . . . ,Y1,i,N)′ of size N,

Ỹ2,i = (Y2,i,1, . . . ,Y2,i,N)′ of size N.

3.2. A conditional Gaussian model

A first CIP model is obtained by starting from a Gaussian model and then im-
posing the conditioning constraints:

X1,i,N = X2,i,N, i = 1, . . . , n − 1.

More precisely, we assume that Xi,0 is fixed and, in a first step, we introduce
the model:

Yi, j = m(i, j, θ) + ξi, j , (1)

where the m(i, j, θ) are bidimensional deterministic functions and the ξi, j
are bidimensional vectors following independently the Gaussian distribution
N[0, �(i, j, θ)], where θ is an unknown vector of parameters. Note that
�(i, j, θ) is not assumed to be diagonal and, therefore, at this stage, a corre-
lation between the two components of ξi, j is allowed.

Then the probabilistic structure of the model is modified by introducing the
constraints:

X1,i,N = X2,i,N, i = 1, . . . , n − 1. (2)

In other words, we assume that the Ỹi , i = 1, . . . , n−1 are independently dis-
tributed and that the distribution of Ỹi is the conditional distribution obtained
from the initial Gaussianmodel (1) by imposing X1,i,N = X2,i,N or, equivalently,
d ′Xi,N = 0 with d ′ = (1, −1). Finally, we obtain the following distribution of
the vector Ỹi .

Propositon 3.1. The conditional distribution of Ỹi given d ′Xi,N = 0 is the Gaus-
sian distribution:

N
(
m̃i − c̃i ai

bi
, �̃i − c̃i c̃′

i

bi

)
,

where
m̃i = [m′(i, 1, θ), . . . ,m′(i, N, θ)]′,

c̃i = [d ′�(i, 1, θ), . . . , d ′�(i, N, θ)]′,

�̃i =
⎡⎣ �(i, 1, θ) 0

. . .

0 �(i, N, θ)

⎤⎦ ,
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ai = d ′Xi,0 + d ′
N∑
j=1

m(i, j, θ),

bi = d ′
N∑
j=1

�(i, j, θ)d

[for sake of notational simplicity, we use the notations m̃i instead of m̃i (θ), c̃i in-
stead of c̃i (θ), �̃i instead of �̃i (θ), ai instead of ai (θ) and bi instead of bi (θ)].

Proof. see Appendix A.

Note that using the notation FN = (I2, . . . , I2)′ where the identity matrix of
size 2 is repeated N times, we have

c̃i = �̃i FNd,

ai = d ′(Xi,0 + F ′
Nm̃i ),

bi = d ′F ′
N�̃i FNd = d ′F ′

Nc̃i .

It is important to stress that the variance–covariance matrix of Ỹi , namely

�̃i = �̃i − c̃i c̃′
i

bi
is full, in other words, all the components of Ỹi are correlated.

This correlation structure is introduced in a natural way by constraints (2) im-
posing equality of the cumulated payments and the incurred losses at the ulti-
mate development year.

We easily deduce the conditional distribution of the observed vector Yi .

Corollary 3.1. The conditional distribution of Yi given d ′Xi,N = 0 is the Gaus-

sian distribution : N
(
mi − ci ai

bi
, �i − ci c′

i
bi

)
,wheremi = [m′(i, 1, θ), . . . ,m′(i, n−

i, θ)]′ ci = [d ′�(i, 1, θ), . . . , d ′�(i, n − i, θ)]′

�i =
⎡⎣ �(i, 1, θ) 0

. . .

0 �(i, n − i, θ)

⎤⎦ .

Proof. We just have to take the marginal distribution of the first n − i com-
ponents of the joint distribution given in Proposition 3.1.

Note that the Gaussian distribution of Proposition 3.1 is degenerated since
the components of Ỹi have to satisfy the linear constraint:

d ′Xi,0 + d ′
N∑
j=1

Yi, j = 0
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or
d ′(Xi,o + F ′

NỸi ) = 0.

The matrix
�̃i − c̃i c̃′

i

bi
is of rank 2N − 1. However, as soon as n is strictly smaller than N + 1 the
variance–covariance matrix of Yi namely

�i − ci c′
i

bi
is of full rank 2(n − i) for all i including i = 1.

3.3. Estimation of a Gaussian CIP model

As soon as the functions m(i, j, θ) and �(i, j) have been specified (see Section
5 for a discussion of these specifications), the parameter θ can be estimated by
the ML method. Indeed from Corollary 3.1, we deduce that the log-likelihood
function of the model is

Propositon 3.2.

Ln(θ) = −1
2

n−1∑
i=1

[
log det�i (θ) + (yi − μi (θ))′�−1

i (θ)(yi − μi (θ))
]

with

μi (θ) = mi (θ) − ci (θ)ai (θ)

bi (θ)
,

�i (θ) = �i (θ) − ci (θ)c′
i (θ)

bi (θ)
.

Proof. It is a direct consequence of the expression of the probability density
function of a multivariate Gaussian distribution.

Moreover, the computation of �−1
i (θ) is simple thanks to the following

proposition (omitting θ for notational simplicity).

Propositon 3.3.

�−1
i = �−1

i + �−1
i ci c′

i�
−1
i

bi − c′
i�

−1
i ci

with

�−1
i =

⎛⎝ �−1
i,1 0

. . .

0 �−1
i,n−i

⎞⎠
[where �−1

i, j is a notation for �−1(i, j, θ)].
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Proof. See Appendix B.

In particular, the previous proposition implies that the term (yi −
μi )

′�−1
i (yi − μi ) in the log-likelihood is simply

n−i∑
j=1

⎡⎢⎢⎢⎢⎢⎣(yi, j − μi, j )
′�−1

i, j (yi, j − μi, j ) + [(yi, j − μi, j )
′�−1

i, j ci, j ]
2

bi −
n−i∑
j=1

c′
i, j�

−1
i, j ci, j

⎤⎥⎥⎥⎥⎥⎦ . (3)

Starting values for the parameters appearing in the m(i, j, θ) can be ob-
tained by the ordinary least squares (OLS) method and from the residuals of
this method for the parameters appearing in the �(i, j, θ) (see Section 5).

The ML estimator of θ will be denoted by θ̂n. Note that it is based on (n −
1) + (n − 2) + · · · + 1 = n(n−1)

2 observations Yi, j of size 2.
The whole testing and confidence region methods based on ML estimators

apply. In particular, the variance–covariance matrix of θ̂n can be approximated
by (see e.g. Gourieroux and Monfort (1996) chapter 7)

−
[
∂2Ln(θ̂n)
∂θ∂θ ′

]−1

. (4)

In order to test a constraint g(θ) = 0 where g is a multivariate function of
size r , we can use the Wald statistic:

ξw
n = −g′(θ̂n)

⎡⎣ ∂g
∂θ ′ (θ̂n)

(
∂2Ln(θ̂n)
∂θ∂θ ′

)−1
∂g′(θ̂n)

∂θ

⎤⎦−1

g(θ̂n)

and reject the constraint if ξw
n is larger than χ2

1−α(r), the quantile of order 1− α

of the χ2 distribution with r degrees of freedom, α being the level of the test. In
particular, if we want to test that the kth component θk of θ is equal to zero, we
can use the critical region:

θ̂2
k,n

σ̂ 2
k

≥ χ2
1−α(1),

where σ̂ 2
k is the kth diagonal term of −

[
∂2Ln(θ̂n)
∂θ∂θ ′

]−1

, or equivalently

|θ̂k,n|
σ̂k

≥ u1−α/2,

https://doi.org/10.1017/asb.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.36


758 G. DUPIN, E. KOENIG, P. LE MOINE, A. MONFORT AND E. RATIARISON

where u1−α|2 is the 1− α/2 quantile of N(0, 1), the standard Gaussian distribu-

tion. |θ̂kn |
σ̂k

is called the t-ratio. If we take α = 5%, u1−α/2 = 1.96, and therefore
we reject θk = 0 if the t ratio is larger than 1.96.

3.4. Tail development

As mentioned in Section 3.1, the ultimate development year N is, in general,
larger than the latest development year j where observations of Yi are available,
namely j = n− 1. It is the so called “tail development” problem. In the context
of Chain Ladder approaches, this problem has been reduced to the computation
of an ultimate development factor called “tail development factor.” A review of
these approaches is available in Boor (2006). The tail development problem has
also been considered byMerz andWuthrich (2010) within their PIC method; in
particular, their Bayesian approach allows for a tail development factor covering
several development periods beyond the last column of the claim development
triangle.

In our approach, we consider N as an unknown parameter. It is clear that
the previous log-likelihood depends on N through the a′

i s and the b′
i s. There-

fore, we can use recent results on the estimation of discrete parameter models
(see Choirat and Seri 2012) showing thatmaximizing the log-likelihood function
with respect to all the parameters, including N, provides a consistent estimator
of N. Indeed the results in Choirat, Seri paper are valid for them-estimator fam-
ily, which contains theML estimators. This gives us not only coherent estimates
of the ultimate values Pi,N = Ii,N, for any i , but also a consistent estimate of the
length of the tail development period.

3.5. Prediction

Once the parameters are estimated, we have to predictY∗
i = (Y′

i,n−i+1, . . . ,Y
′
i,N)′,

or, equivalently, X∗
i = (X′

i,n−i+1, . . . , X
′
i,N)′ for each i , given the observations

Xi,0,Yi,1, . . . ,Yi,n−i or, equivalently Xi = (X′
i,0, . . . , X

′
i,n−i )

′.
The conditional distribution of X∗

i given Xi (without conditioning by
d ′Xi,N = 0) is the same as the conditional distribution of X∗

i given Xi,n−i since
for any k ∈ {1, . . . , N− n + i}:

Xi,n−i+k = Xi,n−i +
k∑
j=1

Yi,n−i+ j

and the Yi,n−i+k are independent of Xi . Therefore, the conditional distribution
of X∗

i given Xi and d
′Xi,N = 0 is the same as the conditional distribution of X∗

i
given Xi,n−i and d ′Xi,N = 0 (since d ′Xi,N is function of X∗

i ). This implies that
we have to solve the same problem as in Section 3.2, just replacing Xi,0 by Xi,n−i
and Ỹi by Y∗

i , and we get the following proposition.
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Propositon 3.4. The conditional distribution of Y∗
i given Xi,n−i and d ′Xi,N = 0

is the Gaussian distribution:

N
(
m∗
i − c∗

i a
∗
i

b∗
i

, �∗
i − c∗

i c
′∗
i

b∗
i

)
with

m∗
i = [m′(i, n − i + 1, θ), . . . ,m′(i, N, θ)]′,

c∗
i = [d ′�(i, n − i + 1, θ), . . . , d ′(�i , N, θ)]′,

�∗
i =

⎡⎣ �(i, n − i + 1, θ) 0
. . .

0 �(i, N, θ)

⎤⎦ ,

a∗
i = d ′

⎛⎝Xi,n−i +
N∑

j=n−i+1

m(i, j, θ)

⎞⎠ ,

b∗
i = d ′

N∑
j=n−i+1

�(i, j, θ)d.

We also will use the notations

μ∗
i = m∗

i − c∗
i a

∗
i

b∗
i

, �∗
i = �∗

i − c∗
i c

′∗
i

b∗
i

and μ∗
i , of size 2(N−n+ i), is partitioned into N−n+ i bidimensional vectors,

in the following way:

μ∗
i = [μ∗′

(i, n − i + 1, θ), . . . , μ∗′
(i, N, θ)]′.

The best prediction of Y∗
i (minimizing the mean square prediction error)

is μ∗
i and the best prediction of Xn−i+k, k = {1, . . . , N − n + i} is Xi,n−i +

k∑
j=1

μ∗(i, n − i + j, θ).

3.6. Claim development results (CDR)

Denoting by En the conditional expectation operator with respect to the true
conditional distribution given the information at the calendar date n :

J n = {Xi,0, i = 1, . . . , n − 1,Yi, j , i = 1, . . . , n − 1, j = 1, . . . , n − i}
in which the true value of the parameter θ is evaluated at θ̂n, the CDR for the
accounting calendar period (n, n + 1) and accident year i is

CDRi (n + 1) = En(X1,i,N) − En+1(X1,i,N) (5)
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or, equivalently

CDRi (n + 1) = En(X2,i,N) − En+1(X2,i,N), (6)

since in our model, we automatically have X1,i,N = X2,i,N.
It is important to note that in the En+1 operator the value of θ is set at θ̂n+1,

in other words the updating of the estimation of θ is taken into account.
Choosing X1,i,N, we can write

X1,i,N = X1,i,n−i exp

⎛⎝ N∑
j=n+1−i

Y1,i, j

⎞⎠ = X1,i,n−iexp( f ′
i Y

∗
i ), (7)

where f ′
i is the row vector of size 2 (N − n + i) equal to (1, 0, 1, 0, . . . , 1, 0)

picking the components Y1,i, j , j = n − i + 1, . . . , N in Y∗
i .

Therefore, the true conditional expectation of X1,i,N is

X1,i,n−i exp[ f ′
i μ

∗
i (θ0) + 1/2 f ′

i �
∗
i (θ0) fi ], (8)

where θ0 is the true value of θ .
Replacing θ by the ML estimator θ̂n, we get

En(X1,i,N) = X1,i,n−iexp
[
f ′
i μ

∗
i (θ̂n) + 1/2 f ′

i �
∗
i (θ̂n) fi

]
. (9)

Similarly we have

En+1(X1,i,N) = X1,i,n−i+1exp
[
f ′∗
i μ∗∗

i (θ̂n+1) + 1/2 f ′∗
i �∗∗

i (θ̂n+1) f ∗
i

]
, (10)

where f ∗
i and μ∗∗

i are obtained from fi and μ∗
i , respectively, by deleting the first

two components and �∗∗
i is obtained from �∗

i by deleting the first two rows and
the first two columns.
X1,i,n−i+1 is random at date n and is equal to X1,i,n−iexp(Y1,i,n−i+1) with

Y1,i,n−i+1 = μ∗
1,i (θ0) + σ ∗

1,i (θ0)ε1,i,n−i+1,

where μ∗
1,i (θ0) is the first component of μ∗

i (θ0), σ
∗
1,i (θ0) the square root of the

(1, 1) term of �∗
i (θ0) and ε1,i,n−i+1 is following N(0, 1).

It is natural to view CDRi (n+1) from the calendar date n and, therefore, to
replace θ0 by θ̂n in the expression above of Y1,i,n−i+1.

Finally, we get the estimation of CDRi (n + 1):

̂CDRi (n + 1) = X1,i,n−i

{
exp

[
f ′
i μ

∗
i (θ̂n) + 1

2
f ′
i �

∗
i (θ̂n) fi

]

−exp[μ∗
1,i (θ̂n) + σ ∗

1,i (θ̂n)ε1,i,n−i+1 + f ′∗
i μ∗∗

i (θ̂n+1) + 1/2 f ′∗
i �∗∗

i (θ̂n+1) f ∗
i ]

}
.

(11)
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At date n, there are two sources of randomness in ̂CDRi (n + 1).
Indeed ̂CDRi (n+1) is random through ε1,i,n−i+1 and through the ε1,k,n−k+1, k =
1, . . . , n − 1 (containing ε1,i,n−i+1) and ε2,k,n−k+1 appearing in the new observa-
tionsYi,n−i+1 at calendar date n+1which are used in the updated estimation θ̂n+1

of θ . The global CDR is estimated by ̂CDR(n + 1) = ∑n
i=1

̂CDRi (n + 1). The
̂CDRi (n + 1)′s and ̂CDR(n + 1) are random variables which can be simulated,
as explained in the next section.

3.7. Value at Risk (VaR) of the ̂CDRi (n+1)

The VaR VaRi (α) associated with ̂CDRi (n + 1), or rather with the under-
provisioning measure − ̂CDRi (n + 1), is defined by

P[− ̂CDRi (n + 1) < VaRi (α)] = α,

where α is close to 1, for instance 0.995.
If we do not take into account the updating of θ̂n and set θ̂n+1 = θ̂n, the

only random term in (11) is ε1,i,n−i+1 distributed as N(0, 1). In other words,
with obvious notations, ̂CDRi (n+ 1) is of the form βi − γiexp(δiε1,i,n−i+1) with
βi > 0, γi > 0, δi > 0.

The VaRi (α) is easily seen to be

γiexp[δi�(α)] − βi . (12)

If we want to take into account the updating of θ̂n into θ̂n+1, we might use
the Newton–Raphson approximation:

θ̂n+1 = θ̂n −
[
∂2Ln(θ̂n)
∂θ∂θ ′

]−1
∂Ln+1

∂θ
(θ̂n), (13)

where ∂2Ln
∂θ∂θ ′ (θ̂n) is a by-product of the estimation procedure and ∂Ln+1

∂θ
(θ̂n) can be

computed numerically as a function of the εk,n−k+1, k = 1, . . . , n − 1.
ThenVaRi (α) can be evaluated by simulation.More precisely, let us consider

M simulations of ̂CDRi (n + 1) and let us order them in increasing order, then
−VaRi (α) is taken equal to the value with index [Mα] (where [.] is a notation
for the integer).

Note that for the computation of the VaR(α) of the global ̂CDR(n + 1) =∑n
i=1

̂CDRi (n + 1), such a simulation method is required even when we do not
update θ̂n.

3.8. Comparison with other models based on the normal or log-normal
distributions

Although the main objective of this paper is to propose the semi-parametric
approach developed in Section 4, it is of some interest to compare the Gaussian
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(or normal) version of our method with other methods using either the nor-
mal or the log-normal distribution. It turns out that important difference with
most methods is the use of conditional distributions imposing equality of the
cumulated payments and incurred losses at an ultimate development year. This
conditioning approach has been used only by Posthuma et al. (2008). Another
similarity between this paper and our work is the fact that, in both models, the
number of parameters does not depend on the number of observations, thus
avoiding the incidental problem and allowing for the use of the asymptotic re-
sults of the ML theory in particular the use of Wald and t-ratio tests. Finally, in
bothmodels, we adopt a classical approach and not a Bayesian approach. There
are, however, several important differences between both approaches. In our ap-
proach, we work with the logarithm of the variables and, therefore the variables
themselves have a log-normal distribution, not a normal distribution. We in-
troduce a correlation between the variables before the conditioning operation,
and the correlation structure is then enriched by the conditioning operation
leading to a situation where all the variables of a given accident year are corre-
lated (see the variance–covariance matrix in proposition 3.1). The ultimate date
at which the cumulated payments and the incurred losses are equal is unknown
and estimated. We also consider the computation of the CDRs of their VaRs.

4. A SEMI-PARAMETRIC CLASS OF CIP MODELS

4.1. Semi-parametric models

In the Gaussian model, the vectors Yi , of size 2(n− i), follow independently the
distribution (see Corollary 3.1):

N(μi , �i )

with

μi = mi − ciai
bi

, �i = �i − ci c′
i

bi
.

Let us denote by Ti the lower triangular matrix or Cholesky matrix, such
that �i = TiT′

i (imposing positive diagonal terms for Ti implies its uniqueness),
we can write

Yi = μi + Tiεi , (14)

εi ∼ N(0, I2(n−i)) or

εi,k ∼ I IN(0, 1), k = 1, . . . , 2(n − i).

A natural extension of this model consists in still assuming Yi = μi + Tiεi
but only imposing that the εi,k are identically, independently distributed with
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zero mean and unit variance:

Yi = μi + Tiεi , (15)

εi,k ∼ I I(0, 1).

In other words, we no longer assume that the εi,k are Gaussian and we do
not make any assumption about their common distribution. Note however that
the first- and second-order moments of Yi are still μi and �i . In particular, all
the components of Yi are correlated. The model becomes semi-parametric and
the ML method is no longer available.

4.2. Pseudo maximum likelihood estimation of θ

Gourieroux et al. (1984) have shown that if only the conditional mean of a ran-
dom variable is parametrically specified and if the parameters are estimated by
maximizing a pseudo likelihood based on a family of instrumental density func-
tions indexed by their means, this estimation is consistent and asymptotically
Gaussian if and only if the instrumental family is exponential affine. Similarly,
if only the conditional means and the conditional variance–covariance matrices
are parametrically specified, a PML estimator is consistent and asymptotically
normal if, and only if, the instrumental family is exponential quadratic. The
Gaussian family is such an exponential quadratic family of density functions.
This implies that the PML estimator of θ obtained bymaximizing Ln(θ) given in
Proposition 3.2 is still consistent and asymptotically normal for any distribution
of the ε′

i, j s. The only modification is the estimation of the variance–covariance
matrix of the estimator of θ that becomes[

∂2Ln(θ̂n)
∂θ∂θ ′

]−1 n−1∑
i=1

∂ log fi (θ̂n)
∂θ

∂ log fi (θ̂n)
∂θ ′

[
∂2Ln(θ̂n)
∂θ∂θ ′

]−1

, (16)

where −2 log fi (θ) is given by formula (3). Formula (16) is sometimes called
the “sandwich” formula. The testing procedures described in Section 3.3 remain
valid if the estimation of the variance–covariance matrix of the estimator of θ ,
previously given by formula (4), is replaced by formula (16). Finally, note that
the PMLmethod is a particular m-estimationmethod and, therefore, the results
by Choirat and Seri (2012) valid for the m-estimators, can be used in the PML
context, implying the consistency of the PML estimator of N.

4.3. Non-parametric estimation of the distribution of εi,k.

We can then estimate the εi by

ε̂i = T̂−1
i (Yi − μ̂i ), (17)

where T̂i and μ̂i are Ti and μi evaluated at θ̂n.
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The unknown distribution of the ε′
i,ks can be estimated by the Gaussian ker-

nel method and we get the following mixture of Gaussian distributions:

1
n(n − 1)h

n−1∑
i=1

2(n−i)∑
k=1

ϕ

(
ε − ε̂i,k

h

)
,

where ϕ is the p.d.f of N(0, 1) and h is equal to [n(n−1)]−1/5 according to Silver-
man’s rule. The mean and the variance of this mixture of Gaussian distributions
are

ε = 1
n(n − 1)

∑
i,k

ε̂i,k,

σ 2 = h2 + 1
n(n − 1)

∑
i,k

ε̂2i,k − ε2,

and, in order to get a distribution zero mean and unit variance, we can use

σ

n(n − 1)h

∑
i,k

ϕ

(
σε + ε − ε̂i,k

h

)
.

Also, note that a preliminary test of Gaussianity of the ε′
i,ks can be made

with the Jarque–Bera procedure which rejects the Gaussianity at level α (for
instance, α = 5%) if

n(n − 1)
(
S2

6
+ (K − 3)2

24

)
≥ χ2

1−α(2), (18)

where S and K are, respectively, the empirical skewness and kurtosis of the ε̂i,k.

4.4. The CDRi and their VaR

From Proposition 3.4, we know that, in the Gaussian case, the conditional dis-
tribution of Y∗

i = (Y′
i,n+1−i , . . . ,Y

′
i,N)′ given Xi,n−i and d ′Xi,N = 0 is N(μ∗

i , �
∗
i )

with

μ∗
i = m∗

i − c′∗
i a

∗
i

b∗
i

, �∗
i = �∗

i − c∗
i c

′∗
i

b∗
i

.

Denoting by T∗
i the Cholesky matrix satisfying T∗

i T
′∗
i = �∗

i , we have

Y∗
i = μ∗

i + T∗
i ε∗

i , (19)

where the components ε∗
i,k of ε∗

i follow independently N(0, 1). In the gen-
eral case, we can make the assumption that these components ε∗

i,k follow
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independently a distribution estimated by the one obtained in Section 4.3. At
this stage, it is important to stress the following property.

Propositon 4.1. For any distribution of the ε∗
i,k, the model Y

∗
i = μ∗

i +T∗
i ε∗

i implies
X1,i,N = X2,i,N.

Proof. Since the model Y∗
i = μ∗

i + T∗
i ε∗

i implies, for any distribution of the
ε∗
i,k, the same first- and second-order moments of Y∗

i and X∗
i as in the Gaussian

model, we have in particular E(X1,i,N − X2,i,N) = 0 and V(X1,i,N − X2,i,N) = 0
and therefore X1,i,N = X2,i,N for any distribution of the ε∗

i,k.

Since the conditional expectation ofY∗
i given Xi,n−i and d ′Xi,N = 0, remains

equal to μ∗
i , the best prediction of Xi,n−i+k, k ∈ {1, . . . N − n + i}, remains

Xi,n−i +
k∑
j=1

μ∗(i, n − i + j; θ).

The CDRi (n + 1) is

CDRi (n + 1) = X1,i,n−i En[exp( f ′
i Y

∗
i )] − X1,i,n−i+1En+1[exp( f ′∗

i Y
∗∗
i )]

with

Y∗∗
i = (Y′

i,n−i+2, . . . ,Y
′
i,N)′

or

CDRi (n + 1) = X1,i,n−i [Enexp( f ′
i Y

∗
i ) − exp(Y1,i,n−i+1)En+1exp( f ′∗

i Y
∗∗
i )]. (20)

From (19), we get

Y1,i,n−i+1 = μ∗
i,1 + T∗

i,11ε
∗
i,1

and replacing the true value of θ0 appearing in μ∗
i,1 and T

∗
i,11by θ̂n, we get

Ŷ1,i,n−i+1 = μ̂∗
i,1 + T̂∗

i,11ε
∗
i,1

and

̂CDRi (n + 1) = Xi,n−i [Enexp( f ′
i Y

∗
i ) − exp(μ̂∗

i,1 + T̂∗
i,11ε

∗
i,1)En+1exp( f ′∗

i Y
∗∗
i )].

If we do not take into account the estimation updating, we can easily simu-
late ̂CDRi (n + 1) by simulating ε∗

i,1 in the distribution estimated in Section 4.3
and by computing both expectations by Monte Carlo using the values θ̂n in the
relevant components of μ∗

i and T
∗
i .

If we want to take into account the estimation updating, for each simulation
of Yi,n+1−i based on

Yi,n−i+1 =
(

μ∗
i,1

μ∗
i,2

)
+

(
T∗
i,11 0
T∗
i,21 T∗

i,22

)(
ε∗
i,1

ε∗
i,2

)
,
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we must update θ̂n into θ̂n+1 and, then compute the second expectation in (20)
by Monte Carlo, replacing θ0 by θ̂n+1 in the equations

Y∗∗
i = μ∗∗

i + T∗∗
i ε∗∗

i .

The estimations of the VaRi (α)′s and of the global VaR(α) are obtained from
the empirical quantiles of M simulations of the ̂CDRi (n + 1)′s and of

̂CDR(n + 1) =
n∑
i=1

̂CDRi (n + 1).

4.5. Comparison with other distribution-free methods

The distribution-free methods appearing in the literature are bootstrap meth-
ods. Liu and Verrall (2010) adopt a classical bootstrap approach based on the
MCL taking into account both the paid and incurred claim triangles. Peter et al.
(2010) propose a Bayesian bootstrap approach based on theABC (Approximate
Bayesian Computation) method using MCMC (Monte Carlo Markov Chain)
techniques and they consider only one kind of claims (payments or claims
incurred). By contrast, our distribution-free method considers both kinds of
claims and uses non-parametric kernel techniques, based on first step estima-
tions of the parameters appearing in the first- and second-order moments es-
timated by the PML method. Moreover, none of the bootstrap methods men-
tioned above consider the computation of the CDR’s and of their VaR’s and the
estimation of the ultimate date.

5. AN APPLICATION

We consider cumulated payments and incurred claims corresponding to a line
of business Motor Body Liability-Insurance of 14 accident years (the unit is 103

euros) [see Appendix C]. This line of business is highly volatile and therefore,
not easy to model.

5.1. Estimation of the parameters

We begin with separate modelling of the rates of growth of cumulated payments
and of incurred claims. For each variable, we estimate by the non-linear least
square method amean function, i.e. the corresponding component ofm(i, j, θ),
and a variance function i.e. the corresponding diagonal term of �(i, j, θ). The
mean function is assumed to be an affine function, with unknown coefficients
(the components of θ) of basic functions of i and j , namely the identity function,
the square function, the logarithmic function and the exponential. These mean
functions are also assumed to be equal to zero if j is larger than a threshold J.
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TABLE 1

CUMULATED PAYMENTS (J = 11).

Separate Modelling CIP Modelling

Mean Function Estimation t-ratio Estimation t-ratio

Intercept −5.19 5.61 −3.51 4.59
j −0.24 3.34 −0.15 3.49

log( j) −7.19 8.68 −5.25 5.97
log(1 + j) 10.10 6.92 7.17 5.38

Variance Intercept 0.01 1.15 0.009 6.22
m2 0.06 6.21 0.09 2.30

TABLE 2

INCURRED CLAIMS (J = 4).

Separate Modelling CIP Modelling

Mean Function Estimation t-ratio Estimation t-ratio

Intercept −0.23 3.14 −0.24 4.41
i 0.08 4.72 0.06 5.97
i2 −0.005 4.09 −0.004 5.39
j 0.24 3.84 0.24 4.82

log( j) −0.63 4.76 −0.56 5.32

Variance Intercept 0.004 2.16 0.002 6.79
m2 0.32 4.21 0.784 3.22

rho 0.28 0.26 3.41

The best set of basic functions and the optimal thresholds are selected according
to the Akaike’s criterion.

The basic functions retained, the estimation of their coefficients, the t-ratio
statistics, and J are given in Tables 1 and 2. The variances, i.e. the diagonal
terms of �(i, j, θ), are assumed to be affine functions of the square of the cor-
responding mean. The estimation of the coefficients of this affine functions and
the associated t-ratios are also given in Tables 1 and 2.

It is seen that all these estimations are highly significant. They will be used as
starting values for the (pseudo) ML method described above for the estimation
of theCIPmodel. In this second stage, the correlation function ρ(i, j) appearing
in�(i, j), as well as the constraints X1,i,n = X2,i,n have been taken into account.
Different specifications for ρ(i, j) have been tested and a constant function has
been retained. The estimations of the parameters and the corresponding t-ratio
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TABLE 3

VALUES AT THE ULTIMATE DEVELOPMENT YEAR (103 EUROS).

Chain Ladder Chain Ladder PIC without PIC with
Payment Incurred Munich–Re Dependence Dependence CIP

1997 5,909 7,177 7,177 7,189 7,177 7,026
1998 3,698 4,711 4,711 4,499 4,484 4,588
1999 5,688 9,002 9,038 6,924 6,892 8,793
2000 5,082 7,040 7,046 6,185 6,157 6,960
2001 8,803 9,167 8,908 10,727 8,419 9,527
2002 6,662 6,976 6,818 8,127 6,204 7,146
2003 7,344 11,226 11,281 9,003 10,084 10,755
2004 5,548 4,427 4,114 6,811 3,815 4,565
2005 5,842 4,611 4,123 7,178 4,010 4,795
2006 7,039 18,770 20,812 8,657 17,085 16,839
2007 3,441 3,847 3,631 4,292 3,355 3,782
2008 3,428 3,980 3,756 4,341 3,416 3,600
2009 3,365 4,178 4,070 4,316 3,599 3,384
2010 2,022 2,836 2,916 3,142 2,449 1,704

Total 73,877 97,954 98,405 91,391 87,146 93,471

of the CIPmodel are also given in Tables 1 and 2. It is interesting to see that these
estimations are, in general, rather different from the initial values and this shows
the importance of jointly taking into account the information contained in the
cumulated payments and the incurred claims. It is also worth noting that all the
coefficients are highly statistically significant. As mentioned in Section 3.4, the
CIP method also allows to propose an estimation for the ultimate development
year N and we check that when some development profiles are highly volatile,
like in the data considered here, the estimation of N may be large. In our case,
we find N = 31.

5.2. Values at the ultimate development year

In the CIPmodel, the predicted values of the cumulated payments and of the in-
curred claims at the ultimate development date are, by construction, the same. It
is interesting to compare these estimated ultimate values with the ones provided
by the Chain Ladder method applied to the cumulated payments, by the Chain
Ladder method applied to the incurred claims, by the Munich–Re method, by
the PIC method without dependence and with tail development factor (Merz
and Wüthrich, 2010) and by the PIC methods with dependence and without
tail factor (Happ and Wüthrich, 2013). These values are displayed in Table 3.
The two Chain Ladder provide very different results, the total over the acci-
dent years being 73, 877 × 103 for the cumulated payments and 97, 954 × 103

for the incurred claims. The results of the Munich–Re method are similar to
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FIGURE 1: Prediction of the incurred and paid claims: year 2004. (Color online)

those of the Chain Ladder method for incurred claims. The CIP method pro-
vides, in general, values which are between the two Chain Ladders. In partic-
ular, the total is 93, 471 × 103. As far as the two versions of the PIC methods
are concerned, we see that the PIC method without dependence has difficulties
in capturing extreme information like the very high value (18,773) of the in-
curred claims of accident year 2006 and development year 2010, and, therefore,
provides a value at the ultimate development year (8,657) which seems to be
underestimated. The PIC method with dependence captures this extreme infor-
mation very differently (17,085 for the ultimate value of the accident year 2006)
and in a way which is similar to that of our CIP method (16,839). However,
the sum over the accident years of all the ultimate values is larger for our CIP
method than for two PIC methods, apparently because of the lack of depen-
dence in the first one and the lack of tail development factor for the second
one.

Figure 1 (resp. 2) shows the predictions of the cumulated payments and of
the incurred claims provided by the Chain Ladder and the CIP methods for ac-
cident year 2004 (resp. 2008). In both cases, the Chain Ladder method provides
very different values for the two variables at the largest observed development
horizon, i.e. 14, and the ultimate common value proposed by the CIP method
is between these two values.

https://doi.org/10.1017/asb.2017.36 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.36


770 G. DUPIN, E. KOENIG, P. LE MOINE, A. MONFORT AND E. RATIARISON

FIGURE 2: Prediction of the incurred and paid claims: year 2008. (Color online)

Figures 3 and 4 provides the whole prediction surfaces of the cumulated pay-
ments and of the incurred claims. By construction, the profiles at the ultimate
development horizon are identical.

5.3. Values at Risk of the CDR’s

In a previous study only based on incurred claims (see Koenig et al. (2015)), we
have stressed the importance of two elements in the computation of the VaRs
of CDR namely, the non-Gaussianity of the distributions and the updating of
the estimations. As we shall see, the importance of these features are strongly
confirmed by the CIP method.

First, let us test theGaussianity of the components of the normalized vectors
εi defined in Equation (15) and estimated by ε̂i defined in Equation (17). Since
n = 14, the Jarque–Bera statistic, given in (18), becomes

91
(
S2

3
+ (K − 3)2

12

)
,

where S and K are, respectively, the empirical skewness and kurtosis of the ε̂i,k.

If the errors are Gaussian, the Jarque–Bera statistic is asymptotically dis-
tributed as χ2(2) and the null hypothesis of Gaussianity should be rejected if
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FIGURE 3: Prediction surface of the cumulated payments. (Color online)

the numerical value of this statistic is larger than the critical values, which are
4.6, 6.0, 9.2 for the 10%, 5% and 1% levels, respectively. Since the value found
is 80.5, the normality assumption is very strongly rejected. This non-normality
is confirmed by Figure 5 showing the kernel-based estimation of the density of
the εi compared with the standard Gaussian density: a much ticker right tail is
observed.

If follows that the appropriate computation of the VaR’s of the CDR’s
should not assume Gaussianity and therefore should be based on the method
described in Section 4.4. Moreover, it is important to measure the impact
of the updating of the estimations of the parameters. Table 4 gives the
results.

Let us consider the global 99.5% VaR.Wrongly assuming Gaussianity leads
to a VaR equal to 3, 779 × 103 instead of 4, 954 × 103 when there is no up-
dating and a VaR equal to 5, 031 × 103 instead of 6, 695 × 103 when there is
updating. The price to pay for wrongly assuming Gaussianity is very high: an
under-estimation of approximately 25%.

The price to pay for omitting updating is of the same order of magnitude. It
moves from 3, 779×103 to 5, 031×103 in theGaussian case and from4, 954×103
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FIGURE 4: Prediction surface of the incurred claims. (Color online)

to 6, 695×103 in the non-Gaussian case. Cumulating both mistakes leads to an
under-estimation of approximately 44%.

6. CONCLUDING REMARKS

We proposed a flexible statistical modelling, called the CIP method, allowing to
take into account simultaneously the payments and the incurred claims in the
prediction of future claims. This method is semi-parametric since it does not
assume a precise shape of the distributions but only concentrates on the first
twomoments. In particular, Gaussianity of the growth rates, i.e. log-Gaussianity
of the levels, is not assumed and is in fact strongly rejected in our application.
Moreover, our CIP method also allows to estimate correlations, the ultimate
development year, the CDR’s and their VaR’s which are measures of reserve
risk recommended by the regulatory authorities. The techniques derived in this
paper could be extended in several directions. In particular, it would be interest-
ing to derive a CIP method treating simultaneously several business lines. This
kind of development is left for future research.
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FIGURE 5: Estimated density function of the residuals. (Color online)

TABLE 4

VAR’S OF THE CDR’S (103 EUROS).

Without Updating With Updating

Gaussian Non-Gaussian Gaussian Non-Gaussian

1997 914 1,252 901 1,281
1998 583 827 555 781
1999 1,118 1,610 1,156 1,606
2000 895 1,277 916 1,181
2001 1,251 1,751 1,222 1,669
2002 919 1,305 942 1,352
2003 1,409 1,929 1,457 2,096
2004 581 848 611 866
2005 619 894 649 871
2006 2,201 3,108 2,451 3,316
2007 1,459 2,187 1,263 1,784
2008 531 765 604 885
2009 490 709 749 1,105
2010 419 612 668 1,001

Sum of VaR’s 13,394 19,081 14,150 19,803
Global VaR 3,779 4,954 5,031 6,695
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APPENDIX A

Proof of Proposition 3.1

Let us first consider the joint distribution of
(

Ỹi
d ′Xi,N

)
. Since Xi,N = Xi,0 +

N∑
j=1

Yi, j , this

joint distribution (given Xi,0) is Gaussian.
Its mean is ⎛⎜⎝ m̃i

d ′Xi,0 + d ′
N∑
j=1

mi, j

⎞⎟⎠ =
(

m̃i

ai

)

and its variance–covariance matrix is⎛⎝ �i,1 . . . 0 c̃i
0 �i,N

c̃′
i bi

⎞⎠ =
(

�̃i c̃i
c̃i bi

)

with

bi = V(d ′Xi,N) =
N∑
j=1

d ′�i, j d,

c̃i = cov(Ỹi , d ′Xi,N),

=

⎛⎜⎝ ci,1
...

ci,N

⎞⎟⎠ ,

and ci j = �i, j d and therefore c̃i = �̃i FNd, with FN = (I2, . . . , I2)′.
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Applying a standard formula for conditional Gaussian distributions [see Gourieroux and
Monfort (1996) Appendix 3.3], we see that the conditional distribution of Ỹi given d ′Xi,N = 0
is

N
(

m̃i − c̃i ai
bi

, �̃i − c̃i c̃i
bi

)
. �

APPENDIX B

Proof of Proposition 3.3

Lemma

Let β a vector such that ‖ β ‖
= 1 (with ‖ β ‖2= β ′β), the matrix I − ββ ′ is invertible
and

(I − ββ ′)−1 = I + ββ ′

1− ‖ β ‖2 .
Proof:

(I − ββ ′)
(

I + ββ ′

1− ‖ β ‖2
)

= I − ββ ′ + ββ ′

1− ‖ β ‖2 − ββ ′ ‖ β ‖2
1− ‖ β ‖2

= I. �

Let us now consider the matrix

�i − ci c′
i

bi
= �

1/2
i

(
I − �

−1/2
i ci
b1/2i

c′
i�

−1/2
i

b1/2i

)
�

1/2
i

setting βi = �
−1/2
i ci
b1/2i

, we get

�i − ci c′
i

bi
= �

1/2
i (1 − βiβ

′
i )�

1/2,

and applying the lemma we get(
�i − ci ci

bi

)−1

= �
−1/2
i

(
I + βiβ

′
i

1− ‖ βi ‖2
)

�
−1/2
i ,

= �−1
i + �−1

i ci c′
i�

−1
i

bi

(
1 − c′

i�
−1
i ci
bi

)

= �−1
i + �−1

i ci c′
i�

−1
i

bi − c′
i�

−1
i ci

. �
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APPENDIX C

Payments (103 euros)

455 1,941 2,647 3,006 3,248 3,608 3,855 4,215 4,427 4,811 5,890 5,910 5,907 5,910
659 1,780 2,410 2,954 3,103 3,192 3,302 3,596 3,670 3,678 3,678 3,680 3,697
480 1,536 2,340 2,831 3,343 3,613 3,920 4,815 5,499 5,643 5,664 5,678
183 1,433 2,039 2,449 2,985 3,195 3,637 3,795 4,597 4,913 5,061
131 1,372 2,081 3,001 3,289 3,537 4,105 4,211 4,874 8,227
139 1,266 1,975 2,385 2,647 3,177 3,508 3,691 5,267
372 1,371 2,067 2,614 3,869 4,467 4,774 4,984
539 1,909 2,401 2,781 3,394 3,409 3,482
212 1,042 1,889 2,396 3,204 3,381
203 1,098 1,615 2,184 3,751
209 804 991 1,486
168 747 1,183
161 801
110

Incurred claims (103 euros)

7,430 8,289 8,223 7,849 7,786 7,561 7,623 7,284 7,400 7,696 7,317 7,318 7,177 7,177
6,654 7,319 6,453 6,340 6,318 6,014 5,375 5,414 5,385 5,078 5,013 4,933 4,711
6,555 7,795 7,394 7,990 7,540 8,596 8,314 8,713 8,931 8,995 9,072 9,277
5,804 6,573 6,248 6,187 6,462 6,308 7,238 7,104 7,301 7,481 7,213
5,527 6,644 7,551 9,198 9,008 9,423 9,732 9,324 9,561 9,601
4,066 5,945 6,537 6,332 6,272 6,797 6,651 7,077 7,272
3,301 5,169 5,808 8,083 11,294 11,922 11,490 11,441
3,459 4,446 4,544 4,709 4,853 4,617 4,517
2,376 4,073 4,065 4,337 4,817 4,728
6,035 10,398 11,191 13,269 18,773
2,470 3,260 3,452 3,439
3,844 3,251 3,271
2,733 3,362
1,797
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